
ANSIBLE

ANSIBLEANSIBLE

© 2018 Copyright Spherius – vers 1.1  1/159



ANSIBLE

SOMMAIRE
PRÉSENTATION D'ANSIBLE.....................................................................................................................5

Introduction et concepts...................................................................................................................7
INSTALLATION D'ANSIBLE....................................................................................................................10

Pré-requis.......................................................................................................................................12
Installation sous RedHat................................................................................................................13
Installation avec pip.......................................................................................................................14
Échange de clefs SSH....................................................................................................................16

CONFIGURATION ET UTILISATION D'ANSIBLE.......................................................................................18
Le répertoire /etc/ansible...............................................................................................................20
Les modules Ansible......................................................................................................................23
Test de la connectivité....................................................................................................................26
Le fichier d'inventaire....................................................................................................................28

LES COMMANDES ET LES MODULES DE BASE ANSIBLE.........................................................................35
Les modules command et shell......................................................................................................37
Le transfert de fichiers...................................................................................................................39
La gestion des packages.................................................................................................................42
La gestion des utilisateurs..............................................................................................................45
La gestion des services..................................................................................................................47
Le module setup.............................................................................................................................49

LES PLAYBOOKS...................................................................................................................................52
Description d'un playbook.............................................................................................................54
Les variables et les tableaux..........................................................................................................62
La priorité et la portée des variables..............................................................................................66
Les templates.................................................................................................................................70
La boucle for..................................................................................................................................72
Le module debug et le mot clef register........................................................................................74
Les Handlers..................................................................................................................................78
Les boucles....................................................................................................................................80
La condition when.........................................................................................................................84
Les filtres.......................................................................................................................................88
Les opérations arithmétiques.........................................................................................................91

LES RÔLES...........................................................................................................................................93
Présentation....................................................................................................................................95
Structure et exécution d'un rôle.....................................................................................................96
Les include et les import................................................................................................................98
Un exemple de rôle......................................................................................................................105
Un exemple de rôle avec des inclusions......................................................................................107

FONCTIONNALITÉS AVANCÉES............................................................................................................111
Les tags........................................................................................................................................113
La visualisation d'un playbook.....................................................................................................115
Gather_facts.................................................................................................................................116
La délégation par delegate_to......................................................................................................118
Les pré et post tasks.....................................................................................................................122
Le mot clef run_once...................................................................................................................123
Le parallélisme.............................................................................................................................124
Le traitement avec serial..............................................................................................................125

© 2018 Copyright Spherius – vers 1.1  2/159



ANSIBLE

any_errors_fatal...........................................................................................................................127
Les blocks....................................................................................................................................129
La connexion avec un autre compte............................................................................................132
Le prompt.....................................................................................................................................134
Le fichier d'inventaire dynamique et temporaire.........................................................................135
set_fact.........................................................................................................................................139
La création d'un module...............................................................................................................141

COMPLÉMENTS..................................................................................................................................147
Ansible Vault et l'encryptage.......................................................................................................149
Ansible Galaxy............................................................................................................................155

FIN DU SUPPORT DE COURS................................................................................................................159

© 2018 Copyright Spherius – vers 1.1  3/159



ANSIBLE

 

© 2018 Copyright Spherius – vers 1.1  4/159

Ce document est sous Copyright :

Toute reproduction ou diffusion, même partielle, à un tiers est interdite sans autorisation écrite 
de Sphérius. Pour nous contacter, veuillez consulter le site web http://www.spherius.fr. 

Les logos, marques et marques déposées sont la propriété de leurs détenteurs.

Les auteurs de ce document sont :

- Monsieur Baranger Jean-Marc,

- Monsieur Schomaker Theo. 

La version d'Ansible utilisée pour les commandes de ce support de cours est :

Ansible 2.4 et Ansible 2.5

Les références sont : les documents disponible sur le site web d'Ansible et de RedHat.



ANSIBLE

Présentation d'Ansible

© 2018 Copyright Spherius – vers 1.1  5/159

Dans ce chapitre, nous allons présenter les principes et les concepts d'Ansible.



ANSIBLE

© 2018 Copyright Spherius – vers 1.1  6/159

Présentation d'Ansible

• Introduction et concepts



ANSIBLE

Introduction et concepts

Ansible est un outil de gestion de parc de machines sous licence GNU GPL. 

Il automatise le déploiement, la configuration, la gestion et la maintenance de toute votre 
infrastructure. Ces opérations peuvent se faire en parallèle et simultanément sur toutes les 
machines de votre parc.

Ansible est une solution complète et robuste qui reste assez simple à prendre « en main ».  

Ci-dessous une présentation issue du site d'Ansible :

Ansible est une solution d'automatisation informatique que vous pouvez apprendre rapidement. Il 
est assez simple pour tous les membres de votre équipe informatique, mais suffisamment puissant
pour automatiser les déploiements les plus complexes. Ansible gère les tâches répétitives, donnant
à votre équipe plus de temps pour se concentrer sur l'innovation.

Avec Ansible vous pouvez commencer à faire du vrai travail en quelques minutes grâce à son 
langage simple et lisible. Ses puissantes fonctionnalités permettent l'orchestration de l'ensemble 
du cycle de vie de votre application, quel que soit l'emplacement du déploiement. L'architecture 
sans agent d'Ansible signifie que c'est une chose de moins à gérer en terme de sécurité.

© 2018 Copyright Spherius – vers 1.1  7/159

Présentation d'Ansible
Introduction et concepts

• Simple Puissant Sans agent

• Automatise le déploiement, la configuration, la gestion, la maintenance
 de toute votre infrastructure

• Opérations en parallèle et simultanément 
sur toutes les machines de votre parc

• YAML Module Playbook



ANSIBLE

Ansible est un moteur d'automatisation informatique radicalement simple qui automatise 
l'approvisionnement en cloud, la gestion de la configuration, le déploiement d'applications, 
l'orchestration intra-service et de nombreux autres besoins informatiques.

Conçu pour les déploiements à plusieurs niveaux depuis le premier jour, Ansible modélise votre 
infrastructure informatique en décrivant comment tous vos systèmes interagissent, plutôt que de 
gérer un seul système à la fois.

Il n'utilise aucun agent et aucune infrastructure de sécurité personnalisée supplémentaire, il est 
donc facile à déployer - et surtout, il utilise un langage très simple (YAML, sous la forme d'Ansible 
Playbooks) qui vous permet de décrire vos tâches d'automatisation.

Ansible fonctionne en se connectant à vos nœuds et en poussant de petits programmes, appelés 
"Modules Ansible". Ces programmes sont écrits pour être des modèles de ressources de l'état 
souhaité du système. Ansible exécute ensuite ces modules (via SSH par défaut) et les supprime une
fois terminé.

Votre bibliothèque de modules peut résider sur n'importe quel ordinateur et aucun serveur, 
démon ou base de données n'est requis. En règle générale, vous travaillez avec votre système 
d'exploitation préféré, un éditeur de texte et probablement un système de contrôle de versions 
pour suivre les modifications apportées à votre contenu.

© 2018 Copyright Spherius – vers 1.1  8/159



ANSIBLE

© 2018 Copyright Spherius – vers 1.1  9/159

Notes



ANSIBLE

Installation d'Ansible

© 2018 Copyright Spherius – vers 1.1  10/159

Dans ce chapitre, nous allons installer Ansible sur Linux.



ANSIBLE

© 2018 Copyright Spherius – vers 1.1  11/159

Installation d'Ansible

• Pré-requis

• Installation sous Redhat

• Installation avec pip

• Échange de clefs SSH



ANSIBLE

Pré-requis

Ansible nécessite une version de python supérieure à 2.6.

Version de python

# python --version
Python 2.7.5

L'installation se fait soit à partir de dépôts logiciels soit à partir de sources.

© 2018 Copyright Spherius – vers 1.1  12/159

Installation d'Ansible
Pré-requis

• version de python >= 2.6 

• accès aux dépôts



ANSIBLE

Installation sous RedHat

Les packages qui sont nécessaires sont localisés sur le dépôt EPEL. L'une des méthodes ci-dessous 
permet de l'installer.

# wget http://dl.fedoraproject.org/pub/epel/epel-release-latest-
7.noarch.rpm
# rpm -ivh epel-release-latest-7.noarch.rpm

Ou 
# yum install epel-release

L'installation d'Ansible se fait via la commande suivante :

# yum install -y ansible

Vérification :

Une fois installée la configuration de base se trouve dans le fichier /etc/ansible.

# ls /etc/ansible/
ansible.cfg  hosts  roles

Pour tester l'installation ou connaître la version d'Ansible :
# ansible  --version

© 2018 Copyright Spherius – vers 1.1  13/159

Installation d'Ansible
Installation sous RedHat

• Installer le Dépôt EPEL (Extra Package Entreprise Linux)

• Installer Ansible avec yum 

• Vérification



ANSIBLE

Installation avec pip

PIP est un acronyme récursif pour PIP Installs Package ou PIP installs Python. C'est un utilitaire 
utilisé pour installé des packages python. Il gère notamment les dépendances python.

# easy_install pip

Une fois pip installé , il ne reste plus qu'à installer Ansible.

# pip install ansible
Collecting ansible
  Downloading ansible-2.4.3.0.tar.gz (6.5MB)
    100% |--------------------------------| 6.5MB 199kB/s
Collecting PyYAML (from ansible)
  Downloading PyYAML-3.12.tar.gz (253kB)
    100% |--------------------------------| 256kB 3.5MB/s
Requirement already satisfied: cryptography in /usr/lib/python2.7/dist-packages (from 
ansible)
Collecting jinja2 (from ansible)
  Downloading Jinja2-2.10-py2.py3-none-any.whl (126kB)
    100% |--------------------------------| 133kB 7.9MB/s
Collecting paramiko (from ansible)
  Downloading paramiko-2.4.0-py2.py3-none-any.whl (192kB)
    100% |--------------------------------| 194kB 5.7MB/s
Requirement already satisfied: setuptools in /usr/lib/python2.7/dist-packages (from 
ansible)
Collecting MarkupSafe>=0.23 (from jinja2->ansible)
  Downloading MarkupSafe-1.0.tar.gz
Collecting pynacl>=1.0.1 (from paramiko->ansible)
  Downloading PyNaCl-1.2.1-cp27-cp27mu-manylinux1_i686.whl (659kB)
    100% |--------------------------------| 665kB 1.4MB/s

© 2018 Copyright Spherius – vers 1.1  14/159

Installation d'Ansible
Installation avec pip

• Installer pip 

◦ easy_install pip

• Installer Ansible 

◦ pip install ansible



ANSIBLE

Requirement already satisfied: pyasn1>=0.1.7 in /usr/lib/python2.7/dist-packages (from 
paramiko->ansible)
Collecting bcrypt>=3.1.3 (from paramiko->ansible)
  Downloading bcrypt-3.1.4-cp27-cp27mu-manylinux1_i686.whl (58kB)
    100% |--------------------------------| 61kB 9.7MB/s
Requirement already satisfied: six in /usr/lib/python2.7/dist-packages (from 
pynacl>=1.0.1->paramiko->ansible)
Collecting cffi>=1.4.1 (from pynacl>=1.0.1->paramiko->ansible)
  Downloading cffi-1.11.4-cp27-cp27mu-manylinux1_i686.whl (382kB)
    100% |--------------------------------| 389kB 3.2MB/s
Collecting pycparser (from cffi>=1.4.1->pynacl>=1.0.1->paramiko->ansible)
  Downloading pycparser-2.18.tar.gz (245kB)
    100% |--------------------------------| 256kB 4.6MB/s
Installing collected packages: PyYAML, MarkupSafe, jinja2, pycparser, cffi, pynacl, 
bcrypt, paramiko, ansible
  Running setup.py install for PyYAML ... done
  Running setup.py install for MarkupSafe ... done
  Running setup.py install for pycparser ... done
  Running setup.py install for ansible ... done
Successfully installed MarkupSafe-1.0 PyYAML-3.12 ansible-2.4.3.0 bcrypt-3.1.4 cffi-
1.11.4 jinja2-2.10 paramiko-2.4.0 pycparser-2.18 pynacl-1.2.1

© 2018 Copyright Spherius – vers 1.1  15/159



ANSIBLE

Échange de clefs SSH

Ansible utilise des clefs SSH pour communiquer avec les autres machines. Il faut d'abord les 
générer puis les envoyer sur les serveurs à administrer.

Création de la paire de clefs RSA :

# ssh-keygen -t rsa

Les clefs sont créées et disponibles au sein du répertoire /root/.ssh.
La clef privée est le fichier id_rsa, à ne pas diffuser.
La clef publique est le fichier id_rsa.pub. C'est ce fichier que l'on diffuse et qui est stocké dans le 
fichier authorized_keys de l'utilisateur du poste distant ($HOME/.ssh/authorized_keys).

Envoi de la clef publique sur les serveurs distants :

# ssh-copy-id  -i /root/.ssh/id_rsa.pub  192.168.1.10
# ssh-copy-id  -i /root/.ssh/id_rsa.pub  192.168.1.11
# ssh-copy-id  -i /root/.ssh/id_rsa.pub  192.168.1.13

Envoi de la clef publique sur un serveur distant pour l'utilisateur user1 :

# ssh-copy-id  -i /root/.ssh/id_rsa.pub  user1@192.168.1.10

© 2018 Copyright Spherius – vers 1.1  16/159

Installation d'Ansible
Échange de clefs SSH

• Génération de clefs : ssh-keygen
# ssh-keygen -t rsa

• Envoi de la clef publique sur les machines distantes. 
# ssh-copy-id -i /root/.ssh/id_rsa.pub 192.168.1.10



ANSIBLE

© 2018 Copyright Spherius – vers 1.1  17/159

Notes



ANSIBLE

Configuration et
utilisation d'Ansible

© 2018 Copyright Spherius – vers 1.1  18/159

Dans ce chapitre, nous allons effectuer nos premiers pas avec Ansible.



ANSIBLE

© 2018 Copyright Spherius – vers 1.1  19/159

Configuration et utilisation d'Ansible

• Le répertoire /etc/ansible  

• Les modules Ansible

• Test de la connectivité

• Le fichier d'inventaire



ANSIBLE

Le répertoire /etc/ansible

Suite à l'installation d'Ansible, le répertoire /etc/ansible contiendra deux fichiers de paramétrage 
et un répertoire roles.

# tree /etc/ansible
/etc/ansible
├── ansible.cfg fichier de configuration
├
├── hosts fichier d'inventaire par défaut
├
└── roles répertoires pour les rôles

La configuration d'Ansible est stockée dans /etc/ansible/ansible.cfg. 

Le fichier hosts contient les serveurs à administrer. Il contient des exemples commentés de 
déclaration de serveurs ou de groupes de serveurs. 

Le répertoire roles est vide pour l'instant. 
Il contiendra les rôles qui permettront d'inclure des dépendances de tâches.

© 2018 Copyright Spherius – vers 1.1  20/159

Configuration et utilisation d'Ansible
Le répertoire /etc/ansible

# tree  /etc/ansible
/etc/ansible
├
├── ansible.cfg fichier de configuration
├
├── hosts fichier d'inventaire par défaut
├
└── roles répertoires pour les rôles



ANSIBLE

Le fichier de configuration     :

# more /etc/ansible/ansible.cfg
# config file for ansible -- https://ansible.com/
# ===============================================

# nearly all parameters can be overridden in ansible-playbook
# or with command line flags. ansible will read ANSIBLE_CONFIG,
# ansible.cfg in the current working directory, .ansible.cfg in
# the home directory or /etc/ansible/ansible.cfg, whichever it
# finds first

[defaults]

# some basic default values...

#inventory      = /etc/ansible/hosts
#library        = /usr/share/my_modules/
#module_utils   = /usr/share/my_module_utils/
#remote_tmp     = ~/.ansible/tmp
#local_tmp      = ~/.ansible/tmp
#forks          = 5
#sudo_user      = root
#ask_sudo_pass = True

...

Le fichier /etc/ansible/ansible.cfg contient la configuration principale d'Ansible. Il définit le 
comportement par défaut. Par exemple, il indique quel fichier (inventory=) va contenir la liste des 
hôtes à contrôler avec Ansible.

Dans l'ordre de sollicitation, le fichier de configuration utilisé est défini par :
– la variable d'environnement ANSIBLE_CONFIG,
– le fichier ansible.cfg dans le répertoire courant, 
– le fichier .ansible.cfg du répertoire de connexion de l'utilisateur,
– le fichier /etc/ansible/ansible.cfg.

# ansible-config  view
# config file for ansible -- https://ansible.com/
# ===============================================

# nearly all parameters can be overridden in ansible-playbook
# or with command line flags. ansible will read ANSIBLE_CONFIG,
# ansible.cfg in the current working directory, .ansible.cfg in
# the home directory or /etc/ansible/ansible.cfg, whichever it
# finds first

[defaults]

# some basic default values...

#inventory      = /etc/ansible/hosts
#library        = /usr/share/my_modules/
#module_utils   = /usr/share/my_module_utils/
#remote_tmp     = ~/.ansible/tmp
#local_tmp      = ~/.ansible/tmp
#forks          = 5
#poll_interval  = 15
#sudo_user      = root
#remote_port    = 22
#module_lang    = C
. . .

© 2018 Copyright Spherius – vers 1.1  21/159



ANSIBLE

Le fichier d'inventaire     :

Le fichier /etc/ansible/hosts est le fichier d'inventaire d'Ansible, il contient la liste des machines 
sous le contrôle d'Ansible. Elles peuvent être rassemblées par groupes. 

# more /etc/ansible/hosts
[spherius_servers]      # nom du groupe de serveurs
deb_server              # machines constituant le groupe
CentOS6.5
CentOS7.1

[centos_servers]
CentOS6.5
CentOS7.1

[spherius_hosts]
hote1
hote2

Le répertoire roles     :

Le répertoire roles est vide pour l'instant. Il contiendra les rôles qui permettront d'inclure des 
dépendances de tâches. Ce point est développé plus tard dans ce support.

© 2018 Copyright Spherius – vers 1.1  22/159



ANSIBLE

Les modules Ansible

Un module Ansible est écrit en Python. 

Les modules permettent d'effectuer des tâches sur les serveurs. 

Le site d'Ansible fournit des informations sur les modules, ainsi que les mots clefs exploitables 
pour un module et des exemples. 

• http://docs.ansible.com/ansible/latest/modules.html

• http://docs.ansible.com/ansible/latest/list_of_all_modules.html

Il est fortement recommandé de se référer régulièrement aux informations de ce site.
En plus de la documentation de tous les modules, le site d'Ansible présente de manière détaillée 
les nouvelles fonctionnalités.

© 2018 Copyright Spherius – vers 1.1  23/159

Configuration et utilisation d'Ansible
Les modules Ansible

• http://docs.ansible.com/ansible/latest/modules.html

• http://docs.ansible.com/ansible/latest/list_of_all_modules.html

# ansible-doc -l

# ansible-doc nom_module

http://docs.ansible.com/ansible/latest/list_of_all_modules.html
http://docs.ansible.com/ansible/latest/modules.html
http://docs.ansible.com/ansible/latest/list_of_all_modules.html
http://docs.ansible.com/ansible/latest/modules.html


ANSIBLE

La commande ansible-doc fournit des informations en ligne de commande sur les modules et les 
plugins utilisables par Ansible. 

L'option -l liste tous les plugins disponibles :

# ansible-doc -l
a10_server        Manage A10 Networks AX/SoftAX/Thunder/vThunder devices' server object.
a10_server_axapi3 Manage A10 Networks AX/SoftAX/Thunder/vThunder devices
a10_service_group Manage A10 Networks AX/SoftAX/Thunder/vThunder devices' service groups.

Le nombre de plugins disponibles dépend de la version d'Ansible.

# ansible-doc -l | wc -l
1652

© 2018 Copyright Spherius – vers 1.1  24/159



ANSIBLE

La documentation relative à un plugin se fait par un appel via le nom du plugin :

# ansible-doc acl
> ACL    (/usr/lib/python2.7/site-packages/ansible/modules/files/acl.py)

        Sets and retrieves file ACL information.

OPTIONS (= is mandatory):

- default
        if the target is a directory, setting this to yes will make it the default acl 
for entities created inside the
        directory. It causes an error if path is a file.
        (Choices: yes, no)[Default: False]
        version_added: 1.5
...

L'option -t permet de spécifier le type de plugin . Par défaut, c'est le type module qui est utilisé.

# ansible-doc -t module acl
> ACL    (/usr/lib/python2.7/site-packages/ansible/modules/files/acl.py)

        Sets and retrieves file ACL information.

OPTIONS (= is mandatory):

L'option -s permet d'avoir des informations sur l'utilisation du module à l'intérieur d'un playbook :

# ansible-doc -s acl
- name: Sets and retrieves file ACL information.
  acl:
      default:               # if the target is a directory, setting this to yes will 
make it the default acl for entities created inside the directory.
                               It causes an error if path is a file.
      entity:                # actual user or group that the ACL applies to when matching
entity types user or group are selected.
...

© 2018 Copyright Spherius – vers 1.1  25/159



ANSIBLE

Test de la connectivité

Test du module (option -m) ping sur tous les serveurs déclarés (mot clef all) dans ansible.

# ansible -m ping all

deb_server | SUCCESS => {
    "changed": false,
    "ping": "pong"
}
CentOS7.1_server | SUCCESS => {
    "changed": false,
    "ping": "pong"
}
CentOS6.5_server | SUCCESS => {
    "changed": false,
    "ping": "pong"
}
hote2 | UNREACHABLE! => {
    "changed": false,
    "msg": "Failed to connect to the host via ssh: ssh: Could not resolve hostname hote2:
Name or service not known\r\n",
    "unreachable": true
}
hote1 | UNREACHABLE! => {
    "changed": false,
    "msg": "Failed to connect to the host via ssh: ssh: Could not resolve hostname hote1:
Name or service not known\r\n",
    "unreachable": true
}

Les messages d'erreurs sont normaux. Les hôtes hôte1 et hôte2 ne sont pas démarrés et les clefs 
ssh n'ont pas été échangées. Si tout va bien la réponse est pong.

© 2018 Copyright Spherius – vers 1.1  26/159

Configuration et utilisation d'Ansible
Test de la connectivité

• Utilisation du module ping sur tous les serveurs
# ansible -m ping all

• Spécifier une liste de machines 
# ansible -m ping CentOS7.1_server:hote1:deb_server

• Exclure des machines
# ansible -m ping 'spherius_servers:!CentOS6.5'



ANSIBLE

L'option --one-line permet d'avoir l'affichage sur une seule ligne.

# ansible -m ping all --one-line
deb_server | SUCCESS => {"changed": false, "ping": "pong"}
CentOS6.5_server | SUCCESS => {"changed": false, "ping": "pong"}
CentOS7.1_server | SUCCESS => {"changed": false, "ping": "pong"}
hote1 | UNREACHABLE!: Failed to connect to the host via ssh: ssh: connect to host hote1 
port 22: No route to host

hote2 | UNREACHABLE!: Failed to connect to the host via ssh: ssh: connect to host hote2 
port 22: Connection timed out

Le mot clef all peut être remplacé par n'importe quel nom de machine ou de groupe de machines.

# ansible  spherius_servers  -m ping
deb_server | SUCCESS => {
    "changed": false,
    "ping": "pong"
}
CentOS6.5_server | SUCCESS => {
    "changed": false,
    "ping": "pong"
}
CentOS7.1_server | SUCCESS => {
    "changed": false,
    "ping": "pong"
}

# ansible  CentOS7.1_server  -m ping 
CentOS7.1_server | SUCCESS => {
    "changed": false,
    "ping": "pong"
}

Le caractère : permet de spécifier une liste.

# ansible  CentOS7.1_server:hote1:deb_server  -m ping
deb_server | SUCCESS => {
    "changed": false,
    "ping": "pong"
}
CentOS7.1_server | SUCCESS => {
    "changed": false,
    "ping": "pong"
}
hote1 | UNREACHABLE! => {
    "changed": false,
    "msg": "Failed to connect to the host via ssh: ssh: Could not resolve hostname hote1:
Name or service not known\r\n",
    "unreachable": true
}

Le caractère ! Permet de signifier l'exclusion (les simples quotes sont indispensables).

# ansible  'spherius_servers:!CentOS6.5'  -m ping
deb_server | SUCCESS => {
    "changed": false,
    "ping": "pong"
}
CentOS7.1 | SUCCESS => {
    "changed": false,
    "ping": "pong"
}

© 2018 Copyright Spherius – vers 1.1  27/159



ANSIBLE

Le fichier d'inventaire

Le fichier d'inventaire contient la liste des machines sous le contrôle d'Ansible. Elles peuvent être 
rassemblées par groupes.

Le fichier d'inventaire par défaut est : /etc/ansible/hosts 

# more /etc/ansible/hosts
[spherius_servers]      # nom du groupe de serveurs
deb_server              # machines constituant le groupe
CentOS6.5
CentOS7.1

[centos_servers]
CentOS6.5
CentOS7.1

[spherius_hosts]
hote1
hote2

# ansible   all    -m ping

© 2018 Copyright Spherius – vers 1.1  28/159

Configuration et utilisation d'Ansible
Le fichier d'inventaire

• /etc/ansible/hosts

• L'option -i
# ansible  all  -i mon_inventaire.inv  -m ping

• Une simplification d'écriture : poste[5:15]
• Pour lister les machines : --list-hosts
• Pour lister les machines avec leur groupe : -m debug -a "var=groups"

ungrouped
• Pour afficher la valeur d'une variable  : -m debug -a "var=nom_variable"

# ansible-inventory  all  -i moninventaire.inv  --graph  --vars
# ansible-inventory  all  -i moninventaire.inv  --list



ANSIBLE

Un fichier d'inventaire spécifique :

Il est possible d'utiliser d'autres fichiers comme fichier d'inventaire. Il sera nécessaire d'utiliser 
l'option « -i » pour référencer ce fichier.

# ansible  all  -i mon_inventaire.inv  -m ping

# cat  mon_inventaire.inv
client1
client2

Une simplification d'écriture :

poste[5:15] pour définir les machines poste5 à poste15

# cat   moninventaire.inv est équivalent à :
client1 client[1:2]
client2

[domaine1]
[domaine1] poste[1:3]
poste1
poste2 [domaine2]
poste3 poste[4:6]

[domaine2]
poste4
poste5
poste6

Pour lister les machines : --list-hosts

# ansible  all  -i moninventaire.inv  --list-hosts
  hosts (8):
    client1
    client2
    poste4
    poste5
    poste6
    poste1
    poste2
    poste3

# ansible  domaine1  -i moninventaire.inv  --list-hosts
  hosts (3):
    poste1
    poste2
    poste3

© 2018 Copyright Spherius – vers 1.1  29/159



ANSIBLE

Pour lister les machines avec leurs groupes : -m debug -a "var=groups"

all représente la liste de toutes les machines au sein du fichier d'inventaire.
ungrouped représente la liste des machines associées à aucun groupe.

# ansible  localhost  -i moninventaire.inv  -m debug  -a "var=groups"
localhost | SUCCESS => {
    "groups": {
        "all": [
            "client1",
            "client2",
            "poste4",
            "poste5",
            "poste6",
            "poste1",
            "poste2",
            "poste3"
        ],
        "domaine1": [
            "poste1",
            "poste2",
            "poste3"
        ],
        "domaine2": [
            "poste4",
            "poste5",
            "poste6"
        ],
        "ungrouped": [
            "client1",
            "client2"
        ]
    }
}

© 2018 Copyright Spherius – vers 1.1  30/159



ANSIBLE

Un exemple plus complet :

# cat  moninventaire.inv
poste1
poste2

[all:vars]
ansible_user=root

[deb_servers]
deb_server1
deb_server2

[domaine1]
apache1     apache_url=intra.domaine http_port=80 https_port=443
mysql1
centos_6.5  ansible_user=user1
centos_7.1

[linux:children]
domaine1
deb_servers

[linux:vars]
ntp_server=0.fr.pool.ntp.org

[windows]
serveur1
basededonnee1

[windows:vars]
ansible_connection=winrm
ansible_user=Administrator

# ansible  all  -i moninventaire.inv  --list-hosts
  hosts (10):
    poste1
    poste2
    serveur1
    basededonnee1
    apache1
    mysql1
    centos_6.5
    centos_7.1
    deb_server1
    deb_server2

# ansible localhost -i moninventaire.inv -m debug -a "var=groups"
localhost | SUCCESS => {
    "groups": {
        "all": [
            "poste1",
            "poste2",
            "serveur1",
            "basededonnee1",
            "apache1",
            "mysql1",
            "centos_6.5",
            "centos_7.1",
            "deb_server1",
            "deb_server2"
        ],
        "deb_servers": [
            "deb_server1",

© 2018 Copyright Spherius – vers 1.1  31/159



ANSIBLE

            "deb_server2"
        ],
        "domaine1": [
            "apache1",
            "mysql1",
            "centos_6.5",
            "centos_7.1"
        ],
        "linux": [
            "apache1",
            "mysql1",
            "centos_6.5",
            "centos_7.1",
            "deb_server1",
            "deb_server2"
        ],
        "ungrouped": [
            "poste1",
            "poste2"
        ],
        "windows": [
            "serveur1",
            "basededonnee1"
        ]
    }
}

Pour afficher la valeur d'une variable spécifique : -m debug -a "var=nom_variable"

# ansible all -i inventaire.inv -m debug -a "var=ansible_user" --one-line
poste1 | SUCCESS => {    "ansible_user": "root",     "changed": false}
serveur1 | SUCCESS => {    "ansible_user": "Administrator",     "changed": false}
poste2 | SUCCESS => {    "ansible_user": "root",     "changed": false}
apache1 | SUCCESS => {    "ansible_user": "root",     "changed": false}
basededonnee1 | SUCCESS => {    "ansible_user": "Administrator",     "changed": false}
mysql1 | SUCCESS => {    "ansible_user": "root",     "changed": false}
centos_7.1 | SUCCESS => {    "ansible_user": "root",     "changed": false}
centos_6.5 | SUCCESS => {    "ansible_user": "user1",     "changed": false}
deb_server1 | SUCCESS => {    "ansible_user": "root",     "changed": false}
deb_server2 | SUCCESS => {    "ansible_user": "root",     "changed": false}

© 2018 Copyright Spherius – vers 1.1  32/159



ANSIBLE

La commande ansible-inventory

# ansible-inventory  all  -i inventaire.inv  --graph
@all:
  |--@domaine1:
  |  |--basededonnee1
  |  |--deb_client1
  |  |--deb_client2
  |  |--serveur1
  |--@linux:
  |  |--@debian:
  |  |  |--deb_client1
  |  |  |--deb_client2
  |  |--@domaine2:
  |  |  |--apache1
  |  |  |--centos_6.5
  |  |  |--centos_7.1
  |  |  |--mysql1
  |--@ungrouped:
  |--@windows:
  |  |--basededonnee1
  |  |--serveur1

Pour un affichage avec les variables :

# ansible-inventory  all  -i moninventaire.inv  --graph  --vars
@all:
  |--@domaine1:
  |  |--basededonnee1
  |  |--deb_client1
  |  |--deb_client2
  |  |--serveur1
  |--@linux:
  |  |--@debian:
  |  |  |--deb_client1
  |  |  |--deb_client2
  |  |--@domaine2:
  |  |  |--apache1
  |  |  |  |--{apache_url = intra.domaine}
  |  |  |  |--{http_port = 80}
  |  |  |  |--{https_port = 443}
  |  |  |--centos_6.5
  |  |  |  |--{ansible_user = user1}
  |  |  |--centos_7.1
  |  |  |--mysql1
  |--@ungrouped:
  |--@windows:
  |  |--basededonnee1
  |  |--serveur1
  |  |--{ansible_connection = winrm}
  |  |--{ansible_user = Administrator}
  |--{ansible_user = root}

Il existe évidemment d'autres options, telle que « --list » pour un affichage détaillé.

# ansible-inventory  all  -i moninventaire.inv  --list

© 2018 Copyright Spherius – vers 1.1  33/159



ANSIBLE

© 2018 Copyright Spherius – vers 1.1  34/159

Notes



ANSIBLE

Les commandes et les
modules de base

Ansible

© 2018 Copyright Spherius – vers 1.1  35/159

Dans ce chapitre, nous allons étudier l'utilisation des modules Ansible.



ANSIBLE

© 2018 Copyright Spherius – vers 1.1  36/159

Les commandes et les modules de base Ansible 

• Les modules command et shell  

• Le transfert de fichiers   

• La gestion des packages

• La gestion des utilisateurs

• La gestion des services 

• Le module setup



ANSIBLE

Les modules command et shell

Ansible permet d'exécuter directement des commandes sur les hôtes.

Le module command     :

C'est le module par défaut.
C'est une manière d'exécuter ponctuellement des commandes sur un groupe de machines. 
Pour une exécution récurrente, les commandes seront exécutées via un Playbook. 

# ansible  spherius_servers  -a "/usr/bin/uptime"
ou
# ansible  spherius_servers  -m command  -a "/usr/bin/uptime"
deb_server | SUCCESS | rc=0 >>
 15:33:45 up 0 min,  1 user,  load average: 0,58, 0,20, 0,07

CentOS6.5 | SUCCESS | rc=0 >>
 15:33:28 up 2 min,  1 user,  load average: 0.52, 0.36, 0.14

CentOS7.1 | SUCCESS | rc=0 >>
 15:33:33 up 2 min,  2 users,  load average: 0,50, 0,40, 0,16

Pour obtenir la documentation sur le module command :

# ansible-doc  command

© 2018 Copyright Spherius – vers 1.1  37/159

Les commandes et les modules de base Ansible
Les modules command et shell

• Le module command Le module shell

• http://docs.ansible.com/ansible/latest/command_module.html

• http://docs.ansible.com/ansible/latest/shell_module.html

# ansible-doc command

# ansible-doc shell

http://docs.ansible.com/ansible/latest/shell_module.html
http://docs.ansible.com/ansible/latest/command_module.html


ANSIBLE

Le module shell     :

Le module command n'intègre pas les syntaxes spécifiques du shell comme les redirections, les 
pipes et le point virgule. Pour utiliser ces fonctionnalités, il faut appeler le module shell.

# ansible  all  -m shell  -a "/bin/echo test ansible > /tmp/ans_test"
deb_server | SUCCESS | rc=0 >>

CentOS6.5 | SUCCESS | rc=0 >>

CentOS7.1 | SUCCESS | rc=0 >>

# ansible  all  -m shell  -a "date ; cd /tmp ; touch fic ; date"

# ansible  all  -m shell  -a "who | wc -l > /tmp/solution"

Pour obtenir la documentation sur le module shell :

# ansible-doc  shell

© 2018 Copyright Spherius – vers 1.1  38/159



ANSIBLE

Le transfert de fichiers

Le module copy     :

Le module copy permet de transférer des fichiers à plusieurs hôtes. Les fichiers sont copiés à 
l'identique sur la destination.

# ansible-doc  copy

Le mot clef src indique le fichier source à copier.
Le mot clef dest  indique la destination sur le poste client.

Copie du fichier /etc/passwd :
# ansible all  -m copy  -a "src=/etc/passwd  dest=/tmp/password"
deb_server | SUCCESS => {
    "changed": true,
    "checksum": "43ebe41a57d0dbe47727d6434b4a783a9bf3f67e",
    "dest": "/tmp/password",
    "gid": 0,
    "group": "root",
    "md5sum": "56a44958597ad6b61bc0c748f1d17d4b",
    "mode": "0644",
    "owner": "root",
    "size": 2157,
    "src": "/root/.ansible/tmp/ansible-tmp-1517930992.29-201300349940166/source",
    "state": "file",
    "uid": 0
}
CentOS6.5 | SUCCESS => {
    "changed": true,

© 2018 Copyright Spherius – vers 1.1  39/159

Les commandes et les modules de base Ansible
Le transfert de fichiers

• Le module copy  Le module file 

• Utilise scp pour transférer les fichiers

• http://docs.ansible.com/ansible/latest/copy_module.html

• http://docs.ansible.com/ansible/latest/file_module.html

# ansible-doc copy

# ansible-doc file

http://docs.ansible.com/ansible/latest/file_module.html
http://docs.ansible.com/ansible/latest/copy_module.html


ANSIBLE

    "checksum": "43ebe41a57d0dbe47727d6434b4a783a9bf3f67e",
    "dest": "/tmp/password",
    "gid": 0,
    "group": "root",
    "md5sum": "56a44958597ad6b61bc0c748f1d17d4b",
    "mode": "0644",
    "owner": "root",
    "secontext": "unconfined_u:object_r:admin_home_t:s0",
    "size": 2157,
    "src": "/root/.ansible/tmp/ansible-tmp-1517930992.28-138131138374404/source",
    "state": "file",
    "uid": 0
}

Remarques :
• si "src=/tmp/rep   dest=/tmp" copie du répertoire rep et de son contenu.
• si "src=/tmp/rep/   dest=/tmp" copie que le contenu du répertoire rep.
• si "src=/tmp/rep   dest=/tmp directory   mode=777   group=1001" : 

copie du répertoire rep et de son contenu, les répertoires auront comme droits 777 (pas les
fichiers) et le group propriétaire est 1001.

Le module file     :

Le module file permet de modifier le propriétaire et les permissions du fichier. Les mêmes options 
peuvent-être utilisées pour le module copy.

# ansible-doc  file

Modification des droits et du propriétaire d'un fichier :

# ansible all -m file \
-a "dest=/tmp/password mode=600 owner=theo group=users"

deb_server | SUCCESS => {
    "changed": true,
    "gid": 100,
    "group": "users",
    "mode": "0600",
    "owner": "theo",
    "path": "/tmp/password",
    "size": 2157,
    "state": "file",
    "uid": 1000
}
CentOS6.5 | SUCCESS => {
    "changed": true,
    "gid": 100,
    "group": "users",
    "mode": "0600",
    "owner": "theo",
    "path": "/tmp/password",
    "secontext": "unconfined_u:object_r:admin_home_t:s0",
    "size": 2157,
    "state": "file",
    "uid": 500
}

© 2018 Copyright Spherius – vers 1.1  40/159



ANSIBLE

Copie d'un fichier en modifiant le propriétaire et les permissions :

# ansible spherius_servers -m copy \
   -a "src=/etc/passwd dest=/tmp/mypass mode=600 owner=theo group=users"
deb_server | SUCCESS => {
    "changed": true,
    "checksum": "43ebe41a57d0dbe47727d6434b4a783a9bf3f67e",
    "dest": "/tmp/mypass",
    "gid": 100,
    "group": "users",
    "md5sum": "56a44958597ad6b61bc0c748f1d17d4b",
    "mode": "0600",
    "owner": "theo",
    "size": 2157,
    "src": "/root/.ansible/tmp/ansible-tmp-1517932488.9-256092188516732/source",
    "state": "file",
    "uid": 1000
}

...

Le module file peut aussi créer une structure arborescente comme mkdir -p à l'aide de l'option 
state=directory.

# ansible CentOS7.1 -m file -a "dest=/tmp/rep1/rep2/rep3 mode=755 
owner=theo group=users state=directory"
CentOS7.1 | SUCCESS => {
    "changed": true,
    "gid": 100,
    "group": "users",
    "mode": "0755",
    "owner": "theo",
    "path": "/tmp/rep1/rep2/rep3",
    "secontext": "unconfined_u:object_r:user_tmp_t:s0",
    "size": 6,
    "state": "directory",
    "uid": 1000
}

Le module file permet aussi de supprimer une arborescence de fichiers. 

Suppression du répertoire /tmp/rep1/rep2 avec tout son contenu :

# ansible CentOS7.1 -m file -a "dest=/tmp/rep1/rep2 state=absent"
CentOS7.1 | SUCCESS => {
    "changed": true,
    "path": "/tmp/rep1/rep2",
    "state": "absent"
}

© 2018 Copyright Spherius – vers 1.1  41/159



ANSIBLE

La gestion des packages
Vérifier qu'un package est présent. Ne pas le mettre à jour s'il est présent. L'installer s'il est absent.
# ansible centos_servers  -m yum  -a "name=nmap state=present"
CentOS7.1 | SUCCESS => {
    "changed": false,
    "msg": "",
    "rc": 0,
    "results": [
        "2:nmap-6.40-7.el7.x86_64 providing nmap is already installed"
    ]
}
CentOS6.5 | SUCCESS => {
    "changed": true,
    "msg": "",
    "rc": 0,
    "results": [
        "Loaded plugins: fastestmirror, refresh-packagekit, security\nLoading mirror 
speeds from cached hostfile\n * base: centos.mirror.fr.planethoster.net\n * extras: 
centos.mirrors.ovh.net\n * updates: centos.mirror.fr.planethoster.net\nSetting up Install
Process\nResolving Dependencies\n--> Running transaction check\n---> Package nmap.x86_64 
2:5.51-6.el6 will be installed\n--> Finished Dependency Resolution\n\nDependencies 
Resolved\n\n=============================================================================
===\n Package        Arch             Version                   Repository      
Size\n================================================================================\nI
nstalling:\n nmap           x86_64           2:5.51-6.el6              base           2.8
M\n\nTransaction 
Summary\n================================================================================
\nInstall       1 Package(s)\n\nTotal download size: 2.8 M\nInstalled size: 9.7 
M\nDownloading Packages:\nRunning rpm_check_debug\nRunning Transaction Test\nTransaction 
Test Succeeded\nRunning Transaction\n\r  Installing : 2:nmap-5.51-6.el6.x86_64           
1/1 \n\r  Verifying  : 2:nmap-5.51-6.el6.x86_64                                     
1/1 \n\nInstalled:\n  nmap.x86_64 2:5.51-6.el6                                           
\n\nComplete!\n"
    ]
}

© 2018 Copyright Spherius – vers 1.1  42/159

Les commandes et les modules de base Ansible
La gestion des packages

• La gestion avec yum

• La gestion avec apt

• http://docs.ansible.com/ansible/latest/yum_module.html

• http://docs.ansible.com/ansible/latest/apt_module.html

# ansible-doc  yum

# ansible-doc  apt

http://docs.ansible.com/ansible/latest/apt_module.html
http://docs.ansible.com/ansible/latest/yum_module.html


ANSIBLE

Lors de la ré-exécution de la commande, on constate que nmap est bien installé sur la machine 
CentOS6.5 :

# ansible centos_servers -m yum -a "name=nmap state=present"
CentOS7.1 | SUCCESS => {
    "changed": false,
    "msg": "",
    "rc": 0,
    "results": [
        "2:nmap-6.40-7.el7.x86_64 providing nmap is already installed"
    ]
}
CentOS6.5 | SUCCESS => {
    "changed": false,
    "msg": "",
    "rc": 0,
    "results": [
        "2:nmap-5.51-6.el6.x86_64 providing nmap is already installed"
    ]
}

Pour mettre à jour vers une version spécifique du package si c'est possible :

# ansible centos_servers -m yum -a "name=nmap-6.40 state=present"
CentOS7.1 | SUCCESS => {
    "changed": false,
    "msg": "",
    "rc": 0,
    "results": [
        "2:nmap-6.40-7.el7.x86_64 providing nmap-6.40 is already installed"
    ]
}
CentOS6.5 | FAILED! => {
    "changed": false,
    "msg": "No package matching 'nmap-6.40' found available, installed or updated",
    "rc": 126,
    "results": [
        "No package matching 'nmap-6.40' found available, installed or updated"
    ]
}

Pour installer la dernière version disponible d'un package :

# ansible centos_servers -m yum -a "name=nmap state=latest"
CentOS6.5 | SUCCESS => {
    "changed": false,
    "msg": "",
    "rc": 0,
    "results": [
        "All packages providing nmap are up to date",
        ""
    ]
}
CentOS7.1 | SUCCESS => {
    "changed": false,
    "msg": "",
    "rc": 0,
    "results": [
        "All packages providing nmap are up to date",
        ""
    ]
}

© 2018 Copyright Spherius – vers 1.1  43/159



ANSIBLE

Pour désinstaller un package :

# ansible centos_servers -m yum -a "name=ksh state=absent"
CentOS6.5 | SUCCESS => {
    "changed": false,
    "msg": "",
    "rc": 0,
    "results": [
        "ksh is not installed"
    ]
}
CentOS7.1 | SUCCESS => {
    "changed": false,
    "msg": "",
    "rc": 0,
    "results": [
        "ksh is not installed"
    ]
}

Pour lister les packages installés :

# ansible  client1  -m yum  -a "list=installed"

Pour savoir si un package donné est installé :

# ansible  client1  -m yum  -a "list=nmap"

• avec la variable yumstate à 'available' : il s'agit d'un package au sein d'un repository,
 donc pouvant être installé. 

• avec la variable yumstate à 'installed' : il s'agit d'un package installé sur le poste client. 

Le module apt

Sur les serveurs à base de Débian, il suffit d'utiliser le module apt. Les différentes options sont 
identiques entre le module yum et apt.

# ansible deb_server -m apt -a "name=ksh state=present"

Une deuxième exécution de la commande, confirme que le package est bien installé.

# ansible deb_server -m apt -a "name=ksh state=present"
deb_server | SUCCESS => {
    "cache_update_time": 1443092260,
    "cache_updated": false,
    "changed": false
}

Pour plus d'informations sur les options supportées par un module :

# ansible-doc  apt

# ansible-doc  yum

© 2018 Copyright Spherius – vers 1.1  44/159



ANSIBLE

La gestion des utilisateurs

Le module user gère les comptes utilisateurs.

Création d'un utilisateur avec quelques options :

# ansible spherius_servers -m user -a "name=user1 password='\6\$21kkZVVn\
$934bICwoojtJ6oIZ3IcmVffOnyd2FxEaUW8JP8wvYLEy1OXR5DRHzMcCv4rRI.NIKG5KltUA
Yn.N51/dJ9V.a1' comment='compte utilisateur' uid=1111 group=users"
deb_server | SUCCESS => {
    "append": false,
    "changed": true,
    "comment": "compte user",
    "group": 100,
    "home": "/home/user1",
    "move_home": false,
    "name": "user1",
    "password": "NOT_LOGGING_PASSWORD",
    "shell": "/bin/sh",
    "state": "present",
    "uid": 1111
}
CentOS7.1 | SUCCESS => {
    "changed": true,
    "comment": "compte user",
    "createhome": true,
    "group": 100,
    "home": "/home/user1",
    "name": "user1",
    "password": "NOT_LOGGING_PASSWORD",
    "shell": "/bin/bash",
    "state": "present",
    "system": false,
    "uid": 1111
}

© 2018 Copyright Spherius – vers 1.1  45/159

Les commandes et les modules de base Ansible
La gestion des utilisateurs

• Le module user le module group

• http://docs.ansible.com/ansible/latest/user_module.html

• http://docs.ansible.com/ansible/latest/group_module.html

# ansible-doc  user

# ansible-doc  group

http://docs.ansible.com/ansible/latest/group_module.html
http://docs.ansible.com/ansible/latest/user_module.html


ANSIBLE

Création d'un utilisateur sans options :

# ansible spherius_servers -m user -a "name=user1 state=present"

Modification d'un compte existant :

# ansible all -m user -a "name=eve uid=1111 gid=2222"
Le groupe gid=2222 doit exister au préalable. Le compte est créé sur les postes n'ayant pas cet 
utilisateur, sinon le compte est modifié. Le répertoire de connexion, ainsi que son contenu est 
affecté à l'uid=1111 et au gid=2222.

Suppression d'un compte utilisateur, sans suppression du répertoire de connexion :

# ansible client1 -m user -a "name=user1 state=absent"

Suppression d'un compte utilisateur, avec suppression du répertoire de connexion :

# ansible client1 -m user -a "name=user1 state=absent remove=yes"

Le module group gère les groupes utilisateurs.

Création d'un groupe (remarque 'state=present' est la valeur par défaut) :

# ansible spherius_servers  -m group  -a "name=compta gid=2000"
deb_server | SUCCESS => {
    "changed": true,
    "gid": 2000,
    "name": "compta",
    "state": "present",
    "system": false
}
CentOS6.5 | SUCCESS => {
    "changed": true,
    "gid": 2000,
    "name": "compta",
    "state": "present",
    "system": false
}

L'aide

Pour le détail des arguments utilisables :

# ansible-doc  user

# ansible-doc  group

© 2018 Copyright Spherius – vers 1.1  46/159



ANSIBLE

La gestion des services

Le module service gère la gestion d'un service : start, stop, restart, etc. 

Pour le détail des arguments utilisables :
# ansible-doc  service

Démarrer le service httpd sur les serveurs CentOS : 
# ansible centos_servers  -m service  -a "name=httpd  state=started"
CentOS6.5 | SUCCESS => {
    "changed": false,
    "name": "httpd",
    "state": "started"
}
CentOS7.1 | SUCCESS => {
    "changed": false,
    "name": "httpd",
    "state": "started",
    "status": {
        "ActiveEnterTimestamp": "mer. 2018-02-07 09:52:52 CET",
…

Démarrer le service apache sur le serveur Débian :
# ansible deb_server  -m service  -a "name=apache2  state=started"
deb_server | SUCCESS => {
    "changed": false,
    "name": "apache2",
    "state": "started",
    "status": {
        "ActiveEnterTimestamp": "mer. 2018-02-07 09:58:05 CET",

© 2018 Copyright Spherius – vers 1.1  47/159

Les commandes et les modules de base Ansible
La gestion des services

• Le module service

• http://docs.ansible.com/ansible/latest/service_module.html

# ansible-doc  service

http://docs.ansible.com/ansible/latest/service_module.html


ANSIBLE

Redémarrer un service :

# ansible CentOS6.5  -m service  -a "name=httpd  state=restarted"
CentOS6.5 | SUCCESS => {
    "changed": true,
    "name": "httpd",
    "state": "started"
}

Arrêter un service :

# ansible centos_servers  -m service  -a "name=httpd  state=stopped"
CentOS6.5 | SUCCESS => {
    "changed": true,
    "name": "httpd",
    "state": "stopped"
}
CentOS7.1 | SUCCESS => {
    "changed": true,
    "name": "httpd",
    "state": "stopped",
    "status": {

© 2018 Copyright Spherius – vers 1.1  48/159



ANSIBLE

Le module setup

Le module setup permet de récupérer des informations d'un hôte (sous forme de variables). 
Cela peut être des données sur les caractéristiques matérielles (type de processeurs, sur la 
mémoire, la swap, les disques et leur partitionnement, le détail des lvms, des cartes réseaux, etc), 
des variables systèmes (nom de la machine, etc) ou autres.
Ces variables sont exploitables au sein de différents playbooks, rôles et templates d'Ansible.  Ces 
variables sont appelées des « facts ».

Pour le détail des options utilisables :

# ansible-doc  setup

Exemple de quelques variables :

# ansible  client1  -m  setup

client1 | SUCCESS => {
    "ansible_facts": {
        "ansible_all_ipv4_addresses": [
            "192.168.122.1", 
            "192.168.0.30"
        ], 
        "ansible_date_time": {
            "date": "2018-04-22", 
            "day": "22", 
            "hour": "16", 
            "tz": "CEST", 
            ...
        }, 

© 2018 Copyright Spherius – vers 1.1  49/159

Les commandes et les modules de base Ansible
Le module setup

• Le module setup Liste des variables d'un hôte.

• http://docs.ansible.com/ansible/latest/modules/setup_module.html

# ansible-doc  setup

http://docs.ansible.com/ansible/latest/modules/setup_module.html


ANSIBLE

        "ansible_default_ipv4": {
            "address": "192.168.0.30", 
            "alias": "enp0s3", 
            "gateway": "192.168.0.254", 
            "interface": "enp0s3", 
            "macaddress": "08:00:27:ad:c7:72", 
            "netmask": "255.255.255.0", 
            "network": "192.168.0.0", 
            "type": "ether"
        }, 
        
        "ansible_devices": {
            "sda": {
                … informations sur le disque et son partitionnement
            }, 
            ...
        }, 
        "ansible_env": {
          … informations sur les variables systèmes du hote
            "HOME": "/root", 
            "HOSTNAME": "mars", 
        }, 
        "ansible_hostname": "mars",  
        "ansible_os_family": "RedHat", 
        "ansible_pkg_mgr": "yum", 
        "ansible_user_id": "root", 
         ...
    }, 
    "changed": false
}

Création d'un répertoire /tmp/facts avec des fichiers portant le nom de chaque hôte. Chaque 
fichier contient le résultat du « setup » de son hôte.
# ansible all  -m setup  --tree /tmp/facts
# cat  /tmp/facts/client1  |  tr  ','  '\n' visualisation du fichier

Pour filtrer sur quelques variables, l'utilisation de caractères spéciaux est préconisée.
# ansible all  -m setup  -a 'filter=ansible_eth[0-2]'
# ansible all  -m setup  -a 'filter=ansible_*_mb'
client1 | SUCCESS => {
    "ansible_facts": {
        "ansible_memfree_mb": 238, 
        "ansible_memory_mb": {
            "nocache": {
                "free": 975, 
                "used": 864
            }, 
            "real": {
                "free": 238, 
                "total": 1839, 
                "used": 1601
            }, 
            "swap": {
                "cached": 0, 
                "free": 2047, 
                "total": 2047, 
                "used": 0
            }
        }, 
        "ansible_memtotal_mb": 1839, 
        "ansible_swapfree_mb": 2047, 
        "ansible_swaptotal_mb": 2047
    }, 
    "changed": false
}

© 2018 Copyright Spherius – vers 1.1  50/159



ANSIBLE

© 2018 Copyright Spherius – vers 1.1  51/159

Notes



ANSIBLE

Les playbooks

© 2018 Copyright Spherius – vers 1.1  52/159

Dans ce chapitre, nous allons étudier la création et le fonctionnement des
playbooks.



ANSIBLE

© 2018 Copyright Spherius – vers 1.1  53/159

Les playbooks 

• Description d'un playbook  Les boucles

• Les variables et les tableaux La condition when

• La priorité et la portée des variables Les filtres

• Les templates Les opérations arithmétiques

• La boucle for

• Les Handlers

• Le module debug et le mot clef register



ANSIBLE

Description d'un playbook

Un playbook permet d'orchestrer l'ensemble des actions à effectuer sur un parc de machines en 
tenant compte de contraintes (ordre de démarrage, etc). Des exemples de playbooks sont 
consultables sur le site suivant : 
https://github.com/ansible/ansible-examples

Les playbooks sont au format YAML qui a une syntaxe qui est rapidement assimilable. Chaque 
playbook est constitué d'un ou plusieurs plays.  

Un play pourrait être traduit par tâche et playbook par liste de tâches. Une tâche Ansible est 
basiquement un appel à un module Ansible.

En composant son propre playbook il est possible de contrôler le déploiement de plusieurs 
machines et de contrôler les opérations à effectuer dessus.

La syntaxe d'un playbook reste relativement simple. Il faut définir les hôtes, les variables et 
indiquer les tâches à effectuer. Chaque tâche a un nom et appelle des modules. Le nom des 
modules est identique que ceux en ligne de commandes. 

L'option --syntax-check de la commande playbook permet de vérifier la syntaxe. L'option --check 
permet de simuler l'action sans l'appliquer réellement.

Les documents écrits en YAML commencent par trois tirets (---), ils peuvent se terminer par trois 
points (…) mais cela n'est pas obligatoire. L'indentation est obligatoire dans le fichier.

© 2018 Copyright Spherius – vers 1.1  54/159

Les playbooks
Description d'un playbook

• https://github.com/ansible/ansible-examples

• Le langage yaml

• Exécution et débogage

# ansible-playbook --syntax-check playbook_exemple.yml

# ansible-playbook --check playbook_exemple.yml

# ansible-playbook  playbook_exemple.yml

https://github.com/ansible/ansible-examples
https://github.com/ansible/ansible-examples


ANSIBLE

Un exemple de base :

# more exemple1.yml 
---
# Premier exemple de base
- hosts: all

  tasks:

  - name: un ping
    ping: 

  - name: une commande date
    command:
      date

  - name: un redemarrage d un service 
    service:
      name: crond
      state: restarted

  - name: copie d un fichier
    copy:
      src: /ansible/conf/serveur_apache/httpd.conf
      dest: /etc/httpd/conf/httpd.conf

...

© 2018 Copyright Spherius – vers 1.1  55/159



ANSIBLE

Un autre exemple :

# cat connection.yml 
- hosts: localhost, client1, client2
  tasks:
    - name: "Copie d un fichier vers /the"
      copy:
        src: the/question
        dest: /the/suite

# ansible-playbook connection.yml 

PLAY [localhost, client1, client2] ***************************************************

TASK [Gathering Facts] ***************************************************************
ok: [localhost]
ok: [client1]
fatal: [client2]: UNREACHABLE! => {"changed": false, "msg": "Failed to connect to the 
host via ssh: ssh: connect to host client2 port 22: No route to host\r\n", "unreachable":
true}

TASK [Copie d un fichier vers /the] **************************************************
changed: [localhost]
fatal: [client1]: FAILED! => {"changed": false, "checksum": 
"358234378830070365cd637c0191ffe8899c99bd", "msg": "Destination directory /the does not 
exist"}

to retry, use: --limit @/root/Ansible_Playbooks/connection.retry

PLAY RECAP ***************************************************************************
client1                    : ok=1    changed=0    unreachable=0    failed=1   
client2                    : ok=0    changed=0    unreachable=1    failed=0   
localhost                  : ok=2    changed=1    unreachable=0    failed=0   

Pour localhost : la connexion a fonctionné, les facts ont été récupéré  et le fichier a été copié.

Pour client1: la connexion a fonctionné, les facts ont été récupéré. Mais le fichier n'a pas été copié,
une erreur sur la task est apparue (la raison : absence du répertoire /the/suite sur client1).

Pour client2 : la connexion a échoué. On constate qu'il n'y a pas par la suite de tentative 
d'exécution de tasks sur ce hôte.

La commande a généré un fichier du nom du playbook avec l'extension .retry contenant la liste des
machines sur lesquelles une erreur s'est produite.

# more  connection.retry
client1

Il est possible de paramétrer ce comportement en modifiant le fichier de configuration d'Ansible.
Par exemple :

#  vi  /etc/ansible/ansible.cfg
retry_files_save_path=/tmp/.ansible-retry

après exécution un répertoire est créé /tmp/.ansible-retry avec les fichiers retry.

© 2018 Copyright Spherius – vers 1.1  56/159



ANSIBLE

En relançant le playbook, on obtient :

# ansible-playbook connection.yml 

. . .

TASK [Copie d un fichier vers /the] ****************************************************
fatal: [client1]: FAILED! => {"changed": false, "checksum": 
"358234378830070365cd637c0191ffe8899c99bd", "msg": "Destination directory /the does not 
exist"}
ok: [localhost]

to retry, use: --limit @/root/Ansible_Playbooks/connection.retry

PLAY RECAP *****************************************************************************
client1                    : ok=1    changed=0    unreachable=0    failed=1   
client2                    : ok=0    changed=0    unreachable=1    failed=0   
localhost                  : ok=2    changed=0    unreachable=0    failed=0 

Pas de changement sur le hôte localhost car le fichier étant présent la copie ne s'est pas faite.

© 2018 Copyright Spherius – vers 1.1  57/159



ANSIBLE

Exemple d'un fichier playbook :

# cat  playbook.yml 
---
# Les documents YAML commence par trois tirets
# Une indentation est OBLIGATOIRE pour chaque sous section

# Le nom des machines ou groupe de machines concernés
- hosts:  centos_servers
  # nom de l'utilisateur
  remote_user: root

  # Declaration des variables
  vars:
    bind_port: 53
    domain: mondomaine.lan

  # Liste des taches a effectuer
  tasks:

  # Installation des outils de developpement et du serveur web

  - name: Installer les outils de developpement
    # le module a utiliser est yum
    yum:
      name: "@Development Tools"
      state: present

  - name: Installer un serveur DNS 
    yum:
      name: bind,bind-utils
      state: latest

  # Copier les fichiers de configuration du serveur DNS
  # Pour utiliser des variables dans le fichier de configuration 
  # il aurait fallu utiliser le module template
  - name: copie du fichier de configuration named.conf
    copy:
      src: dns/named_source.conf
      dest: /etc/named.conf

  - name: copie du fichier de configuration named.rfc1912.zones
    copy:
      src: dns/rfc_source.zones
      dest: /etc/named.rfc1912.zones

  - name: copie du fichier de configuration de la zone
    copy:
      src: dns/zone_source.conf
      dest: /var/named/{{domain}}

  # Redemarrer le service DNS
  - name: Redemarrage du serveur DNS
    service:
      name: bind
      state: restarted

# Je termine mon fichier par ...
...

© 2018 Copyright Spherius – vers 1.1  58/159



ANSIBLE

Vérification des erreurs dans le playbook : --syntax-check
Permet la vérification de la syntaxe du fichier playbook.

# ansible-playbook  --syntax-check  playbook.yml 

playbook: playbook.yml

Simulation de l'application du playbook : --check
Permet de simuler les actions sans les appliquer réellement.

# ansible-playbook  --check  playbook.yml 

PLAY [centos_servers] ******************************************************************

TASK [Gathering Facts] *****************************************************************
ok: [client1]
ok: [client2]

TASK [Installer les outils de developpement] *******************************************
changed: [client1]
changed: [client2]

TASK [Installer un serveur DNS] ********************************************************
changed: [client1]
changed: [client2]

TASK [copie du fichier de configuration named.conf] ************************************
changed: [client1]
changed: [client2]

TASK [copie du fichier de configuration named.rfc1912.zones] ***************************
changed: [client1]
changed: [client2]

TASK [copie du fichier de configuration de la zone] ************************************
changed: [client1]
changed: [client2]

TASK [Redemarrage du serveur DNS] ******************************************************
changed: [client1]
changed: [client2]

PLAY RECAP *****************************************************************************
client1                  : ok=7    changed=6    unreachable=0    failed=0  
client2                  : ok=7    changed=6    unreachable=0    failed=0   

© 2018 Copyright Spherius – vers 1.1  59/159



ANSIBLE

Exécution du playbook :
# ansible-playbook  playbook.yml 

PLAY [centos_servers] ******************************************************************

TASK [Gathering Facts] *****************************************************************
ok: [client1]
ok: [client2]

TASK [Installer les outils de developpement] *******************************************
changed: [client1]
changed: [client2]

TASK [Installer un serveur DNS] ********************************************************
changed: [client1]
changed: [client2]

TASK [copie du fichier de configuration named.conf] ************************************
changed: [client1]
changed: [client2]

TASK [copie du fichier de configuration named.rfc1912.zones] ***************************
changed: [client1]
changed: [client2]

TASK [copie du fichier de configuration de la zone] ************************************
changed: [client1]
changed: [client2]

TASK [Redemarrage du serveur DNS] ******************************************************
changed: [client1]
changed: [client2]

PLAY RECAP *****************************************************************************
client1                  : ok=7    changed=6    unreachable=0    failed=0  
client2                  : ok=7    changed=6    unreachable=0    failed=0   

La reexécution du playbook est plus rapide car les packages et les fichiers sont déjà présents.
# ansible-playbook playbook.yml 

PLAY [centos_servers] ******************************************************************

TASK [Gathering Facts] *****************************************************************
ok: [client1]
ok: [client2]

TASK [Installer les outils de developpement] *******************************************
ok: [client1]
ok: [client2]

TASK [Installer un serveur DNS] ********************************************************
ok: [client1]
ok: [client2]

TASK [copie du fichier de configuration named.conf] ************************************
ok: [client1]
ok: [client2]

TASK [copie du fichier de configuration named.rfc1912.zones] ***************************
ok: [client1]
ok: [client2]

TASK [copie du fichier de configuration de la zone] ************************************
ok: [client1]
ok: [client2]

© 2018 Copyright Spherius – vers 1.1  60/159



ANSIBLE

TASK [Redemarrage du serveur DNS] ******************************************************
changed: [client1]
changed: [client2]

PLAY RECAP *****************************************************************************
client1                  : ok=7    changed=1    unreachable=0    failed=0  
client2                  : ok=7    changed=1    unreachable=0    failed=0 

Après modification d'un fichier de configuration. Par exemple un paramètre est adapté au sein du 
fichier modèle dns/rfc_source.zones :
# ansible-playbook playbook.yml 

PLAY [centos_servers] ******************************************************************

TASK [Gathering Facts] *****************************************************************
ok: [client1]
ok: [client2]

TASK [Installer les outils de developpement] *******************************************
ok: [client1]
ok: [client2]

TASK [Installer un serveur DNS] ********************************************************
ok: [client1]
ok: [client2]

TASK [copie du fichier de configuration named.conf] ************************************
ok: [client1]
ok: [client2]

TASK [copie du fichier de configuration named.rfc1912.zones] ***************************
changed: [client1]
changed: [client2]

TASK [copie du fichier de configuration de la zone] ************************************
ok: [client1]
ok: [client2]

TASK [Redemarrage du serveur DNS] ******************************************************
changed: [client1]
changed: [client2]

PLAY RECAP *****************************************************************************
client1                  : ok=7    changed=2    unreachable=0    failed=0  
client2                  : ok=7    changed=2    unreachable=0    failed=0 

© 2018 Copyright Spherius – vers 1.1  61/159



ANSIBLE

Les variables et les tableaux

Les variables dans Ansible sont constituées de lettres, de chiffres et d'underscores. Les variables 
doivent toujours commencer par une lettre.
Les noms suivants sont des noms de variables valides : var, var_10, var_ip 
Les noms suivants sont noms de variables invalides : var-1, 10_var, var.ip

La syntaxe pour définir les variables :
vars:
  variable1: valeur_1
  variable2: valeur_2

La déclaration de tableaux :
tab: ou : 
  - 1 tab: [ 1, "deux", "valeur trois" ]
  - "deux"
  - "valeur trois"

Une déclaration de variables plus complexe (table de hachage) :
equipe:  
  - nom: jean
    uid: 1001
    gid: 2020
  - nom: marc
    uid: 1002
    gid: 2020

ou
equipe:  
  - { nom: jean, uid: 1001, gid: 2020 }
  - { nom: marc, uid: 1002, gid: 2020 }

ou
equipe: [ {nom: jean, uid: 1001, gid: 2020}, {nom: marc, uid: 1002, gid: 2020} ]

© 2018 Copyright Spherius – vers 1.1  62/159

Les playbooks
Les variables et les tableaux

• Règles de nommage des variables
• Les variables de l'inventaire - Les variables internes Ansible - Les variables déclarées

• Utilisation de variables : {{ ansible_all_ipv4_addresses[0] }}

- hosts: spherius_servers
  vars:
    appli_path: "{{ ip_addr }}/22"

# more  fichier_variables
variable1: valeur_1
equipe: [ {nom: jean, uid: 1001, gid: 2020}, {nom: marc, uid: 1002, gid: 2020} ]

- hosts: spherius_servers
  var_files:
    - fichier_variables



ANSIBLE

Un autre exemple :
ami1:
  nom: dupond
  prenom: jean
  adresse:
    rue: "1 chemin de la paix"
    code: 75000
    ville: Paris

    

Les variables de l'inventaire

Les variables de l'inventaire sont constituées des variables du fichier /etc/ansible/hosts et du 
fichier /etc/ansible/ansible.cfg. Le fichiers hosts contient des variables qui référencent les noms 
des hôtes par machine ; par groupe de machines ou par groupe de groupes de machines. 
 
# more /etc/ansible/hosts
poste1
poste2

[deb_servers]      # groupe 
deb_server1   http_port=80 https_port=443         
deb_server2

[centos_servers]
CentOS6.5
CentOS7.1

[centos_servers:vars]
ntp_server=0.fr.pool.ntp.org

[servers:children] # groupe de groupes
deb_servers
centos_servers

La documentation complète :
http://docs.ansible.com/ansible/latest/intro_inventory.html

Les variables personnalisées

Les variables sont définissables directement dans un playbook
- hosts: spherius_servers
  vars:
    http_port: 80

ou
- hosts: spherius_servers
  vars: http_port=80

Ansible permet de référencer les variables dans le playbook en utilisant le système de templates 
Jinja2.  Jinja2 utilise des filtres intégrés qui permettent d'utiliser un certain nombre de variables 
pré-définies.

Le module setup permet de visualiser les variables d'un hôte. 

© 2018 Copyright Spherius – vers 1.1  63/159

http://docs.ansible.com/ansible/latest/intro_inventory.html


ANSIBLE

Les variables de la machine CentOS7.1 :
# ansible CentOS7.1 -m setup | more
CentOS7.1 | SUCCESS => {
    "ansible_facts": {
        "ansible_all_ipv4_addresses": [
            "192.168.122.1",
            "192.168.1.14"
        ],
        "ansible_all_ipv6_addresses": [
            "fe80::a00:27ff:fe76:1606"
        ],
        "ansible_architecture": "x86_64",
        "ansible_bios_date": "12/01/2006",
. . .

Utilisation des variables 

L'utilisation de ces variables respecte la syntaxe suivante :

- pour la valeur d'une variable :
{{ ansible_bios_version }} {{ ansible_architecture }}

- pour la valeur d'une propriété d'une variable :
{{ ansible_date_time.epoch }} {{ ansible_date_time.month }}

- pour la valeur d'une variable indexée dans un tableau. L'index commence à 0 pour la première 
valeur du tableau. Un tableau est entouré de crochets ([…...]) :
{{ ansible_all_ipv4_addresses[0] }}
{{ ansible_all_ipv4_addresses[1] }}

Attention : La syntaxe YAML nécessite que si vous commencer une valeur avec {{ var }}, il faut 
entourer toute la ligne de quotes.

Exemple de mauvaise syntaxe :
- hosts: spherius_servers
  vars:
    appli_path: {{ ip_addr }}/22

Exemple de bonne syntaxe :
- hosts: spherius_servers
  vars:
    appli_path: "{{ ip_addr }}/22"

Un fichier de variables     :

# more  fichier_variables
variable1: valeur_1
variable2: valeur_2
equipe: [ {nom: jean, uid: 1001, gid: 2020}, {nom: marc, uid: 1002, gid: 2020} ]

Utilisation dans un playbook :
- hosts: spherius_servers
  var_files:
    - fichier_variables

© 2018 Copyright Spherius – vers 1.1  64/159



ANSIBLE

Voici un exemple de mise en œuvre pour un playbook :

# cat  variables_base.yml 
- hosts: all
  vars:
    ip_addr: "{{ ansible_all_ipv4_addresses[0] }}"
    appli_path: "{{ ip_addr }}/22"
  tasks:
    - debug:
        msg: La variable appli_path = {{ appli_path }}

# ansible-playbook  variables_base.yml 

PLAY [all] 

TASK [Gathering Facts] 
ok: [debian1]
ok: [client1]
ok: [client2]

TASK [debug] 
ok: [client1] => {
    "msg": "La variable appli_path = 192.168.1.8/22"
}
ok: [client2] => {
    "msg": "La variable appli_path = 192.168.1.9/22"
}
ok: [debian1] => {
    "msg": "La variable appli_path = 192.168.1.25/22"
}

PLAY RECAP 
client1                    : ok=2    changed=0    unreachable=0    failed=0   
client2                    : ok=2    changed=0    unreachable=0    failed=0   
debian1                    : ok=2    changed=0    unreachable=0    failed=0   

Un exemple utilisant un tableau :

# cat  variables_tableau.yml 
- hosts: localhost
  vars:
    equipe: [ {nom: jean, uid: 1001}, {nom: marc, uid: 1002} ]
  tasks:
    - debug:
        msg: 
          Bonjour {{equipe[1].nom}}, ton uid est {{equipe[1].uid}} 

# ansible-playbook  variables_tableau.yml 

PLAY [localhost]

TASK [Gathering Facts]
ok: [localhost]

TASK [debug]
ok: [localhost] => {
    "msg": "Bonjour marc, ton uid est 1002"
}

PLAY RECAP
localhost                  : ok=2    changed=0    unreachable=0    failed=0   

© 2018 Copyright Spherius – vers 1.1  65/159



ANSIBLE

La priorité et la portée des variables 

Ordre de priorité d'une variable

Les variables ont une priorité en fonction de l'endroit où elles sont déclarées.
Ordre de priorité des variables dans ansible 2.x de la moins prioritaire à la plus prioritaire :

• role defaults 
• inventory file ou script group vars
• inventory group_vars/all 
• playbook group_vars/all 
• inventory group_vars/* 
• playbook group_vars/* 
• inventory file ou script host vars
• inventory host_vars/* 
• playbook host_vars/* 
• host facts 
• play vars 
• play vars_prompt 
• play vars_files 
• role vars (définies dans role/vars/main.yml) 
• block vars (seulement pour une tasks dans un bloc) 
• task vars (seulement pour la task) 
• role (et include_role) params 
• include params 

© 2018 Copyright Spherius – vers 1.1  66/159

Les playbooks
La priorité et la portée des variables

role defaults role (et include_role) params 
inventory file ou script group vars include params 
inventory group_vars/all include_vars 
playbook group_vars/all set_facts / registered vars 
inventory group_vars/* extra vars (toujours « gagnante ») 
playbook group_vars/* 
inventory file ou script host vars
inventory host_vars/* 
playbook host_vars/* 
host facts 
play vars 
play vars_prompt 
play vars_files 
role vars (définies dans role/vars/main.yml) 
block vars (seulement pour une tasks dans un bloc) 
task vars (seulement pour la task) 



ANSIBLE

• include_vars 
• set_facts / registered vars 
• extra vars (toujours « gagnante ») 

De manière basique, les variables définies dans le rôle par défaut sont le plus facilement écrasées. 
Chaque variable définie dans le répertoire vars du rôle écrase les versions précédentes de la 
variable définie dans l'espace de noms. L'idée étant que plus la variable est déclarée explicitement,
plus elle est prioritaire. C'est pour cela que les variables déclarées en ligne de commande avec 
l'option -e sont toujours les « gagnantes ».

Portée des variables     :

Ansible a trois types de portées de variables
• global : elles sont positionnées par la configuration, les variables d'environnement 

et la ligne de commande
• play : variables définies dans le play 
• hosts : variables directement associé à un hôte

Exemple     :

Pour un site (tous les hôtes), les variables peuvent-être déclarées dans le répertoire group_vars/all
# more /etc/ansible/group_vars/all
---
ntp_server: 0.fr.ntp.pool.org

Pour une région (un groupe de hôtes) , les variables peuvent-être déclarées dans le fichier 
group_vars/nom_du_groupe_de_hotes. La valeur de ntp_server va écraser la valeur définie au 
niveau du site. Le fichier ci-dessous concerne le groupe de hôtes « paris ».
# more /etc/ansible/group_vars/paris
---
ntp_server: paris.ntp.pool.org

Si pour une raison quelconque, il faut indiquer un serveur ntp spécifique pour un hôte, la valeur de
la variable au niveau du groupe sera écrasée par celle de l'hôte. Le fichier ci-dessous concerne la 
machine « mail.paris.mydomain.lan » du groupe de hôtes « paris ».
# more /etc/ansible/host_vars/mail.paris.mydomain.lan
---
ntp_server: interne.ntp.mydomain.lan

Lors de la création des rôles avec des valeurs par défaut classiques, indiquez les dans le fichier 
roles/nom_du_role/defaults/main.yml. Cela permet d'avoir la valeur par défaut pour les variables
mais elles sont écrasées par n'importe quel paramétrage spécifique dans Ansible.

© 2018 Copyright Spherius – vers 1.1  67/159



ANSIBLE

Un développement pour mettre en évidence certaines priorités     :

# cat hosts # cd Playbooks
[societe] # cat variables.yml 
client1  - hosts: all
client2   tasks:
[all:vars]     - debug:
mavar="Jean"         msg: La variable mavar = {{mavar}}

# ansible-playbook   -i ../hosts  variables.yml
Pour client1 et client2 :    "msg": "La variable mavar = Jean"

# cat ../group_vars/all      all inventaire
mavar: "Marc"
Pour client1 et client2 : "msg": "La variable mavar = Marc"

# cat group_vars/all   all playbook
mavar: "Theo"
Pour client1 et client2 : "msg": "La variable mavar = Theo"

# cat ../group_vars/societe    groupe inventaire (le groupe societe)
mavar: "Eve"
Pour client1 et client2 : "msg": "La variable mavar = Eve"

# cat hosts      fichier inventaire sur un host
[societe]
client1  mavar="celine"
client2
[all:vars]
mavar="Jean"
Pour client1 : "msg": "La variable mavar = celine"  client2 toujours Eve

# cat ../host_vars/client1       host_vars/nom_hote de l'inventaire
mavar: "valerie"

Pour client1 : "msg": "La variable mavar = valerie" client2 toujours Eve 

# cat host_vars/client1      host_vars/nom_hote de playbook
mavar: "Zette"
Pour client1 :     "msg": "La variable mavar = Zette"

# cat variables.yml     play vars
- hosts: all
  vars:
    mavar: "Noelle"  
  tasks:
    - debug:
        msg: La variable mavar = {{mavar}}

Pour client1 et client2 : "msg": "La variable mavar = Noelle"

# cat variables.yml # cat autre_var.yml        include_vars
- hosts: all mavar: "Olivier"
  vars:
    mavar: "Noelle"  
  tasks:
    - include_vars: autre_var.yml
    - debug:
        msg: La variable mavar = {{mavar}}

Pour client1 et client2 : "msg": "La variable mavar = Olivier"

# ansible-playbook  -i ../hosts variables.yml  -e mavar="Ansible"
Pour client1 et client2 : "msg": "La variable mavar = Ansible"

© 2018 Copyright Spherius – vers 1.1  68/159



ANSIBLE

Un autre exemple :

# cat  moninventaire.inv
poste[1:2]

[all:vars]
ansible_user=root

[deb_servers]
deb_server[1:2]

[domaine1]
apache1     apache_url=intra.domaine http_port=80 https_port=443
mysql1
centos_6.5  ansible_user=user1
centos_7.1

[linux:children]
domaine1
deb_servers

[linux:vars]
ntp_server=0.fr.pool.ntp.org

[windows]
serveur1
basededonnee1

[windows:vars]
ansible_connection=winrm
ansible_user=Administrator

# ansible all -i inventaire.inv -m debug -a "var=ansible_user" --one-line
poste1 | SUCCESS => {    "ansible_user": "root",     "changed": false}
serveur1 | SUCCESS => {    "ansible_user": "Administrator", "changed": false}
poste2 | SUCCESS => {    "ansible_user": "root",     "changed": false}
apache1 | SUCCESS => {    "ansible_user": "root",     "changed": false}
basededonnee1 | SUCCESS =>{    "ansible_user": "Administrator",  "changed": false}
mysql1 | SUCCESS => {    "ansible_user": "root",     "changed": false}
centos_7.1 | SUCCESS => {    "ansible_user": "root",     "changed": false}
centos_6.5 | SUCCESS => {    "ansible_user": "user1",     "changed": false}
deb_server1 | SUCCESS => {    "ansible_user": "root",     "changed": false}
deb_server2 | SUCCESS => {    "ansible_user": "root",     "changed": false}

# ansible all -i moninventaire.inv -m debug  \
 -a "var=ansible_connection,ansible_user,ntp_server,apache_url" –one-line

machine ansible_connection ansible_user ntp_server apache_url

poste1 'ssh' 'root' Undefined Undefined
poste2 'ssh' 'root' Undefined Undefined
basededonnee1'winrm' 'Administrator' Undefined Undefined
serveur1 'winrm' 'Administrator' Undefined Undefined
mysql1 'ssh' 'root' '0.fr.pool.ntp.org' Undefined
apache1 'ssh' 'root' '0.fr.pool.ntp.org' 'intra.domaine'
centos_6.5 'ssh' 'user1' '0.fr.pool.ntp.org' Undefined
deb_server1 'ssh' 'root' '0.fr.pool.ntp.org' Undefined
centos_7.1 'ssh' 'root' '0.fr.pool.ntp.org' Undefined
deb_server2 'ssh' 'root' '0.fr.pool.ntp.org' Undefined

© 2018 Copyright Spherius – vers 1.1  69/159



ANSIBLE

Les templates 

Un fichier template permet de customiser un fichier en exploitant le résultat des variables Ansible. 
Ainsi, le contenu du fichier transmis au poste client est personnalisé en fonction de spécificités du 
poste client. Le module à utiliser est : template.

Exemple :

Le template :
# cat exemple_template.template 
# Ceci est un fichier de parametrage

user={{ mavar1 }}
repLog=/opt/appli/{{ ansible_distribution }}/log

l'addresse du poste est {{ mavar2 }}
ou encore {{ ansible_all_ipv4_addresses[0] }}

Le playbook :
# cat exemple_template_support.yml 

- hosts: client1
  vars:
    mavar1: Paul
    mavar2: "{{ ansible_all_ipv4_addresses[0] }}"

  tasks:

  - name: copie du template
    template: 
      src: /root/Ansible/templates/exemple_template.template
      dest: /opt/appli/etc/appli.conf

© 2018 Copyright Spherius – vers 1.1  70/159

Les playbooks
Les templates

• Fichier paramétrable Utilise les variables Ansible

• Exemple de fichier Template

# cat exemple_template.template 
# Ceci est un fichier de parametrage

user={{ mavar1 }}
repLog=/opt/appli/{{ ansible_distribution }}/log

l'addresse du poste est {{ mavar2 }}
ou encore {{ ansible_all_ipv4_addresses[0] }}

• Le module template
  - name: copie du template
    template: 
      src: /root/Ansible/templates/exemple_template.template
      dest: /opt/appli/etc/appli.conf



ANSIBLE

Après exécution du playbook, sur le poste CLIENT :
Poste_CLIENT# cat /opt/appli/etc/appli.conf 
# Ceci est un fichier de parametrage

user=Paul
repLog=/opt/appli/CentOS/log

l'addresse du poste est 192.168.0.20
ou encore 192.168.0.20

Un autre exemple : 

Extrait d'un fichier template pour un serveur apache :
# grep '{{' /ansible/template/apache/httpd.conf
Listen {{ http_port }}
ServerAdmin root@{{ domain }}
DocumentRoot "/var/www/{{ domain }}"
<Directory "/var/www/{{ domain }}">

Exemple de playbook utilisant un template :
# cat playbook_exemple_template.yml

- hosts: centos_servers
  # Declaration des variables
  vars:
    http_port: 80
    domain: mondomaine.lan
 
  tasks:

  - name: Installer apache
    yum:
      name: httpd
      state: latest

  # Copier le fichier de conf d'apache en adaptant les variables
  - name: copie du template d'apache
    template:
      src: /ansible/template/apache/httpd.conf
      dest: /etc/httpd/conf/httpd.conf

Résultat sur un poste de centos_servers :
# more /etc/httpd/conf/httpd.conf
...
Listen 80
ServerAdmin root@mondomaine.lan
DocumentRoot "/var/www/mondomaine.lan"
<Directory "/var/www/mondomaine.lan">
...

© 2018 Copyright Spherius – vers 1.1  71/159



ANSIBLE

La boucle for 

La boucle for est utilisée pour les templates. La syntaxe est :
{%  for  element  in  liste_des_elements  %}

  le traitement du for en utilisant {{  element  }}
{%  endfor  %}

Exemple :
Le playbook boucle_for.yml

- hosts: all
  vars:
    liste: [ "Jean", "Marc", "Theo" ]
  tasks:
    - name: "test de la boucle for"
      template:
        src: /root/Playbooks/boucle_for.j2
        dest: /tmp/{{inventory_hostname}}.res
      connection: local

Le template boucle_for.j2
Traitement sur le poste {{inventory_hostname}}
Exemple avec le tableau liste
Une liste de personnes :
  {% for personne in liste %}
    Nom :  {{personne}}
  {% endfor %}
Autre exemple avec le tableau ansible_interfaces :
La liste des interfaces  est :
  {% for element in ansible_interfaces %}
    interface :  {{element}}
  {% endfor %}

© 2018 Copyright Spherius – vers 1.1  72/159

Les playbooks
La boucle for

- hosts: all
  vars:
    liste: [ "Jean", "Marc", "Theo" ]
  tasks:
    - name: "test de la boucle for"
      template:
        src: boucle_for.j2
        dest: /tmp/{{inventory_hostname}}.res
      connection: local

Le template boucle_for.j2
Traitement sur le poste {{inventory_hostname}}
Une liste de personne :
  {% for personne in liste %}
    Nom :  {{personne}}
  {% endfor %}
La liste des interfaces  est :
  {% for element in ansible_interfaces %}
    interface :  {{element}}
  {% endfor %}



ANSIBLE

Exécution :
# ansible-playbook  boucle_for.yml

Résultat :
# cat /tmp/client1.res
Traitement sur le poste client1
Exemple avec le tableau liste
Une liste de personnes :
      Nom :  Jean
      Nom :  Marc
      Nom :  Theo
  Autre exemple avec le tableau ansible_interfaces :
La liste des interfaces  est :
      interface :  lo
      interface :  enp0s3

© 2018 Copyright Spherius – vers 1.1  73/159



ANSIBLE

Le module debug et le mot clef register 

Le module debug permet, entre autres, d'afficher des informations à la suite de l'exécution du 
playbook. Elles portent en particulier sur les caractéristiques d'exécution d'une tâche.

Ce module permet de récupérer la valeur d'une variable : msg

# tail -3 playbook_template.yml
  - debug: msg="le port http est {{ http_port }}"
  - debug: msg="le nom de domaine est {{ domain }}"
...

# ansible-playbook playbook_template.yml | grep -A 3 "debug"

TASK [debug] ****************************************************************************
ok: [CentOS7.1] => {
    "msg": "le port http est 80"
}

TASK [debug]*****************************************************************************
ok: [CentOS7.1] => {
    "msg": "le nom de domaine est mondomaine.lan"
}

Les variables ont bien été remplacé par leur valeur.

© 2018 Copyright Spherius – vers 1.1  74/159

Les playbooks
Le module debug et le mot clef register

- debug: msg="le port http est {{ http_port }}"

- tasks:
    - shell: "echo commande 1; echo commande 2"
      register: resultat
    - debug: 
        var=resultat

        var=resultat.stdout_lines

        var=resultat.stdout_lines[-1]

- debug: msg={{resultat.stdout_lines}}



ANSIBLE

Le mot clef register permet de récupérer l'état d'exécution d'une tâche via une variable.

# cat  debug.yml

- name: "Tests debug"
  hosts: client1
  tasks:
    - name: "Commande 1"
      shell:
        echo commande 1; echo commande 2
      register: res1
    - name: "Commande 2"
      shell:
         echo commande 2 
    - debug: 

        var=res1

Résultat : var=resultat
# ansible-playbook debug.yml 

PLAY [Tests debug] ********************************************************

TASK [Gathering Facts] *****************************************************
ok: [client1]

TASK [Commande 1] *******************************************************
changed: [client1]

TASK [Commande 2] *******************************************************
changed: [client1]

TASK [debug] *************************************************************
ok: [client1] => {
    "res1": {
        "changed": true, 
        "cmd": "echo commande 1; echo commande 2", 
        "delta": "0:00:00.003042", 
        "end": "2018-04-23 16:21:11.897653", 
        "failed": false, 
        "rc": 0, 
        "start": "2018-04-23 16:21:11.894611", 
        "stderr": "", 
        "stderr_lines": [], 
        "stdout": "commande 1\ncommande 2", 
        "stdout_lines": [
            "commande 1", 
            "commande 2"
        ]
    }
}

PLAY RECAP **************************************************************

client1                    : ok=4    changed=2    unreachable=0    failed=0   

© 2018 Copyright Spherius – vers 1.1  75/159



ANSIBLE

Autre possibilité : var=resultat.stdout_lines

- name: "Tests debug"
...

    - debug: 
        var=res1.stdout_lines

TASK [debug] *************************************************************
ok: [client1] => {
    "res1.stdout_lines": [
        "commande 1", 
        "commande 2"
    ]
}

Autre possibilité : var=resultat.stdout_lines[index]

- name: "Tests debug"
...

    - debug: 
        var=res1.stdout_lines[-1]

TASK [debug] *************************************************************
ok: [client1] => {
    "res1.stdout_lines[-1]": "commande 2"
}

Un nouvel exemple pour récupérer le résultat d'une commande :

Avec stdout_lines

# cat register.yml 
- hosts: client1
  tasks:
    - shell: "ls /etc/host*"
      register: resultat
    - debug: msg={{resultat.stdout_lines}}

# ansible-playbook register.yml 
..........
TASK [debug] *******************************************************************
ok: [client1] => {
    "msg": [
        "/etc/host.conf", 
        "/etc/hostname", 
        "/etc/hosts", 
        "/etc/hosts.allow", 
        "/etc/hosts.deny"
    ]
}

© 2018 Copyright Spherius – vers 1.1  76/159



ANSIBLE

# cat register.yml 
- hosts: client1
  tasks:
    - shell: "ls /etc/host*"
      register: resultat
    - debug: msg={{resultat}}

# ansible-playbook register.yml 

PLAY [client1] *****************************************************************

TASK [Gathering Facts] *********************************************************
ok: [client1]

TASK [shell] *******************************************************************
changed: [client1]

TASK [debug] *******************************************************************
ok: [client1] => {
    "msg": {
        "changed": true, 
        "cmd": "ls /etc/host*", 
        "delta": "0:00:00.003741", 
        "end": "2018-04-26 14:28:56.996176", 
        "failed": false, 
        "rc": 0, 
        "start": "2018-04-26 14:28:56.992435", 
        "stderr": "", 
        "stderr_lines": [], 
        "stdout": 
"/etc/host.conf\n/etc/hostname\n/etc/hosts\n/etc/hosts.allow\n/etc/hosts.deny", 
        "stdout_lines": [
            "/etc/host.conf", 
            "/etc/hostname", 
            "/etc/hosts", 
            "/etc/hosts.allow", 
            "/etc/hosts.deny"
        ]
    }
}

PLAY RECAP *********************************************************************
client1                    : ok=3    changed=1    unreachable=0    failed=0   

© 2018 Copyright Spherius – vers 1.1  77/159



ANSIBLE

Les Handlers 

Une tâche associée à un handler est exécutée que si nécessaire.
Un handler est exécuté que s'il est appelé. Son exécution se fera après le traitement de toutes les 
tasks. S'il est appelé par plusieurs tasks, il ne sera exécuté qu'une seule fois.
Quelque soit l'ordre dans lequel des handlers sont appelés, ils ne s'exécuteront que dans l'ordre 
dans lequel ils ont été défini au sein de la section handlers.

Déclaration d'un handler par le mot clef : handlers
Appel d'un handler via le mot clef : notify

Exemple :
# cat handler.yml 
- name: "Test handler"
  hosts: client1
  handlers:
    - name: "Redemarrage d un service"
      service:
        name: crond
        state: restarted
  tasks:
    - name: "Fichier de conf d un service"
      copy:
        src: modele.conf
        dest: /tmp/crond.conf
      register: resultat
      notify: [ "Redemarrage d un service" ]
    - name: 
      shell: 
        ps -ef | grep crond > /tmp/etat
    - debug: 
        var=resultat.changed

© 2018 Copyright Spherius – vers 1.1  78/159

Les playbooks
Les Handlers

- name: "Test handler"
  hosts: client1
  handlers:
    - name: "Redemarrage d un service"
      service:
        name: crond
        state: restarted
  tasks:
    - name: "Fichier de conf d un service"
      copy:
        src: modele.conf
        dest: /tmp/crond.conf
      register: resultat
      notify: [ "Redemarrage d un service" ]



ANSIBLE

# ansible  client1  -m service  -a  'name=crond  state=stopped'

# ansible-playbook  handler.yml 

PLAY [Test handler] **************************************************************

TASK [Gathering Facts] ***********************************************************
ok: [client1]

TASK [Fichier de conf d un service] **********************************************
changed: [client1]

TASK [shell] *********************************************************************
changed: [client1]

TASK [debug] *********************************************************************
ok: [client1] => {
    "resultat.changed": true
}

RUNNING HANDLER [Redemarrage d un service] ***************************************
changed: [client1]

PLAY RECAP ***********************************************************************
client1                    : ok=5    changed=3    unreachable=0    failed=0   

Le fichier /tmp/etat indique bien que le service est démarré. On constate également que 
resultat.changed est à true. L'handler a bien été sollicité juste après la tâche qui l'a appelé via le 
mot clef notify.

# ansible  client1  -m service  -a  'name=crond  state=stopped'

# ansible-playbook  handler.yml 

PLAY [Test handler] **************************************************************

TASK [Gathering Facts] ***********************************************************
ok: [client1]

TASK [Fichier de conf d un service] **********************************************
ok: [client1]

TASK [shell] *********************************************************************
changed: [client1]

TASK [debug] *********************************************************************
ok: [client1] => {
    "resultat.changed": false
}

PLAY RECAP 
**********************************************************************************
client1                    : ok=4    changed=1    unreachable=0    failed=0   

Le fichier /tmp/etat indique que le service n'a pas été démarré. On constate également que 
resultat.changed est à false. Le fichier de conf n'ayant pas été copié, l'handler n'a pas été sollicité.

© 2018 Copyright Spherius – vers 1.1  79/159



ANSIBLE

Les boucles 

Les boucles utilisent les mots clefs loop ou with_items.

Syntaxes :
   - shell: echo "{{item}}" >>/tmp/fic - yum:
      loop:         name : "{{ item }}" 
        - element1         state=present
        - element2      with_items:
        - element3         - nmap
        - element4         - apache
        - element4         - mariadb-server

Avec un tableau :
    equipe: [ {nom: jean, uid: 1001}, {nom: marc, uid: 1002} ]

  - debug:  - debug:
        msg:          msg: 
           "xx {{item.nom}} xx {{item.uid}}"                  "xx {{item.nom}} xx {{item.uid}}" 
     loop:      with_items:
        "{{equipe}}"                      - "{{ equipe }}"

    - command: echo "{{ item }}"
      loop: [ 0, 2, 4, 6, 8, 10 ]

© 2018 Copyright Spherius – vers 1.1  80/159

Les playbooks
Les boucles

  - shell: echo "{{item}}" >>/tmp/fic - yum:
      loop:         name : "{{ item }}" 
        - element1         state=present
        - element2      with_items:
        - element4         - apache
        - element4         - mariadb-server

    equipe: [ {nom: jean, uid: 1001}, {nom: marc, uid: 1002} ]
  - debug:  - debug:
        msg:          msg: 
           "xx {{item.nom}} xx {{item.uid}}"                  "xx {{item.nom}} xx {{item.uid}}" 
     loop:      with_items:
        "{{equipe}}"                      - "{{ equipe }}"

    - command: echo "{{ item }}"
      loop: [ 0, 2, 4, 6, 8, 10 ]



ANSIBLE

Exemple :
# cat  boucle_loop.yml 
- hosts: client1
  vars:
    equipe: [ {nom: jean, uid: 1001}, {nom: marc, uid: 1002} ]
  tasks:
    - shell: "ls /etc/host*"
      register: resultat
    - shell: echo "{{item}}" >>/tmp/boucle.res
      loop:
        "{{resultat.stdout_lines}}"
      connection: local
    - debug:
        msg: 
          "Bonjour {{item.nom}}, ton uid est {{item.uid}}" 
      loop:
        "{{equipe}}"

ou :
# cat boucle.yml 
- hosts: client1
  vars:
    equipe: [ {nom: jean, uid: 1001}, {nom: marc, uid: 1002} ]
  tasks:
    - shell: "ls /etc/host*"
      register: resultat
    - shell: echo "{{item}}" >>/tmp/boucle.res
      with_items:
        - "{{resultat.stdout_lines}}"
      connection: local
    - debug: msg="Bonjour {{item.nom}}, ton uid est {{item.uid}}" 
      with_items:
        - "{{equipe}}"

# ansible-playbook boucle.yml 

PLAY [client1] *****************************************************************

TASK [Gathering Facts] *********************************************************
ok: [client1]

TASK [shell] *******************************************************************
changed: [client1]

TASK [shell] *******************************************************************
changed: [client1] => (item=/etc/host.conf)
changed: [client1] => (item=/etc/hostname)
changed: [client1] => (item=/etc/hosts)
changed: [client1] => (item=/etc/hosts.allow)
changed: [client1] => (item=/etc/hosts.deny)

TASK [debug] *******************************************************************
ok: [client1] => (item=None) => {
    "msg": "Bonjour jean, ton uid est 1001"
}
ok: [client1] => (item=None) => {
    "msg": "Bonjour marc, ton uid est 1002"
}

PLAY RECAP *********************************************************************
client1                    : ok=4    changed=2    unreachable=0    failed=0  

# cat /tmp/boucle.res
/etc/host.conf
/etc/hostname
/etc/hosts
/etc/hosts.allow
/etc/hosts.deny

© 2018 Copyright Spherius – vers 1.1  81/159



ANSIBLE

Autres exemples :

  - name: ajouter les utilisateurs  user1 à user5
    user:
      name: "{{ item }}"
      state: present
      groups: "users"
    with_items:
      - user1
      - user2
      - user3
      - user4
      - user5

TASK [adduser_role : ajouter les utilisateurs  user1 à user5] **********************
changed: [deb_server] => (item=user1)
changed: [deb_server] => (item=user2)
changed: [CentOS7.1] => (item=user1)
changed: [CentOS6.5] => (item=user1)
changed: [CentOS7.1] => (item=user2)
changed: [CentOS6.5] => (item=user2)
changed: [deb_server] => (item=user3)
changed: [CentOS6.5] => (item=user3)
changed: [CentOS7.1] => (item=user3)
...

  - name: ajouter les utilisateurs  user1 à user10 avec des uid spécifiques
    user:
      name: "user{{ item }}"
      state: present
      groups: "users"
      uid: "1000{{ item }}"
    with_items:
      - 1
      - 2
      - 3
      - 4
      - 5

© 2018 Copyright Spherius – vers 1.1  82/159



ANSIBLE

Le mot clef loop_control     :

Le mot clef loop_control permet d'exploiter les paramètres internes aux boucles. 
On peut redéfinir la variable item par une autre variable via loop_var, ou utiliser l'index de 
l'élément en cours de la liste via index_var.

Exemple :

# cat boucle_loopcontrol.yml 
- hosts: client1
  tasks:
    - include_tasks: boucle_inner.yml
      loop:
        - Entree
        - Plat
        - Dessert
      loop_control:
        loop_var: outer_item
        index_var: mon_index
 
# cat boucle_inner.yml 
- debug:
    msg: "Index {{ mon_index }} outer item={{ outer_item }} inner item={{ item }}"
  loop:
    - choix1
    - choix2
    - choix3

# ansible-playbook  boucle_loopcontrol.yml 

PLAY [client1] ******************************************************************

TASK [Gathering Facts] **********************************************************
ok: [client1]

TASK [include_tasks] ************************************************************
included: /root/Playbooks/boucle_inner.yml for client1
included: /root/Playbooks/boucle_inner.yml for client1
included: /root/Playbooks/boucle_inner.yml for client1

TASK [debug] ********************************************************************
ok: [client1] => (item=None) =>    "msg": "Index 0 outer item=Entree inner item=choix1"
ok: [client1] => (item=None) =>    "msg": "Index 0 outer item=Entree inner item=choix2"
ok: [client1] => (item=None) =>    "msg": "Index 0 outer item=Entree inner item=choix3"

TASK [debug] ********************************************************************
ok: [client1] => (item=None) =>    "msg": "Index 1 outer item=Plat inner item=choix1"
ok: [client1] => (item=None) =>    "msg": "Index 1 outer item=Plat inner item=choix2"
ok: [client1] => (item=None) =>    "msg": "Index 1 outer item=Plat inner item=choix3"

TASK [debug] ********************************************************************
ok: [client1] => (item=None) =>    "msg": "Index 2 outer item=Dessert inner item=choix1"
ok: [client1] => (item=None) =>    "msg": "Index 2 outer item=Dessert inner item=choix2"
ok: [client1] => (item=None) =>    "msg": "Index 2 outer item=Dessert inner item=choix3"

PLAY RECAP **********************************************************************
client1                    : ok=7    changed=0    unreachable=0    failed=0   

© 2018 Copyright Spherius – vers 1.1  83/159



ANSIBLE

La condition when 

La condition when permet l’exécution de la tâche si le test associé est vrai.
Il est donc possible d'activer une tâche à partir d'une valeur d'une variable.

Syntaxe :
when:  resultat.changed resultat.changed est un booléen
when:  resultat.changed  ==  True idem que précédemment
when:  resultat.changed  ==  False
when:  resultat.dest  ==  "/tmp/crond.conf"
when:  resultat.dest  !=  "/tmp/crond.conf"

Exemple :
# cat when.yml 
- name: "Test when"
  hosts: client1
  tasks:
    - name: "Fichier de conf d un service"
      copy:
        src: modele.conf
        dest: /tmp/crond.conf
      register: resultat
    - name: "Redemarrage d un service"
      service:
        name: crond
        state: restarted
      when: resultat.changed
    - debug: 
        var=resultat.changed,resultat.state

© 2018 Copyright Spherius – vers 1.1  84/159

Les playbooks
La condition when

when:  resultat.changed resultat.changed est un booléen
when:  resultat.changed  ==  True idem que précédemment
when:  resultat.changed  ==  False
when:  resultat.dest  ==  "/tmp/crond.conf"
when:  resultat.dest  !=  "/tmp/crond.conf"

    - name: "Fichier de conf d un service"
      copy:
        src: modele.conf
        dest: /tmp/crond.conf
      register: resultat
    - name: "Redemarrage d un service"
      service:
        name: crond
        state: restarted
      when: resultat.changed



ANSIBLE

A la première exécution :
La tâche « Redemarrage d'un service » s'exécute car la copie s'est réalisée.

# ansible-playbook when.yml 

PLAY [Test when] **********************************************************************

TASK [Gathering Facts] ****************************************************************
ok: [client1]

TASK [Fichier de conf d un service] ***************************************************
changed: [client1]

TASK [Redemarrage d un service] *******************************************************
changed: [client1]

TASK [debug] **************************************************************************
ok: [client1] => {
    "resultat.changed,resultat.state": "(True, u'file')"
}

PLAY RECAP ****************************************************************************
client1                    : ok=4    changed=2    unreachable=0    failed=0   

A la deuxième exécution :
La tâche « Redemarrage d'un service » ne s'exécute pas car la copie ne s'est pas faite.

# ansible-playbook when.yml 

PLAY [Test when] **********************************************************************

TASK [Gathering Facts] ****************************************************************
ok: [client1]

TASK [Fichier de conf d un service] ***************************************************
ok: [client1]

TASK [Redemarrage d un service] *******************************************************
skipping: [client1]

TASK [debug] **************************************************************************
ok: [client1] => {
    "resultat.changed,resultat.state": "(False, u'file')"
}

PLAY RECAP ****************************************************************************
client1                    : ok=3    changed=0    unreachable=0    failed=0   

© 2018 Copyright Spherius – vers 1.1  85/159



ANSIBLE

D'autres possibilités de tests :

  - command: echo "{{ item }}"
      loop: [ 0, 2, 4, 6, 8, 10 ] ou avec with_items
      when: item > 5

TASK [command] ***************************************************************
skipping: [client1] => (item=0) 
skipping: [client1] => (item=2) 
skipping: [client1] => (item=4) 
changed: [client1] => (item=6)
changed: [client1] => (item=8)
changed: [client1] => (item=10)

# cat jinjatest.yml 
- hosts: localhost
  vars:
    url: "http://example.com/users/foo/resources/bar"
    liste: [ "/etc", "/etc/passwd", "/xxx" ]

  tasks:
    - debug:
        msg: "matched pattern 1"
      when: url is match("http://example.com/users/.*/resources/.*")
    - debug:
        msg: "matched pattern 2"
      when: url is search("/users/.*/resources/.*")
    - debug:
        msg: "matched pattern 3"
      when: url is search("/users/")

# accept directory, file, link, exists, same_file(fichier2), mount
    - debug:
        msg: "{{item}} est repertoire"
      when: item is directory
      loop: "{{liste}}"
    - debug:
        msg: "{{item}} existe"
      when: item is exists
      loop: "{{liste}}"

TASK [debug] ****************************************************************************
ok: [localhost] =>     "msg": "matched pattern 1"

TASK [debug] ****************************************************************************
ok: [localhost] =>     "msg": "matched pattern 2"

TASK [debug] ****************************************************************************
ok: [localhost] =>     "msg": "matched pattern 3"

TASK [debug] ****************************************************************************
ok: [localhost] => (item=None) =>     "msg": "/etc est repertoire"
skipping: [localhost] => (item=None) 
skipping: [localhost] => (item=None) 

TASK [debug] ****************************************************************************
ok: [localhost] => (item=None) =>     "msg": "/etc existe"
ok: [localhost] => (item=None) =>     "msg": "/etc/passwd existe"
skipping: [localhost] => (item=None) 

© 2018 Copyright Spherius – vers 1.1  86/159



ANSIBLE

# accept <, lt, <=, le, >, gt, >=, ge, ==, =, eq, !=, <>, ne

    - debug:
        msg: "La version est surperieur a 6.5"
      when: "{{ ansible_distribution_version is version('6.5', '>=') }}"

TASK [debug] ****************************************************************************
 
ok: [localhost] => {
    "msg": "La version est surperieur a 6.5"
}

# accept failed, changed, succeeded, success, skipped
# ignore_errors: True  permet d eviter l arret d execution du playbook en cas d echec

    - shell: /usr/bin/foo
      register: result
      ignore_errors: True
 
    - debug:
        msg: "Action si c est un echec"
      when: result is failed

TASK [shell] ****************************************************************************
fatal: [localhost]: FAILED! => {"changed": true, "cmd": "/usr/bin/foo", "delta": 
"0:00:00.003870", "end": "2018-04-27 14:31:28.285020", "msg": "non-zero return code", 
"rc": 127, "start": "2018-04-27 14:31:28.281150", "stderr": "/bin/sh: /usr/bin/foo: Aucun
fichier ou dossier de ce type", "stderr_lines": ["/bin/sh: /usr/bin/foo: Aucun fichier ou
dossier de ce type"], "stdout": "", "stdout_lines": []}
...ignoring

TASK [debug] ****************************************************************************
ok: [localhost] => {
    "msg": "Action si c est un echec"
}

© 2018 Copyright Spherius – vers 1.1  87/159



ANSIBLE

Les filtres 

Ci-dessous quelques filtres :
|lower   pour convertir en minuscules |upper    pour convertir en majuscules
|int   pour convertir en entier |float       pour convertir en nombre flottant
|bool   pour convertir en booléen

Remarque : toute valeur passée par la ligne de commande est une chaîne de caractères.

# ansible-playbook  filtre.yml -e mavar=4  -e monbool=true

# cat filtre.yml 
- name: "Test filtre"
  hosts: client1
  tasks:
    - debug:
        msg: Machine CentOS
      when: ansible_distribution == "CentOS" Test vrai
    - debug:
        msg: Machine CentOS avec lower donne centos
      when: ansible_distribution|lower == "centos" Test vrai
    - debug:
        msg: Machine CentOS avec upper donne CENTOS
      when: ansible_distribution|upper == "CENTOS" Test vrai
    - debug:
        msg: La variable est une chaîne de caractères "04" avec int on obtient un entier
      when: ansible_date_time.month|int == 4 Test vrai
    - debug: La variable est une chaîne de caractères "04" n est pas convertie
        msg:  ansible_date_time.month test nombre sans int
      when: ansible_date_time.month == 4 Test FAUX

© 2018 Copyright Spherius – vers 1.1  88/159

Les playbooks
Les filtres

|lower   pour convertir en minuscules |upper    pour convertir en majuscules
|int   pour convertir en entier |float       pour convertir en nombre flottant
|bool   pour convertir en booléen

variable | default(valeur) si variable n'est pas définie, elle prend la valeur de 'valeur'
xxx | random pour une valeur aléatoire (60|random : entre 0 et 60)

plugin  ipaddr

plugin urlsplit



ANSIBLE

    - debug:
        msg: passage d un nombre en argument test nombre avec int
      when: mavar|int == 4 Test vrai
    - debug:
        msg:  passage d un nombre en argument test nombre sans int
      when: mavar == 4 Test FAUX
    - debug:
        msg: passage d un booleen en argument test nombre avec bool
      when: monbool|bool == true Test vrai
    - debug:
        msg:  passage d un booleen en argument test nombre sans bool
      when: monbool == true Test FAUX

D'autres filtres :
variable | default(valeur) si variable n'est pas définie, elle prend la valeur de 'valeur'
xxx | random pour une valeur aléatoire (60|random : entre 0 et 60)

Exemple :
  vars:
    liste:
        - path: /tmp/fichier1
        - path: /tmp/FICHIER2
        - path: /tmp/Fichier3
          mode: "0444"
  tasks:
    - shell: "echo path={{item.path}} et mode={{item.mode|default('5')}} >> jinja.res"
      loop: "{{liste}}"
    - shell: "echo Minuscule={{item.path|lower}} et Majuscule={{item.path|upper}} >> jinja.res"
      loop: "{{liste}}"
    - shell: "echo Une valeur aleatoire entre 0 et 60 = {{60|random}} >>jinja.res"

Résultat :
  path=/tmp/fichier1 et mode=5
  path=/tmp/FICHIER2 et mode=5
  path=/tmp/Fichier3 et mode=0444
  Minuscule=/tmp/fichier1 et Majuscule=/TMP/FICHIER1
  Minuscule=/tmp/fichier2 et Majuscule=/TMP/FICHIER2
  Minuscule=/tmp/fichier3 et Majuscule=/TMP/FICHIER3
  Une valeur aleatoire entre 0 et 60 = 22

Le plugin ipaddr :

Il permet de manipuler des adresses IP.

- shell: "echo Filtre ipaddr pour 192.168.10.9/24 = {{'192.168.10.9/24'|ipaddr('address')}} >>res"
- shell: "echo Filtre ipaddr pour 300.168.10.9/24 = {{'300.168.10.9/24'|ipaddr('address')}} >>res"

Filtre ipaddr pour 192.168.10.9/24 = 192.168.10.9
Filtre ipaddr pour 300.168.10.9/24 = False

© 2018 Copyright Spherius – vers 1.1  89/159



ANSIBLE

Le plugin urlsplit :

Il permet d'exploiter une url.

    - shell: "echo http://www.serveur.fr:4500/chemin/page.htm le serveur =
 {{'http://www.serveur.fr:4500/chemin/page.htm'|urlsplit('hostname')}} >>jinja.res"
    - shell: "echo http://www.serveur.fr:4500/chemin/page.htm le port =
 {{'http://www.serveur.fr:4500/chemin/page.htm'|urlsplit('port')}} >>jinja.res"
    - shell: "echo http://www.serveur.fr:4500/chemin/page.htm le protocole =
 {{'http://www.serveur.fr:4500/chemin/page.htm'|urlsplit('scheme')}} >>jinja.res"

http://www.serveur.fr:4500/chemin/page.htm le serveur = www.serveur.fr
http://www.serveur.fr:4500/chemin/page.htm le port = 4500
http://www.serveur.fr:4500/chemin/page.htm le protocole = http

© 2018 Copyright Spherius – vers 1.1  90/159



ANSIBLE

Les opérations arithmétiques 

# cat jinjacalcul.yml 
- hosts: localhost
  tasks:
    - debug: msg="Mem {{ansible_memtotal_mb}} mb ou {{ansible_memtotal_mb * 1024}} kb"
    - debug: msg="Mem {{ansible_memtotal_mb / 1024}} gb"
    - debug: msg="100/3 = {{100/3}}, partie entiere {{ (100/3)|int }}"

# ansible-playbook  jinjacalcul.yml 

PLAY [localhost] ************************************************************************

TASK [Gathering Facts] ******************************************************************
ok: [localhost]

TASK [debug] ****************************************************************************
ok: [localhost] =>     "msg": "Mem 1839 mb ou 1883136 kb"

TASK [debug] ****************************************************************************
ok: [localhost] =>     "msg": "Mem 1.7958984375 gb"

TASK [debug] ****************************************************************************
ok: [localhost] =>     "msg": "100/3 = 33.3333333333, partie entiere 33"

PLAY RECAP ******************************************************************************
localhost                  : ok=4    changed=0    unreachable=0    failed=0   

Il est possible de réaliser des opérations plus complexes :
{{  mavar  |  pow(2)  }} mavar à la puissance 2.
et bien d'autres présentées sur le site de documentation Ansible.

© 2018 Copyright Spherius – vers 1.1  91/159

Les playbooks
Les opérations arithmétiques

- hosts: localhost
  tasks:
    - debug: msg="Memoire {{ansible_memtotal_mb * 1024}} kb"

    - debug: msg="Memoire {{ansible_memtotal_mb / 1024}} gb"

    - debug: msg="100/3 = {{100/3}}, partie entiere {{ (100/3)|int }}"

{{  mavar  |  pow(2)  }}        . . .



ANSIBLE

© 2018 Copyright Spherius – vers 1.1  92/159

Notes



ANSIBLE

Les rôles

© 2018 Copyright Spherius – vers 1.1  93/159

Dans ce chapitre nous allons étudier la création, la structure et le
fonctionnement des rôles.



ANSIBLE

© 2018 Copyright Spherius – vers 1.1  94/159

Les rôles

• Présentation

• Structure et exécution d'un rôle

• Les include et les import 

• Un exemple de rôle

• Un exemple de rôle avec des inclusions



ANSIBLE

Présentation 

Pour une utilisation d'Ansible en production ou en développement, on obtient rapidement un 
ensemble conséquent de playbooks, de fichiers d'inventaires, de templates, etc. 
Les rôles vont permettre :

- d'organiser l'ensemble de ces fichiers au sein d'une arborescence cohérente et 
« normalisée » (identique pour tous les rôles),
- de rendre les codes plus facilement ré-exploitable,
- de déployer simplement des rôles existants d'un site de partage.

Les actions à effectuer sur un serveur sont regroupés au sein d'un playbook.

Les rôles permettent de simplifier l'administration et d'automatiser les directives include au sein 
des fichiers de configuration. Il n'est plus nécessaire de préciser le chemin des fichiers de variables,
ceux ci étant stockés dans des emplacements pré-définis.

Les rôles sont un moyen de charger automatiquement les tâches, les variables et les handlers.

Le playbook fera appel aux rôles qui auront besoin d’être exécutés. Depuis le répertoire tasks du 
rôle, tous les chemins sont relatifs. 

Une plate-forme dédiée, Ansible Galaxy, permet de télécharger des rôles. Il n'est pas nécessaire de 
recréer ce qui a déjà été fait. 

© 2018 Copyright Spherius – vers 1.1  95/159

Les rôles
Présentation

• Organisation / arborescence

Simplification de l'administration

• Codes ré-exploitable

• Site de partage / Ansible Galaxy



ANSIBLE

Structure et exécution d'un rôle 

Il est possible de créer un rôle vide contenant la structure arborescente.

# cd  /etc/ansible/roles
# ansible-galaxy  init  common
- common was created successfully

La structure créée est la suivante :
# tree  /etc/ansible/
/etc/ansible/
├── ansible.cfg
├── hosts
└── roles
    └── common
        ├── defaults
        │   └── main.yml
        ├── files
        ├── handlers
        │   └── main.yml
        ├── meta
        │   └── main.yml
        ├── README.md
        ├── tasks
        │   └── main.yml
        ├── templates
        ├── tests
        │   ├── inventory
        │   └── test.yml
        └── vars
            └── main.yml

© 2018 Copyright Spherius – vers 1.1  96/159

Les rôles
Structure et exécution d'un rôle

Nom Description

tasks Contient la liste des tâches utilisées par le rôle

handlers Contient la liste des handlers utilisés par le rôle

defaults Contient les variables par défaut du rôle

vars Contient les autres variables du rôle. Elles prennent le dessus sur celles de defaults. En 
général, ce sont les variables modifiables par l'utilisateur.

files Contient les fichiers utilisés via ce rôle (pour copy, ...)

templates Contient les templates du rôle

meta Contient les méta-données du rôle

# more playbook.yml
  - hosts: all
    roles:
      - exemple



ANSIBLE

Pour supprimer un rôle :
# ansible-galaxy  remove  common
- successfully removed common

Un rôle est divisé en « sections ». Chaque section ayant une fonction précise.
Nom Description

tasks Contient la liste des tâches utilisées par le rôle

handlers Contient la liste des handlers utilisés par le rôle

defaults Contient les variables par défaut du rôle

vars Contient les autres variables du rôle

files Contient les fichiers utilisés via ce rôle (pour copy, ...)

templates Contient les templates du rôle

meta Contient les méta-données du rôle

L'exécution d'un rôle

L’exécution d'un playbook sollicitera les rôles qui sont définis via le mot clef roles. 
# more playbook.yml
  - hosts: all
    roles:
      - mon_role1
      - mon_role2

Si plusieurs rôles sont définis, les règles suivantes s'appliquent :

• si roles/X/tasks/main.yml existe, les tâches listées dedans sont ajoutées au jeu de données.
• si roles/X/handlers/main.yml existe, les handlers listés dedans seront ajoutés au jeu.
• si roles/X/vars/main.yml existe, les variables listées dedans seront ajoutées au jeu.
• si roles/X/defaults/main.yml existe, les variables listées dedans seront ajoutés au jeu.
• si roles/X/meta/main.yml existe, chaque dépendance de rôle listée dedans est ajoutée.
• Chaque fichier, template ou tâche incluse dans le rôle, peut référencer des fichiers dans 

roles/X/{files,templates,tasks} sans avoir à les parcourir de manière relative ou absolue.

L'ordre d’exécution du playbook est le suivant:

• Toutes les pre_tasks définies dans le play
• Tous les handlers déclenchés seront exécutés
• Chaque rôle listé dans « roles : » sera exécuté à son tour. Toutes les dépendances de rôles 

définies dans le fichier meta/main.yml  seront exécutées en premier sous réserve de 
conditions et de filtres.

• Toute tasks définie dans le play
• Tous les handlers déclenchés seront exécutés
• Toutes les post_tasks définies dans le play
• Tous les handlers déclenchés seront exécutés

© 2018 Copyright Spherius – vers 1.1  97/159



ANSIBLE

Les include et les import 

On a la possibilité d'intégrer les tasks d'un autre fichier au sein d'un playbook.
Le mot clef include est obsolète, on utilise include_tasks (comportement dynamique) ou 
import_tasks (comportement statique).

Syntaxe : include_tasks:  autre_fichier_de_taches.yml
include_tasks:  autre_fichier_de_taches.yml   var1=val1   var2=val2
import_tasks:  autre_fichier_de_taches.yml

Ansible pré-traite toutes les importations statiques au cours du temps d'analyse du Playbook.
Les inclusions dynamiques sont traitées pendant l'exécution au moment où cette tâche est 
rencontrée. Ainsi, on utilise include_tasks lorsqu'il  y a des mots-clefs, boucles et conditions.

Le principal avantage de l'utilisation des instructions include est la mise en boucle. Lorsqu'une 
boucle est utilisée avec un include, les tâches ou le rôle inclus seront exécutés une fois pour 
chaque élément de la boucle.

Il existe également include_vars pour intégrer un fichier de variables au sein d'une tâche.

© 2018 Copyright Spherius – vers 1.1  98/159

Les rôles
Les include et les import

include_tasks:    fichier_de_taches.yml
include_tasks:    fichier_de_taches.yml     var1=val1    var2=val2

import_tasks:    fichier_de_taches.yml

inclure_vars :   fichier_variables.yml

  tasks:
    - include_vars: variables/variables.yml
    - include_tasks: tasks/deploiement_apache.yml 
    - include_tasks: tasks/deploiement_baseDeDonnees.yml
    - include_tasks: tasks/creation_du_site.yml



ANSIBLE

Exemple 1 pour include_tasks :

# cat  include1.yml
- hosts: all
  tasks:
    - debug:
        msg: "Traitement UN machine {{ inventory_hostname }}"
    - include_tasks: include_autre.yml
    - debug:
        msg: "Traitement DEUX machine {{ inventory_hostname }}"

# cat  include_autre.yml
- debug:
    msg: "tache autre"

# ansible-playbook include.yml

PLAY [all] 

TASK [Gathering Facts] 
ok: [client2]
ok: [client1]

TASK [debug] 
ok: [client2] =>     "msg": "Traitement UN machine client2"
ok: [client1] =>     "msg": "Traitement UN machine client1"

TASK [include_tasks] 
included: /root/Playbooks/include_autre.yml for client2, client1

TASK [debug] 
ok: [client2] =>     "msg": "tache autre"
ok: [client1] =>     "msg": "tache autre"

TASK [debug] 
ok: [client2] =>     "msg": "Traitement DEUX machine client2"
ok: [client1] =>     "msg": "Traitement DEUX machine client1"

PLAY RECAP 
client1                    : ok=5    changed=0    unreachable=0    failed=0   
client2                    : ok=5    changed=0    unreachable=0    failed=0   

© 2018 Copyright Spherius – vers 1.1  99/159



ANSIBLE

Exemple 2 pour include_tasks : avec un test

# cat  include2.yml # cat  include_autre.yml
- hosts: all - debug:
  tasks:     msg: "tache autre"
    - debug:
        msg: tache1
    - include_tasks: "{{ hostvar }}.yml"
      when: hostvar is defined

# ansible-playbook   include2.yml   -e hostvar="include_autre"

PLAY [all] 

TASK [Gathering Facts] 
ok: [client1]
ok: [client2]

TASK [debug] 
ok: [client1] =>     "msg": "tache1"
ok: [client2] =>     "msg": "tache1"

TASK [include_tasks] 
included: /root/Playbooks/include_autre.yml for client1, client2

TASK [debug] 
ok: [client1] =>     "msg": "tache autre"
ok: [client2] =>     "msg": "tache autre"

PLAY RECAP 
client1                    : ok=4    changed=0    unreachable=0    failed=0
client2                    : ok=4    changed=0    unreachable=0    failed=0

# ansible-playbook  include2.yml

PLAY [all] 

TASK [Gathering Facts] 
ok: [client1]
ok: [client2]

TASK [debug] 
ok: [client2] =>     "msg": "tache1"
ok: [client1] =>     "msg": "tache1"

TASK [include_tasks] 
skipping: [client2]
skipping: [client1]

PLAY RECAP 
client1                    : ok=2    changed=0    unreachable=0    failed=0   
client2                    : ok=2    changed=0    unreachable=0    failed=0   

Autre syntaxe :

# cat  include3.yml # cat  include_autre.yml
- hosts: all - debug:
  tasks:     msg: "tache avec {{mavar}}"
    - debug: 
        msg: "tache1 System {{ inventory_hostname }} debut"
    - include_tasks: include_autre.yml mavar="paul"

© 2018 Copyright Spherius – vers 1.1  100/159



ANSIBLE

Exemple 1 pour import_tasks :

on remplace include_tasks par import_tasks

# cat  import1.yml
- hosts: all
  tasks:
    - debug:
        msg: "Traitement UN machine {{ inventory_hostname }}"
    - import_tasks: include_autre.yml
    - debug:
        msg: "Traitement DEUX machine {{ inventory_hostname }}"

# cat  include_autre.yml
- debug:
    msg: "tache autre"

# ansible-playbook  import1.yml

PLAY [all] 

TASK [Gathering Facts] 
ok: [client1]
ok: [client2]

TASK [debug] 
ok: [client2] =>     "msg": "Traitement UN machine client2"
ok: [client1] =>     "msg": "Traitement UN machine client1"

TASK [debug] 
ok: [client2] =>     "msg": "tache autre"
ok: [client1] =>     "msg": "tache autre"

TASK [debug] 
ok: [client1] =>     "msg": "Traitement DEUX machine client1"
ok: [client2] =>     "msg": "Traitement DEUX machine client2"

PLAY RECAP 
client1                    : ok=4    changed=0    unreachable=0    failed=0   
client2                    : ok=4    changed=0    unreachable=0    failed=0   

© 2018 Copyright Spherius – vers 1.1  101/159



ANSIBLE

Exemple 2 avec import_tasks :

# cat  import2.yml # cat  include_autre.yml
- hosts: all - debug:
  tasks:     msg: "tache autre"
    - debug:
        msg: tache1
    - import_tasks: "{{ hostvar }}.yml"
      when: hostvar is defined

# ansible-playbook   import2.yml   -e hostvar="include_autre"

PLAY [all] 

TASK [Gathering Facts] 
ok: [client2]
ok: [client1]

TASK [debug] 
ok: [client1] =>     "msg": "tache1"
ok: [client2] =>     "msg": "tache1"

TASK [debug] 
ok: [client2] =>     "msg": "tache autre"
ok: [client1] =>     "msg": "tache autre"

PLAY RECAP 
client1                    : ok=3    changed=0    unreachable=0    failed=0   
client2                    : ok=3    changed=0    unreachable=0    failed=0   

Echec avec import alors qu'avec include cela a fonctionné :

# ansible-playbook import2.yml
ERROR! Error when evaluating variable in include name: {{ hostvar }}.yml.

When using static includes, ensure that any variables used in their names are defined in 
vars/vars_files or extra-vars passed in from the command line. Static includes cannot use
variables from inventory sources like group or host vars.

© 2018 Copyright Spherius – vers 1.1  102/159



ANSIBLE

Exemple avec include_tasks et import_tasks :

Un répertoire variables avec variables.yml
# cat  variables/variables.yml 
equipe: [ {nom: jean, uid: 1001}, {nom: marc, uid: 1002} ]
ip_addr: "{{ ansible_all_ipv4_addresses[0] }}"
appli_path: "{{ ip_addr }}/22"

un répertoire tasks avec les 3 fichiers pour des tasks :
# cat  tasks/boucle.yml
    - shell: "ls /etc/host*"
      register: resultat
    - shell: echo "{{item}}" >>/tmp/boucle.res
      with_items:
        - "{{resultat.stdout_lines}}"
      connection: local
    - debug:
        msg: 
          "Bonjour {{item.nom}}, ton uid est {{item.uid}}" 
      with_items:
        - "{{equipe}}"

# cat  tasks/register.yml
    - shell: "ls /etc/host*"
      register: resultat
    - debug: msg={{resultat.stdout_lines}}

# cat  tasks/variables_base.yml
    - debug:
        msg: La variable appli_path = {{ appli_path }}

Le playbook :
# cat include_exemple1.yml 
- hosts: client1,client2
  vars_prompt: # un prompt avec une saisie masquée
    - name: "motdepasse_admin"
      prompt: "Saisir le mot de passe pour la base de donnees"
  tasks:
    - include_vars: variables/variables.yml
    - include_tasks: tasks/boucle.yml 
    - include_tasks: tasks/register.yml
    - include_tasks: tasks/variables_base.yml
    - name: "une autre tasks"
      debug: msg="une autre operation avec le mot de passe {{motdepasse_admin}}"

        

# ansible-playbook include_exemple1.yml 
Saisir le mot de passe pour la base de donnees: 

PLAY [client1,client2] ***********************************************************

TASK [Gathering Facts] ***********************************************************
ok: [client2]
ok: [client1]

TASK [include_vars] **************************************************************
ok: [client2]
ok: [client1]

TASK [include_tasks] *************************************************************
included: /root/Playbooks/tasks/boucle.yml for client1, client2

© 2018 Copyright Spherius – vers 1.1  103/159



ANSIBLE

TASK [shell] ********************************************************************
changed: [client1]
changed: [client2]

TASK [shell] ********************************************************************
changed: [client1] => (item=/etc/host.conf)
changed: [client2] => (item=/etc/host.conf)
changed: [client1] => (item=/etc/hostname)
changed: [client2] => (item=/etc/hostname)
changed: [client1] => (item=/etc/hosts)
changed: [client2] => (item=/etc/hosts)
changed: [client2] => (item=/etc/hosts.allow)
changed: [client1] => (item=/etc/hosts.allow)
changed: [client1] => (item=/etc/hosts.deny)
changed: [client2] => (item=/etc/hosts.deny)

TASK [debug] *******************************************************************
ok: [client1] => (item=None) =>     "msg": "Bonjour jean, ton uid est 1001"
ok: [client1] => (item=None) =>     "msg": "Bonjour marc, ton uid est 1002"
ok: [client2] => (item=None) =>     "msg": "Bonjour jean, ton uid est 1001"
ok: [client2] => (item=None) =>     "msg": "Bonjour marc, ton uid est 1002"

TASK [include_tasks] ***********************************************************
included: /root/Playbooks/tasks/register.yml for client1, client2

TASK [shell] *******************************************************************
changed: [client1]
changed: [client2]

TASK [debug] *******************************************************************
ok: [client2] => {
    "msg": [
        "/etc/host.conf", 
        "/etc/hostname", 
        "/etc/hosts", 
        "/etc/hosts.allow", 
        "/etc/hosts.deny"
    ]
}
ok: [client1] => {
    "msg": [
        "/etc/host.conf", 
        "/etc/hostname", 
        "/etc/hosts", 
        "/etc/hosts.allow", 
        "/etc/hosts.deny"
    ]
}

TASK [include_tasks] ***********************************************************
included: /root/Playbooks/tasks/variables_base.yml for client1, client2

TASK [debug] *******************************************************************
ok: [client1] =>     "msg": "La variable appli_path = 192.168.1.8/22"
ok: [client2] =>     "msg": "La variable appli_path = 192.168.1.9/22"

TASK [une autre tasks] *********************************************************
ok: [client1] =>     "msg": "une autre operation avec le mot de passe PASSWORD"
ok: [client2] =>     "msg": "une autre operation avec le mot de passe PASSWORD"

PLAY RECAP ********************************************************************
client1                    : ok=12   changed=3    unreachable=0    failed=0   
client2                    : ok=12   changed=3    unreachable=0    failed=0 

© 2018 Copyright Spherius – vers 1.1  104/159



ANSIBLE

Un exemple de rôle 

Voici un exemple simple de rôle.

# tree /etc/ansible/
/etc/ansible/
├── play1.yml
└── roles
    └── exemple
        ├── files
        │   └── httpd.conf
        ├── tasks
        │   └── main.yml
        └── vars
            └── main.yml

5 directories, 7 files

Le playbook play1.yml indique sur quels hôtes agir et quels rôles utiliser.

# more play1.yml
---
  - hosts: centos_servers
    roles:
      - exemple

Le répertoire roles contient la structure arborescente du rôle. Le sous répertoire tasks contient les 
tâches à effectuer.

© 2018 Copyright Spherius – vers 1.1  105/159

Les rôles
Un exemple de rôle

# tree /etc/ansible/
/etc/ansible/
├── ansible.cfg
├── hosts
├── play1.yml
└── roles
    └── exemple
        ├── files
        │   └── httpd.conf
        ├── tasks
        │   └── main.yml
        └── vars
            └── main.yml



ANSIBLE

Les tâches du rôle :

# more roles/exemple/tasks/main.yml
---
  - name: Installer les outils de developpement
    yum:
      name: "@Development Tools"
      state: present

  - name: Installer apache
    yum:
      name: httpd
      state: latest

  - name: Copier le fichier de configuration d'apache
    copy:
      src: httpd.conf
      dest: /etc/httpd/conf/httpd.conf

  - name: Redemarrer le service apache
    service:
      name: httpd
      state: restarted

A noter que le fichiers contient la liste des tâches sans le mot clef « - tasks : ».
Sur le même principe, si nous avions eu des handlers, le fichier handlers/main.yml contiendrait la 
définition de chaque handler sans le mot clef « handlers : ».

La source du fichier à copier (httpd.conf) est un chemin relatif par rapport au rôle. Par défaut 
Ansible va chercher le fichier à copier dans le répertoire files du rôle.

Les variables du rôle :

# more roles/exemple/vars/main.yml
---
  vars:
    http_port: 80
    domain: mydomain.lan

L'exécution :
# ansible-playbooh  play1.yml

© 2018 Copyright Spherius – vers 1.1  106/159



ANSIBLE

Un exemple de rôle avec des inclusions 

Le playbook :
# more play2.yml
---
  - hosts: CentOS7.1,deb_server
    roles:
      - exemple2

L'arborescence du rôle :
# tree roles/exemple2
roles/exemple2
├── files
│   ├── apache2.conf
│   └── httpd.conf
├── tasks
│   ├── debian.yml
│   ├── main.yml
│   └── redhat.yml
└── vars
    └── main.yml

3 directories, 6 files

Le fichier tasks/main.yml fait référence aux fichiers debian.yml et redhat.yml avec une condition en
fonction du type de l'OS.

© 2018 Copyright Spherius – vers 1.1  107/159

Les rôles
Un exemple de rôle avec des inclusions

# tree /etc/ansible/roles/exemple2/
/etc/ansible/roles/exemple2/
├── files
│   ├── apache2.conf
│   └── httpd.conf
├── tasks
│   ├── debian.yml
│   ├── main.yml
│   └── redhat.yml
└── vars
    └── main.yml



ANSIBLE

Le rôle :

# more roles/exemple2/main.yml
---
  - name: Installer et demarrer apache sur les serveurs Redhat
    include_tasks: redhat.yml
    when: ansible_os_family == 'RedHat'
  - name: Installer et demarrer apache sur les serveurs Debian
    include_tasks: debian.yml
    when: ansible_os_family == 'Debian'

L'instruction when permet d'effectuer un appel conditionnel à un autre fichier indiqué par la 
directive include_tasks.

Les fichiers redhat.yml et debian.yml contiennent les mêmes instructions adaptés à l'OS :

# more redhat.yml
---
  - name: Installer les outils de developpement
    yum:
      name: "@Development Tools"
      state: present

  - name: Installer apache
    yum:
      name: httpd
      state: latest

  - name: Copier le fichier de configuration d'apache
    copy:
      src: httpd.conf
      dest: /etc/httpd/conf/httpd.conf

  - name: Redemarrer le service apache
    service:
      name: httpd
      state: restarted

# more debian.yml
---
  - name: Installer les outils de developpement
    apt:
      name: build-essential
      state: present
      update_cache: yes

  - name: Installer apache
    apt:
      name: apache2
      state: latest
      update_cache: yes

  - name: Copier le fichier de configuration d'apache
    copy:
      src: apache2.conf
      dest: /etc/apache2/apache2.conf

  - name: Redemarrer le service apache
    service:
      name: apache2
      state: restarted

© 2018 Copyright Spherius – vers 1.1  108/159



ANSIBLE

L’exécution du playbook donne le résultat suivant :

# ansible-playbook  play2.yml

PLAY [CentOS7.1,deb_server] ***********************************************************

TASK [Gathering Facts] ****************************************************************
ok: [deb_server]
ok: [CentOS7.1]

TASK [exemple2 : Installer et demarrer apache sur les serveurs Redhat] ****************
skipping: [deb_server]
included: /etc/ansible/roles/exemple2/tasks/redhat.yml for CentOS7.1

TASK [exemple2 : Installer les outils de developpement] *******************************
ok: [CentOS7.1]

TASK [exemple2 : Installer apache] ****************************************************
ok: [CentOS7.1]

TASK [exemple2 : Copier le fichier de configuration d'apache] *************************
ok: [CentOS7.1]

TASK [exemple2 : Redemarrer le service apache] ****************************************
changed: [CentOS7.1]

TASK [exemple2 : Installer et demarrer apache sur les serveurs Debian] ****************
skipping: [CentOS7.1]
included: /etc/ansible/roles/exemple2/tasks/debian.yml for deb_server

TASK [exemple2 : Installer les outils de developpement] *******************************
ok: [deb_server]

TASK [exemple2 : Installer apache] ****************************************************
ok: [deb_server]

TASK [exemple2 : Copier le fichier de configuration d'apache] *************************
ok: [deb_server]

TASK [exemple2 : Redemarrer le service apache] ****************************************
changed: [deb_server]

PLAY RECAP ****************************************************************************
CentOS7.1                  : ok=6    changed=1    unreachable=0    failed=0
deb_server                 : ok=6    changed=1    unreachable=0    failed=0

Le nom du rôle est affiché sur les lignes « TASK [ nom_du_role : nom_de_la_tache ] ».

© 2018 Copyright Spherius – vers 1.1  109/159



ANSIBLE

© 2018 Copyright Spherius – vers 1.1  110/159

Notes



ANSIBLE

Fonctionnalités
Avancées

© 2018 Copyright Spherius – vers 1.1  111/159

Dans ce chapitre, nous allons approfondir la customisation des playbooks et
des rôles.



ANSIBLE

© 2018 Copyright Spherius – vers 1.1  112/159

Fonctionnalités Avancées

• Les tags Les blocks

• La visualisation d'un playbook La connexion avec un autre compte 

• Gather_facts Le prompt

• La délégation par delegate_to Le fichier d'inventaire dynamique 

• Les pré et post tasks et temporaire

• Le mot clef run_once set_fact

• Le parallélisme La création d'un module 

• Le traitement avec serial

• any_errors_fatal



ANSIBLE

Les tags 

On peut définir un tag sur une tâche ou directement sur un playbook.

Lors de l’exécution d'un playbook, on peut spécifier la liste des tags qu'il faut exclusivement 
exécuter ou au contraire ceux qu'ils ne faudra pas traiter.

Le mot clef est : tags: [« le_nom_du_tag »]
Le tag "always" est toujours traité.

# cat  tags.yml 
- name: "Tests des tags"
  hosts: client1
  tasks:
    - name: "Commande 1"
      shell:
        echo commande 1 >> /tmp/tags.res
      tags: ["c1"]
    - name: "Commande 2"
      shell:
         echo commande 2 >> /tmp/tags.res
      tags: ["c2"]
    - name: "Commande 3"
      shell:
        echo commande 3 >> /tmp/tags.res
     
    - name: "Commande 4"
      shell:
        date >> /tmp/tags.res
      tags: ["always"]

© 2018 Copyright Spherius – vers 1.1  113/159

Fonctionnalités avancées
Les tags

# cat  tags.yml 
- name: "Tests des tags"
  hosts: client1
  tasks:
    - name: "Commande 1"
      shell:
        echo commande 1 >> /tmp/tags.res
      tags: ["c1"]

# ansible-playbook  tags.yml   --list-tags

# ansible-playbook  tags.yml   --tags  c2

# ansible-playbook  tags.yml   --skip  c1,c2



ANSIBLE

Pour lister les tags : --list-tags

# ansible-playbook  tags.yml   --list-tags

playbook: tags.yml

  play #1 (client1): Tests des tags TAGS: []
      TASK TAGS: [always, c1, c2]

Exécution complète :

# ansible-playbook tags.yml
client1# cat  /tmp/tags.res
commande 1
commande 2
commande 3
lun. avril 23 16:03:51 CEST 2018

Pour exécuter uniquement les tâches associées à des tags : --tags

# ansible-playbook  tags.yml   --tags  c2
client1# cat  /tmp/tags.res
commande 2
lun. avril 23 16:04:11 CEST 2018

Pour exclure l'exécution de tâches associées à des tags : --skip

# ansible-playbook  tags.yml   --skip  c2
client1# cat  /tmp/tags.res
commande 1
commande 3
lun. avril 23 16:03:51 CEST 2018

# ansible-playbook  tags.yml   --skip  c1,c2
client1# cat  /tmp/tags.res
commande 3
lun. avril 23 16:04:31 CEST 2018

© 2018 Copyright Spherius – vers 1.1  114/159



ANSIBLE

La visualisation d'un playbook 

Liste des hôtes
# ansible-playbook --list-hosts play1.yml

playbook: play1.yml

  play #1 (centos_servers): centos_servers      TAGS: []
    pattern: [u'centos_servers']
    hosts (2):
      CentOS6.5
      CentOS7.1

Liste des tasks
# ansible-playbook --list-tasks play1.yml

playbook: play1.yml

  play #1 (centos_servers): centos_servers      TAGS: []
    tasks:
      exemple : Installer les outiles de developpement  TAGS: []
      exemple : Installer apache        TAGS: []
      exemple : Copier le fichier de configuation d'apache      TAGS: []
      exemple : Redemarrer le service apache    TAGS: []

Liste des tags
# ansible-playbook --list-tags play1.yml

playbook: play1.yml

  play #1 (centos_servers): centos_servers      TAGS: []
      TASK TAGS: []

© 2018 Copyright Spherius – vers 1.1  115/159

Fonctionnalités avancées
La visualisation d'un playbook

# ansible-playbook --list-hosts play1.yml

# ansible-playbook --list-tasks play1.yml

# ansible-playbook --list-tags play1.yml



ANSIBLE

Gather_facts 

Les facts sont récupérées au début du traitement d'un playbook pour tous les hôtes. Elles sont 
nécessaires pour utiliser les variables Ansible au sein d'un playbook.

Il est possible de ne pas récupérer les facts via le mot clef gather_facts. Par exemple : pour un parc 
important de machines et pour optimiser le temps d'exécution, lorsque ces variables sont inutiles 
au bon fonctionnement du playbook,

# cat  variables_gatherfacts.yml 
- hosts: client1
  gather_facts: yes
  tasks:
    - debug:
        msg: La variable = {{ansible_distribution}}

# ansible-playbook  variables_gatherfacts.yml 

PLAY [client1] *****************************************************************

TASK [Gathering Facts] *********************************************************
ok: [client1]

TASK [debug] *******************************************************************
ok: [client1] => {
    "msg": "La variable = CentOS"
}

PLAY RECAP *********************************************************************
client1                    : ok=2    changed=0    unreachable=0    failed=0   

© 2018 Copyright Spherius – vers 1.1  116/159

Fonctionnalités avancées
Gather_facts

Si gather_facts à no pas de récupération des facts

- hosts: all
  gather_facts: yes gather_facts: no
  tasks:
    - debug:
        msg: La variable = {{ansible_distribution}}



ANSIBLE

# cat variables_gatherfacts.yml 
- hosts: client1
  gather_facts: no
  tasks:
    - debug:
        msg: La variable = {{ansible_distribution}}

# ansible-playbook variables_gatherfacts.yml 

PLAY [client1] *****************************************************************

TASK [debug] *******************************************************************
fatal: [client1]: FAILED! => {"msg": "The task includes an option with an undefined 
variable. The error was: 'ansible_distribution' is undefined\n\nThe error appears to have
been in '/root/Playbooks/variables_gatherfacts.yml': line 4, column 7, but may\nbe 
elsewhere in the file depending on the exact syntax problem.\n\nThe offending line 
appears to be:\n\n  tasks:\n    - debug:\n      ^ here\n"}

to retry, use: --limit @/root/Playbooks/variables_gatherfacts.retry

PLAY RECAP *********************************************************************
client1                    : ok=0    changed=0    unreachable=0    failed=1   

© 2018 Copyright Spherius – vers 1.1  117/159



ANSIBLE

La délégation par delegate_to 

La délégation par delegate_to permet de déporter le résultat d'une action d'un poste vers une 
autre machine. 

L'exemple ci-dessous récupère sur le serveur Ansible (localhost) le résultat de la commande « ls 
/etc/host* » réalisée sur le poste client1.

# cat  delegate_boucle.yml 
- hosts: client1
  vars:
    equipe: [ {nom: jean, uid: 1001}, {nom: marc, uid: 1002} ]
  tasks:
    - shell: "ls /etc/host*"
      register: resultat
    - shell: echo "{{item}}" >>/tmp/boucle.res
      with_items:
        - "{{resultat.stdout_lines}}"
      delegate_to: localhost

# ansible-playbook  delegate_boucle.yml 

PLAY [client1] *****************************************************************

TASK [Gathering Facts] *********************************************************
ok: [client1]

TASK [shell] *******************************************************************
changed: [client1]

TASK [shell] *******************************************************************
changed: [client1 -> localhost] => (item=/etc/host.conf)
changed: [client1 -> localhost] => (item=/etc/hostname)

© 2018 Copyright Spherius – vers 1.1  118/159

Fonctionnalités avancées
La délégation par delegate_to

delegate_to pour déporter le résultat d'une action d'un poste 
vers une autre machine

- hosts: all
  tasks:
  - name: "Page d informations"
    template:
      src: delegate_to_modele.html
      dest: /var/www/html/{{inventory_hostname}}.html
      owner: "apache"
      group: "apache"
    delegate_to: client1



ANSIBLE

changed: [client1 -> localhost] => (item=/etc/hosts)
changed: [client1 -> localhost] => (item=/etc/hosts.allow)
changed: [client1 -> localhost] => (item=/etc/hosts.deny)

PLAY RECAP *********************************************************************
client1                    : ok=3    changed=2    unreachable=0    failed=0   

# cat  /tmp/boucle.res 
/etc/host.conf
/etc/hostname
/etc/hosts
/etc/hosts.allow
/etc/hosts.deny

© 2018 Copyright Spherius – vers 1.1  119/159



ANSIBLE

Un autre exemple :

Le poste client1 est un serveur Apache. Le principe est de récupérer sur le serveur Apache 
l'ensemble de la configuration des machines du parc. Chaque machine aura une page html portant 
son nom.

# cat  delegate_to.yml 
- hosts: all
  tasks:
  - name: "Page d informations"
    template:
      src: delegate_to_modele.html
      dest: /var/www/html/{{inventory_hostname}}.html
      owner: "apache"
      group: "apache"
    delegate_to: client1

# cat  delegate_to_modele.html 
<html>
  <head><title>Page de garde</title></head>
  <body>
    <br><br><hr><br>
    <center><h1>Bonjour {{ansible_user_id}}</h1></center>
    <br><hr>
    <center><b>
  La liste des adresses IP :<br>
  {% for element in ansible_all_ipv4_addresses %}
    {{element}}<br>
  {% endfor %}
  <br>
  La distribution est : {{ansible_distribution}}
  <br><br>
    </b></center>
  </body>
</html>

# ansible-playbook delegate_to.yml 

PLAY [all] ***************************************************************************

TASK [Gathering Facts] ***************************************************************
ok: [debian1]
ok: [client1]
ok: [client2]

TASK [Page d informations] ************************************************************
changed: [client1 -> client1]
changed: [debian1 -> client1]
changed: [client2 -> client1]

PLAY RECAP ***************************************************************************
client1                    : ok=2    changed=1    unreachable=0    failed=0   
client2                    : ok=2    changed=1    unreachable=0    failed=0   
debian1                    : ok=2    changed=1    unreachable=0    failed=0   

© 2018 Copyright Spherius – vers 1.1  120/159



ANSIBLE

© 2018 Copyright Spherius – vers 1.1  121/159



ANSIBLE

Les pré et post tasks 

Il est possible de définir des opérations avant le traitement principal, c'est la section pre_tasks.
De même, il est possible de définir des opérations après le traitement principal, c'est la section 
post_tasks.

# cat pre_post_tasks.yml 
- hosts: client1
  vars:
    mavar: "Jean"
  pre_tasks:
    - debug: 
        msg: "Pre tacheA pour {{mavar}}"
    - debug: 
        msg: "Pre tacheB pour {{mavar}}"
  post_tasks:
    - debug: 
        msg: "Post tacheA pour {{mavar}}"
    - debug: 
        msg: "Post tacheB pour {{mavar}}"
  tasks:
    - debug: 
        msg: "tache1 pour {{mavar}} debut"
    - debug: 
        msg: "tache2 pour {{mavar}} debut"

# ansible-playbook   pre_post_tasks.yml 

Le résultat donnera : Pre tacheA pour Jean section pre_tasks
Pre tacheB pour Jean
tache1 pour Jean debut section tasks
tache2 pour Jean debut
Post tacheA pour Jean section post_tasks
Post tacheB pour Jean

© 2018 Copyright Spherius – vers 1.1  122/159

Fonctionnalités avancées
Les pré et post tasks

# cat pre_post_tasks.yml 
- hosts: client1
  vars:
    mavar: "Jean"
  pre_tasks:
    - debug: 
        msg: "Pre tacheA pour {{mavar}}"
    - debug: 
        msg: "Pre tacheB pour {{mavar}}"
  post_tasks:
    - debug: 
        msg: "Post tacheA pour {{mavar}}"
    - debug: 
        msg: "Post tacheB pour {{mavar}}"
  tasks:
    - debug: 
        msg: "tache1 pour {{mavar}} debut"
    - debug: 
        msg: "tache2 pour {{mavar}} debut"

# ansible-playbook   pre_post_tasks.yml 



ANSIBLE

Le mot clef run_once 

le mot clef run_once permet d'exécuter une tâche qu'une seule fois.

- name: "Test runonce"
  hosts: all
  tasks:
    - name: "Redemarrage d un service"
      service:
        name: crond
        state: restarted
      run_once: yes
    - name: 
      shell: 
        date > /tmp/etat

# ansible-playbook runonce.yml 

PLAY [Test runonce] *******************************************************************

TASK [Gathering Facts] ****************************************************************
ok: [client2]
ok: [client1]

TASK [Redemarrage d un service] *******************************************************
changed: [client1]

TASK [shell] **************************************************************************
changed: [client2]
changed: [client1]

PLAY RECAP ****************************************************************************
client1                    : ok=3    changed=2    unreachable=0    failed=0   
client2                    : ok=2    changed=1    unreachable=0    failed=0   

On constate que le service a été redémarré sur un seul serveur (client1).

© 2018 Copyright Spherius – vers 1.1  123/159

Fonctionnalités avancées
Le mot clef run_once

# cat runonce.yml 
- name: "Test runonce"
  hosts: all
  tasks:
    - name: "Redemarrage d un service"
      service:
        name: crond
        state: restarted
      run_once: yes
    - name: 
      shell: 
        date > /tmp/etat



ANSIBLE

Le parallélisme

Le paramètre forks du fichier de configuration permet de contrôler le nombre de processus qui 
peuvent être exécutés en simultané. Par défaut, il vaut 5.

# grep forks /etc/ansible/ansible.cfg
#forks          = 5

L'option -f de la commande ansible permet d’écraser la valeur par défaut spécifié dans le fichier.

# ansible  all  -m shell  -a "date; sleep 5; date"
client1 | SUCCESS | rc=0 >>
lun. avril 23 11:34:34 CEST 2018
lun. avril 23 11:34:39 CEST 2018

client2 | SUCCESS | rc=0 >>
lun. avril 23 11:34:34 CEST 2018
lun. avril 23 11:34:39 CEST 2018

# ansible  all  -m shell  -a "date; sleep 5; date"  -f 1
client1 | SUCCESS | rc=0 >>
lun. avril 23 11:35:38 CEST 2018
lun. avril 23 11:35:43 CEST 2018

client2 | SUCCESS | rc=0 >>
lun. avril 23 11:35:44 CEST 2018
lun. avril 23 11:35:49 CEST 2018

© 2018 Copyright Spherius – vers 1.1  124/159

Fonctionnalités avancées
Le parallélisme

# grep forks /etc/ansible/ansible.cfg
#forks          = 5

# ansible spherius_servers  xxxxxxxxx  -f 20



ANSIBLE

Le traitement avec serial

Lorsque vous avez 10 serveurs Apache, vous souhaitez certainement une continuité de service lors 
d'une mise à jour de vos serveurs. On peut envisager la mise à jour sur 2 serveurs, puis lorsque 
cela sera fait passer aux autres serveurs. Pour cette opération, on utilisera le mot clef serial 
positionnée à la valeur [ 2, « 100% » ].

serial :  3
3 serveurs sont traités. Puis lorsque c'est terminé, c'est les 3 suivants et ainsi de suite. 

serial :  « 20% »
comme précédemment, mais par séquence de 20% des serveurs.

serial :  [ 1, 5, 10 ]
un serveur est traité, puis 5, puis par séquence de 10.

serial :  [ 2, « 100% » ]
deux serveurs sont traités, puis tous les autres.

Ce type de traitement peut-être utile pour assurer une continuité de services, ou pour éviter une 
montée en charge de la consommation des ressources telle que l'utilisation de la bande passante 
lors de transferts réseaux.

© 2018 Copyright Spherius – vers 1.1  125/159

Fonctionnalités avancées
Le traitement avec serial

serial :  3
3 serveurs sont traités. Puis lorsque c'est terminé, c'est les 3 suivants et ainsi de suite. 

serial :  « 20% »
comme précédemment, mais par séquence de 20% des serveurs.

serial :  [ 1, 5, 10 ]
un serveur est traité, puis 5, puis par séquence de 10.

serial :  [ 2, « 100% » ]
deux serveurs sont traités, puis tous les autres.



ANSIBLE

Exemple :

# cat  serial.yml 
- hosts: all
  serial: [ 1, "100%" ]
  tasks:
    - shell: "date; sleep 5; date"

Il y aura le traitement sur UN poste (ici client1), on constate la temporisation de 5 secondes. 
Puis la même task se réalise sur tous les autres serveurs.

# ansible-playbook  serial.yml 

PLAY [all] ******************************************************************************

TASK [Gathering Facts] ******************************************************************
ok: [client1]

TASK [shell] ****************************************************************************
changed: [client1] cette ligne apparait apres 5s

PLAY [all] ******************************************************************************

TASK [Gathering Facts] ******************************************************************
ok: [debian1]
ok: [client2]

TASK [shell] ****************************************************************************
changed: [debian1] les 2 lignes apparaissent apres 5s
changed: [client2]

PLAY RECAP ******************************************************************************
client1                    : ok=2    changed=1    unreachable=0    failed=0   
client2                    : ok=2    changed=1    unreachable=0    failed=0   
debian1                    : ok=2    changed=1    unreachable=0    failed=0   

© 2018 Copyright Spherius – vers 1.1  126/159



ANSIBLE

any_errors_fatal

En cas d'erreur d'exécution d'une task sur un hôte, any_errors_fatal permet d'arrêter (ou pas) les 
tasks sur l'ensemble des serveurs.

Exemple avec any_errors_fatal: true

La première opération fonctionne pour les serveurs centos mais pas sur le serveur debian (car il 
aurait fallu indiquer /etc/apache2). La deuxième tâche ne sera pas exécutée et ceci sur aucun 
serveur.

# cat  any_errors_fatal.yml 
- hosts: all
  any_errors_fatal: true
  tasks:
    - name: "Operation a risque"
      shell: "ls /etc/httpd"
    - name: "Operation suivante"
      shell: "date"

# ansible-playbook  any_errors_fatal.yml 

PLAY [all] ******************************************************************************

TASK [Gathering Facts] ******************************************************************
ok: [debian1]
ok: [client2]
ok: [client1]

© 2018 Copyright Spherius – vers 1.1  127/159

Fonctionnalités avancées
any_errors_fatal

En cas d'erreur d'exécution d'une task sur un hôte, 
any_errors_fatal permet d'arrêter (ou pas) les tasks sur l'ensemble des serveurs.

# cat  any_errors_fatal.yml 
- hosts: all
  any_errors_fatal: true
  tasks:
    . . .

TASK [Operation a risque] 
***************************************************************
fatal: [debian1]: FAILED! => .  .  .
changed: [client2]
changed: [client1]

NO MORE HOSTS LEFT 
**********************************************************************

to retry, use: --limit @/root/Playbooks/any_errors_fatal.retry



ANSIBLE

TASK [Operation a risque] ***************************************************************
fatal: [debian1]: FAILED! => {"changed": true, "cmd": "ls /etc/httpd", "delta": 
"0:00:00.002270", "end": "2018-04-27 16:40:58.690715", "msg": "non-zero return code", 
"rc": 2, "start": "2018-04-27 16:40:58.688445", "stderr": "ls: impossible d'accéder à 
'/etc/httpd': Aucun fichier ou dossier de ce type", "stderr_lines": ["ls: impossible 
d'accéder à '/etc/httpd': Aucun fichier ou dossier de ce type"], "stdout": "", 
"stdout_lines": []}
changed: [client2]
changed: [client1]

NO MORE HOSTS LEFT **********************************************************************
to retry, use: --limit @/root/Playbooks/any_errors_fatal.retry

PLAY RECAP ******************************************************************************
client1                    : ok=2    changed=1    unreachable=0    failed=0   
client2                    : ok=2    changed=1    unreachable=0    failed=0   
debian1                    : ok=1    changed=0    unreachable=0    failed=1   

Exemple avec any_errors_fatal: false

Comme précédemment, la première opération fonctionne pour les serveurs centos mais pas sur le 
serveur debian.
La deuxième tâche ne sera pas exécutée sur le serveur débian MAIS elle sera exécutée sur les deux 
autres serveurs centos.

# cat any_errors_fatal.yml 
- hosts: all
  any_errors_fatal: false
  tasks:
    - name: "Operation a risque"
      shell: "ls /etc/httpd"
    - name: "Operation suivante"
      shell: "date"

# ansible-playbook  any_errors_fatal.yml 

PLAY [all] ******************************************************************************

TASK [Gathering Facts] ******************************************************************
ok: [debian1]
ok: [client2]
ok: [client1]

TASK [Operation a risque] ***************************************************************
fatal: [debian1]: FAILED! => {"changed": true, "cmd": "ls /etc/httpd", "delta": 
"0:00:00.002256", "end": "2018-04-27 16:44:33.404066", "msg": "non-zero return code", 
"rc": 2, "start": "2018-04-27 16:44:33.401810", "stderr": "ls: impossible d'accéder à 
'/etc/httpd': Aucun fichier ou dossier de ce type", "stderr_lines": ["ls: impossible 
d'accéder à '/etc/httpd': Aucun fichier ou dossier de ce type"], "stdout": "", 
"stdout_lines": []}
changed: [client1]
changed: [client2]

TASK [Operation suivante] ***************************************************************
changed: [client1]
changed: [client2]

to retry, use: --limit @/root/Playbooks/any_errors_fatal.retry

PLAY RECAP ******************************************************************************
client1                    : ok=3    changed=2    unreachable=0    failed=0   
client2                    : ok=3    changed=2    unreachable=0    failed=0   
debian1                    : ok=1    changed=0    unreachable=0    failed=1  

© 2018 Copyright Spherius – vers 1.1  128/159



ANSIBLE

Les blocks

La section block regroupe un ensemble de tasks qui peuvent être associée à une même condition, 
ou liste, etc.

La section rescue est traitée lorsqu'il y a eut une anomalie au sein du block précédent.
La section always est traitée dans tous les cas de figures. 

Exemple :

# cat  block.yml
- hosts: all
  tasks:
   - name: Install Apache
     block:
       - yum:
           name: "{{ item }}"
           state: installed
         with_items:
           - httpd
           - memcached
       - template:
           src: templates/src.j2
           dest: /etc/foo.conf
       - service:
           name: bar
           state: started
           enabled: True
     when: ansible_distribution == 'CentOS'

© 2018 Copyright Spherius – vers 1.1  129/159

Fonctionnalités avancées
Les blocks

- hosts: all
  tasks:
   - name: Install Apache
     block:
       - yum:
           name: "{{ item }}"
           state: installed
         with_items:
           - httpd
           - memcached
       - template:
           src: templates/src.j2
           dest: /etc/foo.conf
       - service:
           name: bar
           state: started
           enabled: True
     when: ansible_distribution == 'CentOS'

Le block RESCUE Le block ALWAYS



ANSIBLE

# ansible-playbook  block.yml 

PLAY [all] ***************************************************************************

TASK [Gathering Facts] ***************************************************************
ok: [debian1]
ok: [client1]
ok: [client2]

TASK [yum] ***************************************************************************
skipping: [debian1] => (item=httpd) 
skipping: [debian1] => (item=memcached) 
changed: [client2] => (item=httpd)
changed: [client1] => (item=httpd)
changed: [client2] => (item=memcached)
changed: [client1] => (item=memcached)

TASK [template] **********************************************************************
skipping: [debian1]
changed: [client1]
changed: [client2]

TASK [service] ***********************************************************************
skipping: [debian1]
changed: [client1]
changed: [client2]

PLAY RECAP ***************************************************************************
client1                    : ok=4    changed=3    unreachable=0    failed=0   
client2                    : ok=4    changed=3    unreachable=0    failed=0   
debian1                    : ok=1    changed=0    unreachable=0    failed=0   

Exemple avec des sections rescue et always :

# cat  block.yml
- hosts: client1
  tasks:
   - name: Les blocs rescue et always
     block:
       - debug:
           msg: "Je m execute normallement"
       - command: "ls {{argument}}" 
       - debug:
           msg: "Si je m execute c est que la commande precedente a fonctionnee"
     rescue:
       - debug:
           msg: "Il y a une tasks en erreur"
       - command: /bin/false
       - debug:
           msg: "Je ne serais jamais executee"
     always:
       - debug:
           msg: "Je m execute toujours"

© 2018 Copyright Spherius – vers 1.1  130/159



ANSIBLE

# ansible-playbook  block.yml  -e argument=/etc

PLAY [client1] **********************************************************************

TASK [Gathering Facts] **************************************************************
ok: [client1]

TASK [debug] ************************************************************************
ok: [client1] => { Au sein du block
    "msg": "Je m execute normallement"
}

TASK [command] **********************************************************************
changed: [client1] Au sein du block

TASK [debug] ************************************************************************
ok: [client1] => { Au sein du block
    "msg": "Si je m execute c est que la commande precedente a fonctionnee"
}

TASK [debug] ************************************************************************
ok: [client1] => { Block ALWAYS
    "msg": "Je m execute toujours"
}

PLAY RECAP **************************************************************************
client1                    : ok=5    changed=1    unreachable=0    failed=0   

# ansible-playbook  block.yml  -e argument=/xxxxxxx

PLAY [client1] **********************************************************************

TASK [Gathering Facts] **************************************************************
ok: [client1]

TASK [debug] ************************************************************************
ok: [client1] => { Au sein du block
    "msg": "Je m execute normallement"
}

TASK [command] **********************************************************************
fatal: [client1]: FAILED! => {"changed": true, "cmd": ["ls", "/xxxxxxx"], "delta": 
"0:00:00.002700", "end": "2018-04-26 18:34:55.941600", "msg": "non-zero return code", 
"rc": 2, "start": "2018-04-26 18:34:55.938900", "stderr": "ls: impossible d'accéder à 
/xxxxxxx: Aucun fichier ou dossier de ce type", "stderr_lines": ["ls: impossible 
d'accéder à /xxxxxxx: Aucun fichier ou dossier de ce type"], "stdout": "", 
"stdout_lines": []}

TASK [debug] ************************************************************************
ok: [client1] => { Block RESCUE
    "msg": "Il y a une tasks en erreur"
}

TASK [command] **********************************************************************
fatal: [client1]: FAILED! => {"changed": true, "cmd": ["/bin/false"], "delta": 
"0:00:00.001857", "end": "2018-04-26 18:34:56.258048", "msg": "non-zero return code", 
"rc": 1, "start": "2018-04-26 18:34:56.256191", "stderr": "", "stderr_lines": [], 
"stdout": "", "stdout_lines": []}

TASK [debug] ************************************************************************
ok: [client1] => { Block ALWAYS
    "msg": "Je m execute toujours"
}

to retry, use: --limit @/root/Playbooks/block.retry

PLAY RECAP **************************************************************************
client1                    : ok=4    changed=0    unreachable=0    failed=2   

© 2018 Copyright Spherius – vers 1.1  131/159



ANSIBLE

La connexion avec un autre compte 

La connexion aux postes clients peut être réalisée avec un compte utilisateur autre que root.

Pour cela, il est nécessaire de transférer la clef SSH à l'utilisateur du hôte client. 
Le compte à utiliser pour les commandes Ansible, playbooks et rôles est indiqué par ansible_user.
Si les tâches à exécuter nécessitent les droits d'administration, il faut mettre à jour les 
fonctionnalités de sudo.

Exemple :
Sur le poste client, la connexion doit se faire via le compte user1.
Sur le poste serveur Ansible, les actions sont exécutées avec le compte root.

Copie de la clef SSH :
#  ssh-copy-id   -i   /root/.ssh/id_rsa.pub   user1@client1

Mise à jour de la variable ansible_user (par exemple au sein du fichier d'inventaire) :
#  cat   user1_client.inv
client1      ansible_user=user1

le module setup récupére les informations du poste client.
#  ansible   -i  user1_client.inv   -m  setup  all

ansible_user_id : l'utilisateur pour la connexion Ansible
ansible_user_uid : l'uid de l'utilisateur pour la connexion Ansible

© 2018 Copyright Spherius – vers 1.1  132/159

Fonctionnalités avancées
La connexion avec un autre compte

#  ssh-copy-id   -i   /root/.ssh/id_rsa.pub   user1@client1

#  cat   user1_client.inv
client1      ansible_user=user1

#  ansible all -m lineinfile  \
   -a  "path=/etc/sudoers  line='user1  ALL=(ALL:ALL)  NOPASSWD: ALL'"

#  ansible  all -i user1_client  -m service  \
            -a "name=crond  state=restarted"  --become



ANSIBLE

Via user1, il est possible d'exécuter un panel d'actions qui ne nécessite pas les droits de root. Par 
exemple, on peut utiliser ping mais on ne peut pas redémarrer un service. 

S'il est nécessaire de traiter des tâches nécessitant les droits d'administration, il faut mettre à jour 
le fichier /etc/sudoers pour l'utilisateur user1.

Pour cela :

#  ansible all -m lineinfile  \
     -a  "path=/etc/sudoers  line='user1  ALL=(ALL:ALL)  NOPASSWD: ALL'"

Par la suite, l'exécution doit  se faire avec l'option --become.

#  ansible  all -i user1_client.inv  -m service  \
            -a "name=crond  state=restarted"  --become

© 2018 Copyright Spherius – vers 1.1  133/159



ANSIBLE

Le prompt 

Le prompt apporte l'interactivité lors de l'exécution d'un playbook.
Il sera demandé à l'utilisateur à saisir du texte qui initialisera une variable.

# cat prompt.yml 
---
- hosts: client1,client2
  vars_prompt:
  - name: "nom_table" # Nom de la variable
    prompt: "Saisir le nom de la table" # Libellé du prompt
    default: "table_base" # optionnel : Une valeur par défaut
    private: no # optionnel : ne pas masquer la saisie
  - name: "nom_champs"
    prompt: "Saisir le nom du champs"
    private: no
  tasks:
    - debug: msg="select {{nom_champs}} from {{nom_table}}"
...

# ansible-playbook prompt.yml 
Saisir le nom de la table [table_base]: pays
Saisir le nom du champs: ville

...

TASK [debug] *******************************************************************
ok: [client1] => {
    "msg": "select ville from pays"
}
ok: [client2] => {
    "msg": "select ville from pays"
}

© 2018 Copyright Spherius – vers 1.1  134/159

Fonctionnalités avancées
Le prompt

  - name: "nom_table"
    prompt: "Saisir le nom de la table"
    default: "table_base"
    private: no

  - name:  Nom de la variable
    prompt: Libellé du prompt
    default: optionnel : Une valeur par défaut
    private: optionnel : no pour ne pas masquer la saisie



ANSIBLE

Le fichier d'inventaire dynamique et temporaire 

Le fichier d'inventaire dynamique 

L'inventaire est généré dynamiquement au moment où l'on exécute la commande ansible (ou un 
playbook, etc). En fait, cela passe par un script en général écrit en Python, mais cela peut être du 
script shell, du PHP ou autre.

La plupart des scripts existent déjà (pour AWS, VMware, Docker, Cobber, etc) :
http://docs.ansible.com/ansible/latest/user_guide/intro_dynamic_inventory.html

Pour développer son script :
http://docs.ansible.com/ansible/latest/dev_guide/developing_inventory.html

Le script doit générer un fichier d'inventaire au format JSON et respecter quelques règles de mise 
en page, gérer les groupes all et ungrouped ou avoir les options --list et --host. 

Travailler avec une base de données :

Si la liste des machines est localisée au sein d'une base MySQL, on peut exploiter cette liste pour 
générer un inventaire dynamique. Pour cela, un script est disponible sur le site de github :

https://github.com/productsupcom/ansible-dyninv-mysql

© 2018 Copyright Spherius – vers 1.1  135/159

Fonctionnalités avancées
Le fichier d'inventaire dynamique et temporaire

- name: "Un inventaire temporaire"
  hosts: all
  gather_facts: yes
  tasks:
    - name: "Creation des groupes de hotes hote_distribution"
      group_by: key="hote_{{ansible_distribution}}"
        
- name: "Traitement pour les CentOS"
  hosts: "hote_CentOS"
  gather_facts: no
  tasks:   . . . Tasks pour CentOS

- name: "Traitement pour les Debian"
  hosts: "hote_Debian"
  gather_facts: no
  tasks:   . . . Tasks pour Debian"

https://github.com/productsupcom/ansible-dyninv-mysql
http://docs.ansible.com/ansible/latest/dev_guide/developing_inventory.html
http://docs.ansible.com/ansible/latest/user_guide/intro_dynamic_inventory.html


ANSIBLE

Pour travailler avec Azure :

Afin de générer une liste dynamique à partir de la liste des machines enregistrées au sein d'Azure, 
on peut exploiter un script (azure_rm.py) : 

# wget  https://raw.githubusercontent.com/ansible/ansible/devel/contrib/inventory/azure_rm.py

# chmod  755  azure_rm.py

# ansible  -i azure_rm.py ansible-inventory-test-rg  -m ping

Le fichier d’inventaire temporaire

Lorsque la liste des machines de votre parc évolue régulièrement, il n'est pas pratique de mettre à 
jour constamment son fichier d'inventaire. L'inventaire temporaire permet de créer un inventaire 
directement au sein du playbook. Il est donc généré au moment de l'exécution du playbook ou du 
rôle, et n'a qu'une existence temporaire le temps de l'exécution.

Le parc des hôtes est référencé au sein du fichier hosts. Des groupes de machines sont générés lors
de l'exécution du playbook.

Exemple :

L'exemple suivant est un playbook qui va créer des groupes de hôtes et des groupes enfants en 
fonction de critères de chaque machine du parc: la distribution du système d'exploitation et sa 
version. 

La première étape est de créer ces groupes : 
« gather_facts » est à yes pour récupérer les facts des machines du parc. 
Ceci afin d'exploiter les caractéristiques de chaque machine pour les associer à différents groupes.

« group by » permet de regrouper des machines par groupe en fonction de critères (clef).

Les étapes suivantes :
Les tasks qui suivent pourront exploiter ces groupes pour réaliser des actions spécifiques.

« gather_facts » est à no car les tâches qui suivent n'ont pas besoin d'exploiter les facts. On obtient
un gain de temps sur l'exécution du playbook.

© 2018 Copyright Spherius – vers 1.1  136/159



ANSIBLE

# cat  temporaire.yml 
- name: "Un inventaire temporaire"
  hosts: all
  gather_facts: yes
  tasks:
    - name: "Creation des groupes de hotes hote_distribution"
      group_by: key="hote_{{ansible_distribution}}"
    - name: "Creation avec parents host_major-version_architecture"
      group_by:
        key: host_{{ansible_distribution_major_version}}_{{ansible_architecture}}
        parents: host_{{ansible_distribution_major_version}}
    - name: "Creation avec parents host_major-version_distribution"
      group_by:
        key: host_{{ansible_distribution_major_version}}_{{ansible_distribution}}
        parents: host_{{ansible_distribution_major_version}}
    
- name: "Traitement pour les CentOS"
  hosts: "hote_CentOS"
  gather_facts: no
  tasks:
    - name: "Action pour ce groupe"
      debug:
        msg: "Action pour CentOS"

- name: "Traitement pour les Debian"
  hosts: "hote_Debian"
  gather_facts: no
  tasks:
    - name: "Action pour ce groupe"
      debug:
        msg: "Action pour Debian"
- name: "Traitement pour les versions 7 architecture x86_64"
  hosts: "host_7_x86_64"
  gather_facts: no
  tasks:
    - name: "Action pour ce groupe"
      debug:
        msg: "Action pour CentOS version 7"
- name: "Traitement pour les 7"
  hosts: "host_7"
  gather_facts: no
  tasks:
    - name: "Action pour ce groupe"
      debug:
        msg: "Action pour les versions 7"
- name: "Traitement pour les versions 7 distribution CentOS"
  hosts: "host_7_CentOS"
  gather_facts: no
  tasks:
    - name: "Action pour ce groupe"
      debug:
        msg: "Action pour les versions 7 distribution CentOS"

# ansible-playbook  temporaire.yml 

PLAY [Un inventaire temporaire] 
TASK [Gathering Facts] 
ok: [debian1]
ok: [client1]
ok: [client2]
TASK [Creation des groupes de hotes hote_distribution] 
ok: [client1]
ok: [client2]
ok: [debian1]
TASK [Creation avec parents host_major-version_architecture] 
ok: [client2]
ok: [client1]
ok: [debian1]

© 2018 Copyright Spherius – vers 1.1  137/159



ANSIBLE

TASK [Creation avec parents host_major-version_distribution] 
ok: [client1]
ok: [client2]
ok: [debian1]

PLAY [Traitement pour les CentOS] 
TASK [Action pour ce groupe] 
ok: [client1] =>     "msg": "Action pour CentOS"
ok: [client2] =>     "msg": "Action pour CentOS"

PLAY [Traitement pour les Debian] 
TASK [Action pour ce groupe] 
ok: [debian1] =>     "msg": "Action pour Debian"

PLAY [Traitement pour les versions 7 architecture x86_64] 
TASK [Action pour ce groupe] 
ok: [client2] =>     "msg": "Action pour CentOS version 7"
ok: [client1] =>     "msg": "Action pour CentOS version 7"

PLAY [Traitement pour les 7] 
TASK [Action pour ce groupe] 
ok: [client2] =>    "msg": "Action pour les versions 7"
ok: [client1] =>     "msg": "Action pour les versions 7"

PLAY [Traitement pour les versions 7 distribution CentOS] 
TASK [Action pour ce groupe] 
ok: [client2] =>     "msg": "Action pour les versions 7 distribution CentOS"
ok: [client1] =>     "msg": "Action pour les versions 7 distribution CentOS"

PLAY RECAP 
client1                    : ok=8    changed=0    unreachable=0    failed=0   
client2                    : ok=8    changed=0    unreachable=0    failed=0   
debian1                    : ok=5    changed=0    unreachable=0    failed=0   

© 2018 Copyright Spherius – vers 1.1  138/159



ANSIBLE

set_fact 

La section set_fact permet de créer des variables au sein d'une tasks.

Lorsqu'une variable est définie avec le résultat d'une commande, il peut être important que cette 
variable s'initialise à sa première utilisation (comportement de set_fact:) et non à chaque fois 
qu'elle sera appelée (comportement de vars:).

Une variable set_fact à une priorité élevée. Cela peut poser des problèmes au développeur pour la 
surcharger.

Il faut utiliser set_fact que si c'est strictement nécessaire.

Les exemples ci-dessous mettent en évidence la différence entre une variable vars: et set_fact:

# cat  diff_vars.yml 
- hosts: localhost
  vars:
    var_time: "Var: {{lookup('pipe', 'date \"+%H:%M:%S\"')}}"
  tasks:
    - debug: var=var_time
    - command: sleep 2
    - debug: var=var_time

# ansible-playbook  diff_vars.yml 

PLAY [localhost] ****************************************************************

TASK [Gathering Facts] **********************************************************

© 2018 Copyright Spherius – vers 1.1  139/159

Fonctionnalités avancées
set_fact

# cat  diff_setfact.yml 
- hosts: localhost
  tasks:
    - set_fact: 
        fact_time: "Var: {{lookup('pipe', 'date \"+%H:%M:%S\"')}}"
    - debug: var=fact_time
    - command: sleep 2
    - debug: var=fact_time

# ansible-playbook  diff_setfact.yml 

TASK [debug] ********************************************************************
ok: [localhost] =>     "fact_time": "Var: 11:18:48"

TASK [command] ******************************************************************
changed: [localhost]

TASK [debug] ********************************************************************
ok: [localhost] =>     "fact_time": "Var: 11:18:48"
  



ANSIBLE

ok: [localhost]

TASK [debug] ********************************************************************
ok: [localhost] => {
    "var_time": "Var: 11:17:59"
}

TASK [command] ******************************************************************
changed: [localhost]

TASK [debug] ********************************************************************
ok: [localhost] => {
    "var_time": "Var: 11:18:01"
}

PLAY RECAP **********************************************************************
localhost                  : ok=4    changed=1    unreachable=0    failed=0   

# cat  diff_setfact.yml 
- hosts: localhost
  tasks:
    - set_fact: 
        fact_time: "Var: {{lookup('pipe', 'date \"+%H:%M:%S\"')}}"
    - debug: var=fact_time
    - command: sleep 2
    - debug: var=fact_time

# ansible-playbook  diff_setfact.yml 

PLAY [localhost] ****************************************************************

TASK [Gathering Facts] **********************************************************
ok: [localhost]

TASK [set_fact] *****************************************************************
ok: [localhost]

TASK [debug] ********************************************************************
ok: [localhost] => {
    "fact_time": "Var: 11:18:48"
}

TASK [command] ******************************************************************
changed: [localhost]

TASK [debug] ********************************************************************
ok: [localhost] => {
    "fact_time": "Var: 11:18:48"
}

PLAY RECAP **********************************************************************
localhost                  : ok=5    changed=1    unreachable=0    failed=0   

© 2018 Copyright Spherius – vers 1.1  140/159



ANSIBLE

La création d'un module 

La création d'un module nécessite des compétences en programmation Python. Il est nécessaire 
d'importer des modules Python spécifiques à Ansible.

© 2018 Copyright Spherius – vers 1.1  141/159

Fonctionnalités avancées
La création d'un module

# cat  library/monmodule1.py 
#!/usr/bin/python

from ansible.module_utils.basic import *

def main():

  module = AnsibleModule(argument_spec={})
  response = {"Bonjour": "Aurevoir"}
  module.exit_json(changed=False, meta=response)

if __name__ == '__main__':
  main()



ANSIBLE

Exemple de base :

L'arborescence : playbook.yml pour le playbook utilisant le module 
library/module.py pour le module 

# cat  library/monmodule1.py 
#!/usr/bin/python

from ansible.module_utils.basic import *

def main():

  module = AnsibleModule(argument_spec={})
  response = {"Bonjour": "Aurevoir"}
  module.exit_json(changed=False, meta=response)

if __name__ == '__main__':
  main()

# cat monmodule1.yml 
- hosts: localhost
  tasks:
    - name: "Test de monmodule1"
      monmodule1:
      register: resultat
    - debug: var=resultat

# ansible-playbook  monmodule1.yml 

PLAY [localhost] 

TASK [Gathering Facts] 
ok: [localhost]

TASK [Test de monmodule1] 
ok: [localhost]

TASK [debug] 
ok: [localhost] => {
    "resultat": {
        "changed": false, 
        "failed": false, 
        "meta": {
            "Bonjour": "Aurevoir"
        }
    }
}

PLAY RECAP 
localhost                  : ok=3    changed=0    unreachable=0    failed=0   

© 2018 Copyright Spherius – vers 1.1  142/159



ANSIBLE

Un exemple plus évolué :

Ce module nécessite deux arguments (obligatoires) : fichier et ligne. 
Le module ajoute à la fin du fichier (variable « fichier ») une ligne (variable « ligne »). Si le fichier 
n'existe pas, il est créé.
La documentation est définie via la variable DOCUMENTATION.

Le module en python :
# cat  library/monmodule2.py 
#!/usr/bin/python
# -*- coding: utf-8 -*-
#
 
# La documentation du module 
DOCUMENTATION = '''
---
author: Baranger 
version_added: "1.0"
module: module2
short_description: un module simple
description:
  - Ajoute un texte en fin de fichier. Si le fichier n existe pas, il est cree.
options:
  fichier:
    description:
      Le nom du fichier
  ligne:
    description:
      Ligne a inserer en fin de fichier
notes:
requirements: []
'''
 
EXAMPLES = '''
- name: "Un exemple"
  module2: fichier=fic1 ligne="Voici mon texte"
'''
 
# Le code du module 
def main():
    # La declaration du module
    module = AnsibleModule(
        argument_spec=dict(
            fichier = dict(required=True), # défini un argument obligatoire
            ligne = dict(required=True),
        )
    )
    # Recuperation des arguments
    fichier = module.params['fichier'] # récupère un argument
    ligne = module.params['ligne']

    # Traitement
    try:
        lefichier = open(fichier, "a") # fichier en mode append
        lefichier.write(ligne) # ajoute une ligne dans le fichier
        lefichier.close()
    except: # gestion des erreurs
        module.fail_json(msg="Anomalie au sein du module.")

    module.exit_json(changed=True, meta=fichier)
 
# Import Ansible Utilities
from ansible.module_utils.basic import *
main()

© 2018 Copyright Spherius – vers 1.1  143/159



ANSIBLE

Le playbook :

# cat  monmodule2.yml 
- hosts: localhost
  tasks:
    - name: "Test de monmodule2"
      monmodule2:
        fichier: "essai"
        ligne: "C est une belle journee"
      register: resultat
    - debug: var=resultat

L'exécution :
# ansible-playbook  monmodule2.yml

PLAY [localhost] 

TASK [Gathering Facts] 
ok: [localhost]

TASK [Test de monmodule2] 
changed: [localhost]

TASK [debug] 
ok: [localhost] => {
    "resultat": {
        "changed": true, 
        "failed": false, 
        "meta": "essai"
    }
}

PLAY RECAP 
localhost                  : ok=3    changed=1    unreachable=0    failed=0   

Le fichier résultant de l'exécution du module :
# cat  essai
C est une belle journee 

Modification du playbook pour générer une erreur :

# ansible-playbook  monmodule2.yml
   (avec fichier=/aaaaa/xxxxx/bbbb/essai)

PLAY [localhost] 

TASK [Gathering Facts] 
ok: [localhost]

TASK [Test de monmodule2] 
fatal: [localhost]: FAILED! => {"changed": false, "msg": "Anomalie au sein du module."}

to retry, use: --limit @/root/Playbooks/monmodule2.retry

PLAY RECAP 
localhost                  : ok=1    changed=0    unreachable=0    failed=1   

© 2018 Copyright Spherius – vers 1.1  144/159



ANSIBLE

Affichage de la documentation du module :

# ansible-doc  -M library  monmodule2
> MODULE2    (/root/Playbooks/library/monmodule2.py)

        Ajoute un texte en fin de fichier. Si le fichier n existe pas, il
        est cree.

OPTIONS (= is mandatory):

- fichier
        Le nom du fichier
        [Default: (null)]

- ligne
        Ligne a inserer en fin de fichier
        [Default: (null)]

AUTHOR: Baranger

EXAMPLES:
- name: "Un exemple"
  module2: fichier=fic1 ligne="Voici mon texte"

© 2018 Copyright Spherius – vers 1.1  145/159



ANSIBLE

© 2018 Copyright Spherius – vers 1.1  146/159

Notes



ANSIBLE

Compléments

© 2018 Copyright Spherius – vers 1.1  147/159

Dans ce chapitre, nous allons étudier quelques fonctionnalités
supplémentaires, telles que Ansible Vault ou Ansible Galaxy.



ANSIBLE

© 2018 Copyright Spherius – vers 1.1  148/159

Compléments

• Ansible Vault et l'encryptage

• Ansible Galaxy



ANSIBLE

Ansible Vault et l'encryptage 

Ansible Vault permet de gérer le cryptage de données. La commande est ansible-vault.

Pour encrypter un fichier : encrypt
# ansible-vault  encrypt  fic_mdp.yml
Un mot de passe sera demandé : le mot de passe Vault.

# ansible-vault  encrypt fic_mdp.yml  --vault-id vault_mdp.key 
# ansible-vault  encrypt fic_mdp.yml  --vault-password-file  vault_mdp.key 
Avec un fichier vault_mdp.key contenant le mot de passe Vault. Il n'y aura pas de saisie 
clavier pour ce mot de passe.

Pour exécuter un playbook ou un rôle :
# ansible-playbook playbook.yml  -e @fic_mdp.yml  --ask-vault-pass
Il sera demandé le mot de passe Vault.

# ansible-playbook playbook.yml  -e @fic_mdp.yml  --vault-id vault_mdp.key 
# ansible-playbook playbook.yml  -e @fic_mdp .yml  --vault-password-file  vault_mdp.key 
Il n'y aura pas de saisie clavier pour le mot de passe Vault.

Pour encrypter une chaîne de caractères : encrypt_string
# ansible-vault  encrypt_string  'secure1!'  --vault-id vault_mdp.key  

© 2018 Copyright Spherius – vers 1.1  149/159

Compléments
Ansible Vault et l'encryptage

# ansible-vault   encrypt  fic_mdp.yml
# ansible-vault   encrypt  fic_mdp.yml   --vault-id vault_mdp.key 

# ansible-playbook  playbook.yml   -e @fic_mdp.yml    --ask-vault-pass
# ansible-playbook  playbook.yml   -e @fic_mdp.yml    --vault-id vault_mdp.key 

# ansible-vault  encrypt_string  'secure1!'  --vault-id vault_mdp.key  

# ansible-vault   rekey  fic_mdp.ymlb \
        --vault-password-file vault_mdp.key  --new-vault-password-file new_ vault_mdp.key 
# ansible-vault   create fic_mdp.yml  --vault-id vault_mdp.key
# ansible-vault   view  fic_mdp.yml  --vault-id vault_mdp.key
# ansible-vault   edit  fic_mdp.yml  --vault-id vault_mdp.key
# ansible-vault   decrypt fic_mdp.yml  --vault-id vault_mdp.key



ANSIBLE

Pour recrypter un fichier avec un nouveau mot de passe Vault : rekey
# ansible-vault  rekey fic_mdp.ymlb \
 --vault-password-file vault_mdp.key  --new-vault-password-file new_ vault_mdp.key

Pour créer un fichier crypté : create
# ansible-vault  create  fic_mdp.yml  --vault-id vault_mdp.key

Pour visualiser un fichier crypté en clair : view
# ansible-vault  view  fic_mdp.yml  --vault-id vault_mdp.key

Pour éditer et modifier un fichier crypté : edit
# ansible-vault  edit  fic_mdp.yml  --vault-id vault_mdp.key

Pour décrypter un fichier crypté : decrypt
# ansible-vault  decrypt  fic_mdp.yml  --vault-id vault_mdp.key

Exemples :

# cat  fichier_motdepasse.yml
mot_de_passe: "secure1!"
mdp_bdd: "ansible123"

# ansible-vault  encrypt  fichier_motdepasse.yml
New Vault password: mot de passe saisie : mdpvault
Confirm New Vault password: 
Encryption successful

# cat  fichier_motdepasse.yml
$ANSIBLE_VAULT;1.1;AES256
31306263303730396666373061633939386664343461326665383166303266336538356337376139
3036656261343839623839323735393866386138656164620a303937343362646631353766613831
37613534646666383837313036346261653565363732366361323232343234666266643430623730
6166663130623831360a353733306535323138623261366234363231386432626533316234306133
38613737336136326266383534623164313863666232313663656261396633346566663038376632
3763613832393961363461613266646134613563383733366363

# cat vault1.yml 
- hosts: localhost
  tasks:
    - debug: msg="Reponse = {{mot_de_passe}}"

# ansible-playbook vault1.yml -e @fichier_motdepasse.yml --ask-vault-pass
Vault password: saisie de : mdpvault

PLAY [localhost] ***************************************************************

TASK [Gathering Facts] *********************************************************
ok: [localhost]

TASK [debug] *******************************************************************
ok: [localhost] =>     "msg": "Reponse = secure1!"

PLAY RECAP *********************************************************************
localhost                  : ok=2    changed=0    unreachable=0    failed=0   

© 2018 Copyright Spherius – vers 1.1  150/159



ANSIBLE

Avec un fichier pour le mot de passe Vault :
# cat mdp_ansible_vault.key 
mdpvault

# export DEFAULT_VAULT_PASSWORD_FILE="mdp_ansible_vault.key"

# cat fichier_mdp.yml 
mot_de_passe: "secure1!"
mdp_bdd: "ansible123"

# ansible-vault encrypt fichier_mdp.yml --vault-id mdp_ansible_vault.key 
Encryption successful
#
# cat fichier_mdp.yml 
$ANSIBLE_VAULT;1.1;AES256
33343766383436316365633534303436613234656463616432336139386166366336333566636264
3635336631666636313539343263346230646562303462630a303934313035653437396665353932
37326537336134316363653734356437316137643736336336666664336137396163343231663735
3535643530333532360a336136313561653461353462353038663862363730383633646463313832
38366165383432396265333565663363666230353132636566323533616363623336656334633033
3165326532306139326433306233383531636366316135323937

# ansible-playbook vault1.yml \
-e @ fichier_mdp.yml  --vault-id mdp_ansible_vault.key 

ou

# ansible-playbook vault1.yml \
-e @ fichier_mdp.yml  --vault-id mdp_ansible_vault.key 

PLAY [localhost] ***************************************************************

TASK [Gathering Facts] *********************************************************
ok: [localhost]

TASK [debug] *******************************************************************
ok: [localhost] =>     "msg": "Reponse = secure1!"

Modification du contenu du fichier (pour modifier un mot de passe ou ajouter un mot de passe) :
# ansible-vault  edit  fichier_mdp.yml  --vault-id mdp_ansible_vault.key 
Lance directement l'éditeur de texte par défaut du système d'exploitation
(ici vi) avec le fichier décrypté (évidemment !). La manipulation a été 
de modifier la variable du mot_de_passe par new1!secure.

# cat fichier_mdp.yml 
$ANSIBLE_VAULT;1.1;AES256
33663334343336323335363161303131643636366138353064623636383264336631343131386532
6236316563353063393162623235613764333066326234320a386533383066306166623037373437
33623632623438303735313136643461636436643463636234343536326162356431626161653638
3531613235346635610a636433343461323736366436346339356364633239313764636337653466
64376337636232623066653334663465316239303762336330366138343436666638336334663331
66396665633064333161626332373637383864343832616366393634383066643438343637653266
666164363535336535363233303135313432

# ansible-playbook vault1.yml \
-e @fichier_mdp.yml  --vault-id  mdp_ansible_vault.key 

. . .

TASK [debug] *******************************************************************
ok: [localhost] =>     "msg": "Reponse = new1!secure"  

© 2018 Copyright Spherius – vers 1.1  151/159



ANSIBLE

Pour un nouveau mot de passe pour l'encryptage :

# cat new_mdp_ansible_vault.key 
nouveau

On recrypte le fichier contenant les mots de passes de notre playbook via le nouveau fichier
de mot de passe Vault :

# ansible-vault rekey fichier_mdp.yml \
--vault-password-file mdp_ansible_vault.key \
--new-vault-password-file new_mdp_ansible_vault.key 

Rekey successful

# cat fichier_mdp.yml 
$ANSIBLE_VAULT;1.1;AES256
65646561363464393138353762646338616433303365383636383939366438636333393930633431
3061306561643139373766323430373635316462343532660a386534306434666337633230373538
39663566303935313331613665386337306163646661613430316161343665306632303165616463
6661653264376635360a363330313230353235336637376639346165393834306565636165656135
31396538363832646435346366666365666663346237663237353361613036303039373537616137
66363463323131613137356661363437386633653931396462323066663730313436373832396665
616230363134643865626633363961363234

# ansible-playbook vault1.yml \
-e @fichier_mdp.yml  --vault-id new_mdp_ansible_vault.key 

PLAY [localhost] ***************************************************************

TASK [Gathering Facts] *********************************************************
ok: [localhost]

TASK [debug] *******************************************************************
ok: [localhost] => {
    "msg": "Reponse = new1!secure"
}

PLAY RECAP *********************************************************************
localhost                  : ok=2    changed=0    unreachable=0    failed=0   

© 2018 Copyright Spherius – vers 1.1  152/159



ANSIBLE

Cryptage d'une chaîne de caractères :

# cat fichier_motdepasse2.yml # cat mdp_vault.yml 
mdp_autre: "new_appli_123" mdpvault
mot_de_passe: "secure1!"
mdp_bdd: "ansible123"

# cat vault2.yml 
- hosts: localhost
  tasks:
    - debug: msg="Reponse mot_de_passe = {{mot_de_passe}}"
    - debug: msg="Reponse mdp_bdd      = {{mdp_bdd}}"
    - debug: msg="Reponse mdp_autre    = {{mdp_autre}}"

# ansible-vault encrypt_string 'secure1!' --vault-id mdp_vault.key 
!vault |
          $ANSIBLE_VAULT;1.1;AES256
          37323362383237396364626333333561306561626338333166303162363338663261313835356339
          3438326365383666383164663430616537633862613063640a636365303938643834396237613762
          63656363376134363037343965633862373439323334323765623431306566613664393965663634
          3936373730626561630a613962393062653466663339386535643062363563396132353064643633
          3039
Encryption successful

# ansible-vault encrypt_string 'ansible123' --vault-id mdp_vault.key 
!vault |
          $ANSIBLE_VAULT;1.1;AES256
          38623632646135346433386635656537653337383631613939376165366137643336613433333631
          3632656464336436303134613331306137343234313863390a656234343033343565666464326164
          65326236343534386132373065303466373964343237373963373466333639383237663039613238
          3134393462356536380a363236663535393638353936346434313438613536633866363636653563
          3061

On modifie le fichier des mots de passe du playbook pour intégrer les valeurs cryptées.
# cat fichier_motdepasse2.yml 
mdp_autre: "new_appli_123"
mot_de_passe: !vault |
          $ANSIBLE_VAULT;1.1;AES256
          37323362383237396364626333333561306561626338333166303162363338663261313835356339
          3438326365383666383164663430616537633862613063640a636365303938643834396237613762
          63656363376134363037343965633862373439323334323765623431306566613664393965663634
          3936373730626561630a613962393062653466663339386535643062363563396132353064643633
          3039
 
mdp_bdd: !vault |
          $ANSIBLE_VAULT;1.1;AES256
          38623632646135346433386635656537653337383631613939376165366137643336613433333631
          3632656464336436303134613331306137343234313863390a656234343033343565666464326164
          65326236343534386132373065303466373964343237373963373466333639383237663039613238
          3134393462356536380a363236663535393638353936346434313438613536633866363636653563
          3061
 

# ansible-playbook vault2.yml \
-e @fichier_motdepasse2.yml  --vault-id mdp_vault.key 

. . .

TASK [debug] *******************************************************************
ok: [localhost] =>     "msg": "Reponse mot_de_passe = secure1!"

TASK [debug] *******************************************************************
ok: [localhost] =>     "msg": "Reponse mdp_bdd      = ansible123"

TASK [debug] *******************************************************************
ok: [localhost] =>     "msg": "Reponse mdp_autre    = new_appli_123"

© 2018 Copyright Spherius – vers 1.1  153/159



ANSIBLE

On aurait pu utiliser la syntaxe suivante :
# ansible-vault encrypt_string \

--vault-id mdp_vault.key  'hyperSecret'  --name 'mdp_autre'
mdp_autre: !vault |
          $ANSIBLE_VAULT;1.1;AES256
          37376333383731373232666639393732306363303161623764316566303033386236396131393130
          3536383931306364366535313031386438336664656666380a376139383261373631616663613965
          37323633323564313339363136373037353163633663363133323336303337633635666133303033
          3331356435633936360a666238636132663735623963366566643262376261306136316466343362
          3864
Encryption successful

On peut créer le fichier de mots de passe crypté directement par :
# ansible-vault  create  fic_mdp.yml  --vault-id mdp_vault.key 
Lance l'éditeur de texte par défaut (ici vi) pour la saisie du contenu :
mdp_autre: "insolite_password"
mot_de_passe: "secure1!"
mdp_bdd: "ansible123"

# cat fic_mdp.yml 
$ANSIBLE_VAULT;1.1;AES256
65313136643761333363383836663632396539613961633534343865303531323435626135666336
6335373933323330393361363465366563383833653730380a383761323136383135303635376636
64396166666666373532383431646161623539656535343232613935626232353136306138336562
3033656462633331380a633362643864386537653032323063373265346164323634326665333032
32353035343363366430343766643464666266303730353163333531366366616164313736346162
66643962323165346632343337626537643465303030343363326136316433323932616265356331
36656563303865343263613562366165646363363763356561323434336232353733613834303662
65343566613565663631

Pour visualiser le contenu du fichier crypté:
# ansible-vault view fic_mdp.yml --vault-id mdp_vault.key 
mdp_autre: "insolite_password"
mot_de_passe: "secure1!"
mdp_bdd: "ansible123"

Pour éditer un fichier crypté :
# ansible-vault edit fic_mdp.yml --vault-id mdp_vault.key 

# ansible-playbook vault2.yml -e @fic_mdp.yml --vault-id mdp_vault.key 

. . .

TASK [debug] ***************************************************************************
ok: [localhost] =>     "msg": "Reponse mot_de_passe = secure1!"

TASK [debug] ***************************************************************************
ok: [localhost] =>     "msg": "Reponse mdp_bdd      = ansible123"

TASK [debug] ***************************************************************************
ok: [localhost] =>     "msg": "Reponse mdp_autre    = insolite_password"  

© 2018 Copyright Spherius – vers 1.1  154/159



ANSIBLE

Ansible Galaxy

Galaxy via son site (https://galaxy.ansible.com) met à disposition des rôles pré packagés. Ils sont 
facilement déployables au sein de votre projet Ansible. Vous trouverez des rôles pour 
l'infrastructure d'approvisionnement, le déploiement des applications et toutes vos tâches 
quotidiennes. 

On peut également mettre ses propres rôles à la disposition de la communauté Ansible via ce site.

Recherche de rôles sur le site d'Ansible Galaxy :

Recherche des rôles crontab :
# ansible-galaxy  search  crontab

Found 83 roles matching your search:

 Name                                        Description
 ----                                        -----------
 uZer.crontab                                Crontab management
 lciolecki.cron                              Ansible role to manage crontab
 viasite-ansible.cron                        Add crontab tasks or variables
 elao.cron                                   A cron role to manage crontab entries.
 manala.cron                                 Handle cron
 linuxhq.cronie                              RHEL/CentOS - UNIX daemon crond (cronie)
 igor_mukhin.cron                            Installs and configures cron
...

© 2018 Copyright Spherius – vers 1.1  155/159

Compléments
Ansible Galaxy

• Des rôles pré packagés disponibles

Zone de partage de la communauté Ansible

• https://galaxy.ansible.com

• La commande ansible-galaxy

https://galaxy.ansible.com/
https://galaxy.ansible.com/


ANSIBLE

Affichage d'informations d'un rôle :

# ansible-galaxy  info  linuxhq.cronie

Role: linuxhq.cronie
        description: RHEL/CentOS - UNIX daemon crond (cronie)
        active: True
        commit: a68c03369737f17e77096e1639642c4400d6cfb9
        commit_message: Add become directive to crond handler
        commit_url: https://github.com/linuxhq/ansible-role-
cronie/commit/a68c03369737f17e77096e1639642c4400d6cfb9
        company:
...

Installation d'un rôle :

# ansible-galaxy  install  linuxhq.cronie
- downloading role 'cronie', owned by linuxhq
- downloading role from https://github.com/.../ansible-role-cronie/archive/master.tar.gz
- extracting linuxhq.cronie to /root/.ansible/roles/linuxhq.cronie
- linuxhq.cronie (master) was installed successfully

A partir de /root/.ansible/rôles/nom_du_role, l'arborescence suivante est créée :
# ls  -R  /root/.ansible/roles/linuxhq.cronie/
/root/.ansible/roles/linuxhq.cronie/:
defaults  handlers  meta  README.md  tasks  templates  tests

/root/.ansible/roles/linuxhq.cronie/defaults:
main.yml

/root/.ansible/roles/linuxhq.cronie/handlers:
main.yml

/root/.ansible/roles/linuxhq.cronie/meta:
main.yml

/root/.ansible/roles/linuxhq.cronie/tasks:
cronie_etc.yml  cronie_system.yml  cronie_user.yml  main.yml

/root/.ansible/roles/linuxhq.cronie/templates:
0hourly.j2  cron.allow.j2  cron.deny.j2  crond.sysconfig.j2

/root/.ansible/roles/linuxhq.cronie/tests:
inventory  test.yml

Le fichier README.md contient un descriptif du rôle :
# more /root/.ansible/roles/linuxhq.cronie/README.md
# ansible-role-cronie

[![Build Status](https://travis-ci.org/linuxhq/ansible-role-cronie.svg?branch=master)]
(https://travis-ci.org/linuxhq/ansible-role-cronie)

RHEL/CentOS - UNIX daemon crond (cronie)

## Requirements

...

## Author Information

This role was created by [Taylor Kimball](http://www.linuxhq.org).

© 2018 Copyright Spherius – vers 1.1  156/159

http://www.linuxhq.org/


ANSIBLE

Installation d'un rôle au sein d'un répertoire spécifique :

# mkdir -p galaxy/Roles

# ansible-galaxy install  --roles-path galaxy/Roles  linuxhq.cronie
- downloading role 'cronie', owned by linuxhq
- downloading role from https://github.com/.../ansible-role-cronie/archive/master.tar.gz
- extracting linuxhq.cronie to /root/Playbooks/galaxy/Roles/linuxhq.cronie
- linuxhq.cronie (master) was installed successfully

Création d'une structure et arborescence d'un rôle vierge :

# ansible-galaxy  init  perso

# ls -R perso
perso:
defaults  files  handlers  meta  README.md  tasks  templates  tests  vars

perso/defaults:
main.yml

perso/files:

perso/handlers:
main.yml

perso/meta:
main.yml

perso/tasks:
main.yml

perso/templates:

perso/tests:
inventory  test.yml

perso/vars:
main.yml

Suppression d'un rôle :
# ansible-galaxy  remove  perso

Gestion via un compte Ansible Galaxy     :

Pour cette section, vous devez au préalable créer un compte sur le site galaxy.ansible.com.

Pour se connecter :
# ansible-galaxy  login

Une fois connecté, via la commande ci-dessus, les commandes suivantes sont utilisables.

Pour importer un rôle : ansible-galaxy   import   github_user   github_repo
Pour supprimer un rôle : ansible-galaxy   delete   github_user   github_repo

Le plus simple est de réaliser ces opérations et la gestion via son compte directement sur le site 
d'Ansible Galaxy. 

© 2018 Copyright Spherius – vers 1.1  157/159



ANSIBLE

Un exemple avec le site de GitHub.com :

GitHub est un espace pour gérer le versionning de ses projets et c'est un espace de 
développement collaboratif. 
Après avoir créé un compte et déposé un rôle Ansible, on va pouvoir l'importer sur le site d'Ansible
Galaxy.

Le fichier README.md du rôle apparaît comme présentation sur le site de GitHub. On pourra une 
attention toute particulière à son contenu.

Sur le site d'Ansible Galaxy, on crée un compte qui fera le lien avec le compte de GitHub. Il est ainsi
aisé de scanner ses projets GitHub et de les transférer sur Galaxy. Attention si le fichier 
« meta/main.yml » de votre rôle est mal informé, l'import échoue.

Lorsque que le rôle est importé, il est exploitable via la commande « ansible-galaxy ».

il est à noter que « ansible-galaxy  info  le_role » affiche les informations formatées du fichier 
meta/main.yml suivi du contenu du fichier REAME.md.

Exemple :
# ansible-galaxy  install  barangerjeanmarc.site_lamp

# ansible-galaxy  info  barangerjeanmarc.site_lamp
perso:
Role: barangerjeanmarc.site_lamp
        description: Un role pour un site LAMP
        active: True
        commit: e0df31516368ce6f40056aa915415f4432cd655c
        commit_message: Add files via upload
        commit_url: https://github.com/barangerjeanmarc/site_lamp/commit/e0df31516368ce6
        company: Spherius
        created: 2018-05-01T19:03:19.484Z
        download_count: 1
        forks_count: 0
        github_branch: 
        github_repo: site_lamp
        github_user: barangerjeanmarc
        id: 25427
        is_valid: True
        issue_tracker_url: https://github.com/barangerjeanmarc/site_lamp/issues
        license: license (GPLv2, CC-BY, etc)
        min_ansible_version: 1.2
        modified: 2018-05-01T19:41:26.608Z
        namespace: barangerjeanmarc
        open_issues_count: 0
        path: [u'/root/.ansible/roles', u'/usr/share/ansible/roles', u'/etc/ansible/role
        readme: site_lamp
=========

Un exemple simple de rôle.
...

Example Playbook
---------------

    - hosts: servers
      roles:
         - { role: barangerjeanmarc.site_lamp  }

© 2018 Copyright Spherius – vers 1.1  158/159



ANSIBLE

Fin du support de cours

© 2018 Copyright Spherius – vers 1.1  159/159

Fin de session de Formation

Je vous recommande de relire ce support de cours d'ici les deux semaines à 
venir, et de refaire des exercices.

Il ne vous reste plus qu'à mettre en œuvre ces nouvelles connaissances au 
sein de votre entreprise. 

Merci, et à bientôt.

Jean-Marc Baranger

Theo Schomaker


