
www.allitebooks.com

http://www.allitebooks.org

Ansible Configuration
Management

Leverage the power of Ansible to quickly configure your
Linux infrastructure with ease

Daniel Hall

 BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Ansible Configuration Management

Copyright © 2013 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: November 2013

Production Reference: 1151113

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78328-081-0

www.packtpub.com

Cover Image by Prashant Timappa Shetty (sparkling.spectrum.123@gmail.com)

www.allitebooks.com

http://www.allitebooks.org

Credits

Author
Daniel Hall

Reviewers
Niels Dequeker

Lex Toumbourou

Acquisition Editor
Pramila Balan

Gregory Wild

Commissioning Editor
Deepika Singh

Technical Editors
Novina Kewalramani

Rohit Kumar Singh

Copy Editors
Roshni Banerjee

Mradula Hegde

Laxmi Subramaniam

Project Coordinator
Suraj Bist

Proofreader
Maria Gould

Indexer
Rekha Nair

Graphics
Ronak Dhruv

Production Coordinators
Aditi Gajjar

Arvindkumar Gupta

Adonia Jones

Cover Work
Aditi Gajjar

Adonia Jones

www.allitebooks.com

http://www.allitebooks.org

About the Author

Daniel Hall started as a Systems Administrator at RMIT University after
completing his Bachelor of Computer Science degree there in 2009. More recently,
he has been working to improve the deployment processes at realestate.com.au.
Like many System Administrators, he is constantly trying to make his job easier and
easier, and has been using Ansible to this effect.

I would like to thank my partner, Kate, for her continued support
when I was writing this book. I would also like to thank my
reviewers for their insightful corrections. Finally, I would like to
thank everybody at Packt for giving me this opportunity and helping
this first time author navigate the world of writing.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewers

Niels Dequeker is a frontend developer who's passionate about the Web.

Currently, he's working with the JavaScript Research and Development team at
Hippo, a company based in the beautiful city center of Amsterdam. He's responsible
for the realization of the Hippo CMS, giving advice to both colleagues and clients
about the possibilities and solutions.

Niels has used Ansible in a production environment, for both Server Configuration
and Application Deployment.

He is also co-organizer of the JavaScript MVC Meetup in Amsterdam, where people
come together monthly to share, inspire, and learn.

Lex Toumbourou has worked in the Information Technology field for over 8
years, in a career centered on System Engineering and Software Development.
Though he turned his focus on Ansible recently, Lex has worked with Puppet,
Nagios, RRD, Fabric, Django, Postgres, Splunk, Git, the Python ecosystem, the PHP
ecosystem, and everything in between. Lex is an avid supporter of DevOps and loves
automation and analytics.

I would like to thank my girlfriend, Kelly Seu, for putting up with
me during one of the craziest years of my life. Love you so much.

www.allitebooks.com

http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support files and downloads related
to your book.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can access, read and search across Packt's entire library of
books.

Why Subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print and bookmark content
•	 On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials
for immediate access.

www.allitebooks.com

http://www.allitebooks.org

Table of Contents
Preface	 1
Chapter 1: Getting Started with Ansible	 5

Installation methods	 6
Installing from your distribution	 6
Installing from pip	 7
Installing from the source code	 7
Setting up Ansible	 7
First steps with Ansible	 9
Module help	 14
Summary	 14

Chapter 2: Simple Playbooks	 15
The target section	 16
The variable section	 17
The task section	 19
The handlers section	 20
The playbook modules	 22

The template module	 22
The set_fact module	 24
The pause module	 26
The wait_for module	 27
The assemble module	 28
The add_host module	 29
The group_by module	 29

Summary	 30
Chapter 3: Advanced Playbooks	 31

Running operations in parallel	 31
Looping	 32
Conditional execution	 34

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[ii]

Task delegation	 35
Extra variables	 36

The hostvars variable	 36
The groups variable	 37
The group_names variable	 38
The inventory_hostname variable	 39
The inventory_hostname_short variable	 39
The inventory_dir variable	 40
The inventory_file variable	 40

Finding files with variables	 40
Environment variables	 41
External data lookups	 42
Storing results	 43
Debugging playbooks	 44

The debug module	 44
The verbose mode	 45
The check mode	 46
The pause module	 46

Summary	 46
Chapter 4: Larger Projects	 47

Includes	 47
Task includes	 48
Handler includes	 49
Playbook includes	 50

Roles	 51
New features in 1.3	 55
Speeding things up	 56

Tags	 56
Ansible's pull mode	 59

Summary	 61
Chapter 5: Custom Modules	 63

Writing a module in Bash	 64
Using a module	 67
Writing modules in Python	 68
External inventories	 72
Summary	 75

Index	 77

www.allitebooks.com

http://www.allitebooks.org

Preface
Since CFEngine was first created by Mark Burgess in 1993, configuration
management tools have been constantly evolving. Followed by the emergence
of more modern tools such as Puppet and Chef, there are now a large number of
choices available to a system administrator.

Ansible is one of the newer tools to arrive into the configuration management space.
Where other tools have focused on completeness and configurability, Ansible has
bucked the trend and, instead, focused on simplicity and ease of use.

In this book, we aim to show you how to use Ansible from the humble
beginnings of its CLI tool, to writing playbooks, and then managing large and
complex environments. Finally, we teach you how to extend Ansible by writing
your own modules.

What this book covers
Chapter 1, Getting Started with Ansible, teaches you the basics of Ansible, how to build
an inventory, how to use modules, and, most importantly, how to get help.

Chapter 2, Simple Playbooks, teaches you how to combine multiple modules to create
Ansible playbooks to manage your hosts.

Chapter 3, Advanced Playbooks, delves deeper into Ansible's scripting language and
teaches you more complex language constructs.

Chapter 4, Larger Projects, teaches you the techniques to scale Ansible configurations
to large deployments containing many complicated systems.

Chapter 5, Custom Modules, teaches you how to expand Ansible beyond its
current capabilities.

www.allitebooks.com

http://www.allitebooks.org

Preface

[2]

What you need for this book
To use this book, you will need at least the following:

•	 A text editor
•	 A machine with Linux operating system
•	 Python 2.6.x

However, to use Ansible to its full effect, you should have several Linux machines
available to be managed. You could use a virtualization platform to simulate many
hosts, if required.

Who this book is for
This book is intended for those who want to understand the basics of how Ansible
works. It is expected that you have rudimentary knowledge of how to set up and
configure Linux machines. In parts of the book, we cover the configuration files of
BIND, MySQL, and other Linux daemons; a working knowledge of these would be
helpful, but is certainly not required.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text are shown as follows: "We can include other contexts through
the use of the include directive."

A block of code is set as follows:

[group]
machine1
machine2
machine3

Preface

[3]

When we wish to draw your attention to a particular part of a code block,
the relevant lines or items are set in bold:

tasks:
 - name: install apache
 action: yum name=httpd state=installed

 - name: configure apache
 copy: src=files/httpd.conf dest=/etc/httpd/conf/httpd.conf

Any command-line input or output is written as follows:

ansible machinename -u root -k -m ping

New terms and important words are shown in bold.

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Preface

[4]

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to have
the files e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the errata submission form link,
and entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list of
existing errata, under the Errata section of that title. Any existing errata can be viewed
by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

http://www.PacktPub.com/
http://www.PacktPub.com/support
mailto:copyright@packtpub.com

Getting Started with Ansible
Ansible is profoundly different from other configuration management tools
available today. It has been designed to make configuration easy in almost every
way, from its simple English configuration syntax to its ease of set up. You'll find
that Ansible allows you to stop writing custom configuration and deployment
scripts and lets you simply get on with your job.

Ansible only needs to be installed on the machines that you use to manage your
infrastructure. It does not need a client to be installed on the managed machine
nor does it need any server infrastructure to be set up before you can use it. You
should even be able to use it merely minutes after it is installed, as we will show
you in this chapter.

You will be using Ansible from the command line on one machine, which we will
call the controller machine, and use it to configure another machine, which we
will call the managed machine. Ansible does not place many requirements on the
controller machine and even less on the managed machine.

The requirements for the controller machine are as follows:

•	 Python 2.6 or higher
•	 paramiko
•	 PyYAML
•	 Jinja2

The managed machine needs Python 2.4 or higher and simplejson; however, if your
Python is 2.6 or higher, you only need Python.

Getting Started with Ansible

[6]

The following are the topics covered in this chapter:

•	 Installing Ansible
•	 Configuring Ansible
•	 Using Ansible from the command line
•	 How to get help

Installation methods
If you want to use Ansible to manage a set of existing machines or infrastructure,
you will likely want to use whatever package manager is included on those systems.
This means that you will get updates for Ansible as your distribution updates it,
which may lag several versions behind other methods. However, it doesn't mean
that you will be running a version that has been tested to work on the system you are
using.

If you run an existing infrastructure but need a newer version of Ansible, you can
install Ansible via pip. Pip is a tool used to manage packages of Python software and
libraries. Ansible releases are pushed to pip as soon as they are released, so if you are
up to date with pip, you should always be running the latest version.

If you imagine yourself developing lots of modules and possibly contributing back
to Ansible, you should be running a checked-out version. As you will be running the
latest and least tested version of Ansible, you may experience a hiccup or two.

Installing from your distribution
Most modern distributions include a package manager that automatically manages
package dependencies and updates for you. This makes installing Ansible via your
package manager by far the easiest way to get started with Ansible; usually it takes
only a single command. It will also be updated as you update your machine, though
it may be a version or two behind. The following are the commands to install Ansible
on the most common distributions. If you are using something different, refer to the
user guide for your package or your distribution's package lists.

•	 Fedora, RHEL, CentOS, and compatible: $ yum install ansible
•	 Ubuntu, Debian, and compatible: $ apt-get install ansible

Chapter 1

[7]

Installing from pip
Pip, like a distribution's package manager, will handle finding, installing, and
updating the packages you ask for and its dependencies. This makes installing
Ansible via pip as easy as installing from your package manager. It should be noted,
however, that it will not be updated with your operating system. Additionally,
updating your operating system may break your Ansible installation; however,
this is unlikely. The following is the command to install Ansible via pip:

$ pip install ansible

Installing from the source code
Installing from the source code is a great way to get the latest version, but it may not
be tested as correctly as released versions. You also will need to take care of updating
to newer versions yourself and making sure that Ansible will continue to work with
your operating system updates. To clone the git repository and install it, run the
following commands. You may need root access to your system to do this:

$ git clone git://github.com/ansible/ansible.git
$ cd ansible
$ sudo make install

Setting up Ansible
Ansible needs to be able to get an inventory of the machines that you want to configure
in order to manage them. This can be done in many ways due to inventory plugins.
Several different inventory plugins are included with the base install. We will go over
these later in the book, but for now we will cover the simple hosts file inventory.

The default Ansible inventory file is named hosts and placed in /etc/ansible. It is
formatted like an INI file. Group names are enclosed in square braces, and everything
underneath it, down to the next group heading, gets assigned to that group. Machines
can be in many groups at one time. Groups are used to allow you to configure many
machines at once. You can use a group instead of a hostname as a host pattern in later
examples, and Ansible will run the module on the entire group at once.

In the following example, we have three machines in a group named webservers,
namely site01, site02, and site01-dr. We also have a production group that
consists of site01, site02, db01, and bastion.

[webservers]
site01
site02

Getting Started with Ansible

[8]

site01-dr

[production]
site01
site02
db01
bastion

Once you have placed your hosts in the Ansible inventory, you can start running
commands against them. Ansible includes a simple module called ping that lets you
test connectivity between yourself and the host. Let's use Ansible from the command
line against one of our machines to confirm that we can configure them.

Ansible was designed to be simple and one of the ways the developers have done
this is by using SSH to connect to the managed machines. It then sends the code over
the SSH connection and executes it. This means that you don't need to have Ansible
installed on the managed machine. It also means that Ansible can use the same
channels that you are already using to administer the machine.

First, we check connectivity to our server to be configured using the Ansible ping
module. This module simply connects to the following server:

$ ansible site01 -u root -k -m ping

This should ask for the SSH password and then produce a result that looks like the
following code:

site01 | success >> {
 "changed": false,
 "ping": "pong"
}

If you have an SSH key set up for the remote system, you will be able to leave off the
-k argument to skip the prompt and use the keys. You can also configure Ansible to
use a particular username all the time by either configuring it in the inventory on a
per host basis or in the global Ansible configuration.

To set the username globally, edit /etc/ansible/ansible.cfg and change the line
that sets remote_user in the [defaults] section. You can also change remote_port
to change the default port that Ansible will SSH to. These will change the default
settings for all the machines, but they can be overridden in the inventory file on a per
server or per group basis.

Chapter 1

[9]

To set the username in the inventory file, simply append ansible_ssh_user to the
line in the inventory. For example, the next code section shows an inventory where
the site01 host uses the username root and the site02 host uses the username
daniel. There are also other variables you can use. The ansible_ssh_host file
allows you to set a different hostname and the ansible_ssh_port file allows you
to set a different port; this is demonstrated on the site01-dr host. Finally, the
db01 host uses the username fred and also sets a private key using ansible_ssh_
private_key_file.

[webservers] #1
site01 ansible_ssh_user=root #2
site02 ansible_ssh_user=daniel #3
site01-dr ansible_ssh_host=site01.dr ansible_ssh_port=65422 #4
[production] #5
site01 #6
site02 #7
db01 ansible_ssh_user=fred
ansible_ssh_private_key_file=/home/fred/.ssh.id_rsa bastion #8

If you aren't comfortable with giving Ansible direct access to the root account on
the managed machines, or your machine does not allow SSH access to the root
account (such as Ubuntu's default configuration), you can configure Ansible to
obtain root access using sudo. Using Ansible with sudo means that you can enforce
auditing the same way you would otherwise. Configuring Ansible to use sudo is as
simple as it is to configure the port, except that it requires sudo to be configured on
the managed machine.

The first step is to add a line to the /etc/sudoers file; this may already be set up if
you choose to use your own account. You can use a password with sudo, or you can
use a passwordless sudo. If you decide to use a password, you will need to use the
-k argument to Ansible, or set the ask_sudo_pass value to true in /etc/ansible/
ansible.cfg. To make Ansible use sudo, add --sudo to the command line.

First steps with Ansible
Ansible modules take arguments in key value pairs that look similar to key=value,
perform a job on the remote server, and return information about the job as JSON.
The key value pairs allow the module to know what to do when requested. They can
be hard coded values, or in playbooks they can use variables, which will be covered
in Chapter 2, Simple Playbooks. The data returned from the module lets Ansible know
if anything changed or if any variables should be changed or set afterwards.

Getting Started with Ansible

[10]

Modules are usually run within playbooks as this lets you chain many together, but
they can also be used on the command line. Previously, we used the ping command
to check that Ansible had been correctly setup and was able to access the configured
node. The ping module only checks that the core of Ansible is able to run on the
remote machine but effectively does nothing.

A slightly more useful module is called setup. This module connects to the
configured node, gathers data about the system, and then returns those values. This
isn't particularly handy for us while running from the command line, however, in a
playbook you can use the gathered values later in other modules.

To run Ansible from the command line, you need to pass two things, though usually
three. First is a host pattern to match the machine that you want to apply the module
to. Second you need to provide the name of the module that you wish to run and
optionally any arguments that you wish to give to the module. For the host pattern,
you can use a group name, a machine name, a glob, and a tilde (~), followed by a
regular expression matching hostnames, or to symbolize all of these, you can either
use the word all or simply *.

To run the setup module on one of your nodes, you need the following
command line:

$ ansible machinename -u root -k -m setup

The setup module will then connect to the machine and give you a number of useful
facts back. All the facts provided by the setup module itself are prepended with
ansible_ to differentiate them from variables. The following is a table of the most
common values you will use, example values, and a short description of the fields:

Field Example Description
ansible_architecture x86_64 The architecture of the managed

machine
ansible_distribution CentOS The Linux or Unix distribution on

the managed machine
ansible_distribution_
version

6.3 The version of the preceding
distribution

ansible_domain example.com The domain name part of the
server's hostname

ansible_fqdn machinename.
example.com

This is the fully qualified domain
name of the managed machine

ansible_interfaces ["lo", "eth0"] A list of all the interfaces the
machine has, including the
loopback interface

Chapter 1

[11]

Field Example Description
ansible_kernel 2.6.32-279.

el6.x86_64
The kernel version installed on the
managed machine

ansible_memtotal_mb 996 The total memory in megabytes
available on the managed machine

ansible_processor_
count

1 The total CPUs available on the
managed machine

ansible_
virtualization_role

guest Whether the machine is a guest or a
host machine

ansible_
virtualization_type

kvm The type of virtualization setup on
the managed machine

These variables are gathered using Python from the host system; if you have facter
or ohai installed on the remote node, the setup module will execute them and return
their data as well. As with other facts, ohai facts are prepended with ohai_ and
facter facts with facter_. While the setup module doesn't appear to be too useful on
the command line, once you start writing playbooks, it will come into its own.

If all the modules in Ansible do as little as the setup and the ping module, we
will not be able to change anything on the remote machine. Almost all of the
other modules that Ansible provides, such as the file module, allow us to actually
configure the remote machine.

The file module can be called with a single path argument; this will cause it to return
information about the file in question. If you give it more arguments, it will try and
alter the file's attributes and tell you if it has changed anything. Ansible modules
will almost always tell you if they have changed anything, which becomes more
important when you are writing playbooks.

You can call the file module, as shown in the following command, to see details
about /etc/fstab:

$ ansible machinename -u root -k -m file -a 'path=/etc/fstab'

The preceding command should elicit a response like the following code:

machinename | success >> {
 "changed": false,
 "group": "root",
 "mode": "0644",
 "owner": "root",
 "path": "/etc/fstab",

Getting Started with Ansible

[12]

 "size": 779,
 "state":
 "file"

}

Or like the following command to create a new test directory in /tmp:

$ ansible machinename -u root -k -m file -a 'path=/tmp/test
state=directory mode=0700 owner=root'

The preceding command should return something like the following code:

machinename | success >> {
 "changed": true,
 "group": "root",
 "mode": "0700",
 "owner": "root",
 "path": "/tmp/test",
 "size": 4096,
 "state": "directory"
}

The second command will have the changed variable set to true, if the directory
doesn't exist or has different attributes. When run a second time, the value of
changed should be false indicating that no changes were required.

There are several modules that accept similar arguments to the file module, and one
such example is the copy module. The copy module takes a file on the controller
machine, copies it to the managed machine, and sets the attributes as required. For
example, to copy the /etc/fstab file to /tmp on the managed machine, you will use
the following command:

$ ansible machinename -m copy -a 'path=/tmp/fstab mode=0700
owner=root'

The preceding command, when run the first time, should return something like the
following code:

machinename | success >> {
 "changed": true,
 "dest": "/tmp/fstab",
 "group": "root",
 "md5sum": "fe9304aa7b683f58609ec7d3ee9eea2f",
 "mode": "0700",
 "owner": "root",

Chapter 1

[13]

 "size": 637,
 "src": "/root/.ansible/tmp/ansible-1374060150.96-
 77605185106940/source",
 "state": "file"
}

There is also a module called command that will run any arbitrary command on the
managed machine. This lets you configure it with any arbitrary command, such as a
preprovided installer or a self-written script; it is also useful for rebooting machines.
Please note that this module does not run the command within the shell, so you cannot
perform redirection, use pipes, and expand shell variables or background commands.

Ansible modules strive to prevent changes being made when they are not required.
This is referred to as idempotency and can make running commands against
multiple servers much faster. Unfortunately, Ansible cannot know if your command
has changed anything or not, so to help it be more idempotent you have to give it
some help. It can do this either via the creates or the removes argument. If you give
a creates argument, the command will not be run if the filename argument exists.
The opposite is true of the removes argument; if the filename exists, the command
will be run.

You run the command as follows:

$ ansible machinename -m command -a 'rm -rf /tmp/testing
removes=/tmp/testing'

If there is no file or directory named /tmp/testing, the command output will
indicate that it was skipped, as follows:

machinename | skipped

Otherwise, if the file did exist, it will look as follows:

ansibletest | success | rc=0 >>

Often it is better to use another module in place of the command module. Other
modules offer more options and can better capture the problem domain they work
in. For example, it would be much less work for Ansible and also the person writing
the configurations to use the file module in this instance, since the file module will
recursively delete something if the state is set to absent. So, this command would be
equivalent to the following command:

$ ansible machinename -m file -a 'path=/tmp/testing state=absent'

Getting Started with Ansible

[14]

If you need to use features usually available in a shell while running your command,
you will need the shell module. This way you can use redirection, pipes, or job
backgrounding. You can pick which shell to use with the executable argument.
However, when you write the code, it also supports the creates argument but does
not support the removes argument. You can use the shell module as follows:

$ ansible machinename -m shell -a '/opt/fancyapp/bin/installer.sh >
/var/log/fancyappinstall.log creates=/var/log/fancyappinstall.log'

Module help
Unfortunately, we don't have enough space to cover every module that is available
in Ansible; luckily though, Ansible includes a command called ansible-doc that
can retrieve help information. All the modules included with Ansible have this
data populated; however, with modules gathered from elsewhere you may find
less help. The ansible-doc command also allows you to see a list of all modules
available to you.

To get a list of all the modules that are available to you along with a short description
of each type, use the following command:

$ ansible-doc -l

To see the help file for a particular module, you supply it as the single argument to
ansible-doc. To see the help information for the file module, for example, use the
following command:

$ ansible-doc file

Summary
In this chapter, we have covered which installation type to choose, installing Ansible,
and how to build an inventory file to reflect your environment. After this, we saw
how to use Ansible modules in an ad hoc style for simple tasks. Finally, we discussed
how to learn which modules are available on your system and how to use the
command line to get instructions for using a module.

In the next chapter, we will learn how to use many modules together in a playbook.
This allows you to perform more complex tasks than you could do with single
modules alone.

Simple Playbooks
Ansible is useful as a command-line tool for making small changes. However, its real
power lies in its scripting abilities. While setting up machines, you almost always
need to do more than one thing at a time. Ansible provides for this by using a tool
called playbook. Using playbooks, you can perform many actions at once, and
across multiple systems. They provide a way to orchestrate deployments, ensure a
consistent configuration, or simply perform a common task.

Playbooks are expressed in YAML, and for the most part, Ansible uses a standard
YAML parser. This means that you have all the features of YAML available to you
as you write them. For example, you can use the same commenting system as you
would in YAML. Many lines of a playbook can also be written and represented in
YAML data types. See http://www.yaml.org/ for more information.

Playbooks also open up many opportunities. They allow you to carry the state
from one command to the next. For example, you can grab the content of a file on
one machine, register it as a variable, and then use that on another machine. This
allows you to make complex deployment mechanisms that will be impossible with
the Ansible command alone. Additionally, each module tries to be idempotent; you
should be able to run a playbook several times and changes will only be made if they
need to be.

The command to execute a playbook is ansible-playbook. It accepts arguments
similar to the Ansible command-line tool. For example, -k (--ask-pass) and -K
(--ask-sudo) make it prompt for the SSH and sudo passwords, respectively; -u
can be used to set the user to use SSH. However, these options can also be set inside
the playbooks themselves in the target section. For example, to use the play named
example-play.yml, you can use the following command:

$ ansible-playbook example-play.yml

Simple Playbooks

[16]

The Ansible playbooks are made up of one or more plays. A play consists of three
sections: the target section, the variable section, and finally the bit that does all the
real work, the task section. You can include as many plays as you like in a single
YAML file.

•	 The target section defines hosts on which the play will be run, and how it
will be run. This is where you set the SSH username and other SSH-related
settings.

•	 The variable section defines variables which will be made available to the
play while running.

•	 The task section lists all the modules in the order that you want them to be
run by Ansible.

A full example of an Ansible play looks like the following code snippet:

- hosts: localhost
 user: root
 vars:
 motd_warning: 'WARNING: Use by ACME Employees ONLY'
 tasks:
 - name: setup a MOTD
 copy: dest=/etc/motd content={{ motd_warning }}

The target section
The target section looks like the following code snippet:

- hosts: webservers
 user: root

This is an incredibly simple version, but likely to be all you need in most cases. Each
play exists within a list. As per the YAML syntax, the line must start with a dash. The
hosts that a play will be run on must be set in the value of hosts. This value uses the
same syntax as the one used when selecting hosts using the Ansible command line,
which we discussed in the previous chapter. The host-pattern-matching features of
Ansible were also discussed in the previous chapter. In the next line, the user tells
the Ansible playbook which user to connect to the machine as.

Chapter 2

[17]

The other lines that you can provide in this section are as follows:

Name Description
sudo Set this to yes if you want Ansible to use sudo to become root once

it is connected to the machines in the play.
user This defines the username to connect to the machine originally,

before running sudo if configured.
sudo_user This is the user that Ansible will try and become using sudo. For

example, if you set sudo to yes and user to daniel, setting
sudo_user to kate will cause Ansible to use sudo to get from
daniel to kate once logged in. If you were doing this in an
interactive SSH session, you will use sudo -u kate while you are
logged in as daniel.

connection connection allows you to tell Ansible what transport to use to
connect to the remote host. You will mostly use ssh or paramiko
for remote hosts. However, you can also use local to avoid a
connection overhead when running things on the localhost.
Most of the time you will be using either local or ssh here.

gather_facts Ansible will automatically run the setup module on the remote
hosts unless you tell it not to. If you don't need the variables from
the setup module, you can set this now and save some time.

The variable section
Here you can define variables that apply to the entire play on all machines. You can
also make Ansible prompt for variables if they weren't supplied in the command
line. This allows you to make easily maintainable plays, and prevents you from
changing the same thing in several parts of the play. This also allows you to have
all the configuration for the play stored at the top, where you can easily read and
modify it without worrying about what the rest of the play does.

Variables in this section of a play can be overridden by machine facts (those that are set
by modules), but they themselves override the facts you set in your inventory. So they
are useful to define defaults that you may collect in a module later, but they can't be
used to keep defaults for inventory variables as they will override those defaults.

Simple Playbooks

[18]

Variable declarations, called vars, look like the values in the target section and
contain a YAML dictionary or a list. An example looks like the following code
snippet:

vars:
 apache_version: 2.6
 motd_warning: 'WARNING: Use by ACME Employees ONLY'
 testserver: yes

Variables can also be loaded from external YAML files by giving Ansible a list of
variable files to load. This is done in a similar way using the vars_files directive.
Then simply provide the name of another YAML file that contains its own dictionary.
This means that instead of storing the variables in the same file, they can be stored
and distributed separately, allowing you to share your playbook with others.

Using vars, the files look like the following code snippet in your playbook:

vars_files:
 /conf/country-AU.yml
 /conf/datacenter-SYD.yml
 /conf/cluster-mysql.yml

In the previous example, Ansible looks for country-AU.yml, datacenter-SYD.yml,
and cluster-mysql.yml in the conf folder. Each YAML file looks similar to the
following code snippet:

ntp: 'ntp1.au.example.com'
TZ: 'Australia/Sydney'

Finally you can make Ansible ask the user for each variable interactively. This
is useful when you have variables that you don't want to make available for
automation, and instead require human input. One example where this is useful is
prompting for the passphrases used to decrypt secret keys for the HTTPS servers.

You can instruct Ansible to prompt for variables with the following code snippet:

vars_prompt:
 - name: 'https_passphrase'
 prompt: 'Key Passphrase'
 private: yes

Chapter 2

[19]

In the previous example, https_passphrase is where the entered data will be
stored. The user will be prompted with Key Passphrase, and because private
is set to yes, the value will not be printed on the screen as the user enters it.

You can use variables, facts, and inventory variables with the help of: {{
variablename }}, ${variablename}, or simply $variablename. You can even
refer to complex variables, such as dictionaries, with a dotted notation. For example,
a variable named httpd, with a key in it called maxclients, will be accessed as
{{ httpd.maxclients }}. This works with facts from the setup module too. For
example, you can get the IPv4 address of a network interface called eth0 using {{
ansible_eth0.ipv4.address }}.

Variables that are set in the variable section do not survive between different plays
in the same playbook. However, facts gathered by the setup module or set by set_
fact do. This means that if you are running a second play on the same machines, or
a subset of the machines in an earlier play, you can set gather_facts in the target
section to false. The setup module can sometimes take a while to run, so this can
dramatically speed up plays, especially in plays where the serial is set to a low value.

The task section
The task section is the last section of each play. It contains a list of the actions that
you want Ansible to perform in the order you want them to be performed. There are
several ways in which you can represent each module's configuration. We suggest
you try to stick with one as much as possible, and use the others only when required.
This makes your playbooks easier to read and maintain. The following code snippet
is what a task section looks like with all three styles shown:

tasks:
 - name: install apache
 action: yum name=httpd state=installed

 - name: configure apache
 copy: src=files/httpd.conf dest=/etc/httpd/conf/httpd.conf

 - name: restart apache
 service:
 name: httpd
 state: restarted

Simple Playbooks

[20]

Here we see the three different styles being used to install, configure, and start
the Apache web server as it will look on a CentOS machine. The first task shows
you how to install Apache using the original syntax, which requires you to call the
module as the first keyword inside an action key. The second task copies Apache's
configuration file into place using the second style of the task. In this style, you use
the module name in place of the action keyword and its value simply becomes its
argument. This form is the one recommended by the Ansible authors. Finally the
last task, the third style, shows how to use the service module to restart Apache. In
this style, you use the module name as the key, as usual, but you also supply the
arguments as a YAML dictionary. This can come in handy when you are providing a
large number of arguments to a single module, or if the module wants the arguments
in a complex form, such as the Cloud Formation module.

Note that names are not required for tasks. However, they make good documentation
and allow you to refer to each task later on if required. This will become useful
especially when we come to handlers. The names are also outputted to the console
when the playbook is run, so that the user can tell what is happening. If you don't
provide a name, Ansible will just use the action line of the task or the handler.

Unlike other configuration management tools, Ansible does not provide
a fully featured dependency system. This is a blessing and a curse; with
a complete dependency system, you can get to a point where you are
never quite sure what changes will be applied to particular machines.
Ansible, however, does guarantee that your changes will be executed
in the order they are written. So, if one module depends on another
module that is executed before it, simply place one before the other in
the playbook.

The handlers section
The handlers section is syntactically the same as the task section and supports the
same format for calling modules. The modules in the handlers section are not run
unless they are called by tasks. They are called only when the task they were called
from records that they changed something. You simply add a notify key to the task
with the value set to the name of the task.

Handlers are run when Ansible has finished running the task list. They are run in
the order that they are listed in the handlers section, and even if they are called
multiple times in the task section, they will run only once. This is often used to
restart daemons after they have been upgraded and configured. The following
play demonstrates how you will upgrade an ISC DHCP server to the latest version,
configure it, and set it to start at boot. If this playbook is run on a server where the
ISC DHCP daemon is already running the latest version and the config files are not
changed, the handler will not be called and DHCP will not be restarted.

Chapter 2

[21]

- hosts: dhcp
 tasks:
 - name: update to latest DHCP
 action: yum name=dhcp state=latest
 notify: restart dhcp

 - name: copy the DHCP config
 action: copy src=dhcp/dhcpd.conf dest=/etc/dhcp/dhcpd.conf
 notify: restart dhcp

 - name: start DHCP at boot
 action: service name=dhcpd state=started enabled=yes

 handlers:
 - name: restart dhcp
 action: service name=dhcpd state=restarted

Each handler can only be a single module, but you can notify a list of handlers from
a single task. This allows you to trigger many handlers from a single step in the task
list. For example, if you have just checked out a new version of a Django application,
you might set a handler to migrate the database, deploy the static files, and restart
Apache. You can do this by simply using a YAML list on the notify action. This
might look something like the following code snippet:

- hosts: qroud
 tasks:
 - name: checkout Qroud
 action: git repo=git@github.com:smarthall/Qroud.git
 dest=/opt/apps/Qroud force=no
 notify:
 - migrate db
 - generate static
 - restart httpd

 handlers:
 - name: migrate db
 action: command chdir=/opt/apps/Qroud ./manage.py migrate –all

 - name: generate static
 action: command chdir=/opt/apps/Qroud ./manage.py
 collectstatic -c –noinput

 - name: restart httpd
 action: service name=httpd state=restarted

www.allitebooks.com

http://www.allitebooks.org

Simple Playbooks

[22]

You can see that the git module is used to check out some public GitHub code, and
if that caused anything to change, it triggers the migrate db, generate static, and
restart httpd actions.

The playbook modules
Using modules in playbooks is a little bit different from using them in the command
line. This is mainly because we have many facts available from the previous modules
and the setup module. Certain modules don't work in the Ansible command line
because they require access to those variables. Other modules will work in the
command-line version, but are able to provide enhanced functionalities when used
in a playbook.

The template module
One of the most frequently used examples of a module that requires facts from
Ansible is the template module. This module allows you to design an outline of a
configuration file and then have Ansible insert values in the right places. In reality,
the Jinja2 templates can be much more complicated than this, including things
such as conditionals, for loops, and macros. The following is an example of a Jinja2
configuration file for configuring BIND:

{{ ansible_managed }}
options {
 listen-on port 53 {
 127.0.0.1;
 {% for ip in ansible_all_ipv4_addresses %}
 {{ ip }};
 {% endfor %}
 };
 listen-on-v6 port 53 { ::1; };
 directory "/var/named";
 dump-file "/var/named/data/cache_dump.db";
 statistics-file "/var/named/data/named_stats.txt";
 memstatistics-file "/var/named/data/named_mem_stats.txt";
};

zone "." IN {
 type hint;
 file "named.ca";
};

include "/etc/named.rfc1912.zones";

Chapter 2

[23]

include "/etc/named.root.key";

{# Variables for zone config #}
{% if 'authorativenames' in group_names %}
 {% set zone_type = 'master' %}
 {% set zone_dir = 'data' %}
{% else %}
 {% set zone_type = 'slave' %}
 {% set zone_dir = 'slaves' %}
{% endif %}

zone "internal.example.com" IN {
 type {{ zone_type }};
 file "{{ zone_dir }}/internal.example.com";
 {% if 'authorativenames' not in group_names %}
 masters { 192.168.2.2; };
 {% endif %}
};

The first line merely sets up a comment that shows which template the file came
from, the host, modification time of the template, and the owner. Putting this
somewhere in the template as a comment is a good practice, and it ensures that
people know what they should edit if they wish to alter it permanently. In the fifth
line, there is a for loop. For loops go through all the elements of a list once for each
item in the list. It optionally assigns the item to the variable of your choice so that
you can use it inside the loop. This one loops across all the values in ansible_all_
ipv4_addresses, which is a list from the setup module that contains all the IPv4
addresses that the machine has. Inside the for loop, it simply adds each of them into
the configuration to make sure BIND will listen on that interface.

Line 24 of the preceding code snippet has a comment. Anything in between {#
and #} is simply ignored by the Jinja2 template processor. This allows you to add
comments in the template that do not make it into the final file. This is especially
handy if you are doing something complicated, setting variables within the template,
or if the configuration file does not allow comments.

In the very next line we can see an if statement. Anything between {% if %} and {%
endif %} is ignored if the statement in the if tag is false. Here we check if the value
authorativenames is in the list of group names that apply to this host. If this is true,
the next two lines set two custom variables. zone_type is set to master and zone_dir
is set to data. If this host is not in the authorativenames group, zone_type and
zone_dir will be set to slave and slaves, respectively.

Simple Playbooks

[24]

In line 33, we start the configuration of the zone. We set the type to the variable we
created earlier, and the location to zone_dir. Finally we check again if the host is in
the authorativenames groups, and if it isn't, we configure its master to a particular
IP address.

To get this template to set up an authorative nameserver, you need to create a group
in your inventory file named authorativenames and add some hosts under it. How
to do this was discussed back in Chapter 1, Getting Started with Ansible.

You can simply call the templates module and the facts from the machines will be
sent through, including the groups the machine is in. This is as simple as calling any
other module. The template module also accepts similar arguments to the copy
module such as owner, group, and mode.

- name: Setup BIND
 host: allnames
 tasks:
 - name: configure BIND
 template: src=templates/named.conf.j2 dest=/etc/named.conf
 owner=root group=named mode=0640

The set_fact module
The set_fact module allows you to build your own facts on the machine inside
an Ansible play. These facts can then be used inside templates or as variables in the
playbook. Facts act just like arguments that come from modules such as the setup
module: in that they work on a per-host basis. You should use this to avoid putting
complex logic into templates. For example, if you are trying to configure a buffer to
take a certain percentage of RAM, you should calculate the value in the playbook.

The following example shows how to use set_fact to configure a MySQL server
to have an InnoDB buffer size of approximately half of the total RAM available on
the machine:

--- #1
- name: Configure MySQL #2
 hosts: mysqlservers #3
 tasks: #4
 - name: install MySql #5
 yum: name=mysql-server state=installed #6

 - name: Calculate InnoDB buffer pool size #7
 set_fact: innodb_buffer_pool_size_mb="{{ ansible_memtotal_mb /
 2 }}" #8

Chapter 2

[25]

 - name: Configure MySQL #9
 template: src=templates/my.cnf.j2 dest=/etc/my.cnf owner=root
 group=root mode=0644 #10
 notify: restart mysql #11

 - name: Start MySQL #12
 service: name=mysqld state=started enabled=yes #13

 handlers: #14
 - name: restart mysql #15
 service: name=mysqld state=restarted #16

The first task here simply installs MySQL using yum. The second task creates a fact
by getting the total memory of the managed machine, dividing it by two, losing any
non-integer remainder, and putting it in a fact called innodb_buffer_pool_size_
mb. The next line then loads a template into /etc/my.cnf to configure MySQL.
Finally, MySQL is started and set to start at boot time. A handler is also included to
restart MySQL when its configuration changes.

The template then only needs to get the value of innodb_buffer_pool_size and
place it into the configuration. This means that you can re-use the same template
in places where the buffer pool should be one-fifth of the RAM, or one-eighth, and
simply change the playbook for those hosts. In this case, the template will look
something like the following code snippet:

{{ ansible_managed }}
[mysqld]
datadir=/var/lib/mysql
socket=/var/lib/mysql/mysql.sock
Disabling symbolic-links is recommended to prevent assorted
 security risks
symbolic-links=0
Settings user and group are ignored when systemd is used.
If you need to run mysqld under a different user or group,
customize your systemd unit file for mysqld according to the
instructions in http://fedoraproject.org/wiki/Systemd

Configure the buffer pool
innodb_buffer_pool_size = {{
 innodb_buffer_pool_size_mb|default(128) }}M

[mysqld_safe]
log-error=/var/log/mysqld.log
pid-file=/var/run/mysqld/mysqld.pid

Simple Playbooks

[26]

You can see that in the previous template, we are simply putting the variables we
get from the play into the template. If the template doesn't see the innodb_buffer_
pool_size_mb fact, it simply uses a default of 128.

The pause module
The pause module stops the execution of a playbook for a certain period of time. You
can configure it to wait for a particular period, or you can make it prompt the user to
continue. While effectively useless when used from the Ansible command line, it can
be very handy when used inside a playbook.

Generally, the pause module is used when you want the user to provide
confirmation to continue, or if manual intervention is required at a particular point.
For example, if you have just deployed a new version of a web application to a
server, and you need to have the user check manually to make sure it looks okay
before you configure them to receive production traffic, you can put a pause there.
It is also handy to warn the user of a possible problem and give them the option of
continuing. This will make Ansible print out the names of the servers and ask the
user to press Enter to continue. If used with the serial key in the target section, it
will ask once for each group of hosts that Ansible is running on. This way you can
give the user the flexibility of running the deployment at their own pace while they
interactively monitor the progress.

Less usefully, this module can simply wait for a specified period of time. This is
often not useful as you usually don't know how long a particular action may take,
and guessing may have disastrous outcomes. You should not use it for waiting for
networked daemons to start up; you should use the wait_for module (described
in the next section) for this task. The following play demonstrates using the pause
module first in the user interactive mode and then in the timed mode:

- hosts: localhost
 tasks:
 - name: wait on user input
 pause: prompt="Warning! Detected slight issue. ENTER to
 continue CTRL-C a to quit."

 - name: timed wait
 pause: seconds=30

Chapter 2

[27]

The wait_for module
The wait_for module is used to poll a particular TCP port and not continue until that
port accepts a remote connection. The polling is done from the remote machine. If you
only provide a port, or set the host argument to localhost, the poll will try to connect
to the managed machine. You can utilize local_action to run the command from the
controller machine and use the ansible_hostname variable as your host argument to
make it try and connect to the managed machine from the controller machine.

This module is particularly useful for daemons that can take a while to start, or
things that you want to run in the background. Apache Tomcat ships with an init
script that when you try to start it immediately returns, leaving Tomcat starting in
the background. Depending on the application that Tomcat is configured to load,
it might take anywhere between two seconds to 10 minutes to fully start up and be
ready for connections. You can time your application's start up and use the pause
module. However, the next deployment may take longer or shorter, and this can
break your deployment mechanism. With the wait_for module, you have Ansible
to recognize when Tomcat is ready to accept connections. The following is a play that
does exactly this:

- hosts: webapps
 tasks:
 - name: Install Tomcat
 yum: name=tomcat7 state=installed

 - name: Start Tomcat
 service: name=tomcat7 state=started

 - name: Wait for Tomcat to start
 wait_for: port=8080 state=started

After the completion of this play, Tomcat should be installed, started, and ready to
accept requests. You can append further modules to this example and depend on
Tomcat being available and listening.

Simple Playbooks

[28]

The assemble module
The assemble module combines several files on the managed machine and saves
them to another file on the managed machine. This is useful in playbooks when you
have a config file that does not allow includes, or globbing in its includes. This is
useful for the authorized_keys file for say, the root user. The following play will
send a bunch of SSH public keys to the managed machine, then make it assemble
them all together and place it in the root user's home directory:

--- #1
- hosts: all #2
 tasks: #3
 - name: Make a Directory in /opt #4
 file: path=/opt/sshkeys state=directory owner=root group=root
 mode=0700 #5

 - name: Copy SSH keys over #6
 copy: src=keys/{{ item }}.pub dest=/opt/sshkeys/{{ item }}.pub
 owner=root group=root mode=0600 #7
 with_items: #8
 - dan #9
 - kate #10
 - mal #11

 - name: Make the root users SSH config directory #12
 file: path=/root/.ssh state=directory owner=root group=root
 mode=0700 #13

 - name: Build the authorized_keys file #14
 assemble: src=/opt/sshkeys dest=/root/.ssh/authorized_keys
 owner=root group=root mode=0700 #15

By now this should all look familiar. You may note the with_items key in the task
that copies the keys over, and the {{ items }} variable. These will be explained
later in Chapter 3, Advanced Playbooks, but all you need to know now is that whatever
item you supply to the with_items key is substituted into the {{ items }} variable,
similar to how a for loop works. This simply lets us easily copy many files to the
remote host at once.

The last task shows the usage of the assemble module. You pass the directory
containing the files to be concatenated into the output as the src argument, and then
pass dest as the output file. It also accepts many of the same arguments (owner,
group, and mode) as the other modules that create files. It also combines the files in
the same order as the ls -1 command lists them. This means you can use the same
approach as udev and rc.d, and prepend numbers to the files to ensure that they end
up in the correct order.

Chapter 2

[29]

The add_host module
The add_host module is one of the most powerful modules that is available in
playbooks. add_host lets you dynamically add new machines inside a play. You
can do this by using the uri module to get a host from your CMDB and then adding
it to the current play. This module will also add your host to a group, dynamically
creating that group if it does not already exist.

The module simply takes a hostname and a groups argument, which are rather self-
explanatory, and sets the hostname and groups. You can also send extra arguments
and these are treated in the same way in which extra values in the inventory file are
treated. This means you can set ansible_ssh_user, ansible_ssh_port, and so on.

The group_by module
In addition to creating hosts dynamically in your play, you can also create groups.
The group_by module can create groups based on the facts about the machines,
including the ones you set up yourself using the add_fact module explained
earlier. The group_by module accepts one argument, key, which takes the name
of a group the machine will be added to. Combining this with the use of variables,
you can make the module add a server to a group based on its operating system,
visualization technology, or any other fact that you have access to. You can then use
this group in the target section of any subsequent plays, or in templates.

So if you want to create a group that groups the hosts by operating system, you will
call the module as follows. You can then use these groups to install packages using
the right packager, for example:

- name: Create operating system group
 hosts: all
 tasks:
 - group_by: key=os_{{ ansible_distribution }}

- name: Run on CentOS hosts only
 hosts: os_CentOS
 tasks:
 - name: Install Apache
 yum: name=httpd state=latest

- name: Run on Ubuntu hosts only
 hosts: os_Ubuntu
 tasks:
 - name: Install Apache
 apt: pkg=apache2 state=latest

Simple Playbooks

[30]

Summary
In this chapter, we covered the sections that are available in the playbook file, how
you can use variables to make your playbooks maintainable, triggering handlers
when changes have been made, and finally we looked at how certain modules are
more useful when used inside a playbook.

In the next chapter, we will be looking into the more complex features of playbooks.
This will allow you to build more complex playbooks capable of deploying and
configuring entire systems.

Advanced Playbooks
So far the playbooks that we have looked at are simple and just run a number of
modules in order. Ansible allows much more control over the execution of your
playbook. Using the following techniques, you should be able to perform even
the most complex deployments.

Running operations in parallel
By default, Ansible will only fork up to five times, so it will only run an operation
on five different machines at once. If you have a large number of machines, or
you have lowered this maximum fork value, then you may want to launch things
asynchronously. Ansible's method for doing this is to launch the task and then
poll for it to complete. This allows Ansible to start the job across all the required
machines while still using the maximum forks.

To run an operation in parallel, use the async and poll keywords. The async keyword
triggers Ansible to run the job in parallel, and its value will be the maximum time that
Ansible will wait for the command to complete. The value of poll indicates to Ansible
how often to poll to check if the command has been completed.

If you wanted to run updatedb across an entire cluster of machines, it might look like
the following code:

- hosts: all
 tasks:
 - name: Install mlocate
 yum: name=mlocate state=installed

Advanced Playbooks

[32]

 - name: Run updatedb
 command: /usr/bin/updatedb
 async: 300
 poll: 10

You will notice that when you run the previous example on more than five machines,
the yum module acts differently to the command module. The yum module will run on
the first five machines, then the next five, and so on. The command module, however,
will run across all the machines and indicate the status once complete.

If your command starts a daemon that eventually listens on a port, you can start it
without polling so that Ansible does not check for it to complete. You can then carry
on with other actions and check for completion later using the wait_for module. To
configure Ansible to not wait for the job to complete, set the value of poll to 0.

Finally, if the task that you are running takes an extremely long time to run, you can
tell Ansible to wait for the job as long as it takes. To do this, set the value of async
to 0.

You will want to use Ansible's polling in the following situations:

•	 You have a long-running task that may hit the timeout
•	 You need to run an operation across a large number of machines
•	 You have an operation for which you don't need to wait to complete

There are also a few situations where you should not use async or poll:

•	 If your job acquires locks that prevent other things from running
•	 You job only takes a short time to run

Looping
Ansible allows you to repeat a module several times with different input, for
example, if you had several files that should have similar permissions set. This
can save you a lot of repetition and allows you to iterate over facts and variables.

To do this, you can use the with_items key on an action and set the value to the list
of items that you are going to iterate over. This will create a variable for the module
called item, which will be set to each item in turn as your module is iterated over.
Some modules such as yum will optimize this so that instead of doing a separate
transaction for each package, they will operate on all of them at once.

Chapter 3

[33]

Using with_items looks like this:

tasks:
 - name: Secure config files
 file: path=/etc/{{ item }} mode=0600 owner=root group=root
 with_items:
 - my.cnf
 - shadow
 - fstab

In addition to looping over fixed items, or a variable, Ansible can also use what
are called lookup plugins. These plugins allow you to tell Ansible to fetch the data
from somewhere externally. For example, you might want to upload all the files that
match a particular pattern, and then upload them.

In this example, we upload all the public keys in a directory and then assemble them
into an authorized_keys file for the root user.

tasks: #1
 - name: Make key directory #2
 file: path=/root/.sshkeys ensure=directory mode=0700
 owner=root group=root #3

 - name: Upload public keys #4
 copy: src={{ item }} dest=/root/.sshkeys mode=0600
 owner=root group=root #5
 with_fileglob: #6
 - keys/*.pub #7

 - name: Assemble keys into authorized_keys file #8
 assemble: src=/root/.sshkeys dest=/root/.ssh/authorized_keys
 mode=0600 owner=root group=root #9

Repeating modules can be used in the following situations:

•	 Repeating a module many times with similar settings
•	 Iterating over all the values of a fact that is a list
•	 Used to create many files for later use with the assemble module to combine

into one large file
•	 Used with_fileglob to copy a directory of files using the glob pattern

matching

Advanced Playbooks

[34]

Conditional execution
Some modules, such as the copy module, provide mechanisms to configure it to skip
the module. You can also configure your own skip conditions that will only execute
the module if they resolve to true. This can be handy if your servers use different
packaging systems or have different filesystem layouts. It can also be used with the
set_fact module to allow you to compute many different things.

To skip a module, you can use the when key; this lets you provide a condition. If the
condition you set resolves to false, then the module will be skipped. The value that
you assign to when is a Python expression. You can use any of the variables or facts
available to you at this point.

If you only want to process some of the items in the list depending on a
condition, then simply use the when clause. The when clause is processed
separately for each item in the list; the item being processed is available
as a variable using {{ item }}.

The following code is an example showing how to choose between apt and yum for
both Debian and Red Hat systems. There is also a third clause to print a message and
fail if the OS is not recognized.

--- #1
- name: Install VIM #2
 hosts: all #3
 tasks: #4
 - name: Install VIM via yum #5
 yum: name=vim-enhanced state=installed #6
 when: ansible_os_family == "RedHat" #7

 - name: Install VIM via apt #8
 apt: name=vim state=installed #9
 when: ansible_os_family == "Debian" #10

 - name: Unexpected OS family #11
 debug: msg="OS Family {{ ansible_os_family }} is not
 supported" fail=yes #12
 when: not ansible_os_family == "RedHat" or ansible_os_family
 == "Debian" #13

Chapter 3

[35]

This feature can be used to pause at a particular point and wait for the
user intervention to continue. Normally when Ansible encounters an
error, it will simply stop what it is doing without running any handlers.
With this feature, you can add the pause module with a condition on it
that triggers in unexpected situations. This way the pause module will
be ignored in a normal situation, but in unexpected circumstances it will
allow the user to intervene and continue when it is safe to do so.
The task would look like this:

name: pause for unexpected conditions
pause: prompt="Unexpected OS"
when: ansible_os_family != "RedHat"

There are numerous uses of skipping actions; here are a few suggestions:

•	 Working around differences in operating systems
•	 Prompting a user and only then performing actions that they request
•	 Improving performance by avoiding a module that you know won't change

anything but may take a while to do so
•	 Refusing to alter systems that have a particular file present
•	 Checking if custom written scripts have already been run

Task delegation
Ansible, by default, runs its tasks all at once on the configured machine. This is great
when you have a whole bunch of separate machines to configure, or if each of your
machines is responsible for communicating its status to the other remote machines.
However, if you need to perform an action on a different host than the one Ansible is
operating on, you can use a delegation.

Ansible can be configured to run a task on a different host than the one that is being
configured using the delegate_to key. The module will still run once for every
machine, but instead of running on the target machine, it will run on the delegated
host. The facts available will be the ones applicable to the current host. Here, we
show a playbook that will use the get_url option to download the configuration
from a bunch of web servers.

--- #1
- name: Fetch configuration from all webservers #2
 hosts: webservers #3
 tasks: #4
 - name: Get config #5

Advanced Playbooks

[36]

 get_url: dest=configs/{{ ansible_hostname }} force=yes
 url=http://{{ ansible_hostname }}/diagnostic/config #6
 delegate_to: localhost #7

If you are delegating to the localhost, you can use a shortcut when defining the
action that automatically uses the local machine. If you define the key of the action
line as local_action, then the delegation to localhost is implied. If we were to
have used this in the previous example, it would be slightly shorter and look like this:

--- #1
- name: Fetch configuration from all webservers #2
 hosts: webservers #3
 tasks: #4
 - name: Get config #5
 local_action: get_url dest=configs/{{ ansible_hostname
 }}.cfg url=http://{{ ansible_hostname
 }}/diagnostic/config #6

Delegation is not limited to the local machine. You can delegate to any host that is in
the inventory. Some other reasons why you might want to delegate are:

•	 Removing a host from a load balancer before deployment
•	 Changing DNS to direct traffic away from a server you are about to change
•	 Creating an iSCSI volume on a storage device
•	 Using an external server to check that access outside the network works

Extra variables
You may have seen in our template example in the previous chapter that we used a
variable called group_names. This is one of the magic variables that are provided by
Ansible itself. At the time of writing there are seven such variables, described in the
following sections.

The hostvars variable
hostvars allows you to retrieve variables about all the hosts that the current play
has dealt with. If the setup module hasn't yet been run on that host in the current
play, only its variables will be available. You can access it like you would access
other complex variables, such as ${hostvars.hostname.fact}, so to get the Linux
distribution running on a server named ns1, it would be ${hostvars.ns1.ansible_
distribution}. The following example sets a variable called zone master to the
server named ns1. It then calls the template module, which would use this to set the
masters for each zone.

Chapter 3

[37]

--- #1
- name: Setup DNS Servers #2
 hosts: allnameservers #3
 tasks: #4
 - name: Install BIND #5
 yum: name=named state=installed #6

- name: Setup Slaves #7
 hosts: slavenamesservers #8
 tasks: #9
 - name: Get the masters IP #10
 set_fact: dns_master="{{
 hostvars.ns1.ansible_default_ipv4.address }}" #11

 - name: Configure BIND #12
 template: dest=/etc/named.conf
 src/templates/named.conf.j2 #13

Using hostvars, you can further abstract templates from your
environment. If you nest your variable calls, then instead of placing an
IP address in the variable section of the play, you can add the hostname.
To find the address of a machine named in the variable the_machine
you would use, {{ hostvars.[the_machine].default_ipv4.
address }}.

The groups variable
The groups variable contains a list of all hosts in the inventory grouped by the
inventory group. This lets you get access to all the hosts that you have configured.
This is potentially a very powerful tool. It allows you to iterate across a whole group
and for every host apply an action to the current machine.

--- #1
- name: Configure the database #2
 hosts: dbservers #3
 user: root #4
 tasks: #5
 - name: Install mysql #6
 yum: name={{ item }} state=installed #7
 with_items: #8
 - mysql-server #9
 - MySQL-python #10

Advanced Playbooks

[38]

 - name: Start mysql #11
 service: name=mysqld state=started enabled=true #12

 - name: Create a user for all app servers #13
 with_items: groups.appservers #14
 mysql_user: name=kate password=test host={{
 hostvars.[item].ansible_eth0.ipv4.address }}
 state=present #15

The groups variable does not contain the actual hosts in the group; it
contains strings representing their names in the inventory. This means
you have to use nested variable expansion to get to the hostvars
variable if needed.

You can even use this variable to create known_hosts files for all of your machines
containing the host keys of all the other machines. This would allow you to then SSH
from one machine to another without confirming the identity of the remote host. It
would also handle removing machines when they leave service or updating them when
they are replaced. The following is a template for a known_hosts file that does this:

{% for host in groups['all'] %}
{{ hostvars[host]['ansible_hostname'] }} {{
 hostvars[host]['ansible_ssh_host_key_rsa_public'] }}
{% endfor %}

The playbook that uses this template would look like this:

--- #1
hosts: all #2
tasks: #3
- name: Setup known hosts #4
 hosts: all #5
 tasks: #6
 - name: Create known_hosts #7
 template: src=templates/known_hosts.j2
 dest=/etc/ssh/ssh_known_hosts owner=root group=root
 mode=0644 #8

The group_names variable
The group_names variable contains a list of strings with the names of all the
groups the current host is in. This is not only useful for debugging, but also for
conditionals detecting group membership. This was used in the last chapter to
set up a nameserver.

Chapter 3

[39]

This variable is mostly useful for skipping a task or in a template as a condition. For
instance, if you had two configurations for the SSH daemon, one secure and one less
secure, but you only wanted the secure configuration on the machines in the secure
group, you would do it like this:

- name: Setup SSH
 hosts: sshservers
 tasks:
 - name: For secure machines
 set_fact: sshconfig=files/ssh/sshd_config_secure
 when: "'secure' in group_names"

 - name: For non-secure machines
 set_fact: sshconfig=files/ssh/sshd_config_default
 when: "'secure' not in group_names"

 - name: Copy over the config
 copy: src={{ sshconfig }} dest=/tmp/sshd_config

In the previous example, we used the set_fact module to set the fact
for each case, and then used the copy module. We could have used
the copy module in place of the set_facts modules and used one
fewer task. The reason this was done is that the set_fact module
runs locally and the copy module runs remotely. When you use the
set_facts module first and only call the copy module once, the copies
are made on all the machines in parallel. If you used two copy modules
with conditions, then each would execute on the relevant machines
separately. Since copy is the longer task of the two, it benefits the most
from running in parallel.

The inventory_hostname variable
The inventory_hostname variable stores the hostname of the server as recorded in
the inventory. You should use this if you have chosen not to run the setup module
on the current host, or if for various reasons the value detected by the setup module
is not correct. This is useful when you are doing the initial setup of the machine and
changing the hostname.

The inventory_hostname_short variable
The inventory_hostname_short variable is the same as the previous variable;
however, it only includes the characters up to the first dot. So for host.example.
com, it would return host.

Advanced Playbooks

[40]

The inventory_dir variable
The inventory_dir variable is the path name of the directory containing the
inventory file.

The inventory_file variable
The inventory_file variable is the same as the previous one, except it also includes
the filename.

Finding files with variables
All modules can take variables as part of their arguments by dereferencing them
with {{ and }}. You can use this to load a particular file based on a variable.
For example, you might want to select a different config file for NRPE (a Nagios
check daemon) based on the architecture in use. Here is how that would look:

--- #1
- name: Configure NRPE for the right architecture #2
 hosts: ansibletest #3
 user: root #4
 tasks: #5
 - name: Copy in the correct NRPE config file #6
 copy: src=files/nrpe.{{ ansible_architecture }}.conf
 dest=/etc/nagios/nrpe.cfg #7

In the copy and the template modules, you can also configure Ansible to look for a
set of files, and it finds them using the first one. This lets you configure a file to look
for; if that file is not found a second will be used, and so on until the end of the list
is reached. If the file is not found, then the module will fail. The feature is triggered
by using the first_available_file key, and referencing {{ item }} in the action.
The following code is an example of this feature:

--- #1
- name: Install an Apache config file #2
 hosts: ansibletest #3
 user: root #4
 tasks: #5
 - name: Get the best match for the machine #6
 copy: dest=/etc/apache.conf src={{ item }} #7
 first_available_file: #8
 - files/apache/{{ ansible_os_family }}-{{
 ansible_architecture }}.cfg #9
 - files/apache/default-{{ ansible_architecture }}.cfg #10
 - files/apache/default.cfg #11

Chapter 3

[41]

Remember that you can run the setup module from the Ansible
command-line tool. This comes in handy when you are making heavy
use of variables in your playbooks or templates. To check what facts will
be available for a particular play, simply copy the value of the host line
and run the following command:
ansible [host line] -m setup

On a CentOS x86_64 machine, this configuration would first look for the file
RedHat-x86_64.cfg upon navigating through files/apache/. If that file did not
exist, it would look for file default-x86_64.cfg upon navigating through file/
apache/, and finally if nothing exists, it'll try and use default.cfg.

Environment variables
Often Unix commands take advantage of certain environment variables. Prevalent
examples of this are C makefiles, installers, and the AWS command-line tools.
Fortunately, Ansible makes this really easy. If you wanted to upload a file on the
remote machine to Amazon S3, you could set the Amazon access key as follows. You
will also see that we install EPEL so that we can install pip, and pip is used to install
the AWS tools.

--- #1
- name: Upload a remote file via S3 #2
 hosts: ansibletest #3
 user: root #4
 tasks: #5
 - name: Setup EPEL #6
 command rpm -ivh #7
 http://download.fedoraproject.org/pub/epel/6/i386/epel-
 release-6-8.noarch.rpm
 creates=/etc/yum.repos.d/epel.repo #8

 - name: Install pip #9
 yum: name=python-pip state=installed #10

 - name: Install the AWS tools #11
 pip: name=awscli state=present #12

 - name: Upload the file #13
 shell: aws s3 put-object --bucket=my-test-bucket --key={{
 ansible_hostname }}/fstab --body=/etc/fstab --region=eu-
 west-1 #14
 environment: #15
 AWS_ACCESS_KEY_ID: XXXXXXXXXXXXXXXXXXX #16
 AWS_SECRET_ACCESS_KEY: XXXXXXXXXXXXXXXXXXXXX #17

www.allitebooks.com

http://www.allitebooks.org

Advanced Playbooks

[42]

Internally, Ansible sets the environment variable into the Python code;
this means that any module that already uses environment variables
can take advantage of the ones set here. If you write your own modules,
you should consider if certain arguments would be better used as
environment variables instead of arguments.

Some Ansible modules such as get_url, yum, and apt will also use environment
variables to set their proxy server. Some of the other situations where you might
want to set environment variables are as follows:

•	 Running application installers
•	 Adding extra items to the path when using the shell module
•	 Loading libraries from a place not included in the system library search path
•	 Using an LD_PRELOAD hack while running a module

External data lookups
Ansible introduced the lookup plugins in Version 0.9. These plugins allow Ansible to
fetch data from outside sources. Ansible provides several plugins, but you can also
write your own. This really opens the doors and allows you to be flexible in your
configuration.

Lookup plugins are written in Python and run on the controlling machine. They are
executed in two different ways: direct calls and with_* keys. Direct calls are useful
when you want to use them like you would use variables. Using the with_* keys is
useful when you want to use them as loops. In an earlier section we covered with_
fileglob, which is an example of this.

In the next example, we use a lookup plugin directly to get the http_proxy value from
environment and send it through to the configured machine. This makes sure that the
machines we are configuring will use the same proxy server to download the file.

--- #1
- name: Downloads a file using the same proxy as the controlling
 machine #2
 hosts: all #3
 tasks: #4
 - name: Download file #5
 get_url: dest=/var/tmp/file.tar.gz
 url=http://server/file.tar.gz #6
 environment: #7
 http_proxy: "{{ lookup('env', 'http_proxy') }}" #8

Chapter 3

[43]

You can also use lookup plugins in the variable section too. This doesn't
immediately lookup the result and put it in the variable as you might
assume; instead, it stores it as a macro and looks it up every time you
use it. This is good to know if you are using something the value of
which might change over time.

Using lookup plugins in the with_* form will allow you to iterate over things you
wouldn't normally be able to. You can use any plugin like this, but ones that return
a list are most useful. In the following code, we show how to dynamically register
a webapp farm. If you were using this example, you would append a task to create
each as a virtual machine and then a new play to configure each of them.

- name: Registers the app server farm
 hosts: localhost
 connection: local
 vars:
 hostcount: 5
 tasks:
 - name: Register the webapp farm
 local_action: add_host name={{ item }} groupname=webapp
 with_sequence: start=1 end={{ hostcount }} format=webapp%02x

Situations where lookup plugins are useful are as follows:

•	 Copying a whole directory of apache config to a conf.d style directory
•	 Using environment variables to adjust what the playbooks does
•	 Getting configuration from DNS TXT records
•	 Fetching the output of a command into a variable

Storing results
Almost every module outputs something, even the debug module. Most of the
time the only variable used is the one named changed. The changed variable helps
Ansible decide whether to run handlers or not and which color to print the output
in. However, if you wish you can store the returned values and use them later in the
playbook. In this example we look at the mode in the /tmp directory and create a
new directory called /tmp/subtmp with the same mode.

- name: Using register
 hosts: ansibletest
 user: root

Advanced Playbooks

[44]

 tasks:
 - name: Get /tmp info
 file: dest=/tmp state=directory
 register: tmp

 - name: Set mode on /var/tmp
 file: dest=/tmp/subtmp mode={{ tmp.mode }} state=directory

Some modules, like we see in the previous file module, can be configured to simply
give information. Combining this with the register feature, you can create playbooks
that can examine the environment and calculate how to proceed.

Combining the register feature and the set_fact module allows you
to perform data processing on data you receive back from modules. This
allows you to compute values and perform data processing on these values.
This makes your playbooks even smarter and more flexible than ever.

Register allows you to make your own facts about hosts from modules already
available to you. This can be useful in many different circumstances:

•	 Getting a list of files in a remote directory and downloading them all
with fetch

•	 Running a task when a previous task changes, before the handlers run
•	 Getting the contents of the remote host SSH key and building a

known_hosts file

Debugging playbooks
There are a few ways in which you can debug a playbook. Ansible includes both
a verbose mode, and a debug module specifically for debugging. You can also use
modules such as fetch and get_url for help. These debugging techniques can also
be used to examine how modules behave when you wish to learn how to use them.

The debug module
Using the debug module is really quite simple. It takes two optional arguments,
msg and fail. msg sets the message that will be printed by the module and fail, if
set to yes, indicates a failure to Ansible, which will cause it to stop processing the
playbook for that host. We used this module earlier in the skipping modules section
to bail out of a playbook if the operating system was not recognized.

Chapter 3

[45]

In the following example, we will show how to use the debug module to list all the
interfaces available on the machine:

- name: Demonstrate the debug module
 hosts: ansibletest
 user: root
 vars:
 hostcount: 5
 tasks:
 - name: Print interface
 debug: msg="{{ item }}"
 with_items: ansible_interfaces

The preceding code gives the following output:

PLAY [Demonstrate the debug module] *********************************

GATHERING FACTS ***
ok: [ansibletest]

TASK: [Print IP address] **
ok: [ansibletest] => (item=lo) => {"item": "lo", "msg": "lo"}
ok: [ansibletest] => (item=eth0) => {"item": "eth0", "msg": "eth0"}

PLAY RECAP **
ansibletest : ok=2 changed=0 unreachable=0
failed=0

As you can see the debug module is easy to use to see the current value of a variable
during the play.

The verbose mode
Your other option for debugging is the verbose option. When running Ansible
with verbose, it prints out all the values that were returned by each module after it
runs. This is especially useful if you are using the register keyword introduced
in the previous section. To run ansible-playbook in verbose mode, simply add
--verbose to your command line as follows:

ansible-playbook --verbose playbook.yml

Advanced Playbooks

[46]

The check mode
In addition to the verbose mode, Ansible also includes a check mode and a diff
mode. You can use the check mode by adding --check to the command line, and
--diff to use the diff mode. The check mode instructs Ansible to walk through the
play without actually making any changes to remote systems. This allows you to
obtain a listing of the changes that Ansible plans to make to the configured system.

It is important here to note that the check mode of Ansible is not
perfect. Any modules that do not implement the check feature are
skipped. Additionally, if a module is skipped that provides more
variables, or the variables depend on a module actually changing
something (like file size), then they will not be available. This is an
obvious limitation when using the command or shell modules.

The diff mode shows the changes that are made by the template module. This
limitation is because the template file only works with text files. If you were to
provide a diff of a binary file from the copy module, the result would almost be
unreadable. The diff mode also works with the check mode to show you the planned
changes that were not made due to being in check mode.

The pause module
Another technique is to use the pause module to pause the playbook while you
examine the configured machine as it runs. This way you can see changes that the
modules have made at the current position in the play, and then watch while it
continues with the rest of the play.

Summary
In this chapter we explored the more advanced details of writing playbooks. You
should now be able to use features such as delegation, looping, conditionals, and fact
registration to make your plays much easier to maintain and edit. We also looked at
how to access information from other hosts, configure the environment for a module,
and gather data from external sources. Finally we covered some techniques for
debugging plays that are not behaving as expected.

In the next chapter we will be covering how to use Ansible in a larger environment.
It will include methods for improving the performance of your playbooks that may
be taking a long time to execute. We will also cover a few more features that make
plays maintainable, particularly splitting them into many parts by purpose.

Larger Projects
Until now, we have been looking at single plays in one playbook file. This approach
will work for simple infrastructures, or when using Ansible as a simple deployment
mechanism. However, if you have a large and complicated infrastructure, then you
will need to take actions to prevent things from going out of control. This chapter
will include the following topics:

•	 Separating your playbooks into different files, and including them from some
other location

•	 Using roles to include multiple files that perform a similar function
•	 Methods for increasing the speed at which Ansible configures your machines

Includes
One of the first issues you will face with a complex infrastructure is that your
playbooks will rapidly increase in size. Large playbooks can become difficult to read
and maintain. Ansible allows you to combat this problem by the way of includes.

Includes allow you to split your plays into multiple sections. You can then include
each section from other plays. This allows you to have several different parts built
for a different purpose, all included in a main play.

There are four types of includes, namely variable includes, playbook includes,
task includes, and handler includes. Including variables from an external vars_file
files has been discussed already in Chapter 2, Simple Playbooks. The following is a
summary of what each includes does:

•	 Variable includes: They allow you to put your variables in external
YAML files

•	 Playbook includes: They are used to include plays from other files in a s
ingle play

Larger Projects

[48]

•	 Task includes: They let you put common tasks in other files and include
them wherever required

•	 Handler includes: They let you put all your handlers in the one place

Task includes
Task includes can be used when you have a lot of common tasks that will be
repeated. For example, you may have a set of tasks that removes a machine, from
monitoring, and a load balancer before you can configure it. You can put these tasks
in a separate YAML file, and then include them from your main task.

Task includes inherit the facts from the play they are included from. You can also
provide your own variables, which are passed into the task and available for use.

Finally, task includes can have conditionals applied to them. If you do this,
conditionals will separately be added to each included task. The tasks are all still
included. In most cases, this is not an important distinction, but in circumstances
where variables may change, it is.

The file to include as a task includes contains a list of tasks. If you assume the
existence of any variables and hosts or groups, then you should state them in
comments at the top. This makes reusing the file much easier.

So, if you wanted to create a bunch of users and set up their environment with their
public keys, you would split out the tasks that do a single user to one file. This file
would look similar to the following code:

Requires a user variable to specify user to setup #1
- name: Create user account #2
 user: name={{ user }} state=present #3

- name: Make user SSH config dir #4
 file: path=/home/{{ user }}/.ssh owner={{ user }} group={{ user
 }} mode=0600 state=directory #5

- name: Copy in public key #6
 copy: src=keys/{{ user }}.pub dest=/home/{{ user
 }}/.ssh/authorized_keys mode=0600 owner={{ user }} group={{ user
 }} #7

We expect that a variable named user will be passed to us, and that their public
key will be in the keys directory. The account is created, the ssh config directory
is made, and finally we can copy this in their public key. The easiest way to use this
config file would be to include it with the with_items keyword we learned about in
Chapter 3, Advanced Playbooks. This would look similar to the following code:

Chapter 4

[49]

- hosts: ansibletest
 user: root
 tasks:
 - include: usersetup.yml user={{ item }}
 with_items:
 - mal
 - dan
 - kate

Handler includes
When writing Ansible playbooks, you will constantly find yourself reusing the same
handlers multiple times. For instance, a handler used to restart MySQL is going to
look the same everywhere. To make this easier, Ansible allows you to include other
files in the handlers section. Handler includes look the same as task includes. You
should make sure to include a name on each of your handlers; otherwise you will not
be able to refer to them easily in your tasks. A handler include file looks similar to
the following code:

- name: config sendmail
 command: make -C /etc/mail
 notify: reload sendmail

- name: config aliases
 command: newaliases
 notify: reload sendmail

- name: reload sendmail
 service: name=sendmail state=reloaded

- name: restart sendmail
 service: name=sendmail state=restarted

This file provides several common tasks that you would want to handle after
configuring sendmail. By including the following handlers in their own files, you
can easily reuse them whenever you need to change the sendmail configuration:

•	 The first handler regenerates the sendmail database's config file and
triggers a reload file of sendmail later

•	 The second handler initializes the aliases database, and also schedules a
reload file of sendmail

Larger Projects

[50]

•	 The third handler reloads sendmail; it may be triggered by the previous two
jobs, or it may be triggered directly from a task

•	 The fourth handler restarts sendmail when triggered; this is useful if you
upgrade sendmail to a new version

Handlers can trigger other handlers provided that they only trigger
the ones specified later, instead of the triggered ones. This means, you
can set up a series of cascading handlers that call each other. This saves
you from having long lists of handlers in the notify section of tasks.

Using the preceding handler file is easy now. We simply need to remember that if we
change a sendmail configuration file, then we should trigger config sendmail, and
if we change the aliases file, we should trigger config aliases. The following
code shows us an example of this:

 hosts: mailers #1
 tasks: #2
 - name: update sendmail #3
 yum: name=sendmail state=latest #4
 notify: restart sendmail #5

 - name: configure sendmail #6
 template: src=templates/sendmail.mc.j2
 dest=/etc/mail/sendmail.mc #7
 notify: config sendmail #8

 handlers: #9
 - include: sendmailhandlers.yml #10

This playbook makes sure sendmail is installed. If it isn't installed or if it isn't
running the latest version, then it installs it. After it is updated, it schedules a
restart so that we can be confident that the latest version will be running once the
playbook is done. In the next step, we replace the sendmail configuration file with
our template. If the config file was changed by the template then the sendmail
configuration files will be regenerated, and finally sendmail will be reloaded.

Playbook includes
Playbook includes should be used when you want to include a whole set of tasks
designated for a set of machines. For example, you may have a play that gathers
the host keys of several machines and builds a known_hosts file to copy to all the
machines.

Chapter 4

[51]

While task includes allows you to include tasks, playbook includes allows you to
include whole plays. This allows you to select the hosts you wish to run on, and
provide handlers for notify events. Because you are including whole playbook files,
you can also include multiple plays.

Playbook includes allows you to embed fully self-contained files. It is for this reason
that you should provide any variables that it requires. If they depend on any particular
set of hosts or groups, this should be noted in a comment at the top of the file.

This is handy when you wish to run multiple different actions at once. For example,
let's say we have a playbook that switches to our DR site, named drfailover.
yml, another named upgradeapp.yml that upgrades the app, another named
drfailback.yml that fails back, and finally drupgrade.yml. All these playbooks
might be valid to use separately, but when performing a site upgrade, you will
probably want to perform them all at once. You can do this as shown in the
following code:

- include "drfailover.yml" #1
- include "upgradeapp.yml" #2
- include "drfailback.yml" #3

- name: Notify management #4
 hosts: local #5
 tasks: #6
 - local_action: mail to="mgmt-team@example.com" msg='The
 application has been upgraded and is now live' #7

- include "drupgrade.yml" #8

As you can see, you can put full plays in the playbooks that you are including other
playbooks into.

Roles
If your playbooks start expanding beyond what includes can help you solve, or you
start gathering a large number of templates, you may want to use roles. Roles in
Ansible allow you to group files together in a defined format. They are essentially
an extension to includes that handles a few things automatically, and this helps you
organize them inside your repository.

Larger Projects

[52]

Roles allows you to place your variables, files, tasks, templates, and handlers in a
folder, and then easily include them. You can also include other roles from within
roles, which effectively creates a tree of dependencies. Similar to task includes, they
can have variables passed to them. Using these features, you should be able to build
self-contained roles that are easy to share with others.

Roles are commonly set up to be services provided by machines, but they can also be
daemons, options, or simply characteristics. Things you may want to configure in a
role are as follows:

•	 Webservers, such as Nginx or Apache
•	 Messages of the day customized for the security level of the machine
•	 Database servers running PostgreSQL or MySQL

To manage roles in Ansible perform the following steps:

1.	 Create a folder named roles with your playbooks.
2.	 In the roles folder, make a folder for each role that you would like.
3.	 In the folder for each role, make folders named files, handlers, meta,

tasks, templates, and finally vars. If you aren't going to use all these,
you can leave the ones you don't need off. Ansible will silently ignore any
missing files or directories when using roles.

4.	 In your playbooks, add the keyword roles followed by a list of roles that you
would like to apply to the hosts.

5.	 For example, if you had the common, apache, website1, and website2 roles,
your directory structure would look similar to the following example. The
site.yml file is for reconfiguring the entire site, and the webservers1.yml
and webservers2.yml files are for configuring each web server farm.

Chapter 4

[53]

Larger Projects

[54]

The following file is what could be in website1.yml. It shows a playbook that
applies the common, apache, and website1 roles to the website1 group in the
inventory. The website1 role is included using a more verbose format that
allows us to pass variables to the role:

- name: Setup servers for website1.example.com
 hosts: website1
 roles:
 - common
 - apache
 - { role: website1, port: 80 }

For the role named common, Ansible will then try to load roles/common/tasks/
main.yml as a task include, roles/common/handlers/main.yml as a handler
include, and roles/common/vars/main.yml as a variable file include. If all of these
files are missing, Ansible will throw an error; however, if one of the files exists then
the others, if missing, will be ignored. The following directories are used by a default
install of Ansible. Other directories may be used by different modules:

Directory Description
tasks The tasks folder should contain a main.yml file, which should

include a list of the tasks for this role. Any task includes that are
contained in these roles will look for their files in this folder also. This
allows you to split a large number of tasks into separate files, and use
other features of task includes.

files The files folder is the default location for files in the roles that are
used by the copy or the script module.

templates The templates directory is the location where the template module
will automatically look for the jinja2 templates included in the roles.

handlers The handlers folder should contain a main.yml file, which specifies
the handlers for the roles, and any includes in that folder will also
look for the files in the same location..

vars The vars folder should contain a main.yml file, which contains the
variables for this role.

Chapter 4

[55]

Directory Description
meta The meta folder should contain a main.yml file. This file can contain

settings for the role, and a list of its dependencies. This feature is
available only in Ansible 1.3 and above.

default You should use the default folder if you are expecting variables to
be sent to this roles, and you want to make them optional. A main.
yml file in this folder is read, to get the initial values for variables that
can be overridden by variables, which are passed from the playbook
calling the role. This feature is only available in Ansible 1.3 and above.

When using roles, the behavior of the copy, the template, and the script modules is
slightly altered. Instead of searching for files by looking from the directory in which
the playbook file is located, Ansible will look for the files in the location of the role.
For example, if you are using a role named common, these modules will change to the
following behavior:

•	 The copy module will look for files in roles/common/files.
•	 The template module will look for templates in roles/common/templates.
•	 The script module will look for files in roles/common/files.
•	 Other modules may decide to look for their data in other folders inside

roles/common/. The documentation for modules can be retrieved using
ansible-doc, as was discussed in the Module help section of Chapter 1, Getting
Started with Ansible.

New features in 1.3
There are two features in Ansible 1.3 that were alluded to previously in the chapter.
The first feature is the metadata roles. They allow you to specify that your role
depends on other roles. For example, if the application that you are deploying needs
to send mail, your role could depend on a Postfix role. This would mean that
before the application is set up and installed, Postfix will be installed and set up.

The meta/main.yml file would look similar to the following code:

allow_duplicates: no
dependencies:
 - apache

Larger Projects

[56]

The allow_duplicates line is set to no, which is the default. If you set this to no,
Ansible will not run a role the second time, if it is included twice with the same
arguments. If you set it to yes, it will repeat the role even if it has run before. You can
leave it off instead of setting it to no.

Dependencies are specified in the same format as roles. This means, you can pass
variables here; either static values or variables that are passed to the current role.

The second feature included with Ansible 1.3 is variable default values. If you place
a main.yml file in the defaults directory for the role, these variables will be read into
the role; however they can be overridden by variables in the vars/main.yml file, or
the variables that are passed to the role when it is included. This allows you to make
passing variables to the role optional. These files look exactly like other variable
files. For example, if you used a variable named port in your role, and you wanted
to default it to port 80, your defaults/main.yml file would look similar to the
following code:

port: 80

Speeding things up
As you add more and more machines and services to your Ansible configuration,
you will find things getting slower and slower. Fortunately, there are several tricks
you can use to make Ansible work on a bigger scale.

Tags
Ansible tags are features that allow you to select which parts of a playbook you need
to run, and which should be skipped. While Ansible modules are idempotent and
will automatically skip if there are no changes, this often requires a connection to the
remote hosts. The yum module is often quite slow in determining if a module is the
latest, as it will need to refresh all the repositories.

If you know you don't need certain actions to be run, you can select only run
modules that have been tagged with a particular tag. This doesn't even try to run the
module, it simply skips over it. This will save time on almost all the modules even if
there is nothing to be done.

Chapter 4

[57]

Let's say you have a machine which has a large number of shell accounts, but also
several services set up to run on it. Now, imagine that a single user's SSH key has
been compromised and needs to be removed immediately. Instead of running the
entire playbook, or rewriting the playbooks to only include the steps necessary to
remove that key, you could simply run the existing playbooks with the SSH keys
tag, and it would only run the steps necessary to copy out the new keys, instantly
skipping anything else.

This is particularly useful if you have a playbook with playbook includes in it that
covers your whole infrastructure. With this setup, you can quickly deploy security
patches, change passwords, and revoke keys across your entire infrastructure as
quickly as possible.

Tagging tasks is really easy; simply add a key named tag, and set its value to a list of
the tags you want to give it. The following code shows us how to do this:

- name: Install and setup our webservers #1
 hosts: webservers #2
 tasks: #3
 - name: install latest software #4
 action: yum name=$item state=latest #5
 notify: restart apache #6
 tags: #7
 - patch #8
 with_items: #9
 - httpd #10
 - webalizer #11

 - name: Create subdirectories #12
 action: file dest=/var/www/html/$item state=directory mode=755
 owner=apache group=apache #13
 tags: #14
 - deploy #15
 with_items: #16
 - pub #17

 - name: Copy in web files #18
 action: copy src=website/$item dest=/var/www/html/$item
 mode=755 owner=apache group=apache #19
 tags: #20
 - deploy #21

Larger Projects

[58]

 with_items: #22
 - index.html #23
 - logo.png #24
 - style.css #25
 - app.js #26
 - pub/index.html #27

 - name: Copy webserver config #28
 tags: #29
 - deploy #30
 - config #31
 action: copy src=website/httpd.conf
 dest=/etc/httpd/conf/httpd.conf mode=644 owner=root
 group=root #32
 notify: reload apache #33

 - name: set apache to start on startup #34
 action: service name=httpd state=started enabled=yes #35

 handlers: #36
 - name: reload apache #37
 service: name=httpd state=reloaded #38

 - name: restart apache #39
 service: name=httpd state=restarted #40

This play defines the patch, deploy, and config tags. If you know which operation
you wish to do in advance, you can run Ansible with the correct argument, only
running the operations you choose. If you don't supply a tag on the command line,
the default is to run every task. For example, if you want Ansible to only run the
tasks tagged as deploy, you would run the following command:

$ ansible-playbook webservers.yml --tags deploy

In addition to working on discrete tasks, tags are also available to roles, which makes
Ansible apply only the roles for the tags that have been supplied on the command
line. You apply them similarly to the way they are applied to tasks. For example,
refer to the following code:

- hosts: website1
 roles:
 - common
 - { role: apache, tags: ["patch"] }
 - { role: website2, tags: ["deploy", "patch"] }

Chapter 4

[59]

In the preceding code, the common role does not get any tags, and will not be run if
there are any tags applied. If the patch tag is applied, the apache and website2 roles
will be applied, but not common. If the deploy tag is applied; only the website2 tag
will be run. This will shorten the time required to patch servers or run deployments
as the unnecessary steps will be completely skipped.

Ansible's pull mode
Ansible includes a pull mode which can drastically improve the scalability of your
playbooks. So far we have only covered using Ansible to configure another machine
over SSH. This is a contrast to Ansible's pull mode, which runs on the host that you
wish to configure. Since ansible-pull runs on the machine that it is configuring,
it doesn't need to make connections to other machines and runs much faster. In this
mode, you provide your configuration in a git repository which Ansible downloads
and uses to configure your machine.

You should use Ansible's pull mode in the following situations:

•	 Your node might not be available when configuring them, such as members
of auto-scaling server farms

•	 You have a large amount of machines to configure and even with large
values of forks, it would take a long time to configure them all

•	 You want machines to update their configuration automatically when the
repository changes

•	 You want to run Ansible on a machine that may not have network access yet,
such as in a kick start post install

However, pull mode does have the following disadvantages that make it unsuitable
for certain circumstances:

•	 To connect to other machines and gather variables, or copy a file you need to
have credentials on the managed nodes

•	 You need to co-ordinate the running of the playbook across a server farm; for
example, if you could only take three servers offline at a time

•	 The servers are behind strict firewalls that don't allow incoming SSH
connections from the nodes you use to configure them for Ansible

Larger Projects

[60]

Pull mode doesn't require anything special in your playbooks, but it does require
some setup on the nodes you want configured. In some circumstances, you could do
this using Ansible's normal push mode. Here is a small play to setup play mode on a
machine:

- name: Ansible Pull Mode #1
 hosts: pullhosts #2
 tasks: #3
 - name: Setup EPEL #4
 action: command rpm -ivh
 http://download.fedoraproject.org/pub/epel/6/i386/epel-
 release-6-8.noarch.rpm
 creates=/etc/yum.repos.d/epel.repo #5

 - name: Install Ansible + Dependencies #6
 yum: name={{ item }} state=latest enablerepo=epel #7
 with_items: #8
 - ansible #9
 - git-core #10

 - name: Make directory to put downloaded playbooks in #11
 file: state=directory path=/opt/ansiblepull #12

 - name: Setup cron #13
 cron: name="ansible-pull" user=root minute="*/5"
 state=present job="ansible-pull -U
 https://git.int.example.com.com/gitrepos/ansiblepull.git
 -D /opt/ansiblepull {{ inventory_hostname_short
 }}.yml" #14

In this example, we performed the following steps:

•	 First, we()installed and set up EPEL. This is a repository with extra software
for CentOS. Ansible is available in the EPEL repository.

•	 Next, we installed Ansible, making sure to enable the EPEL repository.
•	 Then, we created a directory for Ansible's pull mode to put the playbooks in.

Keeping these files around means you don't need to download the whole git
repository the whole time; only updates are required.

•	 Finally, we set up a cron job that will try to run the ansible-pull mode
config every five minutes.

Chapter 4

[61]

The preceding code downloads the repository off an internal HTTPS
git server. If you want to download the repository instead of SSH, you
will need to add a step to install SSH keys, or generate keys and copy
them to the git machine.

Summary
In this chapter, we have covered the techniques required when moving from a
simple setup to a larger deployment. We discussed how to separate your playbook
into multiple parts using includes. We then looked at how we can package up related
includes and automatically include them all at once using roles. Finally we discussed
pull mode, which allows you to automate the deployment of playbooks on the
remote node itself.

In the next chapter, we will cover writing your own modules. We start this by
building a simple module using bash scripting. We then look at how Ansible
searches for modules, and how to make it find your own custom ones. Then, we take
a look at how you can use Python to write more advanced modules using features
that Ansible provides. Finally, we will write a script that configures Ansible to pull
its inventory from an external source.

Custom Modules
Until now we have been working solely with the tools provided to us by Ansible.
This does afford us a lot of power, and make many things possible. However, if you
have something particularly complex or if you find yourself using the script module
a lot, you will probably want to learn how to extend Ansible.

In this chapter you will learn the following topics:

•	 How to write modules in Bash scripting or Python
•	 Using custom modules that you have developed
•	 Writing a script to use an external data source as an inventory

Often when you approach something complex in Ansible, you write a script module.
The issue with script modules is that you can't process their output, or trigger
handlers based on their output easily. So, although the script module works in some
cases, using a module can be better.

Use a module instead of writing a script when:

•	 You don't want to run the script every single time
•	 You need to process the output
•	 Your script needs to make facts
•	 You need to send complex variables as arguments

Custom Modules

[64]

If you want to start writing modules, you should check ()out the Ansible repository.
If you want your module to work with a particular version, you should also switch
to that version to ensure compatibility. The following commands will set you up to
develop modules for Ansible 1.3.0. Checking out the Ansible code gives you access
to a handy script that we will use later to test our modules. We will also make this
script executable in anticipation of its use later in the chapter.

$ git clone (https://github.com/ansible/ansible.git)

$ cd ansible

$ git checkout v1.3.0

$ chmod +x hacking/test-module

Writing a module in Bash
Ansible allows you to write modules in any language that you prefer. Although
most modules in Ansible work with JSON, you are allowed to use shortcuts if you
don't have any JSON parsing facilities available. Ansible will hand you arguments
in their original key value forms, if they were provided in that format. If complex
arguments are provided, you will receive JSON-encoded data. You could parse this
using something like jsawk (https://github.com/micha/jsawk) or jq (http://
stedolan.github.io/jq/), but only if they are installed on your remote machine.

Ansible doesn't yet have a module that lets you change the hostname of a system
with the hostname command. So let's write one. We will start just printing the
current hostname and then expand the script from there. Here is what that simple
module looks like:

#!/bin/bash

HOSTNAME="$(hostname)"

echo "hostname=${HOSTNAME}"

If you have written Bash scripts before, this should seem extremely basic. Essentially
what we are doing is grabbing the hostname and printing it out in a key value form.
Now that we have written the first cut of the module, we should test it out.

To test the Ansible modules, we use the script that we ran the chmod command on
earlier. This command simply runs your module, records the output, and returns
it to you. It also shows how Ansible interpreted the output of the module. The
command that we will use looks like the following:

ansible/hacking/test-module -m ./hostname

https://github.com/ansible/ansible.git

Chapter 5

[65]

The output of the previous command should look like this:

* module boilerplate substitution not requested in module, line
numbers will be unaltered

RAW OUTPUT
hostname=admin01.int.example.com

PARSED OUTPUT
{
 "hostname": "admin01.int.example.com"
}

Ignore the notice at the top, it does not apply to modules built with bash. You can see
the raw output that our script sent, which looks exactly the way we expected. The
test script also gives you the parsed output. In our example, we are using the short
output format and we can see here that Ansible is correctly interpreting it into the
JSON that it normally accepts from modules.

Let's expand out the module to allow setting the hostname. We should write it so
that it doesn't make any changes unless it is required, and lets Ansible know whether
changes were made or not. This is actually pretty simple for the small command that
we are writing. The new script should look something like this:

#!/bin/bash

set -e

This is potentially dangerous
source ${1}

OLDHOSTNAME="$(hostname)"
CHANGED="False"

if [! -z "$hostname" -a "${hostname}x" != "${OLDHOSTNAME}x"];
 then
 hostname $hostname
 OLDHOSTNAME="$hostname"
 CHANGED="True"
fi

echo "hostname=${OLDHOSTNAME} changed=${CHANGED}"
exit 0

Custom Modules

[66]

The previous script works like this:

1.	 We set Bash's exit on error mode, so that we don't have to deal with errors
from hostname. Bash will automatically exit on failure with its exit code. This
will signal Ansible that something went wrong.

2.	 We source the argument file. This file is passed from Ansible as the first
argument to the script. It contains the arguments that were sent to our
module. Because we are sourcing the file, this could be used to run arbitrary
commands; however, Ansible can already do this, so it's not that much of a
security issue.

3.	 We collect the old hostname and default CHANGED to False. This allows us to
see if our module needs to perform any changes.

4.	 We check if we were sent a new hostname to set, and check if that hostname
is different from the one that is currently set.

5.	 If both those tests are true, we try to change the hostname, and set CHANGED
to True.

6.	 Finally, we output the results and exit. This includes the current hostname
and whether we made changes or not.

Changing the hostname on a Unix machine requires root privileges. So while testing
this script, you need to make sure to run it as the root user. Let's test this script using
sudo to see if it works. This is the command you will use:

sudo ansible/hacking/test-module -m ./hostname -a
 'hostname=test.example.com'

If test.example.com is not the current hostname of the machine, you should get the
following as the output:

* module boilerplate substitution not requested in module, line
numbers will be unaltered

RAW OUTPUT
hostname=test.example.com changed=True

PARSED OUTPUT
{
 "changed": true,
 "hostname": "test.example.com"
}

Chapter 5

[67]

As you can see, our output is being parsed correctly, and the module claims that
changes have been made to the system. You can check this yourself with the
hostname command. Now, run the module for the second time with the same
hostname. You should see an output that looks like this:

* module boilerplate substitution not requested in module, line
numbers will be unaltered

RAW OUTPUT
hostname=test.example.com changed=False

PARSED OUTPUT
{
 "changed": false,
 "hostname": "test.example.com"
}

Again, we see that the output was parsed correctly. This time, however, the module
claims to not have made any changes, which is what we expect. You can also check
this with the hostname command.

Using a module
Now that we have written our very first module for Ansible, we should give it a
go in a playbook. Ansible looks at several places for its modules: first it looks at the
place specified in the library key in its config file (/etc/ansible/ansible.cfg),
next it will look in the location specified using the --module-path argument in the
command line, then it will look in the same directory as the playbook for a library
directory containing modules, and finally it will look in the library directories for any
roles that may be set.

Let's create a playbook that uses our new module and place it in a library directory
in the same place so that we can see it in action. Here is a playbook that uses the
hostname module:

- name: Test the hostname file
 hosts: testmachine
 tasks:
 - name: Set the hostname
 hostname: hostname=testmachine.example.com

Custom Modules

[68]

Then create a directory named library in the same directory as the playbook file.
Place the hostname module inside the library. Your directory layout should look
like this:

Now when you run the playbook, it will find the hostname module in the library
directory and execute it. You should see an output like this:

PLAY [Test the hostname file] ***************************************

GATHERING FACTS ***
ok: [ansibletest]

TASK: [Set the hostname] **
changed: [ansibletest]

PLAY RECAP **
ansibletest : ok=2 changed=1 unreachable=0
failed=0

Running it again should change the result from changed to ok. Congratulations,
you have now created and executed your very first module. This module is very
simple right now, but you could extend it to know about the hostname file, or other
methods to configure the hostname at boot time.

Writing modules in Python
All of the modules that are distributed with Ansible are written in Python. Because
Ansible is also written in Python, these modules can directly integrate with Ansible.
This increases the speed at which they can run. Here are a few other reasons why
you might write modules in Python:

•	 Modules written in Python can use boilerplate, which reduces the amount of
code required

•	 Python modules can provide documentation to be used by Ansible
•	 Arguments to your module are handled automatically

Chapter 5

[69]

•	 Output is automatically converted to JSON for you
•	 Ansible upstream only accepts plugins using Python with the boilerplate

code included

You can still build Python modules without this integration by parsing the
arguments and outputting JSON yourself. However, with all the things you get for
free, it would be hard to make a case for it.

Let's build a Python module that lets us change the currently running init level of the
system. There is a Python module called pyutmp that will let us parse the utmp file.
Unfortunately, since Ansible modules have to be contained in a single file, we can't
use it unless we know it will be installed on the remote systems, so we will resort
to using the runlevel command and parsing its output. Setting the runlevel can be
done with the init command.

The first step is to figure out what arguments and features the module supports. For
the sake of simplicity, let's have our module only accept one argument. We'll use the
argument runlevel to get the runlevel the user wants to change to. To do this, we
instantiate the AnsibleModule class with our data.

module = AnsibleModule(
 argument_spec = dict(
 runlevel=dict(default=None, type='str')
)
)

Now we need to implement the actual guts of the module. The module object that
we created previously provides us with a few shortcuts. There are three that we will
be using in the next step. As there are way too many methods to document here, you
can see the whole AnsibleModule class and all the available helper functions in lib/
ansible/module_common.py.

•	 run_command: This method is used to launch external commands and retrieve
the return code, the output from stdout, and also the output from stderr.

•	 exit_json: This method is used to return data to Ansible when the module
has completed successfully.

•	 fail_json: This method is used to signal a failure to Ansible, with an error
message and return code.

The following code actually manages the init level of the system. Comments have
been included in the following code to explain what it does.

def main(): #1
 module = AnsibleModule(#2
 argument_spec = dict(#3

Custom Modules

[70]

 runlevel=dict(default=None, type='str') #4
) #5
) #6

 # Ansible helps us run commands #7
 rc, out, err = module.run_command('/sbin/runlevel') #8
 if rc != 0: #9
 module.fail_json(msg="Could not determine current runlevel.",
 rc=rc, err=err) #10

 # Get the runlevel, exit if its not what we expect #11
 last_runlevel, cur_runlevel = out.split(' ', 1) #12
 cur_runlevel = cur_runlevel.rstrip() #13
 if len(cur_runlevel) > 1: #14
 module.fail_json(msg="Got unexpected output from runlevel.",
 rc=rc) #15

 # Do we need to change anything #16
 if module.params['runlevel'] is None or
 module.params['runlevel'] == cur_runlevel: #17
 module.exit_json(changed=False, runlevel=cur_runlevel) #18

 # Check if we are root #19
 uid = os.geteuid() #20
 if uid != 0: #21
 module.fail_json(msg="You need to be root to change the
 runlevel") #22

 # Attempt to change the runlevel #23
 rc, out, err = module.run_command('/sbin/init %s' %
 module.params['runlevel']) #24
 if rc != 0: #25
 module.fail_json(msg="Could not change runlevel.", rc=rc,
 err=err) #26

 # Tell ansible the results #27
 module.exit_json(changed=True, runlevel=cur_runlevel) #28

There is one final thing to add to the boilerplate to let Ansible know that it needs
to dynamically add the integration code into our module. This is the magic that
lets us use the AnsibleModule class and enables our tight integration with Ansible.
The boilerplate code needs to be placed right at the bottom of the file, with no code
afterwards. The code to do this looks as follows:

include magic from lib/ansible/module_common.py
#<<INCLUDE_ANSIBLE_MODULE_COMMON>>
main()

Chapter 5

[71]

So, finally, we have the code for our module built. Putting it all together, it should
look like the following code:

#!/usr/bin/python #1
-*- coding: utf-8 -*- #2

import os #3

def main(): #4
 module = AnsibleModule(#5
 argument_spec = dict(#6
 runlevel=dict(default=None, type='str'), #7
), #8
) #9

 # Ansible helps us run commands #10
 rc, out, err = module.run_command('/sbin/runlevel') #11
 if rc != 0: #12
 module.fail_json(msg="Could not determine current runlevel.",
 rc=rc, err=err) #13

 # Get the runlevel, exit if its not what we expect #14
 last_runlevel, cur_runlevel = out.split(' ', 1) #15
 cur_runlevel = cur_runlevel.rstrip() #16
 if len(cur_runlevel) > 1: #17
 module.fail_json(msg="Got unexpected output from runlevel.",
 rc=rc) #18

 # Do we need to change anything #19
 if (module.params['runlevel'] is None or
 module.params['runlevel'] == cur_runlevel): #20
 module.exit_json(changed=False, runlevel=cur_runlevel) #21

 # Check if we are root #22
 uid = os.geteuid() #23
 if uid != 0: #24
 module.fail_json(msg="You need to be root to change the
 runlevel") #25

 # Attempt to change the runlevel #26
 rc, out, err = module.run_command('/sbin/init %s' %
 module.params['runlevel']) #27
 if rc != 0: #28

Custom Modules

[72]

 module.fail_json(msg="Could not change runlevel.", rc=rc,
 err=err) #29

 # Tell ansible the results #30
 module.exit_json(changed=True, runlevel=cur_runlevel) #31

include magic from lib/ansible/module_common.py #32
#<<INCLUDE_ANSIBLE_MODULE_COMMON>> #33
main() #34

You can test this module the same way you tested the Bash module with the test-
module script. However, you need to be careful because if you run it with sudo, you
might reboot your machine or alter the init level to something you don't want. This
module is probably better tested by using Ansible itself on a remote test machine.
We follow the same process as described in the Using a module section earlier in this
chapter. We create a playbook that uses the module, and then place the module in a
library directory that has been made in the same directory as the playbook. Here is
the playbook we should use:

- name: Test the new init module
 hosts: testmachine
 user: root
 tasks:
 - name: Set the init level to 5
 init: runlevel=5

Now you should be able to try and run this on a remote machine. The first time
you run it, if the machine is not already in runlevel 5, you should see it change the
runlevel. Then you should be able to run it for a second time to see that nothing has
changed. You might also want to check to make sure the module fails correctly when
not run as root.

External inventories
In the first chapter we saw how Ansible needs an inventory file, so that it knows
where its hosts are and how to access them. Ansible also allows you to specify a
script that allows you to fetch the inventory from another source. External
inventory scripts can be written in any language that you like as long as they
output valid JSON.

Chapter 5

[73]

An external inventory script has to accept two different calls from Ansible. If called
with –list, it must return a list of all the available groups and the hosts in them.
Additionally, it may be called with --host. In this case, the second argument will be
a hostname and the script is expected to return a list of variables for that host. All the
outputs are expected in JSON, so you should use a language that supports it naturally.

Let's write a module that takes a CSV file listing all your machines and presents
this to Ansible as an inventory. This will be handy if you have a CMDB that allows
you to export your machine list as CSV, or for someone who keeps records of
their machines in Excel. Additionally, it doesn't require any dependencies outside
Python, as a CSV processing module is already included with Python. This really just
parses the CSV file into the right data structures and prints them out as JSON data
structures. The following is an example CSV file we wish to process; you may wish
to customize it for the machines in your environment:

Group,Host,Variables
test,example,ansible_ssh_user=root
test,localhost,connection=local

This file needs to be converted into two different JSON outputs. When --list is
called, we need to output the whole thing in a form that looks like this:

{"test": ["example", "localhost"]}

And when it is called with the arguments --host example, it should return this:

{"ansible_ssh_user": "root"}

Here is the script that opens a file named machines.csv and produces the dictionary
of the groups if --list is given. Additionally, when given --host and a hostname,
it parses that host's variables and returns them as a dictionary. The script is well-
commented, so you can see what it is doing. You can run the script manually with
the --list and --host arguments to confirm that it behaves correctly.

#!/usr/bin/env python
-*- coding: utf-8 -*-

import sys
import csv
import json

def getlist(csvfile):
 # Init local variables
 glist = dict()
 rowcount = 0

Custom Modules

[74]

 # Iterate over all the rows
 for row in csvfile:
 # Throw away the header (Row 0)
 if rowcount != 0:
 # Get the values out of the row
 (group, host, variables) = row

 # If this is the first time we've
 # read this group create an empty
 # list for it
 if group not in glist:
 glist[group] = list()

 # Add the host to the list
 glist[group].append(host)

 # Count the rows we've processed
 rowcount += 1

 return glist

def gethost(csvfile, host):
 # Init local variables
 rowcount = 0

 # Iterate over all the rows
 for row in csvfile:
 # Throw away the header (Row 0)
 if rowcount != 0 and row[1] == host:
 # Get the values out of the row
 variables = dict()
 for kvpair in row[2].split():
 key, value = kvpair.split('=', 1)
 variables[key] = value

 return variables

 # Count the rows we've processed
 rowcount += 1

command = sys.argv[1]

Chapter 5

[75]

#Open the CSV and start parsing it
with open('machines.csv', 'r') as infile:
 result = dict()
 csvfile = csv.reader(infile)

 if command == '--list':
 result = getlist(csvfile)
 elif command == '--host':
 result = gethost(csvfile, sys.argv[2])

 print json.dumps(result)

You can now use this inventory script to provide the inventory when using Ansible.
A quick way to test that everything is working correctly is to use the ping module to
test the connection to all the machines. This command will not test whether the hosts
are in the right groups; if you want to do that, you can use the same ping module
command but instead of running it across all, you can simply use the group you
would like to test.

$ ansible -i csvinventory -m ping all

Similar to when you used the ping module in Chapter 1, Getting Started with Ansible,
you should see an output that looks like the following:

localhost | success >> {
 "changed": false,
 "ping": "pong"
}

example | success >> {
 "changed": false,
 "ping": "pong"
}

This indicates that you can connect and use Ansible on all the hosts from your
inventory. You can use the same -i argument with ansible-playbook to run your
playbooks with the same inventory.

Summary
Having read this chapter you should now be able to build modules using either Bash
or any other languages that you know. You should be able to install modules that you
have either obtained from the Internet, or written yourself. We also covered how to
write modules more efficiently using the boilerplate code in Python. Finally, we wrote
an inventory script that allows you to pull your inventory from an external source.

Index
A
add_host module 29
Ansible

about 5, 9-15
installation methods 6
pull mode 59
setting up 7-9

Ansible 1.3
metadata roles 55
variable default values 56

ansible_architecture field 10
ansible_distribution field 10
ansible_distribution_version field 10
ansible-doc command 14
ansible_domain field 10
ansible_fqdn field 10
ansible_interfaces field 10
ansible_kernel field 11
ansible_memtotal_mb field 11
AnsibleModule class 70
Ansible playbooks

about 16
example 16
handlers section 20
modules 22
target section 16, 17
task section 19
variable section 17, 19

Ansible playbooks modules
add_host module 29
assemble module 28
group_by module 29
pause module 26

set_fact module 24-26
template module 22-24
wait_for module 27

ansible_processor_count field 11
Ansible's pull mode

about 59
disadvantages 59
using 59, 60

Ansible tags 56-58
ansible_virtualization_role field 11
ansible_virtualization_type field 11
assemble module 28

B
Bash

modules, writing, in 67

C
check mode 46
command module 32
controller machine

about 5
requirements 5

copy module 46

D
debug module 44, 45
default directory 55
deploy tag 59
distribution

installing from 6

[78]

E
environment variables 41, 42
EPEL 60
exit_json method 69
external inventory script 73, 75

F
facter 11
fail_json method 69
files directory 54
files, with variables

searching 40

G
get_url option 35
git repository 61
git server 61
group_by module 5, 29
group_names variable 36, 38
groups variable 37, 38

H
Handler includes 48-50
handlers directory 54
handlers section 20, 22
host pattern 10
hostvars variable 36-38

I
includes

about 47
Handler includes 48
Playbook includes 47
Task includes 48
variable includes 47

installing
from distribution 6
from pip 7
from source code 7

inventory_dir variable 40
inventory_file variable 40
inventory_hostname variable 39
inventory_hostname_short variable 39

J
jsawk 64

L
lookup plugins

about 33, 42
uses 43
using 43

looping 32, 33
ls -1 command 28

M
metadata roles, Ansible 1.3 55, 56
meta directory 55
modules

conditional execution 34
help 14
skipping actions, use 35
using 67, 68
writing, in Bash 64-67
writing, in Python 68-72

O
ohai 11
operations

running, in parallel 31, 32

P
patch tag 59
pause module 26, 46
ping module 75
pip

about 6
installing from 7

Playbook includes 50, 51
playbook modules 22
playbooks

about 15
debugging 44

playbooks, debugging
check mode 46
debug module 44, 45

[79]

pause module 46
verbose mode 45

Python
modules, writing in 68-72

Python 2.4 5

R
results

storing 43, 44
roles

about 51
managing, in Ansible 52, 54
setting up 52

run_command method 69
runlevel command 69

S
set_fact module 24, 25
set_facts module 39
source code

installing from 7

T
target section

about 16, 17
connection 17
gather_facts 17
sudo 17
sudo_user 17
user 17

task
delegating 35, 36

Task includes 48
tasks directory 54
task section 19, 20
template module 22, 24
templates directory 54
test-module script 72

V
Variable includes 47
variable section 17, 19
vars directory 54
verbose mode 45

W
wait_for module 27
website2 tag 59
with_items key 32

Y
YAML

URL 15

Thank you for buying
Ansible Configuration Management

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For
more information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt Open Source brand, home
to books published on software built around Open Source licences, and offering information
to anybody from advanced developers to budding web designers. The Open Source brand
also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty to each Open
Source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and you
would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Microsoft System Center
2012 Configuration Manager:
Administration Cookbook
ISBN: 978-1-84968-494-1 Paperback: 224 pages

Over 50 practical recipes to administer System Center
2012 Configuration Manager

1.	 Administer System Center 2012 Configuration
Manager

2.	 Provides fast answers to questions commonly
asked by new administrators

3.	 Skip the why's and go straight to the how-to's

4.	 Gain administration tips from System Center
2012 Configuration Manager MVPs with years
of experience in large corporations

Visual SourceSafe 2005 Software
Configuration Management in
Practice
ISBN: 978-1-90481-169-5 Paperback: 404 pages

Best practice management and development of Visual
Studio.NET 2005 applications with this easy-to-use
SCM tool from Microsoft

1.	 SCM fundamentals and strategies clearly
explained

2.	 Real-world SOA example: a hotel reservation
system

3.	 SourceSafe best practices across the complete
lifecycle

4.	 Multiple versions, service packs and product
updates.

Please check www.PacktPub.com for information on our titles

JBoss AS 7 Configuration,
Deployment and Administration
ISBN: 978-1-84951-678-5 Paperback: 380 pages

Build a fully-functional, efficient application server
using JBoss AS

1.	 Covers all JBoss AS 7 administration topics in a
concise, practical, and understandable manner,
along with detailed explanations and lots of
screenshots

2.	 Uncover the advanced features of JBoss AS,
including High Availability and clustering,
integration with other frameworks, and
creating complex AS domain configurations

3.	 Discover the new features of JBoss AS 7, which
has made quite a departure from previous
versions

Puppet 3 Cookbook
ISBN: 978-1-78216-976-5 Paperback: 274 pages

Build reliable, scalable, secure, and high-performance
systems to fully utilize the power of cloud computing

1.	 Use Puppet 3 to take control of your servers
and desktops, with detailed step-by-step
instructions

2.	 Covers all the popular tools and frameworks
used with Puppet: Dashboard, Foreman, and
more

3.	 Teaches you how to extend Puppet with
custom functions, types, and providers

4.	 Packed with tips and inspiring ideas for
using Puppet to automate server builds,
deployments, and workflows

Please check www.PacktPub.com for information on our titles

www.allitebooks.com

http://www.allitebooks.org

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Getting Started with Ansible
	Installation methods
	Installing from your distribution
	Installing from pip
	Installing from the source code
	Setting up Ansible
	First steps with Ansible
	Module help
	Summary

	Chapter 2: Simple Playbooks
	The target section
	The variable section
	The task section
	The handlers section
	The playbook modules
	The template module
	The set_fact module
	The pause module
	The wait_for module
	The assemble module
	The add_host module
	The group_by module

	Summary

	Chapter 3: Advanced Playbooks
	Running operations in parallel
	Looping
	Conditional execution
	Task delegation
	Extra variables
	The hostvars variable
	The groups variable
	The group_names variable
	The inventory_hostname variable
	The inventory_hostname_short variable
	The inventory_dir variable
	The inventory_file variable

	Finding files with variables
	Environment variables
	External data lookups
	Storing results
	Debugging playbooks
	The debug module
	The verbose mode
	The check mode
	The pause module

	Summary

	Chapter 4: Larger Projects
	Includes
	Task includes
	Handler includes
	Playbook includes

	Roles
	New features in 1.3
	Speeding things up
	Tags
	Ansible's pull mode

	Summary

	Chapter 5: Custom Modules
	Writing a module in Bash
	Using a module
	Writing modules in Python
	External inventories
	Summary

	Index

