ANSIBLE

ANSIBLE

___www.spherius.fr.

© 2018 Copyright Spherius — vers 1.1 1/159

RRERIUS
ANSIBLE
SOMMAIRE
PRESENTATION D'ANSIBLEeittiitttittentteetteniteeteesite et esteeeateesseeeateesbeeeabeesbeesaseenbeesabeenseesnneenseenaneeenns 5
INErOAUCTION ©F COMCEPLS. .. .veieiiieeeiieiiiee ettt e ette e st e e eteeesaeeessaeeestaeessbeeeseaeassaeessseeessseeensseesnsseeasannes 7
INSTALLATION D ANSIBLE......ccuutiiuttitteiittetteniteestee st e it e eateebeesate e bt e eabe e bt e eateenbeeeabeesbeesaseesaneenneenseenanee 10
g (ST |1 TSP 12
Installation SOUS REAHAL..........cc.ooiiiiiiiiiciee et e e 13
INStAllAtION AVEC PIP.urieiiiieiiiieiitieeeiieeeieeesteeesteeestteeeeteessaeessaeesseeessseeessseeensseesnsseessseaeessssssseeens 14
EChange de CIefs SSH.........vuvieoieeeieee e eee e ees et es e ee e seneneeees 16
CONFIGURATION ET UTILISATION D'ANSIBLE........cceitttiitttiiiteniteeniteestteestteesneeesseeesaseeesaseeenseeesnneees 18
Le 1épertoire /@LC/aNSIDIC.eoiuiieiieiie ettt ettt ettt et e e entaeeeennaee s 20
Les MOAUIES ANSIDIC.....cc.viiiiiiieiiie ettt et e et e et e et e e e aaeeesaeesasaeesssaeensnnnaeaeens 23
Test de 12 CONNECTIVITE.c.eiiiiieeiiieiieeie ettt ettt ettt e ebe e teeeabe e beesaseesseesnseesseessseenseennseas 26
Le fiIChier d'TNVENTAITE.cccuiiiiiiieeiie ettt ettt e et e e st e e teeesiaeeestaeeesbeeessseesnsaeeeeesnsnseeaeens 28
LES COMMANDES ET LES MODULES DE BASE ANSIBLE......c...coittittiitenieenitenteenieeeteenieeesneeessneeessnnees 35
Les modules command €t Shell............oooviiiiiiiiiiiicece e e 37
Le transfert de fICRITS.eiiiiiiiiiie ettt e e e naaeas 39
La ZEStION dES PACKAZES. ...ccuvieeeiiieeiieecite ettt ettt et e et e et e e st e e e beeesareeesabeeesseeesseeenseeensseeas 42
La gestion des UHISAtEULS.cc.eeiiieiieiiieiie ettt ettt ettt et e e ebeesaaeenbeessaeensaeennneeas 45
L2 ESTION AES SETVICES. ..eeuvieiiurieeiiiieeiieeeiteeeitteeetteeeteeesteeessseeesssaeessseeesssaeesssaeeessnsssseeeeeassssseeeeens 47
L& MOAUIE SELUP....eouvieiieeiiieiie ettt ettt e et e s b e et e e saaeesbeesabeenseessaeenseensseeansseas 49
LLES PLAYBOOKS. ..ottt ettt ettt ettt et e ettt et e sttt e e bt eesab e e e sabeeesbeeesbeeeabbeesabaeenaneee 52
Description d'un playbook..........cccuieiiiiiiiiecie et e e s 54
Les variables €t 185 tableaUX........uecuiiiiiiieieiieeeiie et e ae e e e e e e e eaaaeaeeas 62
La priorité et 1a portée des variables.........c.oiiieriieriiiiiienieeieee et e 66
| BT 1S3 1010 F 1SR 70
L@ DOUCLE 0Tttt ettt ettt e et e et e e b e e teeenbeebeeenbeeeennree s 72
Le module debug et le Mot Clef T@EISTET.......cccuviieiiieeiiiecie e e e e raee e 74
LeS HANAICTS. ...ttt ettt et ettt et e e taeesbeesaaeensaessaeessaaeesnaeeenneeas 78
| T 070 L Te] (U UROPR 80
L2 CONAItION WHET....ccuiiiiieiiicieeie ettt ettt et ebe e st e e b e e ssbeenssaaessbeeessnaeesnseeas 84
| 1 13 (<SPPSR 88
Les operations arithimMEtIQUES.........eeouvieiierieeiieriie ettt esite ettt ettt e saeebeeseaeesnsaeeesnsaeeenseeens 91
LLES ROLES. ...ttt ettt ettt e ab e et e ettt e e bt e e e a bt e e eab e e e abeeeeabeeebbeeeasbeeeseaannee 93
PrESEITATION. ... eeeiiieiieeiie ettt ettt et ettt e e e bt e s b e et eeeabeesbeessbeensaessseenseessseensaennseenseennses 95
Structure et eXECUtiON d'UN TOIE.......ccuviiiiiiieiiieeciie et e e e s e e e e eseaaaeeeeeenenns 96
Les INCIUAE €t L85 TMPOTL......vieiieiiieiieeiieiee ettt ettt et ebeesteeesbe e taeesbeenseesnseeeensneeas 98
855 101 0) [(S (o) (TSP 105
Un exemple de role avec des INCIUSIONS.iiiuieriiiiieiieeieeeie ettt et e s eaeeeseeraeeenes 107
FONCTIONNALITES AVANCEES.....c.c..uttiitttiiiiteeite ettt et e ettt e ettt e s et e sbteesabteesabteeeabeeseaaeessnbteeeeseanseees 111
| B v T4 PUPPRURTPPPRN 113
La visualisation d'un playbOoK..........cccuieeuiiiiiieiiiie ittt stee et eesaeeeaaeeenaeeenaeens 115
(€ 211 1 g & 1o OO PSPPSR UPRPPPRURTRPO 116
La délégation par dElEGAte L0........cceiiiiieiiiieeiiie et et e et e eiee e steeesete e e eaeeeeaeessaeeeeeensnseeeaeennns 118
LS PIE € POSE tASKS....eeuvieiiieiieeie ettt ettt ettt e et e et e ebeetaeesbe e seeebe e aaeennaeeeennaeeens 122
L& MOt CLET TUN ONCE.....eiiiiieeiiiecie ettt ettt e e e ta e e eraae e e nnsaeaeeeennnnns 123
L& PATallElISIMIC. ... eieiiieiieeiieeie ettt ettt ettt e et e et e et esabe e teeesbeebeeenbeesaeeabeeene 124
Le traitement aVeC SETIAL........cccuiiiiiieiiiieeie ettt e e e et e e et e s b e e sbe e e eab e e e sabaeeeeeennrnaeas 125

© 2018 Copyright Spherius — vers 1.1 2/159

ANSIBLE
ANY_CITOTS TALAL....ceiiiiiiiiiieee ettt e e st e e st e et ae e b e e e e e ennnnaaeeens 127
LS DIOCKS. .ttt ettt ettt ettt e bt e e hb e et esateenbe e e entbeeeenneeeeennes 129
La connexion avec Un QULTe COMPLE.......ccruveeerureeeireeeiireeeireesieeesseeenseeenssaeensnseeeessssssseeesssnnssees 132
| BT o) (0211] o OO PSSP PR PURUPPRRR 134
Le fichier d'inventaire dynamique €t teMPOTAITE.eeerureeerreeeriieeeireeeieeeeieeesaeeenrreeeesennreeeas 135
1] A ¢ To1 T PSSRSO RPSP 139
La création dun mMOAUIE..........ccoviiiiiiieiecee et 141
COMPLEMENTS. ...ttt ettt et et st et e e bt et esat e et e e bt e eabeesbe e e et e e aeeeaseenbeeeabeenbeeeaneeesaneeeenanee 147
AnSible Vault €t I'eNCTYPLAZE.veeiiiieiiie ettt e et e e e e e sntaaaeeeennenes 149
ANSIDIE GAIAXY...neiiiiieiie ettt ettt ettt e bt et e et e st e eabeeeab e e e ennbaeeenteeeennaeeen 155
FIN DU SUPPORT DE COURS......uuutiiiiiiiiiieniteeniiteeeitteeeitee ettt e ettt e sbteesaseeesatteessseeesaneeebteeesanbnaeeeeaaanne 159

© 2018 Copyright Spherius — vers 1.1 3/159

ANSIBLE

Ce document est sous Copyright :

Toute reproduction ou diffusion, méme partielle, a un tiers est interdite sans autorisation écrite
de Sphérius. Pour nous contacter, veuillez consulter le site web http://www.spherius.fr.

Les logos, marques et marques déposées sont la propriété de leurs détenteurs.
Les auteurs de ce document sont :
- Monsieur Baranger Jean-Marg,

- Monsieur Schomaker Theo.

La version d'Ansible utilisée pour les commandes de ce support de cours est :

Ansible 2.4 et Ansible 2.5

Les références sont : les documents disponible sur le site web d'Ansible et de RedHat.

© 2018 Copyright Spherius — vers 1.1 4/159

ANSIBLE

Présentation d'Ansible

Dans ce chapitre, nous allons présenter les principes et les concepts d'Ansible.

© 2018 Copyright Spherius — vers 1.1 5/159

oooooooo

ANSIBLE

Présentation d'Ansible

Introduction et concepts

© 2018 Copyright Spherius — vers 1.1

6/159

ANSIBLE

Présentation d'Ansible

Introduction et concepts

* Simple Puissant Sans agent

* Automatise le déploiement, la configuration, |la gestion, la maintenance
de toute votre infrastructure

* Opérations en parallele et simultanément
sur toutes les machines de votre parc

* YAML Module Playbook

Introduction et concepts

Ansible est un outil de gestion de parc de machines sous licence GNU GPL.

Il automatise le déploiement, la configuration, la gestion et la maintenance de toute votre
infrastructure. Ces opérations peuvent se faire en paralléle et simultanément sur toutes les
machines de votre parc.

Ansible est une solution compléete et robuste qui reste assez simple a prendre « en main ».

Ci-dessous une présentation issue du site d'Ansible :

Ansible est une solution d'automatisation informatique que vous pouvez apprendre rapidement. Il

est assez simple pour tous les membres de votre équipe informatique, mais suffisamment puissant
pour automatiser les déploiements les plus complexes. Ansible gére les taches répétitives, donnant
a votre équipe plus de temps pour se concentrer sur l'innovation.

Avec Ansible vous pouvez commencer a faire du vrai travail en quelques minutes grace a son
langage simple et lisible. Ses puissantes fonctionnalités permettent I'orchestration de I'ensemble
du cycle de vie de votre application, quel que soit I'emplacement du déploiement. L'architecture
sans agent d'Ansible signifie que c'est une chose de moins a gérer en terme de sécurité.

© 2018 Copyright Spherius — vers 1.1 7/159

ANSIBLE

Ansible est un moteur d'automatisation informatique radicalement simple qui automatise
I'approvisionnement en cloud, la gestion de la configuration, le déploiement d'applications,
I'orchestration intra-service et de nombreux autres besoins informatiques.

Congu pour les déploiements a plusieurs niveaux depuis le premier jour, Ansible modélise votre
infrastructure informatique en décrivant comment tous vos systemes interagissent, plutot que de
gérer un seul systeme a la fois.

Il n'utilise aucun agent et aucune infrastructure de sécurité personnalisée supplémentaire, il est
donc facile a déployer - et surtout, il utilise un langage trés simple (YAML, sous la forme d'Ansible
Playbooks) qui vous permet de décrire vos taches d'automatisation.

Ansible fonctionne en se connectant a vos nceuds et en poussant de petits programmes, appelés
"Modules Ansible". Ces programmes sont écrits pour étre des modeles de ressources de |'état
souhaité du systéme. Ansible exécute ensuite ces modules (via SSH par défaut) et les supprime une
fois terminé.

Votre bibliothéque de modules peut résider sur n'importe quel ordinateur et aucun serveur,
démon ou base de données n'est requis. En regle générale, vous travaillez avec votre systéme
d'exploitation préféré, un éditeur de texte et probablement un systeme de contrdle de versions
pour suivre les modifications apportées a votre contenu.

© 2018 Copyright Spherius — vers 1.1 8/159

ANSIBLE

Notes

© 2018 Copyright Spherius — vers 1.1 9/159

ANSIBLE

Installation d'Ansible

Dans ce chapitre, nous allons installer Ansible sur Linux.

© 2018 Copyright Spherius — vers 1.1 10/159

oooooooo

ANSIBLE

Installation d'Ansible

* Pré-requis
* |nstallation sous Redhat
* Installation avec pip

« Echange de clefs SSH

© 2018 Copyright Spherius — vers 1.1

11/159

ORMATION A N S I B LE

Installation d'Ansible

Pré-requis

* version de python >=2.6

* acces aux dépots

Pré-requis
Ansible nécessite une version de python supérieure a 2.6.

Version de python

python --version
Python 2.7.5

L'installation se fait soit a partir de dép6ts logiciels soit a partir de sources.

© 2018 Copyright Spherius — vers 1.1 12/159

ANSIBLE

Installation d'Ansible

Installation sous RedHat

Installer le Dépo6t EPEL (Extra Package Entreprise Linux)

Installer Ansible avec yum

Vérification

Installation sous RedHat

Les packages qui sont nécessaires sont localisés sur le dépot EPEL. L'une des méthodes ci-dessous
permet de l'installer.

wget http://dl.fedoraproject.org/pub/epel/epel-release-latest-
7 .noarch.rpm
rpm -ivh epel-release-latest-7.noarch.rpm

Ou
yum install epel-release

L'installation d'Ansible se fait via la commande suivante :

yum install -y ansible

Vérification :
Une fois installée la configuration de base se trouve dans le fichier /etc/ansible.

1ls /etc/ansible/

ansible.cfg hosts roles

Pour tester l'installation ou connaitre la version d'Ansible :
ansible --version

© 2018 Copyright Spherius — vers 1.1 13/159

ANSIBLE

Installation d'Ansible

Installation avec pip

* Installer pip

© easy_install pip

* Installer Ansible

o pip install ansible

Installation avec pip

PIP est un acronyme récursif pour PIP Installs Package ou PIP installs Python. C'est un utilitaire
utilisé pour installé des packages python. Il gére notamment les dépendances python.

easy install pip

Une fois pip installé , il ne reste plus qu'a installer Ansible.

pip install ansible
Collecting ansible
Downloading ansible-2.4.3.0.tar.gz (6.5MB)

100% |=——————eecmecec=ceeeesseeee=ee== | 6.5MB 199kB/s

Collecting PyYAML (from ansible)
Downloading PyYAML-3.12.tar.gz (253kB)

100% [=———————c=coosoosoososoeoosssoo= | 256kB 3.5MB/s
Requirement already satisfied: cryptography in /usr/lib/python2.7/dist-packages (from
ansible)

Collecting jinja2 (from ansible)
Downloading Jinja2-2.10-py2.py3-none-any.whl (126kB)

100% |=——————eecmecec=ceeeesseeee=ee== | 133kB 7.9MB/s
Collecting paramiko (from ansible)

Downloading paramiko-2.4.0-py2.py3-none-any.whl (192kB)

100% [=———————c=coosoosoososoeoosssoo= | 194kB 5.7MB/s
Requirement already satisfied: setuptools in /usr/lib/python2.7/dist-packages (from
ansible)

Collecting MarkupSafe>=0.23 (from jinja2->ansible)
Downloading MarkupSafe-1.0.tar.gz
Collecting pynacl>=1.0.1 (from paramiko->ansible)
Downloading PyNaCl-1.2.l-cp27-cp27mu-manylinuxl i1686.whl (659kB)
100% |=—reeeeeccesssmmosossssssmommmm= | 665kB 1.4MB/s

© 2018 Copyright Spherius — vers 1.1 14/159

ANSIBLE

Requirement already satisfied: pyasnl>=0.1.7 in /usr/lib/python2.7/dist-packages (from

paramiko->ansible)
Collecting bcrypt>=3.1.3 (from paramiko->ansible)
Downloading bcrypt-3.1.4-cp27-cp27mu-manylinuxl i686.whl (58kB)
100% [=——c——s—osoemsmesoososmemosossm= | 61kB 9.7MB/s
Requirement already satisfied: six in /usr/lib/python2.7/dist-packages (from
pynacl>=1.0.l->paramiko->ansible)
Collecting cffi>=1.4.1 (from pynacl>=1.0.l->paramiko->ansible)
Downloading cffi-1.11.4-cp27-cp27mu-manylinuxl 1686.whl (382kB)
100% |=———————c=ccc=ocsscmosoooosssoe= | 389kB 3.2MB/s
Collecting pycparser (from cffi>=1.4.1->pynacl>=1.0.l1->paramiko->ansible)
Downloading pycparser-2.18.tar.gz (245kB)
100% [=——c——s—osoemsmesoososmemosossm= | 256kB 4.6MB/s
Installing collected packages: PyYAML, MarkupSafe, jinja2, pycparser, cffi, pynacl,
bcrypt, paramiko, ansible

Running setup.py install for PyYAML ... done
Running setup.py install for MarkupSafe ... done
Running setup.py install for pycparser ... done
Running setup.py install for ansible ... done

Successfully installed MarkupSafe-1.0 PyYAML-3.12 ansible-2.4.3.0 bcrypt-3.1.4 cffi-
1.11.4 jinja2-2.10 paramiko-2.4.0 pycparser-2.18 pynacl-1.2.1

© 2018 Copyright Spherius — vers 1.1

15/159

ANSIBLE

Installation d'Ansible
Echange de clefs SSH

* Génération de clefs : ssh-keygen
ssh-keygen -t rsa

* Envoi de la clef publique sur les machines distantes.
ssh-copy-id -i /root/.ssh/id rsa.pub 192.168.1.10

Echange de clefs SSH

Ansible utilise des clefs SSH pour communiquer avec les autres machines. Il faut d'abord les
générer puis les envoyer sur les serveurs a administrer.

Création de la paire de clefs RSA :

ssh-keygen -t rsa

Les clefs sont créées et disponibles au sein du répertoire /root/.ssh.

La clef privée est le fichier id_rsa, a ne pas diffuser.

La clef publique est le fichier id_rsa.pub. C'est ce fichier que I'on diffuse et qui est stocké dans le
fichier authorized_keys de |'utilisateur du poste distant (SHOME/.ssh/authorized_keys).

Envoi de la clef publique sur les serveurs distants :

ssh-copy-id -i /root/.ssh/id rsa.pub 192.168.1.10
ssh-copy-id -i /root/.ssh/id rsa.pub 192.168.1.11
ssh-copy-id -i /root/.ssh/id rsa.pub 192.168.1.13

Envoi de la clef publique sur un serveur distant pour ['utilisateur userl :

ssh-copy-id -i /root/.ssh/id rsa.pub userl@192.168.1.10

© 2018 Copyright Spherius — vers 1.1 16/159

ANSIBLE

Notes

© 2018 Copyright Spherius — vers 1.1 17/159

oooooooo

ANSIBLE

Configuration et
utilisation d'Ansible

Dans ce chapitre, nous allons effectuer nos premiers pas avec Ansible.

© 2018 Copyright Spherius — vers 1.1 18/159

oooooooo

ANSIBLE

Configuration et utilisation d'Ansible

* Le répertoire /etc/ansible
e Les modules Ansible
* Test de la connectivité

e Le fichier d'inventaire

© 2018 Copyright Spherius — vers 1.1

19/159

ANSIBLE

Configuration et utilisation d'Ansible

Le répertoire /etc/ansible

tree /etc/ansible

/etc/ansible

-— ansible.cfg fichier de configuration

-— hosts fichier d'inventaire par défaut
_— roles répertoires pour les rdles

Le répertoire /etc/ansible

Suite a l'installation d'Ansible, le répertoire /etc/ansible contiendra deux fichiers de paramétrage
et un répertoire roles.

tree /etc/ansible

/etc/ansible
ansible.cfg fichier de configuration
hosts fichier d'inventaire par défaut
roles répertoires pour les rdles

La configuration d'Ansible est stockée dans /etc/ansible/ansible.cfg.

Le fichier hosts contient les serveurs a administrer. Il contient des exemples commentés de
déclaration de serveurs ou de groupes de serveurs.

Le répertoire roles est vide pour l'instant.
Il contiendra les roles qui permettront d'inclure des dépendances de taches.

© 2018 Copyright Spherius — vers 1.1 20/159

ANSIBLE
Le fichier de configuration :
more /etc/ansible/ansible.cfg
config file for ansible -- https://ansible.com/
#
nearly all parameters can be overridden in ansible-playbook
or with command line flags. ansible will read ANSIBLE CONFIG,
ansible.cfg in the current working directory, .ansible.cfg in
the home directory or /etc/ansible/ansible.cfg, whichever it
finds first
[defaults]
some basic default values...
#inventory = /etc/ansible/hosts
#library = /usr/share/my modules/

#module utils
#remote tmp

/usr/share/my module utils/
~/.ansible/tmp

#local tmp = ~/.ansible/tmp
#forks =5

#sudo_user = root

#ask sudo pass = True

Le fichier /etc/ansible/ansible.cfg contient la configuration principale d'Ansible. Il définit le

comportement par défaut. Par exemple, il indique quel fichier (inventory=) va contenir la liste des
hotes a contrdler avec Ansible.

Dans I'ordre de sollicitation, le fichier de configuration utilisé est défini par :

— lavariable d'environnement ANSIBLE_CONFIG,
— le fichier ansible.cfg dans le répertoire courant,

— le fichier .ansible.cfg du répertoire de connexion de I'utilisateur,

— le fichier /etc/ansible/ansible.cfg.

ansible-config view

config file for ansible -- https://ansible.com/

#

nearly all parameters can be overridden in ansible-playbook
or with command line flags. ansible will read ANSIBLE CONFIG,
ansible.cfg in the current working directory, .ansible.cfg in
the home directory or /etc/ansible/ansible.cfg, whichever it
finds first

[defaults]

some basic default values...

#inventory = /etc/ansible/hosts

#library = /usr/share/my modules/

#module utils = /usr/share/my module utils/

#remote tmp = ~/.ansible/tmp

#local tmp = ~/.ansible/tmp

#forks =5

#poll interval = 15

#sudo_user = root

#remote port = 22

#module lang =C

© 2018 Copyright Spherius — vers 1.1

21/159

ANSIBLE

Le fichier d'inventaire :

Le fichier /etc/ansible/hosts est le fichier d'inventaire d'Ansible, il contient la liste des machines

sous le contréle d'Ansible. Elles peuvent étre rassemblées par groupes.

more /etc/ansible/hosts

[spherius servers] # nom du groupe de serveurs

deb server # machines constituant le groupe
Cent0S6.5

Cent0S7.1

[centos servers]
Cent0S6.5
Cent0S7.1

[spherius hosts]

hotel
hote2

Le répertoire roles :

Le répertoire roles est vide pour l'instant. Il contiendra les réles qui permettront d'inclure des
dépendances de taches. Ce point est développé plus tard dans ce support.

© 2018 Copyright Spherius — vers 1.1

22/159

ANSIBLE

Configuration et utilisation d'Ansible

Les modules Ansible

e http://docs.ansible.com/ansible/latest/modules.html

* http://docs.ansible.com/ansible/latest/list of all modules.html

ansible-doc -1

ansible-doc nom module

Les modules Ansible
Un module Ansible est écrit en Python.
Les modules permettent d'effectuer des taches sur les serveurs.

Le site d'Ansible fournit des informations sur les modules, ainsi que les mots clefs exploitables
pour un module et des exemples.

* http://docs.ansible.com/ansible/latest/modules.html

* http://docs.ansible.com/ansible/latest/list_of all modules.html

Il est fortement recommandé de se référer régulierement aux informations de ce site.
En plus de la documentation de tous les modules, le site d'Ansible présente de maniere détaillée
les nouvelles fonctionnalités.

© 2018 Copyright Spherius — vers 1.1 23/159

http://docs.ansible.com/ansible/latest/list_of_all_modules.html
http://docs.ansible.com/ansible/latest/modules.html
http://docs.ansible.com/ansible/latest/list_of_all_modules.html
http://docs.ansible.com/ansible/latest/modules.html

e
ANSIBLE

0 snvesas v x| ===

e @ v @ || Q Rechercner m Peo =

ANSIBLEFEST ~ PRODUCTS COMMUNITY WEBINARS & TRAINING

@ Documentation

Docs » All Modules

For previous versions, see the All Modules

documentation archive.

a10_server - Manage A10 Networks AX/SoftAX/Thunder/vThunder devices’ server object.
a10_server_axapi3 - Manage A10 Networks AX/SoftAX/Thunder/vThunder devices
210 _service_group - Manage A10 Networks AX/SoftAX/Thunder/vThunder devices service groups.

210 _virtual_server - Manage A10 Networks AX/SoftAX/Thunder/vThunder devices' virtual servers.

accelerate **(D)** - Enable accelerated mode on remote node

aci_aep - Manage attachable Access Entity Profile (AEP) on Cisco ACI fabrics (infra:AttEntityP)

aci_ap - Manage top level Application Profile (AP) objects on Cisco ACI fabrics (fv:Ap)
Module Index

aci_bd - Manage Bridge Domains (BD) on Cisco ACI Fabrics (fv:BD)

aci_bd_subnet - Manage Subnets on Cisco ACI fabrics (fv:Subnet)
aci_bd_to_l3out - Bind Bridge Domain to L3 Qut on Cisco ACI fabrics (fv:RsBDToOut)
aci_config rollback - Provides rollback and rollback preview functionality for Cisco ACI fabrics (config:importP)

All Modules

Cloud Modt

aci_config_snapshot - Manage Config Snapshots on Cisco ACI fabrics (config:Snapshot, config:ExportP)

aci_contract - Manage contract resources on Cisco ACI fabrics (vz:BrCP)

aci_contract_subject - Manage initial Contract Subjects on Cisco ACI fabrics (vz:Subj)

kil aci_contract_subject_to_filter - Bind Contract Subjects to Filters on Cisco ACI fabrics (vz:RsSubjFiltAtt)

aci_epg - Manage End Point Groups (EPG) on Cisco ACI fabrics {fv:AEPg)

Files Modules

aci_epg_monitoring_policy - Manage monitoring policies on Cisco ACI fabrics (mon:EPGPol)

ldentity Modules

aci_epg to_contract - Bind EPGs to Contracts on Cisco ACI fabrics (fv:RsCons and fv:RsProv)

aci_epg_to_domain - Bind EPGs to Domains on Cisco ACI fabrics (fv:RsDomAtt)

Inventory Modules

aci_filter - Manages top level filter objects on Cisco ACI fabrics (vz:Filter)

aci_filter_entry - Manage filter entries on Cisco ACI fabrics (vz:Entry)

aci_intf_policy_fc - Manage Fibre Channel interface policies on Cisco ACI fabrics (fc:ifPal)

aci_intf_policy_|2 - Manage Layer 2 interface policies on Cisco ACI fabrics (12:1fPol)

Network Modules

aci_intf_policy_lldp - Manage LLDP interface policies on Cisco ACI fabrics (lldp:IfPol)
itf_policy_mcp - Manage MCP interface policies on Cisco ACI fabrics (mep:IfPol)

Notification Mot

aci_intf_policy_port_channel - Manage port channel interface policies on Cisco ACI fabrics (lacp:LagPol)

aci_intf_policy_port_security - Manage port security on Cisco ACI fabrics {12:PortSecurityPol) Q Search th

La commande ansible-doc fournit des informations en ligne de commande sur les modules et les
plugins utilisables par Ansible.

L'option -l liste tous les plugins disponibles :

ansible-doc -1

al0 server Manage Al10 Networks AX/SoftAX/Thunder/vThunder devices' server object.
al0 server axapi3 Manage Al0 Networks AX/SoftAX/Thunder/vThunder devices

al0_service group Manage Al0 Networks AX/SoftAX/Thunder/vThunder devices' service groups.

Le nombre de plugins disponibles dépend de la version d'Ansible.

ansible-doc -1 | we -1
1652

© 2018 Copyright Spherius — vers 1.1 24/159

ANSIBLE

La documentation relative a un plugin se fait par un appel via le nom du plugin :

ansible-doc acl
> ACL (/usr/lib/python2.7/site-packages/ansible/modules/files/acl.py)

Sets and retrieves file ACL information.
OPTIONS (= is mandatory) :

- default

if the target is a directory, setting this to yes will make it the default acl
for entities created inside the

directory. It causes an error if path is a file.

(Choices: yes, no) [Default: False]

version added: 1.5

L'option -t permet de spécifier le type de plugin . Par défaut, c'est le type module qui est utilisé.

ansible-doc -t module acl
> ACL (/usr/lib/python2.7/site-packages/ansible/modules/files/acl.py)

Sets and retrieves file ACL information.

OPTIONS (= is mandatory) :

L'option -s permet d'avoir des informations sur |'utilisation du module a l'intérieur d'un playbook :

ansible-doc -s acl
- name: Sets and retrieves file ACL information.
acl:

default: # if the target is a directory, setting this to yes will

make it the default acl for entities created inside the directory.
It causes an error if path is a file.

entity: # actual user or group that the ACL applies to when matching

entity types user or group are selected.

© 2018 Copyright Spherius — vers 1.1 25/159

ANSIBLE

Configuration et utilisation d'Ansible

Test de la connectivité

* Utilisation du module ping sur tous les serveurs
ansible -m ping all

* Spécifier une liste de machines

ansible -m ping CentOS7.1 server:hotel:deb_server

* Exclure des machines

ansible -m ping 'spherius_servers:!Cent0S6.5'

Test de la connectivité

Test du module (option -m) ping sur tous les serveurs déclarés (mot clef all) dans ansible.

ansible -m ping all

deb server | SUCCESS => {
"changed": false,
"ping": "pong"

}

CentO0S7.1 server | SUCCESS => ({
"changed": false,
"ping": "pong"

}

Cent0S6.5 server | SUCCESS => {
"changed": false,
"ping": "pong"

}

hote2 | UNREACHABLE! => {
"changed": false,
"msg": "Failed to connect to the host via ssh: ssh: Could not resolve hostname hote2:

Name or service not known\r\n",
"unreachable": true

}

hotel | UNREACHABLE! => {
"changed": false,
"msg": "Failed to connect to the host via ssh: ssh: Could not resolve hostname hotel:

Name or service not known\r\n",
"unreachable": true

}

Les messages d'erreurs sont normaux. Les hotes hotel et hote2 ne sont pas démarrés et les clefs
ssh n'ont pas été échangées. Si tout va bien la réponse est pong.

© 2018 Copyright Spherius — vers 1.1 26/159

ANSIBLE

L'option --one-line permet d'avoir I'affichage sur une seule ligne.

ansible -m ping all --one-line

deb server | SUCCESS => {"changed": false, "ping": "pong"}
Cent0S6.5 server | SUCCESS => {"changed": false, "ping": "pong"}
Cent0S7.1 server | SUCCESS => {"changed": false, "ping": "pong"}

hotel | UNREACHABLE!: Failed to connect to the host via ssh: ssh: connect to host hotel
port 22: No route to host

hote2 | UNREACHABLE!: Failed to connect to the host via ssh: ssh: connect to host hote2
port 22: Connection timed out

Le mot clef all peut étre remplacé par n'importe quel nom de machine ou de groupe de machines.

ansible spherius_servers -m ping

deb server | SUCCESS => {
"changed": false,
llping": llpong"

}

Cent0S6.5 server | SUCCESS => {
"changed": false,
llping": llpong"

}

Cent0S7.1 server | SUCCESS => ({
"changed": false,

"ping": upongn

ansible CentOS7.1_server -m ping
CentO0S7.1 server | SUCCESS => ({

"changed": false,

"ping": "pong"

Le caractére : permet de spécifier une liste.

ansible CentOS7.1_server:hotel:deb_server -m ping
deb server | SUCCESS => {
"changed": false,
"ping": "pong"
}
CentO0S7.1 server | SUCCESS => ({
"changed": false,
"ping": "pong"
}
hotel | UNREACHABLE! => {
"changed": false,
"msg": "Failed to connect to the host via ssh: ssh: Could not resolve hostname hotel:
Name or service not known\r\n",
"unreachable": true

}
Le caractere ! Permet de signifier I'exclusion (les simples quotes sont indispensables).

ansible 'spherius_servers:!Cent0S6.5' -m ping
deb server | SUCCESS => {
"changed": false,
"ping": "pong"
}
Cent0S7.1 | SUCCESS => {
"changed": false,

"ping": upong"

© 2018 Copyright Spherius — vers 1.1 27/159

ANSIBLE

e /etc/ansible/hosts

* L'option -i

Configuration et utilisation d'Ansible

Le fichier d'inventaire

ansible all -i mon_inventaire.inv -m ping

* Une simplification d'écriture : poste[5:15]

* Pour lister les machines : --list-hosts

* Pour lister les machines avec leur groupe : -m debug -a
ungrouped

* Pour afficher la valeur d'une variable : -m debug -a

ansible-inventory all -i moninventaire.inv
ansible-inventory all -i moninventaire.inv

"var=groups"

"var=nom_variable"

--graph --vars
--list

Le fichier d'inventaire

Le fichier d'inventaire contient la liste des machines sous le controle d'Ansible. Elles peuvent étre

rassemblées par groupes.

Le fichier d'inventaire par défaut est : /etc/ansible/hosts

more /etc/ansible/hosts

[spherius servers] # nom du groupe de serveurs

deb server # machines constituant le groupe
Cent0S6.5

Cent0S7.1

[centos servers]
Cent0S6.5
Cent0S7.1

[spherius hosts]

hotel
hote2

ansible all -m ping

© 2018 Copyright Spherius — vers 1.1

28/159

ANSIBLE

Un fichier d'inventaire spécifique :

Il est possible d'utiliser d'autres fichiers comme fichier d'inventaire. Il sera nécessaire d'utiliser

I'option « -i » pour référencer ce fichier.

ansible

all

-i mon inventaire.inv -m ping

cat mon_inventaire.inv

clientl
client2

Une simplification d'écriture :

poste[5:15]

cat moninventaire.inv

clientl
client2

[domainel]
postel
poste?2
poste3

[domaine?2]
posted
posteb5
posteb

Pour lister les machines :

ansible

hosts (8):

clientl
client2
posted
posteb
posteb
postel
poste2
poste3

ansible

hosts (3):

postel
poste2
poste3

pour définir les machines poste5 a postel5

est équivalent a
client[1:2]

[domainel]
poste[1l:3]

[domaine?2]

poste[4:6]
--list-hosts
all -i moninventaire.inv --list-hosts
domainel -i moninventaire.inv --list-hosts

© 2018 Copyright Spherius — vers 1.1

29/159

ANSIBLE
Pour lister les machines avec leurs groupes : -m debug -a "var=groups"
all représente la liste de toutes les machines au sein du fichier d'inventaire.

ungrouped représente la liste des machines associées a aucun groupe.

ansible 1localhost -i moninventaire.inv -m debug -a "var=groups"
localhost | SUCCESS => {
"groups": {

"all"™: [
"clientl",
"client2",
"posted",
"posteb",
"posteb",
"postel",
"poste2",
"poste3"

1,

"domainel": [
"postel",
"poste2",
"poste3"

1,

"domaine2": [
"posted",
"posteb",
"posteo"

1,

"ungrouped": [
"clientl",
"client2"

© 2018 Copyright Spherius — vers 1.1 30/159

ANSIBLE

Un exemple plus complet :

cat moninventaire.inv
postel
poste?2

[all:vars]
ansible user=root

[deb servers]
deb serverl
deb server2

[domainel]

apachel apache url=intra.domaine http port=80 https port=443
mysqgll

centos 6.5 ansible user=userl

centos 7.1

[linux:children]
domainel
deb servers

[linux:vars]
ntp server=0.fr.pool.ntp.org

[windows]
serveurl
basededonneel

[windows:vars]
ansible connection=winrm
ansible user=Administrator

ansible all -i moninventaire.inv --list-hosts

hosts (10):
postel
poste2
serveurl
basededonneel
apachel
mysqgll
centos 6.5
centos 7.1
deb serverl
deb server2

ansible localhost -i moninventaire.inv -m debug -a "var=groups"
localhost | SUCCESS => {
"groups": {
"all" . [
"postel",
"poste2",
"serveurl",
"basededonneel",
"apachel",
"mysqllll 0
"centos 6.5",
"centos 7.1",
"deb serverl",
"deb server2"
i
"deb servers": [
"deb serverl",

© 2018 Copyright Spherius — vers 1.1 31/159

ANSIBLE

"deb server2"

1,

"domainel": [
"apachel",
"mysqll" ,
"centos 6.5",
"centos 7.1"

1,

"linux": [
"apachel",
"mysqll" ,
"centos 6.5",
"centos 7.1",
"deb serverl",
"deb server2"

1,

"ungrouped": [
"postel",
"poste2"

1,

"windows": [
"serveurl",
"basededonneel"

Pour afficher la valeur d'une variable spécifique : -m debug -a "var=nom_variable"

ansible all -i inventaire.inv -m debug -a "var=ansible user" --one-line
postel | SUCCESS => { "ansible user": "root", "changed": false}

serveurl | SUCCESS => { "ansible user": "Administrator", "changed": false}
poste2 | SUCCESS => ({ "ansible user": "root", "changed": false}

apachel | SUCCESS => { "ansible user": "root", "changed": false}

basededonneel | SUCCESS => { "ansible user": "Administrator", "changed": false}
mysgll | SUCCESS => { "ansible user": "root", "changed": false}

centos_7.1 | SUCCESS => { "ansible user": "root", "changed": false}

centos 6.5 | SUCCESS => { "ansible user": "userl", "changed": false}

deb serverl | SUCCESS => { "ansible user": "root", "changed": false}

deb server2 | SUCCESS => { "ansible user": "root", "changed": false}

© 2018 Copyright Spherius — vers 1.1 32/159

ANSIBLE

La commande ansible-inventory

ansible-inventory all
@all:
| -—@domainel:
| | -—basededonneel
| |--deb clientl
| |--deb client2
| | -—serveurl
|-—-@linux:
| | -—@debian:
| | |--deb clientl
| \ | -—deb client2
| |--Q@domaine2:
| \ | -—apachel
| \ | -—centos_ 6.5
| | |--centos 7.1
| \ | -—-mysqgll
| -—@ungrouped:
| -—@windows:
| | -—basededonneel
| | -—serveurl

-i inventaire.inv

Pour un affichage avec les variables :

ansible-inventory all
@all:

| -—Q@domainel:

| | -—basededonneel

| -—deb clientl

|==clely_eliecmt?2

| -—serveurl
--Q@linux:

| -——Q@debian:

| |--deb clientl

\ |-—deb client2

| -—@domaine?2:

| -—apachel

|--centos 6.5
| |=={angible uger =
|--centos 7.1
| | ——mysqgll
--@ungrouped:
-—-Qwindows:
| -—basededonneel
| -—serveurl
|--{ansible connection =

-—{ansible user = root}

-i moninventaire.inv

\

| | |--{apache url = intra.domaine}
\ | | --{http_port = 80}

| | |--{https port = 443}
\

\

\

userl}

winrm}

|--{ansible user = Administrator}

--graph

--graph

——-vars

Il existe évidemment d'autres options, telle que « --list » pour un affichage détaillé.

ansible-inventory all

-i moninventaire.inv

--list

© 2018 Copyright Spherius — vers 1.1

33/159

ANSIBLE

Notes

© 2018 Copyright Spherius — vers 1.1 34/159

ANSIBLE

Les commandes et les

modules de base
Ansible

Dans ce chapitre, nous allons étudier l'utilisation des modules Ansible.

© 2018 Copyright Spherius — vers 1.1 35/159

oooooooo

ANSIBLE

Les commandes et les modules de base Ansible

* Les modules command et shell
* Le transfert de fichiers

* La gestion des packages

* La gestion des utilisateurs

* La gestion des services

* Le module setup

© 2018 Copyright Spherius — vers 1.1

36/159

ANSIBLE

e Le module command Le module shell

Les commandes et les modules de base Ansible

Les modules command et shell

* http://docs.ansible.com/ansible/latest/command module.html

e http://docs.ansible.com/ansible/latest/shell module.html

ansible-doc command

ansible-doc shell

Les modules command et shell

Ansible permet d'exécuter directement des commandes sur les hotes.

Le module command :

C'est le module par défaut.

C'est une maniére d'exécuter ponctuellement des commandes sur un groupe de machines.

Pour une exécution récurrente, les commandes seront exécutées via un Playbook.

ansible spherius_servers -a "/usr/bin/uptime”
ou
ansible spherius_servers -m command -a "/usr/bin/uptime"

deb server | SUCCESS | rc=0 >>
15:33:45 up 0 min, 1 user, load average: 0,58, 0,20, 0,07

Cent0S6.5 | SUCCESS | rc=0 >>
15:33:28 up 2 min, 1 user, load average: 0.52, 0.36, 0.14

Cent0S7.1 | SUCCESS | rc=0 >>
15:33:33 up 2 min, 2 users, load average: 0,50, 0,40, 0,16

Pour obtenir la documentation sur le module command :

ansible-doc command

© 2018 Copyright Spherius — vers 1.1

37/159

http://docs.ansible.com/ansible/latest/shell_module.html
http://docs.ansible.com/ansible/latest/command_module.html

ANSIBLE

Le module shell :

Le module command n'intégre pas les syntaxes spécifiques du shell comme les redirections, les

pipes et le point virgule. Pour utiliser ces fonctionnalités, il faut appeler le module shell.

ansible all -m shell -a "/bin/echo test ansible > /tmp/ans_test"
deb server | SUCCESS | rc=0 >>

Cent0S6.5 | SUCCESS | rc=0 >>

Cent0OS7.1 | SUCCESS | rc=0 >>
ansible all -m shell -a "date ; cd /tmp ; touch fic ; date"
ansible all -m shell -a "who | wc -1 > /tmp/solution"

Pour obtenir la documentation sur le module shell :

ansible-doc shell

© 2018 Copyright Spherius — vers 1.1

38/159

ANSIBLE

* Le module copy Le module file

» Utilise scp pour transférer les fichiers

e http://docs.ansible.com/ansible/latest/copy module.html

* http://docs.ansible.com/ansible/latest/file module.html

ansible-doc copy

ansible-doc file

Les commandes et les modules de base Ansible

Le transfert de fichiers

Le transfert de fichiers

Le module copy :

Le module copy permet de transférer des fichiers a plusieurs hotes. Les fichiers sont copiés a
I'identique sur la destination.

ansible-doc copy

Le mot clef src indique le fichier source a copier.
Le mot clef dest indique la destination sur le poste client.

Copie du fichier /etc/passwd :
ansible all -m copy -a "src=/etc/passwd dest=/tmp/password"
deb server | SUCCESS => {

"changed": true,

"checksum": "43ebe41a57d0dbed7727d6434b4a783a%bf3f67e",

"dest": "/tmp/password",

"gid": O,

"group": "root",

"md5sum": "56a44958597ad6b61bc0c748£1d17d4b",

"mode": "0644",

"owner": "root",

"size": 2157,

"src": "/root/.ansible/tmp/ansible-tmp-1517930992.29-201300349940166/source",
"state": "file",

"uid": O

}
Cent0S6.5 | SUCCESS => ({
"changed": true,

© 2018 Copyright Spherius — vers 1.1

39/159

http://docs.ansible.com/ansible/latest/file_module.html
http://docs.ansible.com/ansible/latest/copy_module.html

ANSIBLE

"checksum": "43ebe41a57d0dbed7727d6434b4a783a9%bf3f67e",

"dest": "/tmp/password",
"gid": O,
"group": "root",
"md5sum": "56a44958597ad6b6lbc0c748£1d17d4b",
"mode": "0644",
"owner": "root",
"secontext": "unconfined u:object r:admin home t:s0",
"size": 2157,
"src": "/root/.ansible/tmp/ansible-tmp-1517930992.28-138131138374404/source",
"state": "file",
"uid": O
}
Remarques :
* si"src=/tmp/rep dest=/tmp" copie du répertoire rep et de son contenu.
e si'"src=/tmp/rep/ dest=/tmp" copie que le contenu du répertoire rep.

e si"src=/tmp/rep dest=/tmp directory mode=777 group=1001":
copie du répertoire rep et de son contenu, les répertoires auront comme droits 777 (pas les
fichiers) et le group propriétaire est 1001.

Le module file :

Le module file permet de modifier le propriétaire et les permissions du fichier. Les mémes options
peuvent-étre utilisées pour le module copy.

ansible-doc file

Modification des droits et du propriétaire d'un fichier :

ansible all -m file \

-a "dest=/tmp/password mode=600 owner=theo group=users"

deb server | SUCCESS => ({

}

"changed": true,

"gid": 100,

"group": "users",
"mode": "0600",

"owner": "theo",

"path": "/tmp/password",
"size": 2157,

"state": "file",

"uid": 1000

Cent0S6.5 | SUCCESS => ({

"changed": true,

"gid": 100,

"group": "users",

"mode": "0600",

"owner": "theo",

"path": "/tmp/password",

"secontext": "unconfined u:object r:admin home t:s0",
"size": 2157,

"state": "file",

"uid": 500

© 2018 Copyright Spherius — vers 1.1 40/159

ANSIBLE

Copie d'un fichier en modifiant le propriétaire et les permissions :

ansible spherius_servers -m copy \

-a "src=/etc/passwd dest=/tmp/mypass mode=600 owner=theo group=users"

deb server | SUCCESS => {
"changed": true,
"checksum": "43ebe41a57d0dbed7727d6434b4a783a%bf3f67e",

"dest": "/tmp/mypass",

"gid": 100,

"group": "users",

"md5sum": "56a44958597ad6b61bc0c748£1d17d4b",

"mode": "0600",

"owner": "theo",

"size": 2157,

"src": "/root/.ansible/tmp/ansible-tmp-1517932488.9-256092188516732/source",
"state": "file",

"uid": 1000

Le module file peut aussi créer une structure arborescente comme mkdir -p a l'aide de |'option

state=directory.

ansible Cent0S7.1 -m file -a "dest=/tmp/repl/rep2/rep3 mode=755

owner=theo group=users state=directory"
Cent0S7.1 | SUCCESS => {
"changed": true,

"gid": 100,

"group": "users",

"mode": "0755",

"owner": "theo",

"path": "/tmp/repl/rep2/rep3",

"secontext": "unconfined u:object r:user tmp t:s0",
"size": 6,

"state": "directory",

"uid": 1000

Le module file permet aussi de supprimer une arborescence de fichiers.

Suppression du répertoire /tmp/repl/rep2 avec tout son contenu :

ansible Cent0S7.1 -m file -a "dest=/tmp/repl/rep2 state=absent"

Cent0S7.1 | SUCCESS => {
"changed": true,
"path": "/tmp/repl/rep2",
"state": "absent"

© 2018 Copyright Spherius — vers 1.1

41/159

ANSIBLE

Les commandes et les modules de base Ansible

La gestion des packages

* Lagestion avec yum

* Lagestion avec apt

* http://docs.ansible.com/ansible/latest/yvum module.html

e http://docs.ansible.com/ansible/latest/apt module.html

ansible-doc yum

ansible-doc apt

La gestion des packages

Vérifier qu'un package est présent. Ne pas le mettre a jour s'il est présent. L'installer s'il est absent.
ansible centos_servers -m yum -a "name=nmap state=present"
Cent0S7.1 | SUCCESS => {

"changed": false,

llmsgll: "ll,
"rc": 0,
"results": [

"2:nmap-6.40-7.el17.x86 64 providing nmap is already installed"
]
}
Cent0S6.5 | SUCCESS => {
"changed": true,

llmsgll: "ll,
"rc": O,
"results": [

"Loaded plugins: fastestmirror, refresh-packagekit, security\nLoading mirror
speeds from cached hostfile\n * base: centos.mirror.fr.planethoster.net\n * extras:
centos.mirrors.ovh.net\n * updates: centos.mirror.fr.planethoster.net\nSetting up Install
Process\nResolving Dependencies\n--> Running transaction check\n---> Package nmap.x86 64
2:5.51-6.el6 will be installed\n--> Finished Dependency Resolution\n\nDependencies
Resolved\n\n

===\n Package Arch Version Repository

Size\n \nI
nstalling:\n nmap x86 64 2:5.51-6.¢el6 base 2.8
M\n\nTransaction

Summary\n

\nInstall 1 Package(s)\n\nTotal download size: 2.8 M\nInstalled size: 9.7

M\nDownloading Packages:\nRunning rpm check debug\nRunning Transaction Test\nTransaction
Test Succeeded\nRunning Transaction\n\r Installing : 2:nmap-5.51-6.e16.x86 64
1/1 \n\r Verifying : 2:nmap-5.51-6.el6.x86 64
1/1 \n\nInstalled:\n nmap.x86 64 2:5.51-6.el6
\n\nComplete!\n"
]
}

© 2018 Copyright Spherius — vers 1.1 42/159

http://docs.ansible.com/ansible/latest/apt_module.html
http://docs.ansible.com/ansible/latest/yum_module.html

ANSIBLE

Lors de la ré-exécution de la commande, on constate que nmap est bien installé sur la machine
Cent0S6.5 :

Pour mettre a jour vers une version spécifique du package si c'est possible :

Pour installer la derniere version disponible d'un package :

© 2018 Copyright Spherius — vers 1.1

ANSIBLE

Pour désinstaller un package :

ansible centos_servers -m yum -a "name=ksh state=absent"
Cent0S6.5 | SUCCESS => {
"changed": false,

llmsgll : "ll,
"rc": O,
"results": [

"ksh is not installed"
]

}
Cent0S7.1 | SUCCESS => {
"changed": false,

llmsgll : "ll,
"rc": O,
"results": [

"ksh is not installed"

]

Pour lister les packages installés :

ansible clientl -m yum -a "list=installed"

Pour savoir si un package donné est installé :

ansible clientl -m yum -a "list=nmap"

* avec la variable yumstate a 'available' : il s'agit d'un package au sein d'un repository,
donc pouvant étre installé.
* avec la variable yumstate a 'installed' : il s'agit d'un package installé sur le poste client.

Le module apt

Sur les serveurs a base de Débian, il suffit d'utiliser le module apt. Les différentes options sont
identiques entre le module yum et apt.

ansible deb_server -m apt -a "name=ksh state=present"

Une deuxiéme exécution de la commande, confirme que le package est bien installé.

ansible deb_server -m apt -a "name=ksh state=present"
deb server | SUCCESS => {

"cache update time": 1443092260,

"cache updated": false,

"changed": false

Pour plus d'informations sur les options supportées par un module :

ansible-doc apt

ansible-doc yum

© 2018 Copyright Spherius — vers 1.1 44/159

ANSIBLE

* Le module user

Les commandes et les modules de base Ansible

* http://docs.ansible.com/ansible/latest/user module.html

La gestion des utilisateurs

le module group

* http://docs.ansible.com/ansible/latest/group module.html

ansible-doc wuser

ansible-doc group

La gestion des utilisateurs

Le module user

Création d'un utilisateur avec quelques options :

gére les comptes utilisateurs.

ansible spherius_servers -m user -a "name=userl password='\6\$21kkzZVvVvn\
$934bICwoojtJ60IZ3IcmVEfOnyd2FXEaUW8 JP8wvYLEYy10XR5DRHZMcCv4rRI . NIKG5K1tUA
Yn.N51/dJ9V.al' comment='compte utilisateur' uid=1111 group=users"

deb server | SUCCESS => {
"append": false,
"changed": true,

"comment": "compte user",

"group": 100,

"home": "/home/userl",

"move home": false,

"name": "userl",

"password": "NOT LOGGING PASSWORD",
"shell": "/bin/sh",

"state": "present",

"uid": 1111

}
Cent0S7.1 | SUCCESS => ({
"changed": true,

"comment": "compte user",
"createhome": true,

"group": 100,

"home": "/home/userl",

"name": "userl",

"password": "NOT LOGGING PASSWORD",
"shell": "/bin/bash",

"state": "present",

"system": false,

"uid": 1111

© 2018 Copyright Spherius — vers 1.1 45/159

http://docs.ansible.com/ansible/latest/group_module.html
http://docs.ansible.com/ansible/latest/user_module.html

ANSIBLE

Création d'un utilisateur sans options :

ansible spherius_servers -m user -a "name=userl state=present"
Modification d'un compte existant :

ansible all -m user -a "name=eve uid=1111 gid=2222"

Le groupe gid=2222 doit exister au préalable. Le compte est créé sur les postes n'ayant pas cet

utilisateur, sinon le compte est modifié. Le répertoire de connexion, ainsi que son contenu est
affecté a l'uid=1111 et au gid=2222.

Suppression d'un compte utilisateur, sans suppression du répertoire de connexion :

ansible clientl -m user -a "name=userl state=absent"

Suppression d'un compte utilisateur, avec suppression du répertoire de connexion :

ansible clientl -m user -a "name=userl state=absent remove=yes"

Le module group gere les groupes utilisateurs.

Création d'un groupe (remarque 'state=present' est la valeur par défaut) :

ansible spherius_servers -m group -a "name=compta gid=2000"
deb server | SUCCESS => {
"changed": true,

"gid": 2000,
"name": "compta",
"state": "present",

"system": false

}
Cent0S6.5 | SUCCESS => {
"changed": true,

"gid": 2000,
"name": "compta",
"state": "present",

"system": false

L'aide

Pour le détail des arguments utilisables :

ansible-doc user

ansible-doc group

© 2018 Copyright Spherius — vers 1.1

46/159

ANSIBLE

Le module service

Les commandes et les modules de base Ansible

La gestion des services

http://docs.ansible.com/ansible/latest/service module.html

ansible-doc service

La gestion des services

Le module service gére la gestion d'un service : start, stop, restart, etc.

Pour le détail des arguments utilisables :
ansible-doc service

Démarrer le service httpd sur les serveurs CentOS :

ansible centos_servers -m service -a "name=httpd
Cent0S6.5 | SUCCESS => ({
"changed": false,
"name": "httpd",
"state": "started"
}
CentO0S7.1 | SUCCESS => ({
"changed": false,

"name": "httpd",
"state": "started",
"status": {

"ActiveEnterTimestamp": "mer. 2018-02-07 09:52:52 CET",

Démarrer le service apache sur le serveur Débian :

ansible deb_server -m service -a "name=apache2
deb server | SUCCESS => {
"changed": false,

"name": "apache2",
"state": "started",
"status": {
"ActiveEnterTimestamp": "mer. 2018-02-07 09:58:05 CET",

state=started"”

state=started"”

© 2018 Copyright Spherius — vers 1.1

47/159

http://docs.ansible.com/ansible/latest/service_module.html

ANSIBLE

Redémarrer un service :

Arréter un service :

© 2018 Copyright Spherius — vers 1.1 48/159

ANSIBLE

Les commandes et les modules de base Ansible

Le module setup

* Le module setup Liste des variables d'un hote.

* http://docs.ansible.com/ansible/latest/modules/setup_module.html

ansible-doc setup

Le module setup

Le module setup permet de récupérer des informations d'un hote (sous forme de variables).

Cela peut étre des données sur les caractéristiques matérielles (type de processeurs, sur la
mémoire, la swap, les disques et leur partitionnement, le détail des lvms, des cartes réseaux, etc),
des variables systémes (nom de la machine, etc) ou autres.

Ces variables sont exploitables au sein de différents playbooks, roles et templates d'Ansible. Ces
variables sont appelées des « facts ».

Pour le détail des options utilisables :

ansible-doc setup

Exemple de quelques variables :

ansible clientl -m setup

clientl | SUCCESS => {
"ansible facts": {
"ansible all ipv4 addresses": |
"192.168.122.1",
"192.168.0.30"
1,
"ansible date time": {
"date": "2018-04-22",

"day" s "pomn ,
"hour": "16",
LR A "CEST",

by

© 2018 Copyright Spherius — vers 1.1 49/159

http://docs.ansible.com/ansible/latest/modules/setup_module.html

ANSIBLE

Création d'un répertoire /tmp/facts avec des fichiers portant le nom de chaque héte. Chaque

fichier contient le résultat du « setup » de son hote.

Pour filtrer sur quelques variables, |'utilisation de caractéres spéciaux est préconisée.

© 2018 Copyright Spherius — vers 1.1

ANSIBLE

Notes

© 2018 Copyright Spherius — vers 1.1 51/159

ANSIBLE

Les playbooks

Dans ce chapitre, nous allons étudier la création et le fonctionnement des
playbooks.

© 2018 Copyright Spherius — vers 1.1 52/159

oooooooo

ANSIBLE

Les playbooks

* Description d'un playbook

* Lesvariables et les tableaux

* La priorité et la portée des variables
* Lestemplates

* Laboucle for

* Les Handlers

* Le module debug et le mot clef register

Les boucles
La condition when
Les filtres

Les opérations arithmétiques

© 2018 Copyright Spherius — vers 1.1

53/159

ANSIBLE

Les playbooks
Description d'un playbook

e https://github.com/ansible/ansible-examples

* Lelangage yaml

* Exécution et débogage

ansible-playbook --syntax-check playbook exemple.yml
ansible-playbook --check playbook exemple.yml
ansible-playbook playbook exemple.yml

Description d'un playbook

Un playbook permet d'orchestrer I'ensemble des actions a effectuer sur un parc de machines en
tenant compte de contraintes (ordre de démarrage, etc). Des exemples de playbooks sont
consultables sur le site suivant :

https://github.com/ansible/ansible-examples

Les playbooks sont au format YAML qui a une syntaxe qui est rapidement assimilable. Chaque
playbook est constitué d'un ou plusieurs plays.

Un play pourrait étre traduit par tache et playbook par liste de taches. Une tache Ansible est
basiquement un appel a un module Ansible.

En composant son propre playbook il est possible de controler le déploiement de plusieurs
machines et de controler les opérations a effectuer dessus.

La syntaxe d'un playbook reste relativement simple. Il faut définir les hotes, les variables et
indiquer les taches a effectuer. Chaque tache a un nom et appelle des modules. Le nom des
modules est identique que ceux en lighe de commandes.

L'option --syntax-check de la commande playbook permet de vérifier la syntaxe. L'option --check
permet de simuler |'action sans I'appliquer réellement.

Les documents écrits en YAML commencent par trois tirets (---), ils peuvent se terminer par trois
points (...) mais cela n'est pas obligatoire. L'indentation est obligatoire dans le fichier.

© 2018 Copyright Spherius — vers 1.1 54/159

https://github.com/ansible/ansible-examples
https://github.com/ansible/ansible-examples

ANSIBLE

Un exemple de base :

more exemplel.yml
Premier exemple de base
- hosts: all

tasks:

- name: un ping
ping:

- name: une commande date
command :
date

- name: un redemarrage d un service
service:
name: crond
state: restarted

- name: copie d un fichier
copy:
src: /ansible/conf/serveur apache/httpd.conf
dest: /etc/httpd/conf/httpd.conf

© 2018 Copyright Spherius — vers 1.1 55/159

ANSIBLE

Un autre exemple :

cat connection.yml
- hosts: localhost, clientl, client2
tasks:
- name: "Copie d un fichier vers /the"
copy:
src: the/question
dest: /the/suite

ansible-playbook connection.yml

PLAY [localhost, Clientl, clientZ] Ak A hkkhkhhkhkhkhkhkhhkhkhkrhkkhkhkhhkrhkhkhkhhkhkhkrhkhkhkhkhkrhkkhkhkhkkxkkxkkx

TASK [Gathering Facts] R i R I R R I S S S b b I I I e I b I S R I R e b S b I R S S S S b b b b S b i S b i 2 3
ok: [localhost]

ok: [clientl]

fatal: [client2]: UNREACHABLE! => {"changed": false, "msg": "Failed to connect to the
host via ssh: ssh: connect to host client2 port 22: No route to host\r\n", "unreachable":
true}

TASK [Cople d un flChler vers /the] R R I I b b b I I e S b b b I b e I I b b b b I b b I b R I 2R I I b b b b b I b 4

fatal: [clientl]: FAILED! => {"changed": false, "checksum":
"358234378830070365cd637c0191£ffe8899c99bd", "msg": "Destination directory /the does not
exist"}

to retry, use: --limit @/root/Ansible Playbooks/connection.retry

PLAY RECAP ** *kdxxkkhhrkhhhrrhhhhrrhhhrrhhhhrhhhhrrkhhhrhhhhrrhhhhrkhhkhrxkhhrrkkhrrxhkx

clientl : ok=1 changed=0 unreachable=0 failed=1
client?2 : 0ok=0 changed=0 unreachable=1 failed=0
localhost : ok=2 unreachable=0 failed=0

Pour localhost : la connexion a fonctionné, les facts ont été récupéré et le fichier a été copié.

Pour clientl: la connexion a fonctionné, les facts ont été récupéré. Mais le fichier n'a pas été copié,
une erreur sur la task est apparue (la raison : absence du répertoire /the/suite sur client1).

Pour client2 : la connexion a échoué. On constate qu'il n'y a pas par la suite de tentative
d'exécution de tasks sur ce hote.

La commande a généré un fichier du nom du playbook avec I'extension .retry contenant la liste des
machines sur lesquelles une erreur s'est produite.

more connection.retry
clientl

Il est possible de paramétrer ce comportement en modifiant le fichier de configuration d'Ansible.

Par exemple :

vi /etc/ansible/ansible.cfg
retry files save path=/tmp/.ansible-retry

apres exécution un répertoire est créé /tmp/.ansible-retry avec les fichiers retry.

© 2018 Copyright Spherius — vers 1.1 56/159

ANSIBLE

En relancant le playbook, on obtient :

ansible-playbook connection.yml

TASK [copie d un fiChier vers /the] ok hkhkkhkhkhkhkhkhkhkhhkr kb kb ko kb hkhkhkhkrhkhkhkhkhkkhhkhkhkrhkhhkhkhhkhxkxxk
fatal: [clientl]: FAILED! => {"changed": false, "checksum":

"358234378830070365cd637c0191£fe8899c99bd", "msg": "Destination directory /the does not
exist"}
ok: [localhost]

to retry, use: --limit @/root/Ansible Playbooks/connection.retry

PLAY RECAP R R I b B b b I IR I b I S R b b I S I S b e b b I b I b b b I S e S b b b b b b S b b S S R b S S b b b b b dh S b b b b b a2 S S S

clientl : ok=1 changed=0 unreachable=0 failed=1
client2 : ok=0 changed=0 unreachable=1 failed=0
localhost : ok=2 changed=0 unreachable=0 failed=0

Pas de changement sur le hote localhost car le fichier étant présent la copie ne s'est pas faite.

© 2018 Copyright Spherius — vers 1.1 57/159

ANSIBLE

Exemple d'un fichier playbook :

#
#

#

cat playbook.yml

Les documents YAML commence par trois tirets

Une indentation est OBLIGATOIRE pour chaque sous section

Le nom des machines ou groupe de machines concernés
hosts: centos_servers

nom de l'utilisateur

remote user: root

Declaration des variables
vars:

bind port: 53

domain: mondomaine.lan

Liste des taches a effectuer
tasks:

Installation des outils de developpement et du serveur web

- name: Installer les outils de developpement
le module a utiliser est yum
yum:
name: "@Development Tools"
state: present

- name: Installer un serveur DNS
yum:
name: bind,bind-utils
state: latest

Copier les fichiers de configuration du serveur DNS

il aurait fallu utiliser le module template
name: copie du fichier de configuration named.conf
copy:

src: dns/named source.conf

dest: /etc/named.conf

| =

- name: copie du fichier de configuration named.rfcl912.zones

copy:
src: dns/rfc_source.zones
dest: /etc/named.rfcl912.zones

- name: copie du fichier de configuration de la zone
copy:
src: dns/zone source.conf
dest: /var/named/{{domain}}

Redemarrer le service DNS
- name: Redemarrage du serveur DNS
service:
name: bind
state: restarted

Je termine mon fichier par

Pour utiliser des variables dans le fichier de configuration

© 2018 Copyright Spherius — vers 1.1

58/159

ANSIBLE

Vérification des erreurs dans le playbook : --syntax-check
Permet la vérification de la syntaxe du fichier playbook.

ansible-playbook --syntax-check playbook.yml

playbook: playbook.yml

Simulation de |'application du playbook : --check
Permet de simuler les actions sans les appliquer réellement.

ansible-playbook --check playbook.yml

PLAY [CentOS servers] kA hkhkhkhhkrhhkhkhhkhhk Ak hkhkhhkrhhkhkhhkhhkhhhkhkhhkrhkhkhkhhkhhkrhkhkrhkhkrhkkhkhhkrkxhkhkxhkxk%k

TASK [Gathering FaCtSJ ok rhkkhkhhkh kA hhkhkhhkrhhkhkhhkhhkhkhhhkhhkrhhkhhhkrhkhkhhhkhkhkrhkhkrhkhkrhkhkhkhkhkhkhkrhkxkxkx

ok: [clientl]
ok: [client2]

TASK [Installer les outils de develOopPEemEnt] s s s s o o o o o o o o ok o

TASK [Installer un serveur DNS] kA hkhkhkhkhkrhkhkhkhhkhhkhhhhkhkhkrhhkhkhhkrhhkhkhhhkhkhkrhkhkrhhkrhkhkhkhhkhkhkrhkxkxkxx

TASK [copie du fichier de configuration named.conf] **xxxkkdkkdxxrhhkhkkkhdxrxhrrkksxx

TASK [copie du fichier de configuration named.rfcl912.zones] **FXxxxrrkkkdkkkxrkhrhkkkkxx

TASK [copie du fichier de configuration de la zone] ***xxkdkdkdkrdxrrhhhhkkddhddrrhrhkksxx

TASK [Redemarrage du serveur DNS] kA hkhkhkhhkrhkhkhkhhkhkhkhhkhhkhkrhhkhhhkhhkrhhrhkhkrhhkrkhhkrhkrhkhkrhkhkxkkxk

PILAY RECAP F A A A A A KA A A A A A A A A A A A AR A A A AAA I A AAAA KR A KA I AR AAF I I AAA I A I AAI KR AKX I IR A&k hhdxkkhohx

clientl : ok=7 unreachable=0 failed=0
client?2 : ok=7 unreachable=0 failed=0

© 2018 Copyright Spherius — vers 1.1 59/159

&
ANSIBLE

Exécution du playbook :
ansible-playbook playbook.yml

PLAY [CentOS servers] kA hkhkhkhkhkrhhkhhhkhhkhkhh bk hhkrhhkhkhhkhhkhrhhkhkhhkrhkhkhkhhkhhkrhhkrhkhkrhkhkhkhhkhkhxhkhkxkhkxk%k

TASK [Gathering FaCtSJ kA hkkhkhhkhhk Ak hkhkhhkrhhkhkhhkhhkhkhhhkhkhkrhhkhkhhkrkhkhhhkhkhkrhkhkrhhkrhkhkhkhkhkhkrhkxkhkxx

ok: [clientl]
ok: [client2]

TASK [Installer les outils de develOopPEemEnt] s s o s o o o o o o o o ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok o ok ok ok

TASK [Installer un serveur DNS] ok hkkhkhkhkhkrhhkhkhhkhhkhkhhhkhkhkrhhkhhhkrhkhkhhhkhkhkrhkhkrhhkrkhkhkhkhhkhkxhkxkxkxx*x

TASK [copie cu tTichier e contliguratilon NEMEG], COIMIE]| o557 ot e fr ke he ie ayae sl i e he i8 e a8 wy e vl fe s i 65 55 55 30 20 v v v o

TASK [copie du fichier de configuration named.rfcl912.zones] ***xxxx ks dkokkokxxkkddkkkkkxxx

TASK [copie du fichier de configuration de la zone] ***xkx ks kdokdhok kot koo ko kokododokokokokoxox %

TASK [Redemarrage du serveur DNS] kA hkhkhkhhkrhkhkhhhkhhkhkhhkhkhkhkrhkhkhhhkhhkrhhrhkhkrhhkrhhkrkrkhkhkrhkxkkxk

PILAY RECAP F A A A A A KA A A A A AR A A A A A A AR A A A A A KA A AAA AR A KA A AR AAI A I AAA I A A AAX KR AKX I IR A XKk hhdxkkhohx

clientl : ok=7 unreachable=0 failed=0
client?2 : ok=7 unreachable=0 failed=0

La reexécution du playbook est plus rapide car les packages et les fichiers sont déja présents.
ansible-playbook playbook.yml

PLAY [CentOS servers] kA hkhkhkhhkrhhkhkhhkhhk Ak hkhkhhkrhhkhkhhkhhkhhhkhkhhkrhkhkhkhhkhkhkrhkhkrhhkrhkkhkhhkrkxhkhkxhkxk%k

TASK [Gathering FaCtSJ Ak Ak khkhhkhk Ak hkhkhhkrhhkhhhkhhkhkhhhkhhkrhhkhhhkrhkhkhhhkhkhkrhkhkrhhkrhkhkhkhkhkhkrhkxkxkx

ok: [clientl]
ok: [client2]

TASK [Installer les outils de developpement] ***x %%k kkx &k ko kx & &k ok k k& & & Kok k k& & &k k ok x %% %
ok: [clientl]
ok: [client2]

TASK [Installer un serveur DNS] kA hkhkhkh kA hhkhkhhkhhkhkhhhkhkhkrhkhhhkhhkhkhhhkhkhkrhkhkrhhkrhkhkhkhkhkhkhkxhkxkxkxx

ok: [clientl]
ok: [client2]

TASK [copie cu tTichier e contlguratilon NEMEG], COMIE]| o555 w7t e fr ke he ie ayae sl i e he i8 w8 a0 w7 ol vl e s 0 65 55 55 58 20 e v v o
ok: [clientl]
ok: [client2]

TASK [copie du fichier de configuration named.rfcl912.zones] ***xxxxkkdkokkokxxkkddkkkkxxx
ok: [clientl]
ok: [client2]

TASK [copie du fichier de configuration de la zone] ***xkx ks kdokdok kst ook ko kokododkokokokokox k%
ok: [clientl]
ok: [client2]

© 2018 Copyright Spherius — vers 1.1 60/159

ANSIBLE

TASK [Redemarrage du serveur DNS] ok hkhkhkhhkrhkhkhhhkhkhkhhhkhkhkhkrhhkhhhkhhkrhhrhkhkrhhkhkhhkrhkrhhkrhkhkxkkxk

PLAY RECAP KA AR AR A A A A A A AR A A A A A A AR A A A A A A AR AR A AR A AR AR A AR kA A A A A A A kA A Ak A Ak kA Ak kA Ak Ak kA Ak kA kA kA Xk k k%

clientl : ok=7 unreachable=0 failed=0
client2 : ok=7 unreachable=0 failed=0

Aprés modification d'un fichier de configuration. Par exemple un paramétre est adapté au sein du

fichier modele dns/rfc_source.zones :
ansible-playbook playbook.yml

PLAY [centos Servers] KA AR A AR AR A AR A AR AR A AR A A A AR A AR AR A AR AR A AR A AR AR A AR A A A AR AR A A A A A kA Ak Ak K,k

TASK [Gatherlng FactSJ KA AR AR A AR A AR AR A AR AR A AR AR A A A A AR AR A A A A AR AR A AR A A A AR A AR AR A AR A ARk Ak Ak ok k

ok: [clientl]
ok: [client2]

TASK [Installer les Outils de developpementJ R B B B I b I I b I I I I b b I b b b b b I b b b I b b b b b b b g
ok: [clientl]
ok: [client2]

TASK [Installer un serveur DNS] KA A KR A AR AR A AR A AR AR A AR A KRR AR A AR AR A AR A AR AR A AR AR A AR A A A Ak kA Kk, K

ok: [clientl]
ok: [client2]

TASK [copile cu filchilcr e conClcUEAClon NEMEE!, @OMIT || 5 % i ms ar i ns ar i ns e i ns o i ws ar i i ns o i i ws ae i s vs ae s
ok: [clientl]
ok: [client2]

TASK [copie du fichier de configuration named.rfcl912.zones] ***xxkkk ok dkkxkokkkkokok k&

TASK [copie du fichier de configuration de la zone] *FAXAFEXKFER K K& KKK & KKK &KX &KX A &KX A & %
ok: [clientl]
ok: [client2]

TASK [Redemarrage du serveur DNS] kA hkhkhkhkhkrhkhkhkhhkhhkhkhhhkhhkrhhkhhhkrkhkhhhkhkhkrhhkrkhhkrhkhkhkhkrhkxkhkkx*

PLAY RECAP KA AR AR A AR A A R A R A A A A A A A R A A A A A A A A AR A AR A AR AR A AR A A A AR AR A AR A AR AR A AR A A A AR A AR A A A ARk kK

clientl : ok=7 unreachable=0 failed=0
client2 : ok=7 unreachable=0 failed=0

© 2018 Copyright Spherius — vers 1.1 61/159

ANSIBLE

Les playbooks

Les variables et les tableaux

* Regles de nommage des variables
e Les variables de l'inventaire - Les variables internes Ansible - Les variables déclarées

* Utilisation de variables : {{ ansible_all_ipv4_addresses[0] }}

- hosts: spherius servers
vars:
appli path: "{{ ip addr }}/22"

more fichier variables
variablel: valeur 1
equipe: [{nom: jean, uid: 1001, gid: 2020}, {nom: marc, uid: 1002, gid: 2020}]

- hosts: spherius servers
var files:
- fichier variables

Les variables et les tableaux

Les variables dans Ansible sont constituées de lettres, de chiffres et d'underscores. Les variables
doivent toujours commencer par une lettre.

Les noms suivants sont des noms de variables valides : var, var_10, var_ip

Les noms suivants sont noms de variables invalides : var-1, 10_var, var.ip

La syntaxe pour définir les variables :
vars:
variablel: valeur 1
variable2: valeur 2

La déclaration de tableaux :
tab: ou
-1 tab: [1, "deux", "valeur trois"]
- "deux"
- "valeur trois"

Une déclaration de variables plus complexe (table de hachage) :

equipe:
- nom: jean
uid: 1001
gid: 2020
- nom: marc
uid: 1002
gid: 2020
ou
equipe:
- { nom: jean, uid: 1001, gid: 2020 }
- { nom: marc, uid: 1002, gid: 2020 }
ou

equipe: [{nom: jean, uid: 1001, gid: 2020}, {nom: marc, uid: 1002, gid: 2020}]

© 2018 Copyright Spherius — vers 1.1 62/159

ANSIBLE

Un autre exemple :
amil:

nom: dupond

prenom: jean

adresse:
rue: "1 chemin de la paix"
code: 75000
ville: Paris

Les variables de l'inventaire

Les variables de l'inventaire sont constituées des variables du fichier /etc/ansible/hosts et du
fichier /etc/ansible/ansible.cfg. Le fichiers hosts contient des variables qui référencent les noms
des hotes par machine ; par groupe de machines ou par groupe de groupes de machines.

more /etc/ansible/hosts
postel
poste2

[deb servers] # groupe
deb serverl http port=80 https port=443
deb server2

[centos servers]
Cent0S6.5
Cent0S7.1

[centos servers:vars]
ntp server=0.fr.pool.ntp.org

[servers:children] # groupe de groupes
deb servers
centos_servers

La documentation compléte :
http://docs.ansible.com/ansible/latest/intro_inventory.html

Les variables personnalisées

Les variables sont définissables directement dans un playbook
- hosts: spherius servers
vars:
http port: 80

ou
- hosts: spherius servers
vars: http port=80

Ansible permet de référencer les variables dans le playbook en utilisant le systeme de templates
Jinja2. Jinja2 utilise des filtres intégrés qui permettent d'utiliser un certain nombre de variables
pré-définies.

Le module setup permet de visualiser les variables d'un héte.

© 2018 Copyright Spherius — vers 1.1 63/159

http://docs.ansible.com/ansible/latest/intro_inventory.html

ANSIBLE

Les variables de la machine Cent0S7.1 :

ansible Cent0S7.1 -m setup | more
CentOS7.1 | SUCCESS => {
"ansible facts": {
"ansible all ipv4 addresses": [
"192.168.122.1",
"192.168.1.14"
1y
"ansible all ipv6 addresses": [
"fe80::a00:27ff:fe76:1606"
1,
"ansible architecture": "x86 64",
"ansible bios date": "12/01/2006",

Utilisation des variables

L'utilisation de ces variables respecte la syntaxe suivante :

- pour la valeur d'une variable :
{{ ansible bios version }}

- pour la valeur d'une propriété d'une variable :
{{ ansible date time.epoch }}

{{ ansible architecture }}

{{ ansible date time.month }}

- pour la valeur d'une variable indexée dans un tableau. L'index commence a O pour la premiére

valeur du tableau. Un tableau est entouré de crochets (]......]) :

{{ ansible all ipv4 addresses[0] }}
{{ ansible all ipv4 addresses[1l] }}

Attention : La syntaxe YAML nécessite que si vous commencer une valeur avec {{ var }}, il faut

entourer toute la ligne de quotes.

Exemple de mauvaise syntaxe :

- hosts: spherius_servers
vars:
appli path: {{ ip_addr }}/22

Exemple de bonne syntaxe :

- hosts: spherius servers
vars:
appli path: "{{ ip_addr }}/22"

Un fichier de variables :

more fichier variables

variablel: valeur_f_

variable2: valeur 2

equipe: [{nom: jean, uid: 1001, gid: 2020},

Utilisation dans un playbook :

- hosts: spherius servers
var files:
- fichier variables

{nom:

marc,

uid:

1002,

gid:

2020}

]

© 2018 Copyright Spherius — vers 1.1

64/159

ANSIBLE

Voici un exemple de mise en ceuvre pour un playbook :

cat variables base.yml

- hosts: all
vars:
ip _addr: "{{ ansible all ipv4 addresses[0] }}"
appli path: "{{ ip_addr }}/22"
tasks:
- debug:

msg: La variable appli path = {{ appli path }}

ansible-playbook variables base.yml
PLAY [all]

TASK [Gathering Facts]
ok: [debianl]
ok: [clientl]
ok: [client2]

TASK [debug]
ok: [clientl] => {
"msg": "La variable appli path = 192.168.1.8/22"
}
ok: [client2] => {
"msg": "La variable appli path

192.168.1.9/22"
}
ok: [debianl] => {

"msg": "La variable appli path = 192.168.1.25/22"
}

PLAY RECAP

clientl : ok=2 changed=0 unreachable=0 failed=0
client2 : ok=2 changed=0 unreachable=0 failed=0
debianl : ok=2 changed=0 unreachable=0 failed=0

Un exemple utilisant un tableau :

cat variables_tableau.yml
- hosts: localhost
vars:
equipe: [{nom: jean, uid: 1001}, {nom: marc, uid: 1002}]
tasks:
- debug:
msg:
Bonjour {{equipe[l].nom}}, ton uid est {{equipe[l].uid}}

ansible-playbook variables_tableau.yml
PLAY [localhost]

TASK [Gathering Facts]
ok: [localhost]

TASK [debug]
ok: [localhost] => {
"msg": "Bonjour marc, ton uid est 1002"

}

PLAY RECAP
localhost : ok=2 changed=0 unreachable=0 failed=0

© 2018 Copyright Spherius — vers 1.1 65/159

ANSIBLE

La priorité et la portée des variables

role defaults role (et include_role) params
inventory file ou script group vars include params

inventory group_vars/all include_vars

playbook group_vars/all set_facts / registered vars
inventory group_vars/* extra vars (toujours « gagnante »)

playbook group_vars/*

inventory file ou script host vars

inventory host_vars/*

playbook host_vars/*

host facts

play vars

play vars_prompt

play vars_files

role vars (définies dans role/vars/main.yml)
block vars (seulement pour une tasks dans un bloc)
task vars (seulement pour la task)

Les playbooks

La priorité et la portée des variables

Ordre de priorité d'une variable

Les variables ont une priorité en fonction de I'endroit ou elles sont déclarées.
Ordre de priorité des variables dans ansible 2.x de la moins prioritaire a la plus prioritaire :

role defaults

inventory file ou script group vars
inventory group_vars/all

playbook group_vars/all

inventory group_vars/*

playbook group_vars/*

inventory file ou script host vars

inventory host_vars/*

playbook host_vars/*

host facts

play vars

play vars_prompt

play vars_files

role vars (définies dans role/vars/main.yml)
block vars (seulement pour une tasks dans un bloc)
task vars (seulement pour la task)

role (et include_role) params

include params

© 2018 Copyright Spherius — vers 1.1

66/159

ANSIBLE

* include_vars
* set_facts/ registered vars
* extra vars (toujours « gagnante »)

De maniere basique, les variables définies dans le role par défaut sont le plus facilement écrasées.
Chaque variable définie dans le répertoire vars du réle écrase les versions précédentes de la
variable définie dans I'espace de noms. L'idée étant que plus la variable est déclarée explicitement,
plus elle est prioritaire. C'est pour cela que les variables déclarées en lighe de commande avec
['option -e sont toujours les « gagnantes ».

Portée des variables :

Ansible a trois types de portées de variables
* global : elles sont positionnées par la configuration, les variables d'environnement
et la ligne de commande
* play: variables définies dans le play
* hosts : variables directement associé a un héte

Exemple :

Pour un site (tous les hotes), les variables peuvent-étre déclarées dans le répertoire group_vars/all
more /etc/ansible/group vars/all

ntp server: O0.fr.ntp.pool.org

Pour une région (un groupe de hoétes), les variables peuvent-étre déclarées dans le fichier
group_vars/nom_du_groupe_de_hotes. La valeur de ntp_server va écraser la valeur définie au

niveau du site. Le fichier ci-dessous concerne le groupe de hétes « paris ».
more /etc/ansible/group vars/paris

ntp server: paris.ntp.pool.org

Si pour une raison quelconque, il faut indiquer un serveur ntp spécifique pour un hote, la valeur de
la variable au niveau du groupe sera écrasée par celle de I'héte. Le fichier ci-dessous concerne la

machine « mail.paris.mydomain.lan » du groupe de hotes « paris ».
more /etc/ansible/host_vars/mail.paris.mydomain.lan

ntp server: interne.ntp.mydomain.lan

Lors de la création des réles avec des valeurs par défaut classiques, indiquez les dans le fichier
roles/nom_du_role/defaults/main.yml. Cela permet d'avoir la valeur par défaut pour les variables
mais elles sont écrasées par n'importe quel paramétrage spécifique dans Ansible.

© 2018 Copyright Spherius — vers 1.1 67/159

ANSIBLE

Un développement pour mettre en évidence certaines priorités :

cat hosts # cd Playbooks

[societe] # cat variables.yml

clientl - hosts: all

client2 tasks:

[all:vars] - debug:

mavar="Jean" msg: La variable mavar = {{mavar}}

ansible-playbook -i ../hosts variables.yml

Pour clientl et client2 : "msg": "La variable mavar = Jean"

cat ../group vars/all all inventaire
mavar: "Marc"
Pour clientl et client2 : "msg": "La variable mavar = Marc"

cat group vars/all all playbook
mavar: "Theo"
Pour clientl et client2 : "msg": "La variable mavar = Theo"

cat ../group_vars/societe groupe inventaire (le groupe societe)
mavar: "Eve"
Pour clientl et client2 : "msg": "La variable mavar = Eve"

cat hosts fichier inventaire sur un host
[societe]

clientl mavar="celine"

client2

[all:vars]

mavar="Jean"

Pour clientl : "msg": "La variable mavar = celine" client2 toujours Eve
cat ../host vars/clientl host _vars/nom _hote de 1'inventaire
mavar: "valerie"
Pour clientl : "msg": "La variable mavar = valerie" client2 toujours Eve
cat host vars/clientl host_vars/nom_hote de playbook
mavar: "Zette"
Pour clientl : "msg": "La variable mavar = Zette"
cat variables.yml play vars
- hosts: all
vars:
mavar: "Noelle"
tasks:
- debug:
msg: La variable mavar = {{mavar}}
Pour clientl et client2 : "msg": "La variable mavar = Noelle"
cat variables.yml # cat autre var.yml include vars
- hosts: all mavar: "Olivier"
vars:
mavar: "Noelle"
tasks:
- include vars: autre var.yml
- debug:
msg: La variable mavar = {{mavar}}
Pour clientl et client2 : "msg": "La variable mavar = Olivier"

ansible-playbook -i ../hosts variables.yml -e mavar="Ansible"
Pour clientl et client2 : "msg": "La variable mavar = Ansible"

© 2018 Copyright Spherius — vers 1.1 68/159

ANSIBLE
Un autre exemple :
cat moninventaire.inv
poste[l:2]
[all:vars]
ansible user=root
[deb servers]
deb server[1l:2]
[domainel]
apachel apache url=intra.domaine http port=80 https port=443
mysqll

centos 6.5 ansible user=userl

centos 7.1

[linux:children]

domainel
deb servers

[linux:vars]

ntp server=0.fr.pool.ntp.org

[windows]
serveurl
basededonneel

[windows:vars]

ansible connection=winrm
ansible user=Administrator

ansible all -i inventaire.inv -m debug -a "var=ansible user"
postel | SUCCESS =>
serveurl | SUCCESS =>
poste2 | SUCCESS =>
apachel | SUCCESS =>

| SUCCESS
mysgll | SUCCESS =>
SUCCESS =>
SUCCESS =>
SUCCESS =>
SUCCESS =>

basededonneel

centos 7.1 |
centos 6.5 |
deb serverl |
deb server2 |

i N e e e e

"ansible user": "root",
"ansible user": "Administrator",
"ansible user": "root",
"ansible user": "root",
"ansible user": "Administrator",
"ansible user": "root",
"ansible user": "root",
"ansible user": "userl",
"ansible user": "root",
"ansible user": "root",

ansible all -i moninventaire.inv -m debug \
-a "var=ansible connection,ansible user,ntp server,apache url" -one-line

machine

postel

poste2
basededonneel
serveurl
mysqll
apachel
centos 6.5
deb serverl
centos 7.1
deb server?2

ansible connection

'ssh'
'ssh'

'winrm'
'winrm'

'ssh'
'ssh'
'ssh'
'ssh'
'ssh'
'ssh'

ansible user

'root' Undefined
'root' Undefined
'Administrator' Undefined
'Administrator' Undefined
'root' '0.fr.pool.
'root' '0.fr.pool.
'userl' '0.fr.pool.
'root' '0.fr.pool.
'root' '0.fr.pool.
'root' '0.fr.pool.

ntp server

"cﬁgnged": false}
"changed": false}
"changed": false}
"changed": false}
"changed": false}
"changed": false}
"changed": false}
"changed": false}
"changed": false}
"changed": false}

ntp.
ntp.
ntp.
ntp.
.org'
ntp.

ntp

org'
org'
org'
org'

org'

apache url

Undefined
Undefined
Undefined
Undefined
Undefined

--one-line

'intra.domaine'

Undefined
Undefined
Undefined
Undefined

© 2018 Copyright Spherius — vers 1.1

69/159

ANSIBLE

* Exemple de fichier Template

cat exemple template.template

Ceci est un fichier de parametrage

user={{ mavarl }}
repLog=/opt/appli/{{ ansible distribution }}/log

1'addresse du poste est {{ mavar2 }}
ou encore {{ ansible all ipv4 addresses[0] }}

* Le module template
- name: copie du template
template:
src: /root/Ansible/templates/exemple template.template
dest: /opt/appli/etc/appli.conf

Les playbooks

Les templates

* Fichier paramétrable Utilise les variables Ansible

Les templates

Un fichier template permet de customiser un fichier en exploitant le résultat des variables Ansible.
Ainsi, le contenu du fichier transmis au poste client est personnalisé en fonction de spécificités du

poste client. Le module a utiliser est : template.

Exemple :

Le template :
cat exemple template.template

Ceci est un fichier de parametrage

user={{ mavarl }}
repLog=/opt/appli/{{ ansible distribution }}/log

1'addresse du poste est {{ mavar2 }}
ou encore {{ ansible all ipv4 addresses[0] }}

Le playbook :
cat exemple_ template_ support.yml

- hosts: clientl

vars:

mavarl: Paul

mavar2: "{{ ansible all ipv4 addresses[0] }}"
tasks:

- name: copie du template
template:
src: /root/Ansible/templates/exemple template.template
dest: /opt/appli/etc/appli.conf

© 2018 Copyright Spherius — vers 1.1

70/159

ANSIBLE

Apres exécution du playbook, sur le poste CLIENT :
Poste CLIENT# cat /opt/appli/etc/appli.conf

Ceci est un fichier de parametrage

user=Paul
repLog=/opt/appli/Cent0S/log

1'addresse du poste est 192.168.0.20
ou encore 192.168.0.20

Un autre exemple :

Extrait d'un fichier template pour un serveur apache :

grep '{{' /ansible/template/apache/httpd.conf
Listen {{ http port }}

ServerAdmin root@{{ domain }}

DocumentRoot "/var/www/{{ domain }}"

<Directory "/var/www/{{ domain }}">

Exemple de playbook utilisant un template :
cat playbook exemple template.yml

- hosts: centos servers
Declaration des variables
vars:
http port: 80
domain: mondomaine.lan

tasks:

- name: Installer apache
yum:
name: httpd
state: latest

Copier le fichier de conf d'apache en adaptant les variables

- name: copie du template d'apache
template:
src: /ansible/template/apache/httpd.conf
dest: /etc/httpd/conf/httpd.conf

Résultat sur un poste de centos_servers :
more /etc/httpd/conf/httpd.conf

Listen 80

ServerAdmin root@mondomaine.lan
DocumentRoot "/var/www/mondomaine.lan"
<Directory "/var/www/mondomaine.lan">

© 2018 Copyright Spherius — vers 1.1

71/159

ORMATION A N S I B LE

- hosts: all

vars:
liste: ["Jean", "Marc", "Theo"]
tasks:
- name: "test de la boucle for"
template:

src: boucle for.j2
dest: /tmp/{{inventory_hostname}}.res
connection: local

Le template boucle_for.j2
Traitement sur le poste {{inventory hostname}}
Une liste de personne
{% for personne in liste %}
Nom : {{personne}}
{%$ endfor %}
La liste des interfaces est
{% for element in ansible_interfaces %}
interface : {{element}}
{% endfor %}

Les playbooks

La boucle for

La boucle for

La boucle for est utilisée pour les templates. La syntaxe est :
{% for element in liste_des_elements %}
le traitement du for en utilisant {{ element }}
{% endfor %}

Exemple :
Le playbook boucle_for.yml
- hosts: all
vars:
liste: ["Jean", "Marc", "Theo"]
tasks:
- name: "test de la boucle for"
template:
src: /root/Playbooks/boucle for.j2
dest: /tmp/{{inventory hostname}}.res

connection: local

Le template boucle_for.j2
Traitement sur le poste {{inventory hostname}}
Exemple avec le tableau liste
Une liste de personnes
{% for personne in liste %}
Nom : {{personne}}
{% endfor %}
Autre exemple avec le tableau ansible interfaces
La liste des interfaces est
{% for element in ansible_interfaces %}
interface : {{element}}
{% endfor %}

© 2018 Copyright Spherius — vers 1.1

72/159

ORMATION A N S I B LE

Exécution :
ansible-playbook boucle for.yml

Résultat :

cat /tmp/clientl.res
Traitement sur le poste clientl
Exemple avec le tableau liste
Une liste de personnes

Nom : Jean
Nom : Marc
Nom : Theo

Autre exemple avec le tableau ansible interfaces
La liste des interfaces est
interface : lo
interface : enp0s3

© 2018 Copyright Spherius — vers 1.1 73/159

ANSIBLE

Les playbooks

Le module debug et le mot clef register

- debug: msg="le port http est {{ http port }}"

- tasks:
- shell: "echo commande 1; echo commande 2"
register: resultat
- debug:

var=resultat
var=resultat.stdout lines

var=resultat.stdout lines[-1]

- debug: msg={{resultat.stdout lines}}

Le module debug et le mot clef register

Le module debug permet, entre autres, d'afficher des informations a la suite de I'exécution du
playbook. Elles portent en particulier sur les caractéristiques d'exécution d'une tache.

Ce module permet de récupérer la valeur d'une variable : msg

tail -3 playbook template.yml
- debug: msg="le port http est {{ http port }}"
- debug: msg="le nom de domaine est {{ domain }}"

ansible-playbook playbook template.yml | grep -A 3 "debug"

TASK [debug} hAhkhkhkkhkkhkhkhkkhkhkhhkhhkhkhkhhhkhkhhhhkhkhkhrhhkhhhhhkhhkhrhhkhkhbhhhkhhkhrhhkhkhdhhhkhhkhrhkkhkhkhkhkhkkhhhkrhkkhkkhkhrhhkhkx%x
ok: [Cent0S7.1] => {

"msg": "le port http est 80"
}

TASK [debug] Ak kA hk kA hkhkhhkh kA hkh bk hk kA hhkhkhhkhhkhkhkhhkhkhk Ak hkhkhhkhhkhkhkhhkhkhkrhkhkhhkrhkhkhkhhkhkhkrhkkhkhkhkrkhkkxkkxkx*k

ok: [Cent0S7.1] => {
"msg": "le nom de domaine est mondomaine.lan"

}

Les variables ont bien été remplacé par leur valeur.

© 2018 Copyright Spherius — vers 1.1 74/159

ANSIBLE

Le mot clef register permet de récupérer I'état d'exécution d'une tache via une variable.

cat debug.yml

- name: "Tests debug"
hosts: clientl
tasks:
- name: "Commande 1"
shell:
echo commande 1; echo commande 2
register: resl
- name: "Commande 2"
shell:
echo commande 2
- debug:

var=resl

Résultat : var=resultat
ansible-playbook debug.yml

PLAY [Tests debug] kA hkhkhkhhkhkhk A hhkhkhkhkrhhkhkhhkhhkhkhhrhkhkrhkkhkhkhhkrhkrhkhkrhhkrhkkhkkhkxkxkkx

TASK [Gathering Facts] Ak rhkhkhkhhkhhkhkhhhkhhkrhkhhhkrhkhkhhhkhhkrhkhkrhkhkrhkhkhkhkhkhkhxhkhkxkkxk*x

ok: [clientl]

TASK [Commande 1] KA A KA AR AR A AR A AR AR A AR AR A AR AR A AR A AR AN A AR A AR AR A AR AR A Ak h kKK

changed: [clientl]

TASK [Commande 2] kA hkhkhkhkkhkrhkhkhkhhkhhkrhkhkrkhhkrhkhkhkhhkhkhkrhkhkhhhkrhkhkhkhkrkhkkhkrhkkhkhkhkxkxkxkx

changed: [clientl]

TASK [debug} R i I e I I I i b I I b i I b b I I b b I b b b I I b b b b b I b b b b b b I I b b I b b b b b b b b i 4
ok: [clientl] => {
"resl": {

"changed": true,

"emd": "echo commande 1; echo commande 2",

"delta": "0:00:00.003042",

"end": "2018-04-23 16:21:11.897653",

"failed": false,

"rc": O,

"start": "2018-04-23 16:21:11.894611",
"stderr": "",

"stderr lines": [],

"stdout": "commande l\ncommande 2",
"stdout lines": [

"commande 1",
"commande 2"

}

PLAY RECAP KA AR A AR A AR AR A AR AR A AR A AR AR A AR A AR AR A AR AR A AR AR A AR A AR AR A AR AR A ARk kK

clientl : ok=4 changed=2 unreachable=0 failed=0

© 2018 Copyright Spherius — vers 1.1

75/159

ANSIBLE
Autre possibilité : var=resultat.stdout_lines
- name: "Tests debug"
= dégﬁg:

var=resl.stdout lines

TASK [debugl hAhkhkhkhhkhkhkhkkhkhhkhhkkhhkhhhkhdhhkhhkhhkhrhkhkkhkhhkhrhkkhhkhhkhkhkkhhkrhkkhkkhkhrhkhkkhkkhhkrhkhkhhxhxhkh*k
ok: [clientl] => {
"resl.stdout lines": [
"commande 1",
"commande 2"

]
}
Autre possibilité : var=resultat.stdout_lines[index]
- name: "Tests debug"

- debug:

var=resl.stdout_lines[-1]

TASK [debug} hAhkhkhkkhkhkhkhkkhkkhhhkhhkhkhkhrhhkhdhhkhhkhkhkhrhhkhhhkrhkkhkhkhrhkhkhhhkrhkkhkhkhrhkhkkhkkhhrhkkhhhxhhkh*k
ok: [clientl] => {
"resl.stdout_lines[-1]": "commande 2"

}

Un nouvel exemple pour récupérer le résultat d'une commande :

Avec stdout_lines

cat register.yml
- hosts: clientl
tasks:
- shell: "ls /etc/host*"
register: resultat
- debug: msg={{resultat.stdout_lines}}

ansible-playbook register.yml

TASK [debugJ KA AR AR A AR A A A AR AR A AR A AR AR A AR A AR AR A AR AR A AR AR A AR A AR AR A AR A A A Ak A AR Ak Ak ok k

ok: [clientl] => {

"msg": [
"/etc/host.conf",
"/etc/hostname",
"/etc/hosts",
"/etc/hosts.allow",
"/etc/hosts.deny"

© 2018 Copyright Spherius — vers 1.1

76/159

ANSIBLE

cat register.yml
- hosts: clientl
tasks:
- shell: "ls /etc/host*"
register: resultat
- debug: msg={{resultat}}

ansible-playbook register.yml

PLAY [Cllentl} Ak rxhkkhkhkhhkhkhhkhhhkhhkrhhkhkhhkhhkhkhhhkhhkrhhkhkhhkrhkhkhkhhkhhkrhhkrkhkhkrhkhkhkhhkhkhkxhkxkhkxx

TASK [Gathering FaCtSJ khkhkhkhkhkhhkhkhkr kb hkhhkhkrkhkhhkhhkhkhhhkhhkhhk bbbk hkrkhkhkhkhk ko hkhkkhkhkhkhkkxxk
ok: [clientl]

TASK [shell] kA Ak hkhkhk kA Ak kA hkhhkhkhk Ak kA hhkhhhkhkhhkhkhk A hkhkhkhkhkrhkhkhkhhkhkhkrAhkhkrkhkhkrhkkhkhhkrkhkkkkkkkxk*k

changed: [clientl]

TASK [debugJ ok rhkhkhkhhkhhkhkhhhkhhkrhhkhhhkhhkhkhh bk hkhkrhhkhkhhkrhkhkhhhkhhkrhhkrhhkrhkhkhkhhkhkrhkhkxhkxk*k

ok: [clientl] => {

"msg" : {
"changed": true,
"cmd": "ls /etc/host*",

"delta": "0:00:00.003741",
"end": "2018-04-26 14:28:56.996176",
"failed": false,

"rc": O,

"start": "2018-04-26 14:28:56.992435",

"stderr": "",

"stderr lines": [],

"stdout":
"/etc/host.conf\n/etc/hostname\n/etc/hosts\n/etc/hosts.allow\n/etc/hosts.deny",

"stdout lines": [

"/etc/host.conf",
"/etc/hostname",
"/etc/hosts",
"/etc/hosts.allow",
"/etc/hosts.deny"

PLAY RECAP R

clientl : ok=3 changed=1 unreachable=0 failed=0

© 2018 Copyright Spherius — vers 1.1

77/159

ANSIBLE
Les playbooks
Les Handlers
- name: "Test handler"
hosts: clientl
handlers:
- name: "Redemarrage d un service"
service:
name: crond
state: restarted
tasks:
- name: "Fichier de conf d un service"
copy:
src: modele.conf
dest: /tmp/crond.conf
register: resultat
notify: ["Redemarrage d un service"]

Les Handlers

Une tache associée a un handler est exécutée que si nécessaire.

Un handler est exécuté que s'il est appelé. Son exécution se fera apres le traitement de toutes les
tasks. S'il est appelé par plusieurs tasks, il ne sera exécuté qu'une seule fois.

Quelque soit I'ordre dans lequel des handlers sont appelés, ils ne s'exécuteront que dans |'ordre
dans lequel ils ont été défini au sein de la section handlers.

Déclaration d'un handler par le mot clef : handlers
Appel d'un handler via le mot clef : notify

Exemple :
cat handler.yml

- name: "Test handler"
hosts: clientl
handlers:
- name: "Redemarrage d un service"
service:
name: crond
state: restarted
tasks:
- name: "Fichier de conf d un service"
copy:
src: modele.conf
dest: /tmp/crond.conf
register: resultat
notify: ["Redemarrage d un service"]
- name:
shell:
ps -ef | grep crond > /tmp/etat
- debug:
var=resultat.changed

© 2018 Copyright Spherius — vers 1.1 78/159

ANSIBLE

ansible clientl -m service -a 'name=crond state=stopped’

ansible-playbook handler.yml

PLAY [Test handler] Ak kA hkhk A hkhk kA hhk A hhhkhhkrhkhkhkhhkhkhkrhkhkhhkhkrhkhkhkhhkhkhkrhkkhkrkhhkrhkkhkhkhkkhxkkxk

TASK [Gathering Facts] kA Kk hkkhkhhkhk kA hkh A hkhkrhhkhkhhkhhkhAhkhkhkhkhkrhkhkhkhhkhkhkrhkhkrkhkhkrhkkhkhhkhkhxkkxkkx*x

ok: [clientl

TASK [Flchler de COl’lf d un Service] KA KK A A A AR A A A A A A A A A A AR A A AR A A A A A A A A Ak hA A Ak Ak Ak, kK

TASK [Shell] Ak A hkkhkh Ak kA hkh Ak hkhk Ak hkhkhhkhk kA hkhkhkhhkrhkhkhkhhkhkhk A hkhkhkhhkrhkhkhkhhkhkhkrhkkhkhkhhkrkhkkkkhkxkkxk*k

TASK [debug} hAhkhkhkkhkhkhkhkhkkhkhhkhhkhkhkhhhkkhhhkhhkhkhkhhhkhhhkhhkhhkhAhhkhdhhkhhkhkhkhhkhkhdhhkhrhkhkhkhrhkhkkhhhrhkhkhkhxkhk
ok: [clientl] => {
"resultat.changed": true

}

RUNNING HANDLER [Redemarrage d un Service] Ak Ak hkkhkhkkhkrkhkhkhkhhkhkhkrhkkhkhkhkkhkrhkkhkhkhkhkkhkkxkkxkkxk*k

PLAY RECAP KA AR AR A A A A A A AR A A A A A A AR AR A A A A A A AR A A A A A A AN A A A A A A AR A A AR A A A A Ak Ak Ak Ak Ak k kKK

clientl : ok=5 changed=3 unreachable=0 failed=0

Le fichier /tmp/etat indique bien que le service est démarré. On constate également que

resultat.changed est a true. L'handler a bien été sollicité juste aprés la tache qui I'a appelé via le

mot clef notify.

ansible clientl -m service -a 'name=crond state=stopped'

ansible-playbook handler.yml

PLAY [Test handler] KA A KA AR AR A AR A AR AR A AR A AR AR A AR A A A AR AR A AR A AR AR A AR A A A AR A AR AR A ARk kK

TASK [Gatherlng Facts} KA AR AR A AR A AR AR A AR A AR AR AR A AR A AR AR A AR A AR AR A AR A AR AR A AR A A A Ak kA kK

ok: [clientl]

TASK [Fichier de conf d un Service] kA kkhkhkhkkhkrhkkhkhkhhkhkhkrhkhkhkhkhkrhkhkhkhhkhkkhkrhkkhkhkrkkkkhkxkkxk*k

ok: [clientl]

TASK [ShellJ KA AR AR A AR AR A AR A A A A A A AR AR A AR A AR AR A AR AR A AR A AR AR A AR AR A AR A AR AR A AR A A A ARk kK

TASK [debug] Ak hkhkhkhkhkhkhkhkhrkhkhhkhhhkhkr kb hhkdhkhhkhhkhhkkhhkhkhkr kb hkhkhk ko kb hkhkdhkhkhkrhkhkhkkhhkhhkrkhkxkhx*x
ok: [clientl] => {
"resultat.changed": false

PLAY RECAP
Kok kK ok kK ok ok ok ok ok kK ok kK ok ok ks ok k ok k ko ok ko ok ok k ok ok ok ok ok ks ok ok ok ok ok ok ko ok K ok ok ok ok ok k ko ok ok ok ok ok ok k ok k ok ok ok k kK ok kK

clientl : ok=4 changed=1 unreachable=0 failed=0

Le fichier /tmp/etat indique que le service n'a pas été démarré. On constate également que

resultat.changed est a false. Le fichier de conf n'ayant pas été copié, I'handler n'a pas été sollicité.

© 2018 Copyright Spherius — vers 1.1

79/159

ANSIBLE
Les playbooks
Les boucles
- shell: echo "{{item}}" >>/tmp/fic - yum:
loop: name : "{{ item }}"
- elementl state=present
- element2 with_items:
- element4 - apache
- element4 - mariadb-server
equipe: [{nom: jean, uid: 1001}, {nom: marc, uid: 1002}]
- debug: - debug:
msg: msg:
"xx {{item.nom}} xx {{item.uid}}" "xx {{item.nom}} xx {{item.uid}}"
loop: with_items:
"{{equipe}}" - "{{ equipe }}"
- command: echo "{{ item }}"
loop:[0,2,4,6,8,10]
Les boucles
Les boucles utilisent les mots clefs loop ou with_items.
Syntaxes :
- shell: echo "{{item}}" >>/tmp/fic - yum:
loop: name : "{{ item }}"
- elementl state=present
- element2 with_items:
- element3 - nmap
- element4 - apache
- element4 - mariadb-server
Avec un tableau :
equipe: [{nom: jean, uid: 1001}, {nom: marc, uid: 1002}]
- debug: - debug:
msg: msg:
"xx {{item.nom}} xx {{item.uid}}" "xx {{item.nom}} xx {{item.uid}}"
loop: with_items:
"{{equipe}}" - "{{ equipe }}"

- command: echo "{{ item }}"
loop:[0,2,4,6,8,10]

© 2018 Copyright Spherius — vers 1.1 80/159

ANSIBLE
Exemple :
cat boucle loop.yml
- hosts: clientl
vars:
equipe: [{nom: jean, uid: 1001}, {nom: marc, uid: 1002}]
tasks:

- shell: "ls /etc/host*"
register: resultat
- shell: echo "{{item}}" >>/tmp/boucle.res
loop:
"{{resultat.stdout lines}}"
connection: local
- debug:
msg:
"Bonjour {{item.nom}}, ton uid est {{item.uid}}"
loop:
"{{equipe}}"
ou :
cat boucle.yml

- hosts: clientl
vars:
equipe: [{nom: jean, uid: 1001}, {nom: marc, uid: 1002}]
tasks:
- shell: "1ls /etc/host*"
register: resultat
- shell: echo "{{item}}" >>/tmp/boucle.res
with items:
- "{{resultat.stdout lines}}"
connection: local
- debug: msg="Bonjour {{item.nom}}, ton uid est {{item.uid}}"
with items:
- "{{equipe}}"

ansible-playbook boucle.yml

PLAY [Cllel’ltl] Ak A hkkhkhhkhkhk Ak kA hk kA hhkhkhhkhhkhkhkhhkhhkrhhkhhhkrhkhkhkhhkhkhkrhkkhkrkhhkrhkkhkhhkhkkxkkxkkx*x

TASK [Gathering Facts] R R I R I i I R I I e I I I b I R I b I b b R I b b b b b b S b b 4
ok: [clientl]

TASK [ShellJ KK AR R AR A AR AR A A A A AR AR A AR A AR AR A A A A AR AR A AR A A A AR AR AR A A A A A A A A A A A A A Ak Ak, k

changed: [clientl]

TASK [shell] kA hkkhkhhkhhkhkhkhhkhkhkrhhkhhhkhhkhkhkhhkhhkrhhkhkhhkrhkhkhkhhkhkhkrhkkhkrhkkhkrhkkhkhhkhkkhxkkhkxkkxk*x

changed: [clientl] => (item=/etc/host.conf)
changed: [clientl] => (item=/etc/hostname)
changed: [clientl] => (item=/etc/hosts)
changed: [clientl] => (item=/etc/hosts.allow)
changed: [clientl] => (item=/etc/hosts.deny)

TASK [debugJ AR AR R AR R AR A A A A A A AR AR A AR A AR AR A A A A A A AR AR A A A A AR AR AR A A AR A A A AR A A A A Ak Ak kK

ok: [clientl] => (item=None) => {

"msg": "Bonjour jean, ton uid est 1001"
}
ok: [clientl] => (item=None) => {

"msg": "Bonjour marc, ton uid est 1002"

PLAY RECAP KK A AR AR A AR AR A A A A A A AR A AR A AR AR AR A AR A AR AR A A A A AR AR A AR A A A AR A A A A A A Ak Ak kA kKK

clientl : ok=4 changed=2 unreachable=0 failed=0

cat /tmp/boucle.res
/etc/host.conf
/etc/hostname

/etc/hosts
/etc/hosts.allow
/etc/hosts.deny

© 2018 Copyright Spherius — vers 1.1 81/159

ANSIBLE

Autres exemples :

© 2018 Copyright Spherius — vers 1.1 82/159

ANSIBLE

Le mot clef loop control :

Le mot clef loop_control permet d'exploiter les parametres internes aux boucles.
On peut redéfinir la variable item par une autre variable via loop_var, ou utiliser lI'index de
I'élément en cours de la liste via index_var.

Exemple :

cat boucle_loopcontrol.yml
- hosts: clientl
tasks:
- include tasks: boucle inner.yml
loop:
- Entree
- Plat
- Dessert
loop_control:
loop_var: outer item
index var: mon_index

cat boucle_inner.yml
- debug:
msg: "Index {{ mon_index }} outer item={{ outer_item }} inner item={{ item }}"
loop:
- choixl
- choix2
- choix3

#+ ansible-playbook boucle loopcontrol.yml

PLAY [cllentl] Ak rxhhkhkhhkhkh A hhkhkhhkrhkhkhhhkhhkhhhkhkhhkrhkhkhhhkhhkrhhkhhhkrhkhkhhhkhkhkrhkkrhhkxkkxhkxkx*k

TASK [Gathering FaCtSJ ok rxhkhkhkhhkhhkhkhhkhkhhkrhhkhhhkhhkhkhh bk hkhkrhhkhkhhkrhkhkhhhkhhkrhhkrhhkrkkxhkxx*k

ok: [clientl]

TASK [lncludeitasksl KA KR KA AR A AR AR A AR A AR AR A AR AR A AR A AR AR A A A A AR Ak A Ak Ak Ak Ak kA hk kA kA kkk k%

included: /root/Playbooks/boucle inner.yml for clientl
included: /root/Playbooks/boucle inner.yml for clientl
included: /root/Playbooks/boucle inner.yml for clientl

TASK [debugJ ok rhkhkhkhhkhkh A hhkhkhhkrhhkhhhkhhkhhhkhkhhkrhkhkhkhhkhhkrhhkrhhkrhkhkhhhkhhkrhhkrhhkrhkkhkhkkhkxk

ok: [clientl] => (item=None) => "msg": "Index 0 outer item=Entree inner item=choixl"
ok: [clientl] => (item=None) => "msg": "Index 0 outer item=Entree inner item=choix2"
ok: [clientl] => (item=None) => "msg": "Index 0 outer item=Entree inner item=choix3"

TASK [debugJ kA hkhkhhkhhkhAhhkhkhhkrhhkhhhkhhkhhhkhh kv hkhkhkhhkhhkrhhkrhhkrhkhkhkhhkhhkrhkkhkrhhkrhkkhkhkkhkxk

ok: [clientl] => (item=None) => "msg": "Index 1 outer item=Plat inner item=choixl1"
ok: [clientl] => (item=None) => "msg": "Index 1 outer item=Plat inner item=choix2"
ok: [clientl] => (item=None) => "msg": "Index 1 outer item=Plat inner item=choix3"

TASK [debugJ kA hkhkhhkhkhhAhhkhkhhkrhhkhhhkhhkhhhk bk hhkrhkhkhkhhkhhkrhhkrhhkrhkhkhhhkhhkrhkkrhhkrhkkhkhkkhkxx

ok: [clientl] => (item=None) => "msg": "Index 2 outer item=Dessert inner item=choixl"
ok: [clientl] => (item=None) => "msg": "Index 2 outer item=Dessert inner item=choix2"
ok: [clientl] => (item=None) => "msg": "Index 2 outer item=Dessert inner item=choix3"

PLAY RECAP R e b R R R I R R b R b b b R R b R R b R I b b b b

clientl : ok=7 changed=0 unreachable=0 failed=0

© 2018 Copyright Spherius — vers 1.1 83/159

ANSIBLE

when: resultat.changed resultat.changed est un booléen
when: resultat.changed == True idem que précédemment
when: resultat.changed == False

when: resultat.dest == "/tmp/crond.conf"

when: resultat.dest != "/tmp/crond.conf"

- name: "Fichier de conf d un service"
copy:
src: modele.conf
dest: /tmp/crond.conf
register: resultat
- name: "Redemarrage d un service"
service:
name: crond
state: restarted
when: resultat.changed

Les playbooks

La condition when

La condition when

La condition when permet I'exécution de la tache si le test associé est vrai.
Il est donc possible d'activer une tache a partir d'une valeur d'une variable.

Syntaxe :
when: resultat.changed resultat.changed est un booléen
when: resultat.changed == True idem que précédemment
when: resultat.changed == False
when: resultat.dest == "/tmp/crond.conf"
when: resultat.dest != "/tmp/crond.conf"
Exemple :
cat when.yml
- name: "Test when"
hosts: clientl
tasks:
- name: "Fichier de conf d un service"
copy:

src: modele.conf
dest: /tmp/crond.conf
register: resultat
- name: "Redemarrage d un service"
service:
name: crond
state: restarted
when: resultat.changed
- debug:
var=resultat.changed, resultat.state

© 2018 Copyright Spherius — vers 1.1

84/159

ANSIBLE

A la premiére exécution :
La tache « Redemarrage d'un service » s'exécute car la copie s'est réalisée.

ansible-playbook when.yml

PLAY [Test when] Ak rhhkhkhhkhkhkhhhkhhkrhhkhhhkhhk A hhk bk h kv hkhkhkhhkhhkdrhhkhkhhkrhkhkhkhhkhkrhhkrhkhkrhkkhkhhkxkxkk*x

TASK [Gathering FaCtSJ Ak rxhkkhkhhkhkhk A hhkhkhhkrhhkhhhkhhkrhhkhkhhkrhkhkhhhkhkhkrhhkhkhhkrhkrhhkhkhkhkrhkkhkhhkrxkxkkx

ok: [clientl]

TASK [Flchler de COHf d un SeIVlce] BRI R I b e b b I b S SR e b b I IR S b I b R S R b b I Sb I R I S b b e b b b b S 2 3
TASK [Redemarrage d un Service] kA hkkhkhkhkhkrhkhkhhhkhkhkrhkhkhhkhkrhkhkhhhkhkhkrhkhkhkhhkrkhkhhkhkhkhkrhkkkhkxkxxkx

TASK [debugJ Ak hkhkhkhkhkhkhkhhkhkhhkhhkhhhkhkhhkhhkhhkhrhkhhkhhkhrhkhkhkhhhhkdhhkrhkhkhkhdhkhkhkdhhkrhkkhkkhkhrhhkhkkhhkrhkkhkhhhhkhkkxx
ok: [clientl] => {
"resultat.changed, resultat.state": " (True, u'file')"

PLAY RECAP R e R R R b R R R R R R R R I R I R I R R R b R R R b b b b b b b i

clientl : ok=4 changed=2 unreachable=0 failed=0

A la deuxieme exécution :
La tache « Redemarrage d'un service » ne s'exécute pas car la copie ne s'est pas faite.

ansible-playbook when.yml

PLAY [Test When} KA AR AR A AR AR A AR AR A AR A AR AR A AR A AR AR A AR AR A AR AR A AR AR A AR A AR A AR AR A AR AR A Ak kKK

TASK [Gatherlng Factsl KA AR AR A AR A AR AR A A A AR A AR AR A AR A AR AR A AR A A A AR AR A AR A A A A A A A A A Ak Ak kA Ak k kK

ok: [clientl]

TASK [E‘ichier de conf d un Service] kA hkhk Ak kA hkhkhhkhhkhkhhhkhkhkrhkhhhkrhkhkhkhhkhkkhkrhkkrkhhkrhkkhkhkhkxx

ok: [clientl]
TASK [Redemarrage d un Service] khkkhkkhkhkhkhkkhkhkhkhkhkhkkhkhkhrhkkhkhkhkhhkhkkhhkrhkhkhkhohhhdhhkrhkkhkkhkhhkhkhkkhkhkrhkkhkkhkhrhhkhk*x
skipping: [clientl]

TASK [debug] Ak hhk kA Ak hhk kA hkhk kA ko hk kA ko ko ko hk Ak hhk kA ko ko ko kA ko hk ko hk ko hkhkhkhk ko hkhkhkrhkhkhkhkhkhhkkhkhkrhhkkhkhhhhkkx*x*x
ok: [clientl] => {
"resultat.changed, resultat.state": " (False, u'file')"

PLAY RECAP KA AR AR A A A A A A A R A A A A A A A R AR A AR A A A AR A AR A A A AR AR A AR A AR AR A AR A AR AR A AR AR A AR A A A AR Ak hk

clientl : 0ok=3 changed=0 unreachable=0 failed=0

© 2018 Copyright Spherius — vers 1.1 85/159

ANSIBLE

D'autres possibilités de tests :

- command: echo "{{ item }}"
loop: [0, 2, 4, 6, 8, 10] ou avec with items
when: item > 5

TASK [COmmandJ khkhkhkhhkhhkhkhkhkhkhhkkhhhkhrkhkhhkhkhkhhkhhkhhkhhkdhhhkhkrkhk bk ko kb hkhkdhkhkrhkrhkhkkhkxkx
skipping: [clientl] => (item=0)
skipping: [clientl] => (item=2)
skipping: [clientl] => (item=4)
changed: [clientl] => (item=6)
changed: [clientl] => (item=8)
changed: [clientl] => (item=10)

cat jinjatest.yml

- hosts: localhost

vars:
url: "http://example.com/users/foo/resources/bar"
liste: ["/etc", "/etc/passwd", "/xxx"]

tasks:
- debug:

msg: "matched pattern 1"
when: url is match("http://example.com/users/.*/resources/.*")
- debug:
msg: "matched pattern 2"
when: url is search("/users/.*/resources/.*")
- debug:
msg: "matched pattern 3"
when: url is search("/users/")

accept directory, file, link, exists, same_ file(fichier2), mount
- debug:
msg: "{{item}} est repertoire"
when: item is directory
loop: "{{liste}}"
- debug:
msg: "{{item}} existe"
when: item is exists
loop: "{{liste}}"

TASK [debugJ kA hkhkhkhhkh kA hhk bk hhkrhhkhhhkhhkhkhh bk hhkrhhkhhhkhhkhkhkhhkhhkrhhkrhhkrhkhkhkhhkhhkrhkhkrhkhkrhkkhkhkhkhkxkkx

ok: [localhost] => "msg": "matched pattern 1"

TASK [debugl KA AR AR A A A A A A AR A A A A A A AR AR A A A A AR AR A AR A A A AR A AR AR A AR AR A AR A AR AR A A A AR A AR A Ak Ak Ak kK

ok: [localhost] => "msg": "matched pattern 2"

TASK [debugJ kA hkhkhkhhkh kA hh bk hhkrhhkhhhkrhkhkhh bk hhkrhhkhhhkhhkhkhhhkhhkrhhkrhhkrhkhkhkhhkhkhkrhkkhkrhhkrxhkkhkhkhkhkxkkx

ok: [localhost] => "msg": "matched pattern 3"

TASK [debugJ Ak hkhkhkhkkhhkhkhkh kb hkhhkhr kb hhkhkhhhkh kb kb hkrhkh bk kb hkhkrhkh bk kb hkhkhkhkr kb hk ko hk kb khkhkrhkxkhx
ok: [localhost] => (item=None) => "msg": "/etc est repertoire"

skipping: [localhost] => (item=None)

skipping: [localhost] => (item=None)

TASK [debugl R B B B I e I I I I I b I I b I I b I b b I e I b b I b b I b b b I b b b I b b b I I b b b b b b I b 2 b b b b b I 2 b b
ok: [localhost] => (item=None) => "msg": "/etc existe"

ok: [localhost] => (item=None) => "msg": "/etc/passwd existe"

skipping: [localhost] => (item=None)

© 2018 Copyright Spherius — vers 1.1 86/159

ANSIBLE

accept <, 1t, <=, le, >, gt, >=, ge, ==, =, eq, !=, <>, ne

- debug:
msg: "La version est surperieur a 6.5"
when: "{{ ansible_distribution version is version('6.5', '>=') }}"

TASK [debugJ kA hhkhkhhkhhkhkhhhkhhkrhhkhkhhkhhkhkhh bk hhkrhhkhkhhkhhkhkhkhhkhhkrhhkhkhhkrhkhkhhhkhhkrhhkrhkhkrhkhkhkhhkrkxxk*x

ok: [localhost] => {
"msg": "La version est surperieur a 6.5"

accept failed, changed, succeeded, success, skipped
ignore_ errors: True permet d eviter 1 arret d execution du playbook en cas d echec

- shell: /usr/bin/foo
register: result
ignore_errors: True

- debug:
msg: "Action si ¢ est un echec"
when: result is failed

TASK [Shell] kA hhkhk kA kA hkhkhkhkhhkhkrhkhhkhkhkhkhk kA Ak hhkhk ko hkhkhkrhkhkhkhk ko hkhkhkrhkhhkhkhkhkhkkhkhkrhkhkkhkhrhkhhkkhkhkrhkhkhkkxhhk*x*x
fatal: [localhost]: FAILED! => {"changed": true, "cmd": "/usr/bin/foo", "delta":
"0:00:00.003870", "end": "2018-04-27 14:31:28.285020", "msg": "non-zero return code",
"rc": 127, "start": "2018-04-27 14:31:28.281150", "stderr": "/bin/sh: /usr/bin/foo: Aucun

fichier ou dossier de ce type", "stderr lines": ["/bin/sh: /usr/bin/foo: Aucun fichier ou
dossier de ce type"], "stdout": "", "stdout lines": []}
...ignoring

TASK [debug] KAk kA hkhkkhhhkhhhk bk hhhkhhhkh bk hhkdhkhhkhhkh bk hkhkhkhhhkh bk hhkdkhkhrhkh bk bk hhkhkhkhhkhhkhkhkhk ko hkhkhkhkhkdhkhxkxkkx
ok: [localhost] => {
"msg": "Action si c est un echec"

© 2018 Copyright Spherius — vers 1.1 87/159

‘ORMATION AN S I B LE
Les playbooks
Les filtres
|lower pour convertir en minuscules |upper pour convertir en majuscules
lint pour convertir en entier |float pour convertir en nombre flottant

|bool pour convertir en booléen

Xxx | random pour une valeur aléatoire (60|random : entre 0 et 60)
plugin ipaddr

plugin urlsplit

variable | default(valeur) sivariable n'est pas définie, elle prend la valeur de 'valeur'

Les filtres

Ci-dessous quelques filtres :
|[lower pour convertir en minuscules |upper pour convertir en majuscules
lint pour convertir en entier |float pour convertir en nombre flottant
|bool pour convertir en booléen

Remarque : toute valeur passée par la ligne de commande est une chaine de caracteres.
ansible-playbook filtre.yml -e mavar=4 -e monbool=true

cat filtre.yml

- name: "Test filtre"
hosts: clientl
tasks:
- debug:
msg: Machine CentOS
when: ansible distribution == "CentOS" Test vrai
- debug:
msg: Machine CentOS avec lower donne centos
when: ansible distribution|lower == "centos" Test vrai
- debug:
msg: Machine CentOS avec upper donne CENTOS
when: ansible distribution|upper == "CENTOS" Test vrai
- debug:
msg: La variable est une chaine de caractéres "04" avec int on obtient un entier
when: ansible date time.month|int == 4 Test vrai
- debug: La variable est une chaine de caracteres "04" n est pas convertie
msg: ansible date time.month test nombre sans int
when: ansible date time.month == Test FAUX
© 2018 Copyright Spherius — vers 1.1 88/159

ANSIBLE
- debug
msg: passage d un nombre en argument test nombre avec int
when: mavar|int == 4 Test vrai
- debug
msg: passage d un nombre en argument test nombre sans int
when: mavar == 4 Test FAUX
- debug
msg: passage d un booleen en argument test nombre avec bool
when: monbool |bool == true Test vrai
- debug
msg: passage d un booleen en argument test nombre sans bool
when: monbool == true Test FAUX

D'autres filtres :
variable | default(valeur) si variable n'est pas définie, elle prend la valeur de 'valeur'
xxx | random pour une valeur aléatoire (60| random : entre 0 et 60)

Exemple :
vars:
liste:
- path: /tmp/fichierl
- path: /tmp/FICHIER2
- path: /tmp/Fichier3
mode: "0444"
tasks:
- shell: "echo path={{item.path}} et mode={{item.mode |default('5')}} >> jinja.res"
loop: "{{liste}}"
- shell: "echo Minuscule={{item.path | lower}} et Majuscule={{item.path |upper}} >> jinja.res"
loop: "{{liste}}"
- shell: "echo Une valeur aleatoire entre 0 et 60 = {{60|random}} >>jinja.res"

Résultat :
path=/tmp/fichierl et mode=5
path=/tmp/FICHIER2 et mode=5
path=/tmp/Fichier3 et mode=0444
Minuscule=/tmp/fichierl et Majuscule=/TMP/FICHIER1
Minuscule=/tmp/fichier2 et Majuscule=/TMP/FICHIER2
Minuscule=/tmp/fichier3 et Majuscule=/TMP/FICHIER3
Une valeur aleatoire entre 0 et 60 = 22

Le plugin ipaddr :

Il permet de manipuler des adresses IP.

- shell: "echo Filtre ipaddr pour 192.168.10.9/24 = {{'192.168.10.9/24' |ipaddr('address')}} >>res"
- shell: "echo Filtre ipaddr pour 300.168.10.9/24 = {{'300.168.10.9/24' |ipaddr('address’)}} >>res"

Filtre ipaddr pour 192.168.10.9/24 = 192.168.10.9
Filtre ipaddr pour 300.168.10.9/24 = False

© 2018 Copyright Spherius — vers 1.1 89/159

ANSIBLE

Le plugin urlsplit :
Il permet d'exploiter une url.

- shell: "echo http://www.serveur.fr:4500/chemin/page.htm le serveur =
{'http://www.serveur.fr:4500/chemin/page.htm' | urlsplit('hostname’)}} >>jinja.res"

- shell: "echo http://www.serveur.fr:4500/chemin/page.htm le port =
{'http://www.serveur.fr:4500/chemin/page.htm’ | urlsplit('port')}} >>jinja.res"

- shell: "echo http://www.serveur.fr:4500/chemin/page.htm le protocole =
{{'http://www.serveur.fr:4500/chemin/page.htm’ | urlsplit('scheme’)}} >>jinja.res"

http://www.serveur.fr:4500/chemin/page.htm le serveur = www.serveur.fr
http://www.serveur.fr:4500/chemin/page.htm le port = 4500
http://www.serveur.fr:4500/chemin/page.htm le protocole = http

© 2018 Copyright Spherius — vers 1.1 90/159

ANSIBLE

Les playbooks

Les opérations arithmétiques

- hosts: localhost
tasks:
- debug: msg="Memoire {{ansible memtotal mb * 1024}} kb"

- debug: msg="Memoire {{ansible _memtotal mb / 1024}} gb"

- debug: msg="100/3 = {{100/3}}, partie entiere {{ (100/3) |int }}"

{{ mavar | pow(2) }}

Les opérations arithmétiques

cat jinjacalcul.yml
- hosts: localhost
tasks:
- debug: msg="Mem {{ansible memtotal mb}} mb ou {{ansible memtotal mb * 1024}} kb"
- debug: msg="Mem {{ansible memtotal mb / 1024}} gb"
- debug: msg="100/3 = {{100/3}}, partie entiere {{ (100/3) |int }}"

ansible-playbook jinjacalcul.yml
PLAY [localhost] KAk hkhkhkhkhhhkhkhkhkhhkhhhkhr kb hkhhhhrhkhhkhhkdhhkhkhrhkh bk hhhkhkr kb kb dhkrhkhhkhkhkkhhkhkhk ok hkkxkhhkxkhkx*k

TASK [Gathering FaCtS] Ak Ak khkhhkhhk Ak hkhkhhkrhkhkhkhhkhhkrhhkhkhhkrhkhkhkhhkhhkrhhkrkhhkrhkhkhkhhkhhkrhkkrhhkrxkkxkkxx*k

ok: [localhost]

TASK [debugJ KA AR AR A A AR A A A A R A A A A AR A A R AR A AR A A A AR A AR A A A AR AR A AR A AR AR A AR A AR AR A A A AR A AR A A A AR Ak K,k

ok: [localhost] => "msg": "Mem 1839 mb ou 1883136 kb"

TASK [debug] kA hkkhkhhkh kA hhhkhhkrhhkhhhkhhkhkhh bk hhkrhhk bk hhkhhkhkhkhhkhhkrhhkhhhkrhkhkhkhhkhkhkrhkkhkrhkhkrhkkhkhkhkhkxkkx

ok: [localhost] => "msg": "Mem 1.7958984375 gb"

TASK [debugJ KA AR AR A A AR A A A A R A A A A A A A R AR A AR A A A AR A AR A AR AR A AR A A A AR AR A AR A AR AR A A A AR A AR A A A AR Ak K,k

ok: [localhost] => "msg": "100/3 = 33.3333333333, partie entiere 33"

PILAY RECAP FHF A A A XAk A A A A A kA A A A A A AR A A A A A XA A A A A XA I A A A A A A A A A I I A AX I A I AAA I I A A AR A A Ak hh A xkkhhxx

localhost : ok=4 changed=0 unreachable=0 failed=0

Il est possible de réaliser des opérations plus complexes :
{{ mavar | pow(2) }} mavar a la puissance 2.
et bien d'autres présentées sur le site de documentation Ansible.

© 2018 Copyright Spherius — vers 1.1 91/159

ANSIBLE

Notes

© 2018 Copyright Spherius — vers 1.1 92/159

ANSIBLE

Les roles

Dans ce chapitre nous allons étudier la création, la structure et le
fonctionnement des roles.

© 2018 Copyright Spherius — vers 1.1 93/159

ANSIBLE

Les roles

* Présentation

* Structure et exécution d'un réle
* Lesinclude et les import

* Un exemple de role

* Un exemple de role avec des inclusions

© 2018 Copyright Spherius — vers 1.1

94/159

ANSIBLE

Les roles

Présentation

* Organisation / arborescence

Simplification de I'administration

* Codes ré-exploitable

* Site de partage / Ansible Galaxy

Présentation

Pour une utilisation d'Ansible en production ou en développement, on obtient rapidement un
ensemble conséquent de playbooks, de fichiers d'inventaires, de templates, etc.
Les rbles vont permettre :

- d'organiser I'ensemble de ces fichiers au sein d'une arborescence cohérente et

« normalisée » (identique pour tous les réles),

- de rendre les codes plus facilement ré-exploitable,

- de déployer simplement des réles existants d'un site de partage.

Les actions a effectuer sur un serveur sont regroupés au sein d'un playbook.

Les rbles permettent de simplifier I'administration et d'automatiser les directives include au sein
des fichiers de configuration. Il n'est plus nécessaire de préciser le chemin des fichiers de variables,
ceux ci étant stockés dans des emplacements pré-définis.

Les réles sont un moyen de charger automatiquement les taches, les variables et les handlers.

Le playbook fera appel aux roles qui auront besoin d’étre exécutés. Depuis le répertoire tasks du
role, tous les chemins sont relatifs.

Une plate-forme dédiée, Ansible Galaxy, permet de télécharger des roles. Il n'est pas nécessaire de
recréer ce qui a déja été fait.

© 2018 Copyright Spherius — vers 1.1 95/159

ANSIBLE

Les réles
Structure et exécution d'un réle
Nom Description
tasks Contient la liste des taches utilisées par le role
handlers | Contient la liste des handlers utilisés par le réle
defaults Contient les variables par défaut du role
vars Contient les autres variables du role. Elles prennent le dessus sur celles de defaults. En
général, ce sont les variables modifiables par I'utilisateur.
files Contient les fichiers utilisés via ce réle (pour copy, ...)
templates | Contient les templates du réle
meta Contient les méta-données du réle

more playbook.yml

- hosts: all
roles:
- exemple

Structure et exécution d'un réle

Il est possible de créer un rdle vide contenant la structure arborescente.

cd /etc/ansible/roles

ansible-galaxy init common
- common was created successfully

La structure créée est la suivante :

tree /etc/ansible/
/etc/ansible/

ansible.
hosts
roles

cfg

— common

defaults

— main.yml
files
handlers

L— main.yml

L— main.yml

README .md

tasks

— main.yml

templates

tests

t:: inventory
test.yml

vars

— main.yml

© 2018 Copyright Spherius — vers 1.1

96/159

ANSIBLE

Pour supprimer un réle :
ansible-galaxy remove common
- successfully removed common

Un role est divisé en « sections ». Chaque section ayant une fonction précise.

Nom Description

tasks Contient la liste des taches utilisées par le role
handlers Contient la liste des handlers utilisés par le réle
defaults Contient les variables par défaut du role

vars Contient les autres variables du role

files Contient les fichiers utilisés via ce rdle (pour copy, ...)
templates |Contient les templates du réle

meta Contient les méta-données du réle

L'exécution d'un rdle

L'exécution d'un playbook sollicitera les roles qui sont définis via le mot clef roles.

more playbook.yml
- hosts: all
roles:

- mon rolel
- mon role2

Si plusieurs réles sont définis, les régles suivantes s'appliquent :

si roles/X/tasks/main.yml existe, les taches listées dedans sont ajoutées au jeu de données.
si roles/X/handlers/main.yml existe, les handlers listés dedans seront ajoutés au jeu.

si roles/X/vars/main.yml existe, les variables listées dedans seront ajoutées au jeu.

si roles/X/defaults/main.yml existe, les variables listées dedans seront ajoutés au jeu.

si roles/X/meta/main.yml existe, chaque dépendance de réle listée dedans est ajoutée.
Chaque fichier, template ou tache incluse dans le rdle, peut référencer des fichiers dans
roles/X/{files,templates,tasks} sans avoir a les parcourir de maniére relative ou absolue.

L'ordre d’exécution du playbook est le suivant:

Toutes les pre_tasks définies dans le play

Tous les handlers déclenchés seront exécutés

Chaque role listé dans « roles : » sera exécuté a son tour. Toutes les dépendances de réles
définies dans le fichier meta/main.yml seront exécutées en premier sous réserve de
conditions et de filtres.

Toute tasks définie dans le play

Tous les handlers déclenchés seront exécutés

Toutes les post_tasks définies dans le play

Tous les handlers déclenchés seront exécutés

© 2018 Copyright Spherius — vers 1.1 97/159

ANSIBLE

include_tasks: fichier_de_ taches.yml
include_tasks: fichier_de_taches.yml varl=vall var2=val2

import_tasks: fichier_de_taches.yml

inclure_vars : fichier_variables.yml

tasks:
- include vars: variables/variables.yml
- include tasks: tasks/deploiement apache.yml
- include tasks: tasks/deploiement baseDeDonnees.yml
- include tasks: tasks/creation du site.yml

Les roles

Les include et les import

Les include et les import

On a la possibilité d'intégrer les tasks d'un autre fichier au sein d'un playbook.
Le mot clef include est obsoléte, on utilise include_tasks (comportement dynamique) ou
import_tasks (comportement statique).

Syntaxe : include_tasks: autre_fichier_de_taches.yml
include_tasks: autre_fichier_de_taches.yml varl=vall var2=val2
import_tasks: autre_fichier_de_taches.yml

Ansible pré-traite toutes les importations statiques au cours du temps d'analyse du Playbook.
Les inclusions dynamiques sont traitées pendant I'exécution au moment ou cette tache est
rencontrée. Ainsi, on utilise include_tasks lorsqu'il y a des mots-clefs, boucles et conditions.

Le principal avantage de I'utilisation des instructions include est la mise en boucle. Lorsqu'une

boucle est utilisée avec un include, les taches ou le réle inclus seront exécutés une fois pour
chaque élément de la boucle.

Il existe également include_vars pour intégrer un fichier de variables au sein d'une tache.

© 2018 Copyright Spherius — vers 1.1

98/159

ANSIBLE

Exemple 1 pour include_tasks :

cat
- hosts: all
tasks:
- debug:

includel.yml

msg: "Traitement UN machine {{ inventory hostname }}"
- include_ tasks: include autre.yml

- debug:

msg: "Traitement DEUX machine {{ inventory hostname }}"

cat
- debug:
msg: "tach

e autre"

include_ autre.yml

ansible-playbook include.yml

PLAY [all]

TASK [Gatherin
ok: [client2]
ok: [clientl]

TASK [debug]
ok: [client2]
ok: [clientl]

TASK [include

included: /root/Playbooks/include autre.yml for client2, clientl

TASK [debug]
ok: [client2]
ok: [clientl]

TASK [debug]
ok: [client2]

ok: [clientl] =>

PLAY RECAP
clientl
client2

g Facts]

=> "msg" :
=> "msg":
tasks]

=> "msg":
=> "msg":
=> "msg":

vvmsg" .

"Traitement UN machine client2"
"Traitement UN machine clientl"

"tache autre"
"tache autre"

"Traitement DEUX machine client2"
"Traitement DEUX machine clientl"

unreachable=0
unreachable=0

ok=5 changed=0
ok=5 changed=0

failed=0
failed=0

© 2018 Copyright Spherius — vers 1.1

99/159

ANSIBLE
Exemple 2 pour include_tasks : avec un test
cat include2.yml # cat include autre.yml
- hosts: all - debug:
tasks: msg: "tache autre"
- debug:
msg: tachel
= include_tasks: "{{ hostvar }}.yml"
when: hostvar is defined

ansible-playbook include2.yml -e hostvar="include autre"

PLAY [all]

TASK [Gathering Facts]
ok: [clientl]
ok: [client2]

TASK [debug]
ok: [clientl] => "msg": "tachel"

ok: [client2] => "msg": "tachel"

TASK [include tasks]
included: /root/Playbooks/include autre.yml for clientl, client2

TASK [debug]

ok: [clientl] => "msg": "tache autre"

ok: [client2] => "msg": "tache autre"

PLAY RECAP

clientl : ok=4 changed=0 unreachable=0 failed=0
client2 : ok=4 changed=0 unreachable=0 failed=0

ansible-playbook include2.yml
PLAY [all]

TASK [Gathering Facts]
ok: [clientl]
ok: [client2]

TASK [debug]
ok: [client2] > "msg": "tachel"
ok: [clientl] => "msg": "tachel"

TASK [include tasks]
skipping: [client2]
skipping: [clientl]

PLAY RECAP

clientl : ok=2 changed=0 unreachable=0 failed=0
client?2 : ok=2 changed=0 unreachable=0 failed=0

Autre syntaxe :

cat include3.yml # cat include autre.yml
- hosts: all - debug:
tasks: msg: "tache avec {{mavar}}"
- debug:

msg: "tachel System {{ inventory hostname }} debut"
- include_ tasks: include autre.yml mavar="paul"

© 2018 Copyright Spherius — vers 1.1

100/159

ANSIBLE

Exemple 1 pour import_tasks :

on remplace include_tasks par import_tasks

cat importl.yml

- hosts: all
tasks:
- debug:

msg: "Traitement UN machine {{ inventory hostname }}"
- import tasks: include autre.yml
- debug:
msg: "Traitement DEUX machine {{ inventory hostname }}"

cat include_autre.yml
- debug:
msg: "tache autre"

ansible-playbook importl.yml
PLAY [all]

TASK [Gathering Facts]
ok: [clientl]
ok: [client2]

TASK [debug]
ok: [client2] => "msg": "Traitement UN machine client2"
ok: [clientl] => "msg": "Traitement UN machine clientl"

TASK [debug]
ok: [client2] => "msg": "tache autre"

ok: [clientl] => "msg": "tache autre"

TASK [debug]

ok: [clientl] => "msg": "Traitement DEUX machine clientl"

ok: [client2] => "msg": "Traitement DEUX machine client2"

PLAY RECAP

clientl : ok=4 changed=0 unreachable=0 failed=0
client2 : ok=4 changed=0 unreachable=0 failed=0

© 2018 Copyright Spherius — vers 1.1 101/159

ANSIBLE
Exemple 2 avec import_tasks :
cat import2.yml # cat include autre.yml
- hosts: all - debug:
tasks: msg: "tache autre"
- debug:
msg: tachel
- import tasks: "{{ hostvar }}.yml"
when: hostvar is defined
ansible-playbook import2.yml -e hostvar="include autre"
PLAY [all]
TASK [Gathering Facts]
ok: [client2]
ok: [clientl]
TASK [debug]
ok: [clientl] => "msg": "tachel"
ok: [client2] => "msg": "tachel"
TASK [debug]
ok: [client2] => "msg": "tache autre"
ok: [clientl] => "msg": "tache autre"
PLAY RECAP
clientl : ok=3 changed=0 unreachable=0 failed=0
client2 : ok=3 changed=0 unreachable=0 failed=0

Echec avec import alors qu'avec include cela a fonctionné :

ansible-playbook import2.yml

ERROR! Error when evaluating variable in include name: {{ hostvar }}.yml.

When using static includes, ensure that any variables used in their names are defined in
vars/vars files or extra-vars passed in from the command line. Static includes cannot use
variables from inventory sources like group or host vars.

© 2018 Copyright Spherius — vers 1.1 102/159

ANSIBLE

Exemple avec include_tasks et import_tasks :

Un répertoire variables avec variables.yml

cat variables/variables.yml

equipe: [{nom: jean, uid: 1001}, {nom: marc, uid: 1002}]
ip addr: "{{ ansible all ipv4 addresses[0] }}"

appli path: "{{ ip addr }}/22"

un répertoire tasks avec les 3 fichiers pour des tasks :

cat tasks/boucle.yml
- shell: "1ls /etc/host*"
register: resultat
- shell: echo "{{item}}" >>/tmp/boucle.res
with items:
- "{{resultat.stdout lines}}"
connection: local
- debug:
msg:
"Bonjour {{item.nom}}, ton uid est {{item.uid}}"
with items:
- "{{equipe}}"

cat tasks/register.yml
- shell: "ls /etc/host*"
register: resultat
- debug: msg={{resultat.stdout lines}}

cat tasks/variables base.yml
- debug:
msg: La variable appli path = {{ appli path }}

Le playbook :
cat include exemplel.yml

- hosts: clientl,client2

vars_ prompt: # un prompt avec une saisie masquée
- name: "motdepasse admin"
prompt: "Saisir le mot de passe pour la base de donnees"
tasks:

- include vars: variables/variables.yml
- include tasks: tasks/boucle.yml
- include tasks: tasks/register.yml
- include tasks: tasks/variables base.yml
- name: "une autre tasks"
debug: msg="une autre operation avec le mot de passe {{motdepasse admin}}"

ansible-playbook include_ exemplel.yml

Saisir le mot de passe pour la base de donnees:

PLAY [cllentllcllent21 KA AR AR A AR A AR AR A AR A A A AR A AR AR A AR AR A AR A AR AR A AR A A A Ak kA Ak Ak Ak Ak k k%

TASK [Gatherlng Factsj R B B e B I I I I I b I I e b b e I b b e b b b b b I b b b I b b b I b b b S b b g
ok: [client2]
ok: [clientl]
TASK [1nclude Vars] R e i i I I b I b b I I b I b b b b I I I b b I b b I b b b b I b b I b b b I b b b b b b b i 4
ok: [client2]
ok: [clientl]
TASK [1nclude tasksj R I e I I I I e I I I b I I I I I b i I b b i b b I I b b b b b I I b b I b b b b b b b b i 4

included: /root/Playbooks/tasks/boucle.yml for clientl, client2

© 2018 Copyright Spherius — vers 1.1 103/159

ANSIBLE

TASK [Shell} KA A A AR A AR A AR AR A A A AR A AR A A A AR A AR AR A AR A AR AR A AR A A A Ak A Ak Ak Ak Ak Ak kA kA kk k)%

changed: [clientl]
changed: [client2]

TASK [Shell} KA A A AR A AR A AR AR A A A AR A AR A A A AR A AR AR A A A A A A AR A A A A AR Ak Ak Ak Ak Ak Ak kA kA kk k)%

changed: [clientl] => (item=/etc/host.conf)

changed: [client2] => (item=/etc/host.conf)
changed: [clientl] => (item=/etc/hostname)
changed: [client2] => (item=/etc/hostname)
changed: [clientl] => (item=/etc/hosts)

[1 (
[] (
[1 (
[] (
changed: [client2] => (item=/etc/hosts)
[] (
[1 (
[] (
[1 (

changed: [client2] => (item=/etc/hosts.allow)
changed: [clientl] => (item=/etc/hosts.allow)
changed: [clientl] => (item=/etc/hosts.deny)
changed: [client2] => (item=/etc/hosts.deny)

TASK [debugJ KA A KA AR A AR A A A AR AR A AR A AR AR A AR A AR AR A AR AR A A A A Ak kA A Ak A kA Ak Ak Ak Ak Ak Ak khkkkk k%

ok: [clientl] => (item=None) => "msg": "Bonjour jean, ton uid est 1001"

[
ok: [clientl] => (item=None) => "msg": "Bonjour marc, ton uid est 1002"
ok: [client2] => (item=None) => "msg": "Bonjour jean, ton uid est 1001"
ok: [client2] => (item=None) => "msg": "Bonjour marc, ton uid est 1002"

TASK [lnclude tasksJ KA AR KA AR A AR A AR AR A AR A A A AR A AR A A A AR A A A A A A A A Ak Ak kA Ak Ak h Ak kA kA kA Kk k k%

included: /ro;t/Playbooks/tasks/register.yml for clientl, client2

TASK [shell] kA hkkhkhhkhhkhkhhhkhhkrhhkhhhkrhkhkhh bk hhkrhhkhkhhkrhkhkhhhkhhkrhhkrhhkrhkhkhkhhkhkrhkhkxhkxk*k

changed: [clientl]
changed: [client2]

TASK [debugJ Ak hhkhk kA hkhk kA ko hk kA Ak ko kA Ak ko ko kA bk ko hk kA ko kA d ko hkhk ko hkhkhkrhkhkhkhkrhhkhkhkrhhkhkhkkxhhk k%
ok: [client2] => {
"msg": [
"/etc/host.conf",
"/etc/hostname",
"/etc/hosts",
"/etc/hosts.allow",
"/etc/hosts.deny"

}
ok: [clientl] => {

"msg": [
"/etc/host.conf",
"/etc/hostname",
"/etc/hosts",
"/etc/hosts.allow",
"/etc/hosts.deny"

TASK [lnclude tasksJ ok rxhkkhkhhkhkhk A hhkhkhhkrhhkhhhkhhkrhhkrhhkrhkhkhkhhkhkhkrhkhkrhhkrhkhkhkhhkhkrhkxkkxx*x

included: /root/Playbooks/tasks/variables base.yml for clientl, client2

TASK [debugJ KA A A AR A A A A A A AR AR A A A A AR AR A AR A AR AR A AR AR A A A A Ak kA A A A Ak Ak kA Ak Ak Ak hk kA kk k%%

ok: [clientl] => "msg": "La variable appli path 192.168.1.8/22"
ok: [client2] => "msg": "La variable appli path = 192.168.1.9/22"

TASK [une autre tasksJ KA KA K AR A AR A A A AR A AR AR A AR AR A AR A A A A A A Ak A Ak Ak hA Ak kA kA kA hkkhkkkk k%

ok: [clientl] => "msg": "une autre operation avec le mot de passe PASSWORD"
ok: [client2] => "msg": "une autre operation avec le mot de passe PASSWORD"

PLAY RECAP R R I b I b I R S I I S I I R S S S b b b I b 2 I S e b b I b e S b b b I b I 2 b b b R I b S 2R I b b b I db b S b S 4

clientl : ok=12 changed=3 unreachable=0 failed=0
client?2 : ok=12 changed=3 unreachable=0 failed=0

© 2018 Copyright Spherius — vers 1.1

104/159

@&AH&
ANSIBLE

Les roles

Un exemple de rble

Un exemple de réle

Voici un exemple simple de réle.

Le playbook playl.yml indique sur quels hotes agir et quels réles utiliser.

Le répertoire roles contient la structure arborescente du role. Le sous répertoire tasks contient les
taches a effectuer.

© 2018 Copyright Spherius — vers 1.1 105/159

ANSIBLE

Les taches du role :

more roles/exemple/tasks/main.yml

- name: Installer les outils de developpement
yum:
name: "@Development Tools"
state: present

- name: Installer apache
yum:
name: httpd
state: latest

- name: Copier le fichier de configuration d'apache
copy:
src: httpd.conf
dest: /etc/httpd/conf/httpd.conf

- name: Redemarrer le service apache
service:
name: httpd
state: restarted

A noter que le fichiers contient la liste des taches sans le mot clef « - tasks : ».
Sur le méme principe, si nous avions eu des handlers, le fichier handlers/main.yml contiendrait la
définition de chaque handler sans le mot clef « handlers : ».

La source du fichier a copier (httpd.conf) est un chemin relatif par rapport au role. Par défaut
Ansible va chercher le fichier a copier dans le répertoire files du role.

Les variables du role :

more roles/exemple/vars/main.yml

vars:
http port: 80
domain: mydomain.lan

L'exécution :
ansible-playbooh playl.yml

© 2018 Copyright Spherius — vers 1.1 106/159

ORMATION A N S I B LE

/etc/ansible/roles/exemple2/
— files

t:: apache2.conf
httpd.conf
— tasks
debian.yml
E main.yml
redhat.yml

— vars
L— main.yml

Les roles

Un exemple de role avec des inclusions

tree /etc/ansible/roles/exemple2/

Un exemple de réle avec des inclusions

Le playbook :
more play2.yml

- hosts: Cent0S7.1,deb server
roles:
- exemple2

L'arborescence du role :
tree roles/exemple2

roles/exemple?2
— files

t:: apache2.conf
httpd.conf
— tasks
debian.yml
main.yml
redhat.yml

— vars
— main.yml

3 directories, 6 files

Le fichier tasks/main.yml fait référence aux fichiers debian.yml et redhat.yml avec une condition en

fonction du type de I'OS.

© 2018 Copyright Spherius — vers 1.1

107/159

ANSIBLE

Le role :

more roles/exemple2/main.yml
- name: Installer et demarrer apache sur les serveurs Redhat
include tasks: redhat.yml
when: ansible os family == 'RedHat'
- name: Installer et demarrer apache sur les serveurs Debian
include tasks: debian.yml
when: ansible os family == 'Debian'

L'instruction when permet d'effectuer un appel conditionnel a un autre fichier indiqué par la
directive include_tasks.

Les fichiers redhat.yml et debian.yml contiennent les mémes instructions adaptés a I'0S :

more redhat.yml
- name: Installer les outils de developpement
yum:
name: "@Development Tools"
state: present

- name: Installer apache
yum:
name: httpd
state: latest

- name: Copier le fichier de configuration d'apache
copy:
src: httpd.conf
dest: /etc/httpd/conf/httpd.conf

- name: Redemarrer le service apache
service:
name: httpd
state: restarted

more debian.yml
- name: Installer les outils de developpement
apt:
name: build-essential
state: present
update cache: yes

- name: Installer apache
apt:
name: apache2
state: latest
update cache: yes

- name: Copier le fichier de configuration d'apache
copy:
src: apache2.conf
dest: /etc/apache2/apache2.conf

- name: Redemarrer le service apache
service:
name: apache?2
state: restarted

© 2018 Copyright Spherius — vers 1.1 108/159

ANSIBLE

L'exécution du playbook donne le résultat suivant :

ansible-playbook play2.yml
PLAY [centos7‘l,deb Server] khkkhkkhkhkkhhkhhkkhhhhhhkhhkhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhkkxk

TASK [Gathering FaCtSJ ok rxhkhkhkhhkhkhk A hhkhkhhkrhkhkhhhhhkrhhkhkhhkrhkhkhhhkhkhkrhhkhkhhkrhkrhkhkrhkhkrhkkrkhhkrxkxkkx

ok: [deb server]
ok: [Cent0S7.1]

TASK [exemple2 : Installer et demarrer apache sur les serveurs Redhat] ***xxxxxikkddsxx
skipping: [deb_server]
included: /etc/ansible/roles/exemple2/tasks/redhat.yml for CentOS7.1

TASK [exemple2 : Installer les outils de developpement] ** % x k& xkkkxkkkxkdkodoxkokodoxokok doxokokox
ok: [CentOS7.1]

TASK [exemple2 S Installer apache] ER R S B I e I I I I I b I I I I b I I b I I b b b b b b b b b b b b b i
ok: [Cent0S7.1]

TASK [exemple2 : Copier le fichier de configuration d'apache] *x*k&xkkkakkdxkdkdxkkdxkkx
ok: [CentOS7.1]

TASK [exemple2 : Redemarrer le Service apache] E R B I I b I I I b I I I b I b b b b b b b b 2 b b
changed: [CentO0S7.1]

TASK [exemple2 : Installer et demarrer apache sur les serveurs Debian] ****xkkdxkkdxkix
skipping: [CentO0S7.1]
included: /etc/ansible/roles/exemple2/tasks/debian.yml for deb_server

TASK [exemple2 : Installer les outils de developpement] % x k& xkkkxkkdxksdkodoxkokodoxokokodoxokokok
ok: [deb server]

TASK [exemple2 S Installer apache] KA KR K AR A AR A A A AR A A AR A A AR A AR AR A AR AR A A A A Ak Ak hA Ak kA kA kk k)%

ok: [deb server]

TASK [exemple2 : Copier le fichier de configuration d'apache] *x*H&xkkkakkdxkdkdxkkdxkx
ok: [deb server]

TASK [exemple2 : Redemarrer le Service apache] R e I I I b I I I b I I I b I b b b b b b b b 2 b b
changed: [deb server]

PLAY RECAP R R R R R R R R I R b R I R b R R I R R R b b b b b b b b i

Cent0S7.1 : ok=6 changed=1 unreachable=0 failed=0
deb server : ok=6 changed=1 unreachable=0 failed=0

Le nom du réle est affiché sur les lignes « TASK [nom_du_role : nom_de_la_tache] ».

© 2018 Copyright Spherius — vers 1.1 109/159

ANSIBLE

Notes

© 2018 Copyright Spherius — vers 1.1

110/159

oooooooo

ANSIBLE

Fonctionnalités
Avanceées

Dans ce chapitre, nous allons approfondir la customisation des playbooks et
des réles.

© 2018 Copyright Spherius — vers 1.1 111/159

oooooooo

ANSIBLE

Fonctionnalités Avancées

* Lestags

* Lavisualisation d'un playbook
* Gather_facts

* La délégation par delegate_to
* Les pré et post tasks

* Le mot clef run_once

* Le parallélisme

* Le traitement avec serial

* any_errors_fatal

Les blocks

La connexion avec un autre compte

Le prompt

Le fichier d'inventaire dynamique
et temporaire

set_fact

La création d'un module

© 2018 Copyright Spherius — vers 1.1

112/159

ANSIBLE

Fonctionnalités avancées

Les tags
cat tags.yml

- name: "Tests des tags"
hosts: clientl
tasks:
- name: "Commande 1"
shell:
echo commande 1 >> /tmp/tags.res
tags: ["cl"]

ansible-playbook tags.yml --list-tags

ansible-playbook tags.yml --tags c2

ansible-playbook tags.yml --skip cl,c2
Les tags

On peut définir un tag sur une tache ou directement sur un playbook.

Lors de I'exécution d'un playbook, on peut spécifier la liste des tags qu'il faut exclusivement
exécuter ou au contraire ceux qu'ils ne faudra pas traiter.

Le mot clef est : tags: [« le_nom_du_tag »]
Le tag "always" est toujours traité.

cat tags.yml
- name: "Tests des tags"
hosts: clientl
tasks:
- name: "Commande 1"
shell:
echo commande 1 >> /tmp/tags.res
tags: ["cl"]
- name: "Commande 2"
shell:
echo commande 2 >> /tmp/tags.res
tags: ["c2"]
- name: "Commande 3"
shell:
echo commande 3 >> /tmp/tags.res

- name: "Commande 4"
shell:
date >> /tmp/tags.res
tags: ["always"]

© 2018 Copyright Spherius — vers 1.1 113/159

ANSIBLE
Pour lister les tags : --list-tags
ansible-playbook tags.yml --list-tags
playbook: tags.yml
play #1 (clientl): Tests des tags TAGS: []

TASK TAGS: [always, cl, c2]

Exécution compléte :

ansible-playbook tags.yml
clientl# cat /tmp/tags.res

commande 1
commande 2
commande 3
lun. avril 23 16:03:51 CEST 2018

Pour exécuter uniquement les taches associées a des tags :

ansible-playbook tags.yml --tags c2
clientl# cat /tmp/tags.res

commande 2

lun. avril 23 16:04:11 CEST 2018

Pour exclure I'exécution de taches associées a des tags :

ansible-playbook tags.yml --skip c2
clientl# cat /tmp/tags.res

commande 1

commande 3

lun. avril 23 16:03:51 CEST 2018

ansible-playbook tags.yml --skip «cl,c2

clientl# cat /tmp/tags.res
commande 3
lun. avril 23 16:04:31 CEST 2018

--tags

--skip

© 2018 Copyright Spherius — vers 1.1

114/159

ANSIBLE

ansible-playbook --list-hosts playl.yml

ansible-playbook --list-tasks playl.yml

ansible-playbook --list-tags playl.yml

Fonctionnalités avancées

La visualisation d'un playbook

La visualisation d'un playbook

Liste des hotes
ansible-playbook --list-hosts playl.yml

playbook: playl.yml

play #1 (centos servers): centos servers TAGS:
pattern: [u'centos servers']
hosts (2):
Cent0S6.5
Cent0S7.1

Liste des tasks
ansible-playbook --list-tasks playl.yml

playbook: playl.yml

play #1 (centos servers): centos servers TAGS: []
tasks:
exemple : Installer les outiles de developpement TAGS: []
exemple : Installer apache TAGS: []
exemple : Copier le fichier de configuation d'apache TAGS:
exemple : Redemarrer le service apache TAGS: []

Liste des tags
ansible-playbook --list-tags playl.yml

playbook: playl.yml

play #1 (centos servers): centos servers TAGS:
TASK TAGS: []

[]

[]

© 2018 Copyright Spherius — vers 1.1

115/159

ANSIBLE
Fonctionnalités avancées
Gather_facts
Si gather_facts a no pas de récupération des facts
- hosts: all
gather facts: yes gather facts: no
tasks:
- debug:
msg: La variable = {{ansible distribution}}

Gather_facts

Les facts sont récupérées au début du traitement d'un playbook pour tous les hotes. Elles sont
nécessaires pour utiliser les variables Ansible au sein d'un playbook.

Il est possible de ne pas récupérer les facts via le mot clef gather_facts. Par exemple : pour un parc
important de machines et pour optimiser le temps d'exécution, lorsque ces variables sont inutiles
au bon fonctionnement du playbook,

cat variables gatherfacts.yml
- hosts: clientl
gather facts: yes
tasks:
- debug:
msg: La variable = {{ansible distribution}}

ansible-playbook variables gatherfacts.yml

PLAY [Clientl] kA hkkhkhhkhhk Ak hhkhhkrhhkhkhhkhhkhkhhhkhhkrhhkhkhhkrhkhkhkhhkhhkrhkrkhkhkrhkhkhkhhkhkhkrxhkxkkxx*x

TASK [Gathering E‘acts] kA hkkhkhhkhkhk A hkhkhkhhkrhkhkhhhkhhkrhkhkhkhhkrhkhkhkhhkhkhkrhkkrhhkrhkhkhkhhkhkhkxkhkkx*

ok: [clientl]

TASK [debug} hkhkhkkhkhkhkhkhkhkkhhhkhhkhhkhrhhkhhkhkhhkhkhkhrhhkhkhkhkhhkhkhkhrhhkhhhhhkhhkrhkhkkhkhkhrhrhkkhhkrhkkhkkhkhhrrkhkkx
ok: [clientl] => {
"msg": "La variable = CentOS"

}

PILAY RECAP FHx* A A XKk A A XA K KA AKX A KA AX I A KA XK KA AA A I A A AKX I I A AKX I A I XAk khhkkkokhxkkkohrxkkx

clientl : ok=2 changed=0 unreachable=0 failed=0

© 2018 Copyright Spherius — vers 1.1 116/159

ANSIBLE
cat variables gatherfacts.yml
- hosts: clientl
gather facts: no
tasks:
- debug:
msg: La variable = {{ansible distribution}}

ansible-playbook variables gatherfacts.yml

PLAY [cllentlJ KA AR AR A AR A AR AR AR A AR A AR AR A A A A AR AR A AR A AR AR A AR A A A AR A AR AR A AR A Ak Ak Ak Kk

TASK [debugJ KA AR AR A AR A A A AR A A A AR A AR AR A AR A AR AR A AR AR A AR AR A AR A A A AR A AR A A A AR A AR AR Ak ok k

fatal: [clientl]: FAILED! => {"msg": "The task includes an option with an undefined
variable. The error was: 'ansible distribution' is undefined\n\nThe error appears to have
been in '/root/Playbooks/variables gatherfacts.yml': line 4, column 7, but may\nbe
elsewhere in the file depending on the exact syntax problem.\n\nThe offending line
appears to be:\n\n tasks:\n - debug:\n ~ here\n"}

to retry, use: --limit @/root/Playbooks/variables gatherfacts.retry

PLAY RECAP KA AR AR A AR AR AR AR A A A A A A AR AR A A A A AR AR A AR AR A AR A AR AR A AR AR A AR A A A AR A AR AR A ARk kK

clientl : ok=0 changed=0 unreachable=0 failed=1

© 2018 Copyright Spherius — vers 1.1 117/159

ORMATION A N S I B LE

Fonctionnalités avancées

La délégation par delegate to

delegate_to pour déporter le résultat d'une action d'un poste
vers une autre machine

- hosts: all

tasks:
- name: "Page d informations"
template:

src: delegate to modele.html
dest: /var/www/html/{{inventory hostname}}.html
owner: "apache"
group: "apache"
delegate_to: clientl

La délégation par delegate_to

La délégation par delegate_to permet de déporter le résultat d'une action d'un poste vers une
autre machine.

L'exemple ci-dessous récupeére sur le serveur Ansible (localhost) le résultat de la commande « Is
/etc/host* » réalisée sur le poste clientl.

cat delegate boucle.yml
- hosts: clientl
vars:
equipe: [{nom: jean, uid: 1001}, {nom: marc, uid: 1002}]
tasks:
- shell: "ls /etc/host*"
register: resultat
- shell: echo "{{item}}" >>/tmp/boucle.res
with items:
- "{{resultat.stdout lines}}"
delegate to: localhost

ansible-playbook delegate boucle.yml

PLAY [cllentl] kA Ak hkkhkh kA kA hkh Ak hk A hhkhkhhkhhhkhkhhkhkhrhkhkhkhhkrhkhkhkhhkhkhkrhkkhkhkhkrhkkhkhkdhkhxkkxkkx*x

TASK [Gathering Facts] Ak Ak hkkhkhhkhk kA hkhhkhkhkrhhkhkhhkhkh A hkhhkhkhkrhkhkhkhhkhkhkrhkkhkhkhkrhkkhkhkkkhxkkxk

ok: [clientl]

TASK [Shell} R e e I I I b e e I b R I I e S b I R I b e A b b b R S R I I b b R I b e A b b R B IR b b B b b b i b i 4

changed: [clientl]

TASK [shell] kA Ak hkkhkhhk Ak kA hkhhkhkhk A hhkhkhhkhhhkhkhhkhkhk Ak hkhkhkhkrhkhkhkhhkhkhkrAhkhhkhkhkrhkkhkhhkrkhkkkkkkkxk*k

changed: [clientl -> localhost] => (item=/etc/host.conf)
changed: [clientl -> localhost] => (item=/etc/hostname)

© 2018 Copyright Spherius — vers 1.1 118/159

ANSIBLE

changed: [clientl -> localhost] => (item=/etc/hosts)
changed: [clientl -> localhost] => (item=/etc/hosts.allow)
changed: [clientl -> localhost] => (item=/etc/hosts.deny)

PLAY RECAP KA AR AR A AR A A A AR A A A A A A AR AR A AR A AR AR A AR A A A AR A A A kA A A A Ak Ak kA Ak kA hkhk Ak kA kA kA kk k%

clientl : ok=3 changed=2 unreachable=0 failed=0

cat /tmp/boucle.res
/etc/host.conf
/etc/hostname

/etc/hosts

/etc/hosts.allow
/etc/hosts.deny

© 2018 Copyright Spherius — vers 1.1

119/159

ANSIBLE

Un autre exemple :

Le poste clientl est un serveur Apache. Le principe est de récupérer sur le serveur Apache
I'ensemble de la configuration des machines du parc. Chague machine aura une page html portant
son nom.

cat delegate_to.yml
- hosts: all
tasks:
- name: "Page d informations"
template:
src: delegate to modele.html
dest: /var/www/html/{{inventory hostname}}.html
owner: "apache"
group: "apache"
delegate_ to: clientl

cat delegate to modele.html
<html>
<head><title>Page de garde</title></head>
<body>

<hr>

<center><hl>Bonjour {{ansible user id}}</hl></center>

<hr> B B
<center>
La liste des adresses IP :

{% for element in ansible all ipv4 addresses %}
{{element} }

{% endfor %}

La distribution est : {{ansible distribution}}

 -
</center>
</body>
</html>

ansible-playbook delegate to.yml

PLAY [all] kA A hkkhkhhkh kA hkhhkh kA hhkhkhhkhhkhkhkhhkhk kA hkhkhkhhkhhkhkhkhhkhkhkrhkhkhkhhkrhkrhkhhkhkhkrhkkhkhhkhkhkkxkkhkxkkxk*k

TASK [Gathering Facts] R i I R I S S S I S S S b b I I I e S b I S R I R e b S S b b b b S S b e b b b b S b b b I 2 3
ok: [debianl]
ok: [clientl]
ok: [client2]

TASK [Page d lnformatlons} KA KA KA AR A A A A KRR AR A A A A A A AR AR AR A A A A AN A A A A A A A A AR AR A A Ak A kA Ak kA Ak k kKK

changed: [clientl -> clientl]
changed: [debianl -> clientl]
changed: [client2 -> clientl]

PLAY RECAP ** *hrxxkkhhrkhhhrrkhhhrdhhhrrhhhhrhhhhrrkhhrhrdhhhrrhhhhrkkhkhrkxkhhrxkkhhrxkkx

clientl : ok=2 changed=1 unreachable=0 failed=0
client?2 : ok=2 changed=1 unreachable=0 failed=0
debianl : ok=2 changed=1 unreachable=0 failed=0

© 2018 Copyright Spherius — vers 1.1 120/159

ANSIBLE

* . Ci.} clientLiclientl. html c o

Bonjour root

La liste des adresses IP :
192.168.1.8

La distribution est : CentOS

&) @ clientl/client2. html c >

Bonjour root

La liste des adresses IP :
192.168.1.9

La distribution est : CentOS

& . 'j} clientl/debianl.html c B —

Bonjour root

La liste des adresses IP :
192.168.1.25

La distribution est : Debian

© 2018 Copyright Spherius — vers 1.1 121/159

ANSIBLE

Fonctionnalités avancées

cat pre post tasks.yml

- hosts: clientl
vars:
mavar: "Jean"
pre_tasks:
- debug:
msg: "Pre tacheA pour {{mavar}}"
- debug:
msg: "Pre tacheB pour {{mavar}}"
post_tasks:
- debug:
msg: "Post tacheA pour {{mavar}}"
- debug:
msg: "Post tacheB pour {{mavar}}"
tasks:
- debug:
msg: "tachel pour {{mavar}} debut"
- debug:
msg: "tache2 pour {{mavar}} debut"

ansible-playbook pre_post tasks.yml

Les pré et post tasks

Les pré et post tasks

Il est possible de définir des opérations avant le traitement principal, c'est la section pre_tasks.
De méme, il est possible de définir des opérations apres le traitement principal, c'est la section

post_tasks.

cat pre post tasks.yml

- hosts: clientl

vars:

mavar: "Jean"

pre_tasks:
- debug:

msg: "Pre tacheA pour {{mavar}}"

- debug:

msg: "Pre tacheB pour {{mavar}}"

post_tasks:
- debug:

msg: "Post tacheA pour {{mavar}}"

- debug:

msg: "Post tacheB pour {{mavar}}"

tasks:
- debug:

msg: "tachel pour {{mavar}} debut"

- debug:

msg: "tache2 pour {{mavar}} debut"

ansible-playbook pre_post tasks.yml

Le résultat donnera : Pre tacheA pour Jean

Pre tacheB pour Jean

tachel pour Jean debut
tache2 pour Jean debut
Post tacheA pour Jean
Post tacheB pour Jean

section pre tasks
section tasks

section post tasks

© 2018 Copyright Spherius — vers 1.1

122/159

ANSIBLE

Fonctionnalités avancées

Le mot clef run_once

cat runonce.yml
— name: "Test runonce"
hosts: all
tasks:
- name: "Redemarrage d un service"
service:
name: crond
state: restarted
run_once: yes
- name:
shell:
date > /tmp/etat

Le mot clef run_once

le mot clef run_once permet d'exécuter une tache qu'une seule fois.

- name: "Test runonce"
hosts: all
tasks:
- name: "Redemarrage d un service"
service:
name: crond
state: restarted
run_once: yes
- name:
shell:
date > /tmp/etat

ansible-playbook runonce.yml

PLAY [Test runonce] kA hkhk Ak kA hkhkhhkrhkhkhkhhkhhk A hhkhkhhkrhkhkhkhhkhhkrhkhkhhkrhkhkhkhhkhkhkrhkkhkhkkhkrhkkhhkhkkhkxkk*x

TASK [Gathering FaCtS] Ak rkhkkhk kA hkh Ak hkhkhhkrhhkhkhhkhhkrhhkhkhhkrhkhkhkhhkhkhkrhhkhkhhkrhkhkhkhhkhkhkrhkkhkhkhxkxkk*x

ok: [client2]
ok: [clientl]

TASK [Redemarrage d un Service] kA hkhkhkhk kA hhkhkhhkhhk A hkkhkhkhkhkrhkhkhkhhkhkhkrhkkhkhkhhkrhkhkhkhkhkhkhkrhkkhkkhkxkxkk%x

TASK [ShellJ KK A AR AR A AR AR A A A A A A AR A AR A A A AR A AR A A A AR AR A A A A AR AR A AR A A A AR A AR A A A AR A A A AR Ak, kKK

PLAY RECAP khkkhkhkhkhkkhkhkhkhkhkhkkhkhkhrhhkhkhhhhkhhkhrhhkhkhhhhkhhkhrhhkhkhhhhkhhkhrhkkhkhkhhhhkhhkhrhkhkhkhhhhkkhkhkrhkkhkkhkhhrhkhkhkxx
clientl : ok=3 changed=2 unreachable=0 failed=0
client?2 : ok=2 changed=1 unreachable=0 failed=0

On constate que le service a été redémarré sur un seul serveur (client1).

© 2018 Copyright Spherius — vers 1.1 123/159

ANSIBLE

Fonctionnalités avancées

Le parallélisme

grep forks /etc/ansible/ansible.cfg
#forks =5

ansible spherius_servers xxxxxxxxx -f 20

Le parallélisme

Le paramétre forks du fichier de configuration permet de contréler le nombre de processus qui
peuvent étre exécutés en simultané. Par défaut, il vaut 5.

grep forks /etc/ansible/ansible.cfg
#forks =5

L'option -f de la commande ansible permet d’écraser la valeur par défaut spécifié dans le fichier.

ansible all -m shell -a "date; sleep 5; date"
clientl | SUCCESS | rc=0 >>

lun. avril 23 11:34:34 CEST 2018

lun. avril 23 11:34:39 CEST 2018

client2 | SUCCESS | rc=0 >>
lun. avril 23 11:34:34 CEST 2018
lun. avril 23 11:34:39 CEST 2018

ansible all -m shell -a "date; sleep 5; date" -f 1
clientl | SUCCESS | rc=0 >>

lun. avril 23 11:35:38 CEST 2018

lun. avril 23 11:35:43 CEST 2018

client?2 | SUCCESS | rc=0 >>
lun. avril 23 11:35:44 CEST 2018
lun. avril 23 11:35:49 CEST 2018

© 2018 Copyright Spherius — vers 1.1 124/159

ANSIBLE

Fonctionnalités avancées

Le traitement avec serial

serial : 3
3 serveurs sont traités. Puis lorsque c'est terminé, c'est les 3 suivants et ainsi de suite.

serial : « 20% »
comme précédemment, mais par séquence de 20% des serveurs.

serial : [1,5,10]
un serveur est traité, puis 5, puis par séquence de 10.

serial : [2, « 100% »]
deux serveurs sont traités, puis tous les autres.

Le traitement avec serial

Lorsque vous avez 10 serveurs Apache, vous souhaitez certainement une continuité de service lors
d'une mise a jour de vos serveurs. On peut envisager la mise a jour sur 2 serveurs, puis lorsque
cela sera fait passer aux autres serveurs. Pour cette opération, on utilisera le mot clef serial
positionnée a la valeur [2, « 100% »].

serial : 3
3 serveurs sont traités. Puis lorsque c'est terminé, c'est les 3 suivants et ainsi de suite.

serial : « 20% »
comme précédemment, mais par séquence de 20% des serveurs.

serial : [1,5,10]
un serveur est traité, puis 5, puis par séquence de 10.

serial : [2, « 100% »]
deux serveurs sont traités, puis tous les autres.

Ce type de traitement peut-étre utile pour assurer une continuité de services, ou pour éviter une
montée en charge de la consommation des ressources telle que I'utilisation de la bande passante
lors de transferts réseaux.

© 2018 Copyright Spherius — vers 1.1 125/159

ANSIBLE

Exemple :

cat serial.yml
- hosts: all
serial: [1, "100%"]
tasks:
- shell: "date; sleep 5; date"

Il y aura le traitement sur UN poste (ici client1), on constate la temporisation de 5 secondes.
Puis la méme task se réalise sur tous les autres serveurs.

ansible-playbook serial.yml

PLAY [all] Ak Ak hkhkh Ak kA hhkhkhhkrhkhkhkhhkhhkhhhk bk hhkrhkhkhkh bk hhkrhhkhkhhkrhkhkhhhkhhkrhkhkhhkrhkhkhkhrkhkhkrxhkkhkhkrxkxkk*x

TASK [Gathering FactS] % % %k %k %k %k %k %k %k %k %k k %k k %k k k kkk
ok: [clientl]

TASK [shell] hkhkkhkhkkhkhkkhkhkhkkhkhkkhkhkhkhkhkhkhkhkhkhkhkhkkhkhkkhkhhkhkhkhkhkhkhkkhkhkhkhhkhkhkhkhkhkhkhkhkhkkhkhhkhkhkhkkhkhkhkkhkhkkhkhkkkhkx
changed: [clientl] cette ligne apparait apres 5s

PLAY [all] Ak Ak hkhk kA hhk A hhkhhhkrhhkhkh bk hhkhhhk bk hhkrhkhkhkhhkhhkrhhkhhhkrhkhkhhhkhhkrhhkhkhhkrhkhkhhkrkhkkhkrhkkhkhkrxkxkk*x

TASK [Gathering FaCtS] Ak Ak khkhhkhhk Ak hkhkhkhkrhkhkhhhkhhkhhhkhkhhkrhkhkhkhhkhhkrhhkrkhhkrhkhkhkhhkhhkrhkkrhhkrxkkkkxx*k

ok: [debianl]
ok: [client2]

TASK [Shell] kA hkkhkhhkh kA hhhkhhkrhhkhh bk hhkhkhkh bk hhkrhhk bk hhkhhkhkhkhhkhhkrhhkhhhkrhkhkhkhhkhhkrhkkhkrhkhkrhkkhkhhkhkxkkx

changed: [debianl] les 2 lignes apparaissent apres 5s
changed: [client2]

PILAY RECAP F A A A A XA A A A A A A kA A A A A A AR A A A A A XA A A AAA IR A A A A A A AR A A I A AX I A I A AA I I AR A AR AR A hhh A Xk khohxx

clientl : ok=2 changed=1 unreachable=0 failed=0
client2 : ok=2 changed=1 unreachable=0 failed=0
debianl : ok=2 changed=1 unreachable=0 failed=0

© 2018 Copyright Spherius — vers 1.1 126/159

ANSIBLE

Fonctionnalités avancées

any_errors_fatal

En cas d'erreur d'exécution d'une task sur un héte,
any_errors_fatal permet d'arréter (ou pas) les tasks sur I'ensemble des serveurs.

cat any errors_fatal.yml
- hosts: all

any errors_fatal: true

tasks:

TASK [Operation a risque]
khkkhkkkhkkkhkhkhkkhkhkkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkkhkhkhkhkhkhkhkhkhkhkhkhkkhkhkkhkhkhkhkhkkhkhkkhkhkhkkhkk

fatal: [debianl]: FAILED! =>
changed: [client2]
changed: [clientl]

NO MORE HOSTS LEFT
hkkkkkkhkhkhkkkhkhhkkkkkkkkkkhkhkkkkkkkkkkkhkkkkkkkkkkkkkhkkkkkkkkkrkkkkkk

to retry, use: --limit @/root/Playbooks/any errors_ fatal.retry

any_errors_fatal

En cas d'erreur d'exécution d'une task sur un hote, any_errors_fatal permet d'arréter (ou pas) les
tasks sur I'ensemble des serveurs.

Exemple avec any_errors_fatal: true

La premiére opération fonctionne pour les serveurs centos mais pas sur le serveur debian (car il
aurait fallu indiquer /etc/apache2). La deuxiéme tache ne sera pas exécutée et ceci sur aucun
serveur.

cat any errors_fatal.yml

- hosts: all
any errors_fatal: true
tasks:
- name: "Operation a risque"
shell: "1ls /etc/httpd"
- name: "Operation suivante"

shell: "date"

ansible-playbook any errors fatal.yml

PLAY [allj KA AR AR A AR A A A A A A A A A A A AR A A A A A A AR AR A AR A AR AR A AR AR A AR AR A AR A AR AR A AR A AR A kA Ak kA A Ak k kK

TASK [Gatherlng Factsl KA AR AR A AR A AR AR A AR A A A AR AR A AR A AR AR A AR A AR AR A AR AR A AR A A A A A A A A Ak kA Ak Ak h Kk

ok: [debianl]
ok: [client2]
ok: [clientl]

© 2018 Copyright Spherius — vers 1.1 127/159

ANSIBLE

TASK [oPeration a risque] hkhkk

fatal: [debianl]: FAILED! => {"changed": true, "cmd": "ls /etc/httpd", "delta":
"0:00:00.002270", "end": "2018-04-27 16:40:58.690715", "msg": "non-zero return code",
"rc": 2, "start": "2018-04-27 16:40:58.688445", "stderr": "ls: impossible d'accéder a
'/etc/httpd': Aucun fichier ou dossier de ce type", "stderr lines": ["ls: impossible
d'accéder a '/etc/httpd': Aucun fichier ou dossier de ce type"], "stdout": "",
"stdout lines": []}

changed: [client2]
changed: [clientl]

NO MORE HOSTS LEFT **%kkkkkkkkkhkhkhhhkhhdhhhhhhdhhhhhdhhhhhdhhhhkhhhhhhhhhhhhhhhhkhhkhhhhkhhhhhkhhkk
to retry, use: --limit @/root/Playbooks/any errors fatal.retry

PLAY RECAP R R R R R R R R R R R R R R R R R R e R R R R R R I R R b R R R R I R R R b R R R I b b b b b R b b b b b

clientl : ok=2 changed=1 unreachable=0 failed=0
client2 : ok=2 changed=1 unreachable=0 failed=0
debianl : ok=1 changed=0 unreachable=0 failed=1

Exemple avec any_errors_fatal: false

Comme précédemment, la premiére opération fonctionne pour les serveurs centos mais pas sur le
serveur debian.

La deuxiéme tache ne sera pas exécutée sur le serveur débian MAIS elle sera exécutée sur les deux
autres serveurs centos.

cat any errors fatal.yml

- hosts: all
any errors_fatal: false
tasks:

- name: "Operation a risque"
shell: "1ls /etc/httpd"

- name: "Operation suivante"
shell: "date"

ansible-playbook any errors fatal.yml

PLAY [all] kA Ak khkh Ak kA hk kA hkhk Ak kA hkhhkhk kA hhkhkhkhkhhkhkhkhhkhkhk Ak hkhkhhkrhkhkhkhhkhkhkrhhkhkhkhkrhkhkhkhhkhkhkrhkkhkhkhkxkxkk*x

TASK [Gathering Facts] B R R I R R I I I I S I b R I I e S b I b R b b S b b b R S b b b I S b b b I I S 2 S
ok: [debianl]
ok: [client2]
ok: [clientl]

TASK [Operation a risque] ***kkkkkkkkkkkkkkkkhkhhhhkhhhhhhhhhhhdhhhhdhhhkdhhkhkdkhkhkdhrkkhrkkk

fatal: [debianl]: FAILED! => {"changed": true, "cmd": "ls /etc/httpd", "delta":
"0:00:00.002256", "end": "2018-04-27 16:44:33.404066", "msg": "non-zero return code",
"rc": 2, "start": "2018-04-27 16:44:33.401810", "stderr": "ls: impossible d'accéder a
'/etc/httpd': Aucun fichier ou dossier de ce type", "stderr lines": ["ls: impossible
d'accéder a '/etc/httpd': Aucun fichier ou dossier de ce type"], "stdout": "",
"stdout lines": []}

changed: [clientl]
changed: [client2]

TASK [oPeration suivante] hhkkkhkkhkhkhkhkhkhkkhkhkhkhkhkhkkhkhkhkkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkkhkhkkhkhkkhkhkhkhkhkhkhkhkhkkhkhkkhkhkkkkkx
changed: [clientl]
changed: [client2]

to retry, use: --limit @/root/Playbooks/any errors_fatal.retry

PLAY RECAP ** k,kdxxkkhhrkhhhrrhhhhrdhhhrrhhhhrrhhhhrhhhhrrhhhrrhhhhrrhhhrrdhhhrdkhhrxkkhrxx

clientl : ok=3 changed=2 unreachable=0 failed=0
client2 : ok=3 changed=2 unreachable=0 failed=0
debianl : ok=1 changed=0 unreachable=0 failed=1

© 2018 Copyright Spherius — vers 1.1 128/159

ANSIBLE

- hosts: all
tasks:
- name: Install Apache
block:
- yum:
name: "{{ item }}"
state: installed
with items:
- httpd
- memcached
- template:
src: templates/src.j2
dest: /etc/foo.conf
- service:
name: bar
state: started
enabled: True

Le block RESCUE

when: ansible distribution == 'CentOS'

Fonctionnalités avancées

Les blocks

Le block ALWAYS

Les blocks

La section block regroupe un ensemble de tasks qui peuvent étre associée a une méme condition,

ou liste, etc.

La section rescue est traitée lorsqu'il y a eut une anomalie au sein du block précédent.

La section always est traitée dans tous les cas de figures.

Exemple :

cat Dblock.yml

- hosts: all
tasks:
- name: Install Apache
block:
- yum:
name: "{{ item }}"

state: installed
with items:
- httpd
- memcached
- template:
src: templates/src.j2
dest: /etc/foo.conf
- service:
name: bar
state: started
enabled: True

when: ansible distribution == 'CentOS'

© 2018 Copyright Spherius — vers 1.1

129/159

ANSIBLE

ansible-playbook block.yml

PLAY [all] Ak Ak khkhhkhk kA hkhhkhk kA hhkhkhhkhhk Ak h bk hkhkrhkhkhkhhkhhkhkhkhhkhkhkrhkhkhkhhkhhkrhkhkrkhkkhkrhkkhkhhkhkhkxkkxkkxk*x

TASK [Gathering Facts] KAk hkhkhkhkkhhkhkhkhkhkhhkhhhkhr kb hkhkdhhhkhhkhhkdhhkhhkrhkhhkhhkhkhkrhkhkhkhkhkdhkrhkrkkhkhkhkxkx
ok: [debianl]
ok: [clientl]
ok: [client2]

TASK [yumJ khkhkhkkhkkhkhkhkkhkkhhkhkhhkkhkhkhhkhkhkhhkhhkhhkhrhhkhkhhhhkhkhkhrhkhkhkhhkhhkhhkhrhhkhhhkhhkhhkhrhkkhkkhkhkhrhkhkkhkhkrhkkhkkhkhhxkh*k
skipping: [debianl] => (item=httpd)
skipping: [debianl] => (item=memcached)

changed: [client2] => (item=httpd)
changed: [clientl] => (item=httpd)
changed: [client2] => (item=memcached)
changed: [clientl] => (item=memcached)

TASK [template] i i b e i I I i I b b I e i b b I b b b I I b b b I b b I I b b I I b b I b b b I b b b b b b b b I b b b b b b I I b b b b b b b i
skipping: [debianl]

changed: [clientl]

changed: [client2]

TASK [Service] R R S R R R I R I I e R I S b I S R I R I i S S S R I I S b b R I b S b S b S i
skipping: [debianl]

changed: [clientl]

changed: [client2]

PLAY RECAP KA KA AR AR A AR A AR A A A AR A A A AR A A A A A A AR A AR AR A AR AR AR A AR AR A AR A A A AR A A A A A A AR A kA Ak kA ko kk

clientl : ok=4 changed=3 unreachable=0 failed=0
client?2 : ok=4 changed=3 unreachable=0 failed=0
debianl : ok=1 changed=0 unreachable=0 failed=0

Exemple avec des sections rescue et always :

cat block.yml

- hosts: clientl

tasks:
- name: Les blocs rescue et always
block:
- debug:
msg: "Je m execute normallement"
- command: "ls {{argument}}"
- debug:
msg: "Si je m execute c est que la commande precedente a fonctionnee"
rescue:
- debug:
msg: "Il y a une tasks en erreur"
- command: /bin/false
- debug:
msg: "Je ne serais jamais executee"
always:
- debug:

msg: "Je m execute toujours"

© 2018 Copyright Spherius — vers 1.1 130/159

SPHERIUS
b ANSIBLE

ansible-playbook block.yml -e argument=/etc

PLAY [cllentl] kA Ak hkkhkhhkh kA hkh Ak kA hhkhkhhkhhkhkhkhhkhhkrhkhkhkhhkhhkhkhkhhkhkhkrhkkhkhhkrhkrhkhkhkhkhkrhkkhkhkxkxkk*x

TASK [Gathering Facts] R b I S b e I S e S b I b R I b e I 2 I S S R I S S b b b R b b S I I S b S IR S b S b b i
ok: [clientl]

TASK [debugJ KA AR AR AR A A A A A A A A AR A A AR AR A AR A A A AR A A A A A A I A AR A I A A AR AR A A A A A A kA A Ak Ak Ak kA Ak ko k%

ok: [clientl] => { Au sein du block
"msg": "Je m execute normallement"

TASK [Command] Ak hkkhkhhkh kA hkh Ak hkhkrhhkhkhhkhhkhAhkhhkhkhkrhhkhkhhkhhkhkhkhhkhkhkrhkkhkhhkrhkrhkhkrkhkhkrhkkhkhkxkxkk*x

changed: [clientl] Au sein du block

TASK [debugJ KA KA AR AR A A A A AR A A AR A A AR AR A A A A A A AR A A A A A A AR AR IR A AR A A A A A A A kA A A A Ak Ak kA Ak hk %

ok: [clientl] => { Au sein du block
"msg": "Si je m execute c est que la commande precedente a fonctionnee"

TASK [debug] kA A hkkhkhhkhhk Ak kA hkhk A hhkhkhhkhhk Ak hhkhhkrhhkhkhhkhhkhkhkhhkhkhkrhhkhkhhkrhkhkhkhhkhkhkrhkkhkhkhkhkkkkhxkx*k

ok: [clientl] => { Block ALWAYS
"msg": "Je m execute toujours"

PLAY RECAP KA AR AR AR A A A A A A AR A A A A A A AR AR AR A A A A A A A A A A A A Ak kA Ak Ak K,k

clientl : ok=5 changed=1 unreachable=0 failed=0

ansible-playbook block.yml -e argument=/xxxxxxx

PLAY [Cllentl} Ak rhhkhkhhkhkhkhkhhhkhhkrhhkhhhkhhkhkhhk bk hhkrhhkhkhhkhhkdhhkhkhhkrhkhkhhhkhhkrhhkrhkhkrhkkkhhkhkxkk*x

TASK [Gathering FaCtSJ khkhkhkhkhkkhkhkhkhkrhkhhkhkhhkhhhkhhkhhkhhkhkhkr kb hkhhkhrhk bk kb hk bk hkhkhkhkhkhkhkrkhkhkkhhkxk
ok: [clientl]

TASK [debug] ARk Kk hk kA Ak Ak kA hkdA Ak dkhkh A hh Ak h Ak hk Ak hkhkhkhkhhk kA hkhhkhkhk Ak hkhkhhkrhkhkhkhhkhkhkrhkkhhkhhkrhkkkhxkx*

ok: [clientl] => { Au sein du block
"msg": "Je m execute normallement"

TASK [COmmandJ Ak rhhkhkhhkhkhhkhh bk hhkrhhkhhhkhhkhkhhkhhhkrhhkhhhkhhkdhhhkhhkrhhkhkhhkrhkrhhkrhhkrhkkhkhhkhkxkk*x

fatal: [clientl]: FAILED! => {"changed": true, "cmd": ["1ls", "/xxxxxxx"], "delta":
"0:00:00.002700", "end": "2018-04-26 18:34:55.941600", "msg": "non-zero return code",
"rc": 2, "start": "2018-04-26 18:34:55.938900", "stderr": "ls: impossible d'accéder a
/xxxxxxx: Aucun fichier ou dossier de ce type", "stderr lines": ["ls: impossible
d'accéder a /xxxxxxx: Aucun fichier ou dossier de ce type"], "stdout": "",

"stdout lines": []}

TASK [debugJ Ak rhhkhkhhkhhkhkhhhhhkrhhkhkhhkhhkhkhhkhhhkrhhkhkhhkhhkhkhhdkhhkrhhkhkhhkrhkrhhhkhkhkrhkkrkhhkrkkxhkxx*k

ok: [clientl] => { Block RESCUE
"msg": "Il y a une tasks en erreur"

TASK [command] AA Ak Kk hk kA Ak Ak h Ak kA A hhkhkhhkhhkhAhkhhkhkhkrhkhkhkhhkhhdkhkhhkhkdkrhkhkhkhhkrkhkrhkhkhkhkhkrhkkhkhkxkxkk*x

fatal: [clientl]: FAILED! => {"changed": true, "cmd": ["/bin/false"], "delta":
"0:00:00.001857", "end": "2018-04-26 18:34:56.258048", "msg": "non-zero return code",
"rc": 1, "start": "2018-04-26 18:34:56.256191", "stderr": "", "stderr lines": [],
"stdout": "", "stdout lines": []}

TASK [debug] A Ak hkhkh kA kA hkh Ak hA A hhkhk kA hh kA hkh Ak hk Ak hkhkhhkhhk kA hkhhkhhkrhkhkhkhhkrhkhkhkhhkhkhkrhkkhkhhkrhkkkkx*x*k

ok: [clientl] => { Block ALWAYS
"msg": "Je m execute toujours"
}
to retry, use: --limit @/root/Playbooks/block.retry

PLAY RECAP R R I b I S R I R S b S b S b b S S S b b b 2 S b e b b I b S 2 b b b S b S b I S R I SR S I b b e Sb b b Sh b b S b I b S 3

clientl : ok=4 changed=0 unreachable=0 failed=2

© 2018 Copyright Spherius — vers 1.1 131/159

ANSIBLE

Fonctionnalités avancées

La connexion avec un autre compte

ssh-copy-id -i /root/.ssh/id rsa.pub userl@clientl

cat userl client.inv
clientl ansible user=userl

ansible all -m lineinfile \
-a "path=/etc/sudoers 1line='userl ALL=(ALL:ALL) NOPASSWD: ALL'"

ansible all -i userl client -m service \
-a "name=crond state=restarted" --become

La connexion avec un autre compte
La connexion aux postes clients peut étre réalisée avec un compte utilisateur autre que root.

Pour cela, il est nécessaire de transférer la clef SSH a I'utilisateur du hote client.

Le compte a utiliser pour les commandes Ansible, playbooks et réles est indiqué par ansible_user.
Si les taches a exécuter nécessitent les droits d'administration, il faut mettre a jour les
fonctionnalités de sudo.

Exemple :
Sur le poste client, la connexion doit se faire via le compte userl.
Sur le poste serveur Ansible, les actions sont exécutées avec le compte root.

Copie de la clef SSH :
ssh-copy-id -i /root/.ssh/id rsa.pub userl@clientl

Mise a jour de la variable ansible_user (par exemple au sein du fichier d'inventaire) :
cat userl client.inv
clientl ansible user=userl

le module setup récupére les informations du poste client.
ansible -i wuserl client.inv -m setup all

ansible_user_id : 'utilisateur pour la connexion Ansible
ansible_user_uid : I'uid de |'utilisateur pour la connexion Ansible

© 2018 Copyright Spherius — vers 1.1 132/159

ANSIBLE

Via userl, il est possible d'exécuter un panel d'actions qui ne nécessite pas les droits de root. Par
exemple, on peut utiliser ping mais on ne peut pas redémarrer un service.

S'il est nécessaire de traiter des taches nécessitant les droits d'administration, il faut mettre a jour
le fichier /etc/sudoers pour |'utilisateur user1.

Pour cela :

ansible all -m lineinfile \
-a "path=/etc/sudoers 1line='userl ALL=(ALL:ALL) NOPASSWD: ALL'"

Par la suite, I'exécution doit se faire avec |'option --become.

ansible all -i userl client.inv -m service \
-a "name=crond state=restarted" --become

© 2018 Copyright Spherius — vers 1.1 133/159

ANSIBLE
Fonctionnalités avancées
Le prompt
- name: "nom table"
prompt: "Saisir le nom de la table"
default: "table base"
private:

- name: Nom de la variable
prompt : Libellé du prompt
default: optionnel Une valeur par défaut
private: optionnel no pour ne pas masquer la saisie
Le prompt

Le prompt apporte l'interactivité lors de I'exécution d'un playbook.
Il sera demandé a l'utilisateur a saisir du texte qui initialisera une variable.

cat prompt.yml

ansible-playbook prompt.yml

hosts:

vars_prompt:

- name:
prompt:
default:
private: no

"nom_champs"

"Saisir le nom du champs"

no

- name:
prompt:
private:

tasks:

clientl,client?2

"nom_table"
"Saisir le nom de la table"
"table base"

Nom de la variable

Libellé du prompt

optionnel : Une valeur par défaut
optionnel : ne pas masquer la saisie

HH = I

- debug: msg="select {{nom champs}} from {{nom table}}"

Saisir le nom de la table [table base]: pays

Saisir le nom du champs: ville

TASK

ok:

}

ok:

}

[client2]
"msg" :

[debug]
[clientl]
"msg" :

:>{
"select ville from pays"

KK A KA AR AR AR AR AR AR A A AR A A AR AR AR AR AR AR AR AR AR AR AR A AR A AR A A A AR AR A A A A A A Ak k%
=> {
"select ville from pays"

© 2018 Copyright Spherius — vers 1.1

134/159

ANSIBLE

Fonctionnalités avancées

Le fichier d'inventaire dynamique et temporaire

- name: "Un inventaire temporaire"

hosts: all
gather facts: yes
tasks:

- name: "Creation des groupes de hotes hote distribution"
group by: key="hote {{ansible distribution}}"

- name: "Traitement pour les CentOS"
hosts: "hote CentOS"
gather facts: no
tasks: . . . Tasks pour CentOS

- name: "Traitement pour les Debian"
hosts: "hote Debian"
gather facts: no
tasks: . . . Tasks pour Debian"

Le fichier d'inventaire dynamique et temporaire

Le fichier d'inventaire dynamique

L'inventaire est généré dynamiquement au moment ou I'on exécute la commande ansible (ou un
playbook, etc). En fait, cela passe par un script en général écrit en Python, mais cela peut étre du
script shell, du PHP ou autre.

La plupart des scripts existent déja (pour AWS, VMware, Docker, Cobber, etc) :
http://docs.ansible.com/ansible/latest/user guide/intro dynamic_inventory.html

Pour développer son script :
http://docs.ansible.com/ansible/latest/dev_guide/developing_inventory.html

Le script doit générer un fichier d'inventaire au format JSON et respecter quelques régles de mise
en page, gérer les groupes all et ungrouped ou avoir les options --list et --host.
Travailler avec une base de données :

Si la liste des machines est localisée au sein d'une base MySQL, on peut exploiter cette liste pour
générer un inventaire dynamique. Pour cela, un script est disponible sur le site de github :

https://github.com/productsupcom/ansible-dyninv-mysal

© 2018 Copyright Spherius — vers 1.1 135/159

https://github.com/productsupcom/ansible-dyninv-mysql
http://docs.ansible.com/ansible/latest/dev_guide/developing_inventory.html
http://docs.ansible.com/ansible/latest/user_guide/intro_dynamic_inventory.html

ANSIBLE

Pour travailler avec Azure :

Afin de générer une liste dynamique a partir de la liste des machines enregistrées au sein d'Azure,
on peut exploiter un script (azure_rm.py) :

wget https://raw.githubusercontent.com/ansible/ansible/devel/contrib/inventory/azure_rm.py
chmod 755 azure_rm.py

ansible -i azure_rm.py ansible-inventory-test-rg -m ping

Le fichier d’inventaire temporaire

Lorsque la liste des machines de votre parc évolue régulierement, il n'est pas pratique de mettre a
jour constamment son fichier d'inventaire. L'inventaire temporaire permet de créer un inventaire

directement au sein du playbook. Il est donc généré au moment de I'exécution du playbook ou du
role, et n'a qu'une existence temporaire le temps de I'exécution.

Le parc des hotes est référencé au sein du fichier hosts. Des groupes de machines sont générés lors
de I'exécution du playbook.
Exemple :
L'exemple suivant est un playbook qui va créer des groupes de hotes et des groupes enfants en
fonction de critéres de chaque machine du parc: la distribution du systeme d'exploitation et sa
version.

La premiére étape est de créer ces groupes :
« gather_facts » est a yes pour récupérer les facts des machines du parc.
Ceci afin d'exploiter les caractéristiques de chaque machine pour les associer a différents groupes.

« group by » permet de regrouper des machines par groupe en fonction de criteres (clef).

Les étapes suivantes :
Les tasks qui suivent pourront exploiter ces groupes pour réaliser des actions spécifiques.

« gather_facts » est a no car les taches qui suivent n'ont pas besoin d'exploiter les facts. On obtient
un gain de temps sur I'exécution du playbook.

© 2018 Copyright Spherius — vers 1.1 136/159

ANSIBLE

cat temporaire.yml

name: "Un inventaire temporaire"

hosts: all
gather facts: yes
tasks:

- name: "Creation des groupes de hotes hote_distribution"
group by: key="hote {{ansible distribution}}"
- name: "Creation avec parents host major-version_ architecture"
group_by:
key: host_ {{ansible_distribution major version}} {{ansible_architecture}}
parents: host {{ansible distribution major_version}}
- name: "Creation avec parents host major-version distribution"
group_by:
key: host_ {{ansible_ distribution major version}} {{ansible_distribution}}
parents: host {{ansible distribution major_version}}

name: "Traitement pour les CentOS"
hosts: "hote_CentOS"
gather facts: no

tasks:
- name: "Action pour ce groupe"
debug:
msg: "Action pour CentOS"
name: "Traitement pour les Debian"

hosts: "hote Debian"
gather facts: no

tasks:
- name: "Action pour ce groupe"
debug:
msg: "Action pour Debian"
name: "Traitement pour les versions 7 architecture x86 64"

hosts: "host 7 x86_64"
gather facts: no

tasks:
- name: "Action pour ce groupe"
debug:
msg: "Action pour CentOS version 7"
name: "Traitement pour les 7"

hosts: "host 7"
gather facts: no

tasks:
- name: "Action pour ce groupe"
debug:
msg: "Action pour les versions 7"
name: "Traitement pour les versions 7 distribution CentOS"

hosts: "host_ 7 CentOS"
gather facts: no
tasks:
- name: "Action pour ce groupe"
debug:
msg: "Action pour les versions 7 distribution CentOS"

ansible-playbook temporaire.yml

PLAY [Un inventaire temporaire]

TASK [Gathering Facts]

ok: [debianl]

ok: [clientl]

ok: [client2]

TASK [Creation des groupes de hotes hote_distribution]
ok: [clientl]

ok: [client2]

ok: [debianl]

TASK [Creation avec parents host major-version_ architecture]
ok: [client2]

ok: [clientl]

ok: [debianl]

© 2018 Copyright Spherius — vers 1.1

137/159

ANSIBLE

TASK [Creation avec parents host major-version distribution]
ok: [clientl]
ok: [client2]
ok: [debianl]

PLAY [Traitement pour les CentOS]

TASK [Action pour ce groupe]

ok: [clientl] => "msg": "Action pour CentOS"
ok: [client2] => "msg": "Action pour CentOS"

PLAY [Traitement pour les Debian]
TASK [Action pour ce groupe]
ok: [debianl] => "msg": "Action pour Debian"

PLAY [Traitement pour les versions 7 architecture x86_64]
TASK [Action pour ce groupel]

ok: [client2] => "msg": "Action pour CentOS version 7"
ok: [clientl] => "msg": "Action pour CentOS version 7"

PLAY [Traitement pour les 7]

TASK [Action pour ce groupel]

ok: [client2] => "msg": "Action pour les versions 7"
ok: [clientl] => "msg": "Action pour les versions 7"

PLAY [Traitement pour les versions 7 distribution CentOS]

TASK [Action pour ce groupel]

ok: [client2] => "msg": "Action pour les versions 7 distribution CentOS"
ok: [clientl] => "msg": "Action pour les versions 7 distribution CentOS"

PLAY RECAP

clientl : ok=8 changed=0 unreachable=0 failed=0
client2 : ok=8 changed=0 unreachable=0 failed=0
debianl : ok=5 changed=0 unreachable=0 failed=0

© 2018 Copyright Spherius — vers 1.1 138/159

ANSIBLE

Fonctionnalités avancées

set_fact

cat diff setfact.yml
- hosts: localhost
tasks:
- set_fact:
fact_time: "Var: {{lookup('pipe', 'date \"+%H:%M:%S\"')}}"

- debug: var=fact time
- command: sleep 2
- debug: var=fact time

ansible-playbook diff setfact.yml

TASK [debug] Ak h kA hkhhhkhkhkhh kA rhkhhkhkhk ok hkhkrhhhkhkhkhhkhkhkrhkhhkhkhkhhkhkhkrhkhkhkhkhkhhkhkhkrhhkhkkhkhrhhkhkx*x*
ok: [localhost] => "fact time": "Var: 11:18:48"

TASK [Command] KA A KA AR AR A AR A AR AR A AR A AR AR A A AR A A AR AR A AR A AR AR A AR A A A AR A A kA A A A A A Ak Ak kK

changed: [localhost]

TASK [debug] Ak h kA rkhhkhhkhkhhkhkhkrhkhhkhkhkhhkhkhkrkhkhhkhkhkhhkhkhkrhkhhkhkrhhkhkhkrhkhkhkhkhrhhkkhkhkrhhkkhkkhkhrhhkhkkx*x*k
ok: [localhost] => "fact time": "Var: 11:18:48"

set_fact
La section set_fact permet de créer des variables au sein d'une tasks.

Lorsqu'une variable est définie avec le résultat d'une commande, il peut étre important que cette
variable s'initialise a sa premiére utilisation (comportement de set_fact:) et non a chaque fois
qu'elle sera appelée (comportement de vars:).

Une variable set_fact a une priorité élevée. Cela peut poser des problemes au développeur pour la
surcharger.

Il faut utiliser set_fact que si c'est strictement nécessaire.

Les exemples ci-dessous mettent en évidence la différence entre une variable vars: et set_fact:

cat diff vars.yml
- hosts: localhost
vars:
var_ time: "Var: {{lookup('pipe', 'date \"+%H:%M:%S\"')}}"
tasks:
- debug: var=var time
- command: sleep 2
- debug: var=var time

ansible-playbook diff vars.yml
PLAY [localhost] R R b i S I R S I S S e S R I S e S b e S R I I S b b b b S IR S b S b b R I Sh e S b b b S Sh S b B Sb b I b 4

TASK [Gathering Facts] kA Ak hkkhkhhkhk kA hkh A hkhk A hhkhkhhkhhhkhkhhkhkhkrhkhkhkhhkrhkhkhkhhkhkhkrhkkhkhkhkrkhkkxkkx*x*k

© 2018 Copyright Spherius — vers 1.1 139/159

e
ANSIBLE

ok: [localhost]

TASK [debugJ KA A A AR A AR A AR AR A A A A A A AR A A A AR A AR AR A AR A AR AR A AR A AR A A A Ak Ak Ak Ak A Ak k kA kA kk k)%

ok: [localhost] => {
"var time": "Var: 11:17:59"

TASK [Command] Ak rxhhkhkhhkhkhk A hhkhkhhkrhkhkhhhkhhkdhhkhkhhkrhkhkhhhkhhkrhhkhkhhkrhkhkhhhkhkhkrhkkrkhhkrxkkxhkxkx*k

changed: [localhost]

TASK [debugJ KA A A AR A AR A AR AR A A A AR A AR A A A AR A AR AR A AR A AR AR A A A A A A Ak A A Ak Ak Ak Ak kA kA kA kk k)%

ok: [localhost] => {
"var time": "Var: 11:18:01"

PLAY RECAP R b R R R I R R b R b I b e R b b R R b b I b b b b

localhost : ok=4 changed=1 unreachable=0 failed=0

cat diff setfact.yml
- hosts: localhost
tasks:
- set_fact:
fact time: "Var: {{lookup('pipe', 'date \"+%H:%M:%S\"')}}"

- debug: var=fact time
- command: sleep 2
- debug: var=fact time

ansible-playbook diff setfact.yml

PLAY [localhost] Ak Ak khkhhkhhk Ak hkhkhhkrhkhkhkhhkhhkrhhkhkhhkrhkhkhkhhkhkhkrhkhkhhkrhkhkhhrkhkkhkrhkkhkhkrxkxkk*x

TASK [Gathering E‘acts] Ak Ak khkhhkhhk Ak hkhkhhkrhhkhhhkhhkhkhhhkhhkrhkhkhhkrhkhkhhrkhhkrhkkrkhkhkrkkkkhxkx*k

ok: [localhost]

TASK [Set fact] KA AR A AR AR A AR A AR AR A AR A AR AR A AR A AR AR AR A AR A AR A AR AR A AR AR A AR A AR AR A ARk kK

ok: [localhost]

TASK [debug] Ak Ak khkhhkhhk Ak hkhkhhkrhhkhkhhkhhkhhhkhh ko hkhkhkhhkhhkrhhkrhhkrhkhkhkhhkhhkrhkkrhhkrhkkhkhkxkxx

ok: [localhost] => {
"fact time": "Var: 11:18:48"

TASK [commandl KA AR KR AR A AR A AR AR A AR AR A AR AR A AR A AR AR A AR A AR AR A AR AR A AR AR A AR A A A A Ak Ak Ak K,k

changed: [localhost]

TASK [debug] Ak Ak hkhkhhkhhk Ak hkhkhhkrhhkhkhhkhhkhhhkhkhkhkrhkhkhkhhkhhkrhhkrhhkrhkhkhkhhkhhkrhkrkhkhkrhkkhkhkxkxx

ok: [localhost] => {
"fact time": "Var: 11:18:48"

PLAY RECAP KA AR AR A AR AR A AR AR A AR A AR AR A AR A AR AR A AR A A A AR AR A A A AR A AR A AR A AR AR A AR AR A Ak kA kK

localhost : ok=5 changed=1 unreachable=0 failed=0

© 2018 Copyright Spherius — vers 1.1

140/159

ANSIBLE

Fonctionnalités avancées

La création d'un module

cat 1library/monmodulel.py
#!/usr/bin/python

from ansible.module utils.basic import *

def main () :

module = AnsibleModule (argument spec={})
response = {"Bonjour": "Aurevoir"}
module.exit json(changed=False, meta=response)

if name == ' main_ ':
main ()

La création d'un module

La création d'un module nécessite des compétences en programmation Python. Il est nécessaire
d'importer des modules Python spécifiques a Ansible.

© 2018 Copyright Spherius — vers 1.1 141/159

ANSIBLE

Exemple de base :

L'arborescence : playbook.yml
library/module.py

cat 1library/monmodulel.py
#!/usr/bin/python

from ansible.module utils.basic import *
def main () :

module = AnsibleModule (argument spec={})
response = {"Bonjour": "Aurevoir"}

module.exit json(changed=False, meta=response)

if name == "' main ':
main ()

cat monmodulel.yml

- hosts: localhost

tasks:
- name: "Test de monmodulel"
monmodulel:

register: resultat
- debug: var=resultat

ansible-playbook monmodulel.yml
PLAY [localhost]

TASK [Gathering Facts]
ok: [localhost]

TASK [Test de monmodulel]
ok: [localhost]

TASK [debug]
ok: [localhost] =
"resultat": {
"changed": false,
"failed": false,
"meta": {
"Bonjour": "Aurevoir"

> |

}

PLAY RECAP

localhost : ok=3 changed=0

pour le playbook utilisant le module

pour le module

unreachable=0

failed=0

© 2018 Copyright Spherius — vers 1.1

142/159

ANSIBLE

Un exemple plus évolué :

Ce module nécessite deux arguments (obligatoires) : fichier et ligne.

Le module ajoute a la fin du fichier (variable « fichier ») une ligne (variable « ligne »). Si le fichier

n'existe pas, il est créé.
La documentation est définie via la variable DOCUMENTATION.

Le module en python :

cat 1library/monmodule2.py
#!/usr/bin/python

-*- coding: utf-8 —*-

#

La documentation du module
DOCUMENTATION = '''
author: Baranger
version added: "1.0"
module: module2
short description: un module simple
description:
- Ajoute un texte en fin de fichier. Si le fichier n existe pas,
options:
fichier:
description:
Le nom du fichier
ligne:
description:
Ligne a inserer en fin de fichier
notes:

requirements: []
T

EXAMPLES = '''
- name: "Un exemple"
module2: fichier=ficl ligne="Voici mon texte"

Le code du module
def main () :
La declaration du module
module = AnsibleModule (
argument spec=dict(

fichier = dict(required=True), # défini un argument obligatoire

ligne = dict(required=True),
)
)

Recuperation des arguments

il est cree.

fichier = module.params|['fichier'] # récupere un argument

ligne = module.params|['ligne']

Traitement
try:

lefichier = open(fichier, "a") # fichier en mode append
lefichier.write(ligne) # ajoute une ligne dans le fichier

lefichier.close ()

except: # gestion des erreurs

module.fail json(msg="Anomalie au sein du module.")
module.exit_ json(changed=True, meta=fichier)
Import Ansible Utilities

from ansible.module utils.basic import *
main ()

© 2018 Copyright Spherius — vers 1.1

143/159

ANSIBLE

Le playbook :

cat monmodule2.yml
- hosts: localhost
tasks:
- name: "Test de monmodule2"
monmodule?2:
fichier: "essai"
ligne: "C est une belle journee"
register: resultat
- debug: var=resultat

L'exécution :
ansible-playbook monmodule2.yml

PLAY [localhost]

TASK [Gathering Facts]
ok: [localhost]

TASK [Test de monmodule?2]
changed: [localhost]

TASK [debug]
ok: [localhost] =
"resultat": {
"changed": true,
"failed": false,
"meta": "essai"

> |

}
PLAY RECAP
localhost : ok=3 changed=1 unreachable=0 failed=0

Le fichier résultant de I'exécution du module :

cat essai
C est une belle journee

Modification du playbook pour générer une erreur :
ansible-playbook monmodule2.yml

(avec fichier=/aaaaa/xxxxx/bbbb/essai)
PLAY [localhost]

TASK [Gathering Facts]
ok: [localhost]

TASK [Test de monmodule?2]
fatal: [localhost]: FAILED! => {"changed": false, "msg": "Anomalie au sein du module."}
to retry, use: --limit @/root/Playbooks/monmodule2.retry

PLAY RECAP
localhost : ok=1 changed=0 unreachable=0 failed=1

© 2018 Copyright Spherius — vers 1.1 144/159

ANSIBLE

Affichage de la documentation du module :

ansible-doc -M library monmodule2

> MODULE2 (/root/Playbooks/library/monmodule?2.py)

Ajoute un texte en fin de fichier. Si le fichier n existe pas,

est cree.
OPTIONS (= is mandatory) :

- fichier
Le nom du fichier
[Default: (null)]

- ligne
Ligne a inserer en fin de fichier
[Default: (null)]

AUTHOR: Baranger
EXAMPLES :

- name: "Un exemple"
module2: fichier=ficl ligne="Voici mon texte"

© 2018 Copyright Spherius — vers 1.1

145/159

ANSIBLE

Notes

© 2018 Copyright Spherius — vers 1.1

146/159

ANSIBLE

Compléments

Dans ce chapitre, nous allons étudier quelques fonctionnalités
supplémentaires, telles que Ansible Vault ou Ansible Galaxy.

© 2018 Copyright Spherius — vers 1.1 147/159

oooooooo

ANSIBLE

Compléments

Ansible Vault et I'encryptage

Ansible Galaxy

© 2018 Copyright Spherius — vers 1.1

148/159

ANSIBLE

Compléments
Ansible Vault et I'encryptage

ansible-vault encrypt fic_mdp.yml
ansible-vault encrypt fic_mdp.yml --vault-id vault_mdp.key

ansible-playbook playbook.yml -e @fic_mdp.yml --ask-vault-pass
ansible-playbook playbook.yml -e @fic_mdp.yml --vault-id vault_mdp.key

ansible-vault encrypt_string 'securel!' --vault-id vault_mdp.key

ansible-vault rekey fic_mdp.ymlb\
--vault-password-file vault_mdp.key --new-vault-password-file new_ vault_mdp.key

ansible-vault create fic_mdp.yml --vault-id vault_mdp.key
ansible-vault view fic_mdp.yml --vault-id vault_mdp.key
ansible-vault edit fic_mdp.yml --vault-id vault_mdp.key

ansible-vault decrypt fic_mdp.yml --vault-id vault_mdp.key

Ansible Vault et I'encryptage

Ansible Vault permet de gérer le cryptage de données. La commande est ansible-vault.

Pour encrypter un fichier : encrypt
ansible-vault encrypt fic_mdp.yml
Un mot de passe sera demandé : le mot de passe Vault.

ansible-vault encrypt fic_mdp.yml --vault-id vault_mdp.key

ansible-vault encrypt fic_mdp.yml --vault-password-file vault_mdp.key

Avec un fichier vault_mdp.key contenant le mot de passe Vault. Il n'y aura pas de saisie
clavier pour ce mot de passe.

Pour exécuter un playbook ou un réle :
ansible-playbook playbook.yml -e @fic_mdp.yml| --ask-vault-pass
Il sera demandé le mot de passe Vault.

ansible-playbook playbook.yml -e @fic_mdp.yml --vault-id vault_mdp.key
ansible-playbook playbook.yml -e @fic_mdp .yml --vault-password-file vault_mdp.key
Il n'y aura pas de saisie clavier pour le mot de passe Vault.

Pour encrypter une chaine de caractéres : encrypt_string
ansible-vault encrypt_string 'securel!' --vault-id vault_mdp.key

© 2018 Copyright Spherius — vers 1.1 149/159

ANSIBLE

Pour recrypter un fichier avec un nouveau mot de passe Vault : rekey
ansible-vault rekey fic_mdp.ymlb \
--vault-password-file vault_mdp.key --new-vault-password-file new_ vault_mdp.key

Pour créer un fichier crypté : create
ansible-vault create fic_mdp.yml --vault-id vault_mdp.key

Pour visualiser un fichier crypté en clair : view
ansible-vault view fic_mdp.yml --vault-id vault_mdp.key

Pour éditer et modifier un fichier crypté : edit
ansible-vault edit fic_mdp.yml --vault-id vault_mdp.key

Pour décrypter un fichier crypté : decrypt
ansible-vault decrypt fic_mdp.yml --vault-id vault_mdp.key

Exemples :

cat fichier motdepasse.yml
mot de passe: "securel!"
mdp bdd: "ansiblel23"

ansible-vault encrypt fichier motdepasse.yml

New Vault password: mot de passe saisie : mdpvault
Confirm New Vault password:

Encryption successful

cat fichier motdepasse.yml

$SANSIBLE VAULT;1.1;AES256
31306263303730396666373061633939386664343461326665383166303266336538356337376139
3036656261343839623839323735393866386138656164620a303937343362646631353766613831
37613534646666383837313036346261653565363732366361323232343234666266643430623730
61666631306238313602353733306535323138623261366234363231386432626533316234306133
38613737336136326266383534623164313863666232313663656261396633346566663038376632
3763613832393961363461613266646134613563383733366363

cat vaultl.yml
- hosts: localhost
tasks:
- debug: msg="Reponse = {{mot_de passe}}"

ansible-playbook vaultl.yml -e Q@fichier motdepasse.yml --ask-vault-pass

Vault password: saisie de : mdpvault

PLAY [localhost] Ak Ak khkhhkhkhk Ak h Ak kA hhkhkhhkhhkhkhkhhkhkhkrhhkhkhhkrhkhkhkhhkhkhkrhkkhkhkhkrhkhhkhkxkkhxkkx*

TASK [Gathering FaCtS] Ak Ak khkhhkhkhk A hkhkhkhkhkrhkhkhkhhkhhkrhkhkhkhhkrhkhkhkhhkhkhkrhkkrkhkhkrhkhkhkhkhkkxkkx*

ok: [localhost]

TASK [debugJ AR AR R AR A AR A A A A A A AR AR A AR A AR AR A A A A AR AR A AR A A A AR AR AR A A A A A AR A A A A kA Ak Ak,

ok: [localhost] => "msg": "Reponse = securel!"

PLAY RECAP * % %k k& sk ok kk k& sk ok ok k& 5k ok ok k& ok ok ok ok & ok sk ok

localhost : ok=2 changed=0 unreachable=0 failed=0

© 2018 Copyright Spherius — vers 1.1 150/159

ANSIBLE

Avec un fichier pour le mot de passe Vault :

cat mdp_ansible vault.key
mdpvault

export DEFAULT VAULT PASSWORD FILE="mdp ansible vault.key"

cat fichier mdp.yml
mot de passe: "securel!"
mdp bdd: "ansiblel23"

ansible-vault encrypt fichier mdp.yml --vault-id mdp ansible vault.key

Encryption successful

#

cat fichier mdp.yml

$ANSIBLE_VAULT;1.1;AESZ56
33343766383436316365633534303436613234656463616432336139386166366336333566636264
3635336631666636313539343263346230646562303462630a303934313035653437396665353932
37326537336134316363653734356437316137643736336336666664336137396163343231663735
3535643530333532360a336136313561653461353462353038663862363730383633646463313832
38366165383432396265333565663363666230353132636566323533616363623336656334633033
3165326532306139326433306233383531636366316135323937

ansible-playbook vaultl.yml \
-e @ fichier mdp.yml --vault-id mdp_ansible vault.key

ou

ansible-playbook vaultl.yml \
-e @ fichier mdp.yml --vault-id mdp ansible vault.key

PLAY [localhost] kA Ak Kk hk kA Ak Ak h Ak hk A hdkhkhhkhhhkhkhhkhkhk Ak hkhkhhkrhkhkhkhhkhkhkrhkdkhkhkhkrhkkhkhkkkhxkkxk

TASK [Gathering Facts] kA Ak hkkhkhhkhkh Ak hhkhkhkrhhkhkhhkhhkhAhkhhkhkhkrhkhkhkhhkhkhkrhkhkhkhkhkrhkkhkhkhkxkkxk

ok: [localhost]

TASK [debug} R i e I I I b e e I b e R I IR e S b I R I b e b B b B R I S b b R I b e A b B R I IR I b b b b I b i 4

ok: [localhost] => "msg": "Reponse = securel!"

Modification du contenu du fichier (pour modifier un mot de passe ou ajouter un mot de passe) :
ansible-vault edit fichier mdp.yml --vault-id mdp ansible vault.key
Lance directement 1'éditeur de texte par défaut du systéeme d'exploitation
(ici vi) avec le fichier décrypté (évidemment !). La manipulation a été

de modifier la variable du mot de passe par newl!secure.

cat fichier mdp.yml

$ANSIBLE VAULT;1.1;AES256
33663334343336323335363161303131643636366138353064623636383264336631343131386532
6236316563353063393162623235613764333066326234320a386533383066306166623037373437
33623632623438303735313136643461636436643463636234343536326162356431626161653638
3531613235346635610a636433343461323736366436346339356364633239313764636337653466
64376337636232623066653334663465316239303762336330366138343436666638336334663331
66396665633064333161626332373637383864343832616366393634383066643438343637653266
666164363535336535363233303135313432

ansible-playbook vaultl.yml \
-e @fichier mdp.yml --vault-id mdp_ansible vault.key

TASK [debug] Ak Ak khkhhkh kA hhhkhhkrhhkhhhkrhkhkhh bk hhkrhkhhhkrhkhkhkhhkhhkrhkhkrhkhkrhkhkhkhhkrkhkhrhkhkxkhkxk*k

ok: [localhost] => "msg": "Reponse = newl!secure"

© 2018 Copyright Spherius — vers 1.1

151/159

ANSIBLE

Pour un nouveau mot de passe pour |'encryptage :

cat new mdp ansible vault.key
nouveau

On recrypte le fichier contenant les mots de passes de notre playbook via le nouveau fichier

de mot de passe Vault :

ansible-vault rekey fichier mdp.yml \
--vault-password-file mdp_ansible vault.key \

--new-vault-password-file new mdp ansible vault.key
Rekey successful

cat fichier mdp.yml

SANSIBLE VAULT;1.1;AES256
65646561363464393138353762646338616433303365383636383939366438636333393930633431
30613065616431393737663234303736353164623435326602386534306434666337633230373538
39663566303935313331613665386337306163646661613430316161343665306632303165616463
6661653264376635360a363330313230353235336637376639346165393834306565636165656135
31396538363832646435346366666365666663346237663237353361613036303039373537616137
66363463323131613137356661363437386633653931396462323066663730313436373832396665
616230363134643865626633363961363234

ansible-playbook vaultl.yml \
-e @fichier mdp.yml --vault-id new_mdp ansible vault.key

PLAY [localhost} KA KA AR AR A A A A AR AR AR A A A A AR A A A A A A AN A A A A A A I A A A AR A A kA kA kA Ak Ak kA kKK

TASK [Gatherlng Facts} KA KA AR AR A A AR AR AR AR A A AR AR A A A A A A AR AR A A A A A A A A AR A A A A A kA Ak ko kk

ok: [localhost]

TASK [debug] Ak Ak hkkhkhhkhhkhkhkhhkhkhk A hhkhkhhkrhkhkhkhhkhkhkrhhkhkhkhkrhkhkhkhhkhkhkrhkhkrhkhkrhkkhkhhkhhkhxkkhkxkkxk%k

ok: [localhost] => {
"msg": "Reponse = newl!secure"

}

PLAY RECAP KA AR AR AR A AR A AR AR A AR A A A AR A A A A A A AR A A A A A A IR A A AR A A A A A A A A A A A A Ak kA Ak Ak Ak, kK

localhost : ok=2 changed=0 unreachable=0 failed=0

© 2018 Copyright Spherius — vers 1.1

152/159

ANSIBLE

Cryptage d'une chaine de caractéres :

cat fichier motdepasse2.yml # cat mdp vault.yml
mdp autre: "new appli 123" mdpvault

mot de passe: "securell!"

mdp bdd: "ansiblel23"

cat vault2.yml
- hosts: localhost
tasks:
- debug: msg="Reponse mot de passe = {{mot de passe}}"
- debug: msg="Reponse mdp bdd {{mdp bdd}}"
- debug: msg="Reponse mdp autre {{mdp autre}}"

ansible-vault encrypt string 'securel!' --vault-id mdp vault.key

'vault |
$ANSIBLE_VAULT;1.1;AES256
37323362383237396364626333333561306561626338333166303162363338663261313835356339
3438326365383666383164663430616537633862613063640a636365303938643834396237613762
63656363376134363037343965633862373439323334323765623431306566613664393965663634
3936373730626561630a613962393062653466663339386535643062363563396132353064643633
3039

Encryption successful

ansible-vault encrypt string 'ansiblel23' --vault-id mdp vault.key

On modifie le fichier des mots de passe du playbook pour intégrer les valeurs cryptées.

cat fichier motdepasse2.yml
mdp autre: "new appli 123"
mot de passe:

mdp bdd: !vault |
SANSIBLE VAULT;1.1;AES256
38623632646135346433386635656537653337383631613939376165366137643336613433333631
3632656464336436303134613331306137343234313863390a656234343033343565666464326164
65326236343534386132373065303466373964343237373963373466333639383237663039613238
3134393462356536380a363236663535393638353936346434313438613536633866363636653563
3061

ansible-playbook vault2.yml \
-e @fichier motdepasse2.yml --vault-id mdp vault.key

TASK [debugJ KA A A AR A A A A A A AR A A A A A A AR AR A AR A AR AR A AR A A A A A A Ak kA A A A Ak Ak Ak Ak Ak Ak Ak khkkk k%%

ok: [localhost] => "msg": "Reponse mot de passe = securel!"

TASK [debugJ ok rhkhkhhkhk Ak hhkhhkrhhkhhhkrhhkhkhh bk hhkrhhkhhhkrhkhkhhhkhhkrhkrhhkrhkhkhkhhkhkrhkhkxkhkxk*k

ok: [localhost] => "msg": "Reponse mdp_ bdd = ansiblel23"

TASK [debugJ KA A A AR A A A A AR AR AR AR A A AR AR A AR A AR AR A AR A A A A A A Ak kA A A A Ak kA Ak Ak Ak kA kA Ak khkkhk k%%

ok: [localhost] => "msg": "Reponse mdp autre = new_appli 123"

© 2018 Copyright Spherius — vers 1.1

153/159

ANSIBLE

On aurait pu utiliser la syntaxe suivante :
ansible-vault encrypt string \

--vault-id mdp vault.key 'hyperSecret' --name 'mdp autre'
mdp autre: !vault
$ANSIBLE_VAULT;1.1;AES256
37376333383731373232666639393732306363303161623764316566303033386236396131393130
3536383931306364366535313031386438336664656666380a376139383261373631616663613965
37323633323564313339363136373037353163633663363133323336303337633635666133303033
3331356435633936360a666238636132663735623963366566643262376261306136316466343362
3864
Encryption successful

On peut créer le fichier de mots de passe crypté directement par :

ansible-vault create fic mdp.yml --vault-id mdp vault.key

Lance 1'éditeur de texte par défaut (ici vi) pour la saisie du contenu
mdp autre: "insolite password"

mot de passe: "securell!"
mdp bdd: "ansiblel23"

cat fic_mdp.yml

SANSIBLE VAULT;1.1;AES256
65313136643761333363383836663632396539613961633534343865303531323435626135666336
63353739333233303933613634653665633838336537303802383761323136383135303635376636
64396166666666373532383431646161623539656535343232613935626232353136306138336562
3033656462633331380a633362643864386537653032323063373265346164323634326665333032
32353035343363366430343766643464666266303730353163333531366366616164313736346162
66643962323165346632343337626537643465303030343363326136316433323932616265356331
36656563303865343263613562366165646363363763356561323434336232353733613834303662
65343566613565663631

Pour visualiser le contenu du fichier crypté:

ansible-vault view fic mdp.yml --vault-id mdp_vault.key
mdp autre: "insolite password"

mot de passe: "securel!"

mdp bdd: "ansiblel23"

Pour éditer un fichier crypté :
ansible-vault edit fic_mdp.yml --vault-id mdp_vault.key

ansible-playbook vault2.yml -e @fic mdp.yml --vault-id mdp vault.key

TASK [debug] hA Ak hkkhk kA Ak Ak h Ak dA Ak hkhkh Ak hhkdAhkhhkhkhk Ak hkhkhhkhkhhkhkhhkhkhkrhkhkhkhhkrkhkrkhkhkhkhkhkrhkhkhkhhkrkhkkkhxkk*xk*k

ok: [localhost] => "msg": "Reponse mot de passe = securel!"

TASK [debug} R e b I b b I b e I I b e I R I b e S b e b R I b e b b b S R b I b B R I b S S b e b b S b e A b b R b b b I b b b B b 4

ok: [localhost] => "msg": "Reponse mdp bdd = ansiblel23"

TASK [debug] hAk A hkkhk kA Ak Ak h Ak dA Ak hkhk kA h kA hkh bk hkhk Ak hkhkhhkhhkhkhkhhkhkhkrhkhkhkhhkhhkrkhkhkhkhkhkrhkkhkhkhkrkhkkxkkhxkk*xk*k

ok: [localhost] => "msg": "Reponse mdp_ autre = insolite password"

© 2018 Copyright Spherius — vers 1.1 154/159

ANSIBLE

Compléments
Ansible Galaxy

* Des roles pré packagés disponibles

Zone de partage de la communauté Ansible

* https://galaxy.ansible.com

* La commande ansible-galaxy

Ansible Galaxy

Galaxy via son site (https://galaxy.ansible.com) met a disposition des rdles pré packagés. Ils sont
facilement déployables au sein de votre projet Ansible. Vous trouverez des rdles pour
I'infrastructure d'approvisionnement, le déploiement des applications et toutes vos taches
quotidiennes.

On peut également mettre ses propres réles a la disposition de la communauté Ansible via ce site.

Recherche de réles sur le site d'Ansible Galaxy :

Recherche des réles crontab :
ansible-galaxy search crontab

Found 83 roles matching your search:

Name Description

uZer.crontab Crontab management

lciolecki.cron Ansible role to manage crontab
viasite-ansible.cron Add crontab tasks or variables
elao.cron A cron role to manage crontab entries.
manala.cron Handle cron

linuxhg.cronie RHEL/CentOS - UNIX daemon crond (cronie)
igor mukhin.cron Installs and configures cron

© 2018 Copyright Spherius — vers 1.1 155/159

https://galaxy.ansible.com/
https://galaxy.ansible.com/

ANSIBLE

Affichage d'informations d'un réle :

ansible-galaxy info linuxhg.cronie

Role: linuxhg.cronie
description: RHEL/CentOS - UNIX daemon crond (cronie)
active: True
commit: a68c03369737£17e77096e1639642c4400d6cfb9
commit message: Add become directive to crond handler
commit url: https://github.com/linuxhg/ansible-role-
cronie/commit/a68c03369737£17e77096e1639642c4400d6cfb9
company:

Installation d'un réle :

ansible-galaxy install linuxhg.cronie

- downloading role 'cronie', owned by linuxhg

- downloading role from https://github.com/.../ansible-role-cronie/archive/master.tar.gz
- extracting linuxhg.cronie to /root/.ansible/roles/linuxhqg.cronie

- linuxhg.cronie (master) was installed successfully

A partir de /root/.ansible/rdles/nom_du_role, I'arborescence suivante est créée :

1s -R /root/.ansible/roles/linuxhq.cronie/
/root/.ansible/roles/linuxhg.cronie/:
defaults handlers meta README.md tasks templates tests

/root/.ansible/roles/linuxhqg.cronie/defaults:
main.yml

/root/.ansible/roles/linuxhg.cronie/handlers:
main.yml

/root/.ansible/roles/linuxhg.cronie/meta:
main.yml

/root/.ansible/roles/linuxhg.cronie/tasks:
cronie etc.yml cronie system.yml cronie user.yml main.yml

/root/.ansible/roles/linuxhg.cronie/templates:
Ohourly.j2 cron.allow.j2 cron.deny.j2 crond.sysconfig.j2

/root/.ansible/roles/linuxhg.cronie/tests:
inventory test.yml

Le fichier README.md contient un descriptif du réle :

more /root/.ansible/roles/linuxhqg.cronie/README .md
ansible-role-cronie

[![Build Status] (https://travis-ci.org/linuxhqg/ansible-role-cronie.svg?branch=master)]
(https://travis-ci.org/linuxhg/ansible-role-cronie)

RHEL/CentOS - UNIX daemon crond (cronie)

Requirements

Author Information

This role was created by [Taylor Kimball] (http://www.linuxhg.orqg).

© 2018 Copyright Spherius — vers 1.1 156/159

http://www.linuxhq.org/

ANSIBLE

Installation d'un role au sein d'un répertoire spécifique :

mkdir -p galaxy/Roles

ansible-galaxy install --roles-path galaxy/Roles linuxhqg.cronie

- downloading role 'cronie', owned by linuxhg

- downloading role from https://github.com/.../ansible-role-cronie/archive/master.tar.gz
- extracting linuxhg.cronie to /root/Playbooks/galaxy/Roles/linuxhg.cronie

- linuxhg.cronie (master) was installed successfully

Création d'une structure et arborescence d'un role vierge :

ansible-galaxy init perso
1ls -R perso
perso:

defaults files handlers meta README.md tasks templates tests vars

perso/defaults:
main.yml

perso/files:

perso/handlers:
main.yml

perso/meta:
main.yml

perso/tasks:
main.yml

perso/templates:

perso/tests:
inventory test.yml

perso/vars:
main.yml

Suppression d'un réle :
ansible-galaxy remove perso

Gestion via un compte Ansible Galaxy :

Pour cette section, vous devez au préalable créer un compte sur le site galaxy.ansible.com.

Pour se connecter :
ansible-galaxy 1login

Une fois connecté, via la commande ci-dessus, les commandes suivantes sont utilisables.

Pour importer un réle : ansible-galaxy import github_user github_repo
Pour supprimer un réle : ansible-galaxy delete github_user github _repo

Le plus simple est de réaliser ces opérations et la gestion via son compte directement sur le site
d'Ansible Galaxy.

© 2018 Copyright Spherius — vers 1.1 157/159

ANSIBLE

Un exemple avec le site de GitHub.com :

GitHub est un espace pour gérer le versionning de ses projets et c'est un espace de
développement collaboratif.

Apres avoir créé un compte et déposé un role Ansible, on va pouvoir I'importer sur le site d'Ansible
Galaxy.

Le fichier README.md du r6le apparait comme présentation sur le site de GitHub. On pourra une
attention toute particuliere a son contenu.

Sur le site d'Ansible Galaxy, on crée un compte qui fera le lien avec le compte de GitHub. Il est ainsi
aisé de scanner ses projets GitHub et de les transférer sur Galaxy. Attention si le fichier
« meta/main.yml » de votre role est mal informé, I'import échoue.

Lorsque que le réle est importé, il est exploitable via la commande « ansible-galaxy ».

il est a noter que « ansible-galaxy info le_role » affiche les informations formatées du fichier
meta/main.yml suivi du contenu du fichier REAME.md.

Exemple :
ansible-galaxy install barangerjeanmarc.site_lamp

ansible-galaxy info barangerjeanmarc.site_ lamp
perso:
Role: barangerjeanmarc.site lamp
description: Un role pour un site LAMP
active: True
commit: e0df31516368ce6£40056aa915415£4432cd655¢
commit message: Add files via upload
commit url: https://github.com/barangerjeanmarc/site lamp/commit/e0df31516368ceb
company: Spherius
created: 2018-05-01T19:03:19.484%Z
download count: 1
forks count: 0
github branch:
github repo: site lamp
github user: barangerjeanmarc
id: 25427
is valid: True
issue tracker url: https://github.com/barangerjeanmarc/site lamp/issues
license: license (GPLv2, CC-BY, etc)
min ansible version: 1.2
modified: 2018-05-01T19:41:26.608%
namespace: barangerjeanmarc
open issues count: 0O
path: [u'/root/.ansible/roles', u'/usr/share/ansible/roles', u'/etc/ansible/role
readme: site lamp

Un exemple simple de rdéle.

Example Playbook

- hosts: servers
roles:
- { role: barangerjeanmarc.site lamp }

© 2018 Copyright Spherius — vers 1.1 158/159

ANSIBLE

Fin de session de Formation

Je vous recommande de relire ce support de cours d'ici les deux semaines a
venir, et de refaire des exercices.

Il ne vous reste plus qu'a mettre en ceuvre ces nouvelles connaissances au
sein de votre entreprise.

Merci, et a bientot.

Jean-Marc Baranger

Theo Schomaker

_www.spherius.fr

© 2018 Copyright Spherius — vers 1.1 159/159

