

Automating Microsoft Azure
with PowerShell

Automate Microsoft Azure tasks using Windows
PowerShell to take full control of your Microsoft
Azure deployments

John Chapman

Aman Dhally

BIRMINGHAM - MUMBAI

Automating Microsoft Azure with PowerShell

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the authors, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: March 2015

Production reference: 1110315

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78439-887-3

www.packtpub.com

Credits

Authors
John Chapman

Aman Dhally

Reviewers
Brian Denicola

Chrissy LeMaire

Dmitriy Kataskin

Acquisition Editor
Larissa Pinto

Content Development Editor
Shweta Pant

Technical Editor
Shashank Desai

Copy Editor
Relin Hedly

Project Coordinator
Shipra Chawhan

Proofreaders
Simran Bhogal

Stephen Copestake

Indexer
Hemangini Bari

Graphics
Abhinash Sahu

Production Coordinator
Melwyn D'sa

Cover Work
Melwyn D'sa

About the Author

John Chapman is a software engineer in the Phoenix area. Having also worked
in the higher education, telecommunications, and enterprise software industries,
John's development experience includes .NET, SharePoint, Swift, Objective-C
and other languages, markup, and platforms. You can visit his website at
http://www.johnchapman.net/.

I would like to thank my wife, Simone. Her support and patience
have made what I have accomplished in my life possible.

About the Author

Aman Dhally is a PowerShell MVP and founder of New Delhi PowerShell User
Group. He has more than 14 years of experience in the IT industry. His main focus
is the automation of manual tasks using PowerShell. He came in to contact with
PowerShell in 2010. Since then, he has published a wealth of articles, videos, blogs,
and PowerShell scripts. He loves teaching PowerShell and speaking at User
Group events.

Aman works as a network analyst for Analysys Mason Limited, which he describes
as a "cool" company to work for. Here, he works on various IT projects, and his
PowerShell skills bring a unique approach to solving IT issues and improving
efficiency within the company.

He is fascinated by anything to do with life: philosophy, self-help techniques, and
biographies of famous people, which he finds inspiring. In his free time, you will
often find him reading a book on any of these subjects. His philosophy can be
summed up by his phrase: "You see a mousetrap, I see free cheese and a challenge!"

Acknowledgments

I would like to thank Waheguru Ji (the almighty God). With your blessings, I was
able to complete this book. I know you are always with me when I am lost or when
I lose hope, and almost give up. You hold my hand and show me the way. I pray to
you that you do the same for every person in this world and bring love, peace, and
harmony among mankind.

I dedicate this book to my beloved daughter, Manya Kaur, who is just two-and-a-
half years old at the time of writing this book. One day, when you grow up, you'll be
proud of your father. I want you to make this world a better place by sharing your
knowledge with others. I love you and always will until eternity.

I would like to thank each and every member of the Dhally family who supported
me throughout the process of writing this book. You all are rockstars of my life.
I love you a lot and wouldn't be here without your support. I am thankful to God
for such a beautiful and loving family.

Special thanks to Ben Griffiths who introduced me to PowerShell in 2010, which
changed my life. I would like to dedicate this book to Ben too. Thanks for always
being there for me.

Many thanks to my lovely friends who always encouraged me and believed in me.
I would like to thank all my colleagues at the ICT department for their help and
support. Special thanks to my bosses, Rohan Dhamija and David Creighton, who
taught me some of the most valuable lessons of life.

I am really thankful to Larissa and Shweta from Packt Publishing. They are like
angels, always supporting, encouraging, and inspiring; without their support, this
book wouldn't have been published. I would also like to thank all the reviewers,
Brian Denicola, Chrissy LeMaire, and Dmitriy Kataskin for their support and help.

Finally, a big thanks to the readers for purchasing this book. I hope you like it.

Keep dreaming, guys; they do come true: "A! Murky Ana".

This book is dedicated to my beloved daughter, Manya Kaur.
 –Aman Dhally

About the Reviewers

Brian Denicola is an operations and database manager at a large professional
services firm. He has over 15 years of experience in IT and has been scripting
PowerShell since Version 1 was released way back in 2006. He has also been using
Microsoft Azure on and off since 2008, but his main background is in SharePoint,
which is how he stumbled on PowerShell. When he is automating deployments,
he loves to spend time with his wonderful wife, Nelie, and three boys, Xander,
Gabriel, and Philip. His Twitter handle is @brianjdenicola and his blog is
http://quickanddirtyscripting.wordpress.com.

Chrissy LeMaire has worked in IT for nearly 20 years, and she currently serves
as the SQL Server DBA for NATO Special Ops in Belgium. Always an avid scripter,
she attended the Monad session at Microsoft's Professional Developers Conference
in Los Angeles back in 2005 and has worked and played with PowerShell ever since.

Chrissy is currently pursuing an MS in Systems Engineering at Regis University.
In her spare time, she tweets (@cl) and maintains two websites, https://blog.
netnerds.net/ and http://www.realcajunrecipes.com/.

She also served as a technical reviewer for Windows PowerShell Cookbook, Lee Holmes,
O'Reilly Media.

www.PacktPub.com

Support files, eBooks, discount offers, and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.PacktPub.com and
as a print book customer, you are entitled to a discount on the eBook copy. Get in touch
with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters and receive exclusive discounts and offers on Packt books
and eBooks.

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print, and bookmark content
•	 On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

Instant updates on new Packt books
Get notified! Find out when new books are published by following @PacktEnterprise
on Twitter or the Packt Enterprise Facebook page.

[i]

Table of Contents
Preface	 v
Chapter 1: Getting Started with Azure and PowerShell	 1

Introducing Windows PowerShell	 2
Connecting to Microsoft Azure using PowerShell	 5

Microsoft Azure subscriptions	 6
Software prerequisites	 6

Windows PowerShell 3.0 or newer	 6
Microsoft Azure PowerShell	 7

Connecting to a Microsoft Azure subscription	 9
Connecting to Azure using Azure Active Directory credentials	 9
Connecting to Azure using a publish settings file	 11

Creating a Microsoft Azure website using PowerShell	 14
Summary	 16

Chapter 2: Managing Azure Storage with PowerShell	 17
Creating a Microsoft Azure storage account	 18
Azure File storage versus Azure Blob storage	 19

Azure File storage	 20
Azure Blob storage	 20

Getting the Azure storage account keys	 21
Using Azure File storage	 23
Using Azure Blog storage	 25
Using Azure Table storage	 26
Using Azure Queue storage	 28
Using Microsoft Azure storage to back up files	 29
Summary	 35

Chapter 3: Managing Azure Virtual Machines with PowerShell	 37
Virtual machines in Microsoft Azure	 38
Creating a Microsoft Azure virtual machine	 39

Table of Contents

[ii]

Selecting a virtual machine image	 39
Creating a virtual machine	 41

Managing Microsoft Azure virtual machines	 43
Listing the instances of Microsoft Azure virtual machines	 43
Managing the state of Microsoft Azure virtual machine instances	 44
Creating a snapshot of a Microsoft Azure virtual machine instance	 45
Creating a new virtual disk and assigning it to a Microsoft Azure
virtual machine instance	 47
Removing a Microsoft Azure virtual machine instance	 49

Summary	 50
Chapter 4: Managing Azure SQL Databases with PowerShell	 51

Creating and connecting to Microsoft Azure SQL Database Servers	 52
Provisioning a new Microsoft Azure SQL Database Server	 52
Configuring a firewall rule for a Microsoft Azure SQL Database server	 54
Connecting to a Microsoft Azure SQL Database Server with PowerShell	 55

Creating and managing Microsoft Azure SQL Databases	 56
Creating a new Microsoft Azure SQL Database	 56
Executing queries with a Microsoft Azure SQL Database	 57
Exporting and importing a Microsoft Azure SQL Database	 60
Removing a Microsoft Azure SQL Database	 62

Summary	 62
Chapter 5: Deploying and Managing Azure Websites
with PowerShell	 63

Creating and configuring a new Microsoft Azure website	 64
Deploying Microsoft Azure website content	 66

Deploying from a source control system	 66
Deploying from Visual Studio or WebMatrix	 67
Other deployment methods	 67

Managing Microsoft Azure websites	 68
Summary	 70

Chapter 6: Managing Azure Virtual Networks with PowerShell	 71
Creating and managing an Azure Virtual Network	 72

Creating an Azure Virtual Network configuration file	 73
Creating an Azure Virtual Network	 75
Creating virtual machines in an Azure Virtual Network	 76
Backing up an Azure Virtual Network configuration	 77
Removing an Azure Virtual Network configuration	 78

Summary	 78

Table of Contents

[iii]

Chapter 7: Managing Azure Traffic Manager with PowerShell	 79
Creating Microsoft Azure websites for load balancing	 81
Creating and managing Microsoft Azure Traffic Manager profiles	 83
Summary	 87

Chapter 8: Managing Azure Cloud Services with PowerShell	 89
Connecting to a Microsoft Azure virtual machine with
a Microsoft Azure Cloud Service	 91
Creating and managing Microsoft Azure Cloud Services	 95
Summary	 98

Chapter 9: Managing Azure Active Directory with PowerShell	 99
Connecting to Azure Active Directory	 100

Creating an administrator account	 101
Connecting to Azure Active Directory	 106

Creating a new Azure Active Directory domain	 107
Configuring an Azure Active Directory domain	 110
Managing Azure Active Directory users and groups	 111
Using PowerShell to bulk import users and groups into
Azure Active Directory	 113
Summary	 115

Chapter 10: Automating Azure with PowerShell	 117
Creating a Microsoft Azure Automation account	 118
Creating and managing runbooks in Microsoft Azure	 120
Summary	 125

Index	 127

[v]

Preface
Microsoft Azure offers a plethora of cloud-based services that can integrate into an
enterprise organization's data center infrastructures. From Active Directory to virtual
machines, organizations that make full use of Azure services have a lot to configure
and manage. Using PowerShell, most Azure configuration and management tasks
can be streamlined and automated. This book explores using Microsoft Azure
PowerShell to manage the commonly used services of Microsoft Azure.

What this book covers
Chapter 1, Getting Started with Azure and PowerShell, introduces Windows PowerShell,
configures Microsoft Azure PowerShell tools, and connects to Microsoft Azure using
PowerShell.

Chapter 2, Managing Azure Storage with PowerShell, explores managing the services
offered by a Microsoft Azure storage account with PowerShell, including file, blob,
table, and queue storage.

Chapter 3, Managing Azure Virtual Machines with PowerShell, covers how to create
and manage virtual machines in Microsoft Azure using PowerShell.

Chapter 4, Managing Azure SQL Databases with PowerShell, examines the basics
of creating and managing SQL databases in Microsoft Azure using PowerShell.

Chapter 5, Deploying and Managing Azure Websites with PowerShell, delves into creating
and publishing Microsoft Azure websites with PowerShell.

Chapter 6, Managing Azure Virtual Networks with PowerShell, explores Microsoft Azure
virtual networks and how to create and manage them with PowerShell.

Preface

[vi]

Chapter 7, Managing Azure Traffic Manager with PowerShell, investigates how to
manage geo-redundant and high-availability services in Microsoft Azure using
Microsoft Azure's Traffic Manager with PowerShell.

Chapter 8, Managing Azure Cloud Services with PowerShell, covers how to manage
Microsoft Azure cloud services using PowerShell.

Chapter 9, Managing Azure Active Directory with PowerShell, explores how to use
and manage Active Directory in Microsoft Azure using PowerShell.

Chapter 10, Automating Azure with PowerShell, covers how to use runbooks to
automate Microsoft Azure management tasks using PowerShell.

What you need for this book
Microsoft Azure PowerShell requires Microsoft Windows PowerShell 3.0 or a newer
version running on Microsoft Windows 7/Microsoft Windows Server 2008 R2 or
newer. Downloading Microsoft Azure PowerShell and related tools is covered in
Chapter 1, Getting Started with Azure and PowerShell.

Who this book is for
This book is designed for administrators and developers who manage Microsoft
Azure services. Administrators will take away knowledge and ideas to better
manage and automate tasks for data center operations. Developers will take
away knowledge and ideas to better automate tasks for deployments and other
application configurations.

Microsoft Azure provides a platform for developers to build enterprise-
level, geo-globally-distributed, and highly-scalable applications. While
this book will be useful for developers, it does not delve into building
applications and processes on Microsoft Azure.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Preface

[vii]

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"Many of the cmdlets used to instantiate new services, such as a website, in Microsoft
Azure include a -Location parameter."

A block of code is set as follows:

<?xml version="1.0" encoding="utf-8"?>
<NetworkConfiguration
xmlns="http://schemas.microsoft.com/ServiceHosting/2011/07/Network
Configuration">
 <VirtualNetworkConfiguration>
 <Dns>
 <DnsServers>
 <DnsServer name="DNS1" IPAddress="10.10.1.1"/>
 </DnsServers>
 </Dns>

Any command-line input or output is written as follows:

PS C:\> New-AzureSqlDatabaseServerFirewallRule -RuleName
"MyIPAddress" -ServerName "jztfvtq0e1" -StartIpAddress
123.123.123.123 -EndIpAddress 123.123.123.123

New terms and important words are shown in bold. Words that you see on
the screen, in menus or dialog boxes for example, appear in the text like this:
"Navigate to the left-hand side of the page and select Websites".

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

Preface

[viii]

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to
have the files e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or added
to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Preface

[ix]

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem
with any aspect of the book, and we will do our best to address it.

Chapter 1

[1]

Getting Started with Azure
and PowerShell

Microsoft Azure (formerly Windows Azure) is a cloud computing service provided
by Microsoft. Azure provides the platform and infrastructure to deploy and manage
applications and services through a global network of datacenters. These services
include websites, databases, virtual machines, message queuing, identity management,
content delivery, and so on.

Microsoft is continually adding new services and features to services
provided in Microsoft Azure. To keep yourself updated on the latest
Azure offerings, subscribe to the Microsoft Azure blog at http://
azure.microsoft.com/blog/. In addition, the Microsoft Azure
website provides detailed information on all current Azure offerings at
http://azure.microsoft.com.

With Microsoft Azure geared to supplement and integrate into the infrastructure of
large enterprise organizations, many organizations apply their data center operation
policies and methodologies to their Azure implementations. For many of these
organizations, scripting deployment, configuration, and management tasks is a must.

Much like other Microsoft server products (Exchange Server and SharePoint Server
for example), Microsoft Azure services and products can be instantiated, configured,
and managed using Windows PowerShell. Using PowerShell, we can automate and
script many of the deployment, configuration, and management
tasks that are common to data center operations.

Getting Started with Azure and PowerShell

[2]

From connecting to Microsoft Azure to managing Active Directory instances on
Azure, this book will cover how to automate and script common tasks to manage
Microsoft Azure. In this chapter, we will get acquainted with Windows PowerShell
and get connected to Microsoft Azure. Lastly, we will create an Azure website to
introduce how we can manage Microsoft Azure using Windows PowerShell.

Introducing Windows PowerShell
Windows PowerShell is an automation and configuration framework provided
by Microsoft. It comprises a command-line shell and a scripting language built on
the Microsoft .NET Framework. The commands used in PowerShell are referred to
as cmdlets and, typically, have a verb prefix followed by a topical command name.
For instance, the cmdlet to add a computer to an Active Directory domain
is Add-Computer.

Nearly all Microsoft-provided cmdlets for PowerShell include help
content that can be accessed using the Get-Help cmdlet. To retrieve help
content for the Add-Computer cmdlet, for instance, you would simply
enter Get-Help Add-Computer.

Modules and snap-ins that have been imported into the current PowerShell session
provide the cmdlets in PowerShell. The core modules bundled with PowerShell
provide the cmdlets that are available out of the box with PowerShell. Other
Microsoft server products, such as Microsoft SharePoint Server (the 2010 version
and higher) and Microsoft Exchange Server (the 2007 version and higher), provide
modules and snap-ins that make cmdlets specific to these products available in a
PowerShell session.

The following screenshot shows what the PowerShell Command Prompt looks
like. The default color scheme for PowerShell windows is gray text on a dark blue
background; for clarity, however, when printed or viewed in black and white, the
screenshots used in this book use black text on a white background.

Chapter 1

[3]

With PowerShell built on the Microsoft .NET Framework, .NET classes and methods
can be used directly from the Command Prompt. For instance, while the Get-Date
cmdlet will return a System.DateTime object, we can also accomplish the same task
by entering [System.DateTime]::Now, as shown in the following screenshot. This
is particularly useful when creating complex scripts that require using .NET classes
and methods not already exposed as cmdlets.

When accessing a static method or property of a .NET class, the full class name
(with its namespace) is placed in square brackets ([and]). The method name or
property name is then placed after two semicolons (::). For instance, accessing the
Now property of System.DateTime is written as [System.DateTime]::Now, and
accessing the IsLeapYear method of System.DateTime is written as [System.
DateTime]::IsLeapYear(2020). It's not required to know how to interact directly
with .NET classes and methods when using PowerShell. However, this is useful
when functionality needs to be extended beyond what the available cmdlets can do.

Getting Started with Azure and PowerShell

[4]

In addition to the Windows PowerShell Command Prompt, Microsoft has provided
the Windows PowerShell Integrated Scripting Environment (ISE). PowerShell
ISE is an application specifically designed to write PowerShell scripts. It includes
IntelliSense, the Command Prompt, and a list of available cmdlets. The examples
throughout this book will use the PowerShell Command Prompt, as shown in the
preceding screenshot. However, you can use the PowerShell ISE to complete any
of the examples provided:

Windows PowerShell is included in Windows, starting with Windows 7
and Windows Server 2008 R2. The following table indicates which version
of PowerShell is included with each version of Windows:

PowerShell version Windows versions
PowerShell 2.0 Windows 7, Windows Server 2008 R2
PowerShell 3.0 Windows 8, Windows Server 2012
PowerShell 4.0 Windows 8.1, Windows Server 2012 R2

Chapter 1

[5]

Using PowerShell to manage Microsoft Azure requires PowerShell 3.0 or higher.
Windows 7 and Windows Server 2008 R2 do not include a supported version of
PowerShell. In order to manage Microsoft Azure on Windows 7 or Windows Server
2008 R2, the Windows Management Framework will need to be updated to version
3.0 or higher. To download the Windows Management Framework 3.0 (which
includes PowerShell 3.0), visit http://www.microsoft.com/en-us/download/
details.aspx?id=34595, and to download the Windows Management Framework
4.0 (which includes PowerShell 4.0), visit http://www.microsoft.com/en-us/
download/details.aspx?id=40855.

While PowerShell 4.0 and higher are not required to manage
Microsoft Azure, each subsequent version of PowerShell after 3.0
has enhanced the overall capabilities of the framework. To upgrade
to a newer version of PowerShell, download the latest version of the
Windows Management Framework.

For more information about Windows PowerShell and Microsoft Azure, see the
following resources:

•	 Scripting with Windows PowerShell (http://technet.microsoft.com/en-
us/library/bb978526.aspx)

•	 Windows PowerShell (http://en.wikipedia.org/wiki/Windows_
PowerShell)

•	 Microsoft Azure website (http://azure.microsoft.com)
•	 Windows Management Framework 3.0 download (http://www.microsoft.

com/en-us/download/details.aspx?id=34595)
•	 Windows Management Framework 4.0 download (http://www.microsoft.

com/en-us/download/details.aspx?id=40855)

Connecting to Microsoft Azure using
PowerShell
Before using PowerShell cmdlets for Microsoft Azure, we must first have an active
Microsoft Azure subscription, install the necessary prerequisites, and connect to the
Microsoft Azure subscription. In addition, as Microsoft Azure is a cloud service, we
must have an Internet connection in order to manage it.

Getting Started with Azure and PowerShell

[6]

Microsoft Azure subscriptions
Microsoft Azure is a subscription-based service, typically billed monthly. Microsoft
Developer Network (MSDN) subscribers receive a free monthly credit for
development purposes. In addition, Microsoft offers a free trial of Microsoft Azure
for one month (up to $200 worth of services). To sign up for the free trial, visit
http://azure.microsoft.com/en-us/pricing/free-trial.

For the purposes of the examples provided in this book, it does not matter what
type of Microsoft Azure subscription is used. It simply must be active and you need
global administrator rights to the subscription.

If someone else manages the Microsoft Azure subscription you are
using, they can grant you the appropriate access by logging in to
the Azure portal and navigating to the settings section of the portal.

Software prerequisites
To manage Microsoft Azure with Windows PowerShell requires the following
prerequisites:

•	 Windows client operating system (Windows 7 or newer) or Windows server
operating system (Windows Server 2008 R2 or newer)

•	 Windows PowerShell 3.0 or newer (bundled with the Windows
Management Framework)

•	 Microsoft Azure PowerShell

While managing the operating system is outside the scope of this book, it is a good
idea to ensure that the Windows operating system is up-to-date with the latest
security updates and service packs.

Windows PowerShell 3.0 or newer
The Microsoft Azure PowerShell management tools require at least PowerShell
3.0. If the computer is running Windows 8 (or newer) or Windows Server 2012 (or
newer), no additional configuration is required for PowerShell. Since Windows 7 and
Windows Server 2008 R2 are bundled with PowerShell 2.0, an updated version of the
Windows Management Framework will need to be installed.

Chapter 1

[7]

If the computer is running Windows 7 or Windows Server 2008 R2, follow these
steps to verify that PowerShell 3.0 or newer is installed:

1.	 Open Windows PowerShell from the Start menu.
2.	 Enter $PSVersionTable in Command Prompt and press Enter.

The PSVersion property will display the installed version of PowerShell,
as shown here:

3.	 If the PowerShell version, as mentioned in step 2, is not 3.0 or greater,
download and install a newer version of the Windows Management
Framework. To download the Windows Management Framework 3.0
(which includes PowerShell 3.0), visit http://www.microsoft.com/
en-us/download/details.aspx?id=34595. To download the Windows
Management Framework 4.0 (which includes PowerShell 4.0), visit
http://www.microsoft.com/en-us/download/details.aspx?id=40855.

Microsoft Azure PowerShell
Microsoft Azure PowerShell installs a PowerShell module that provides the cmdlets
used to manage Microsoft Azure.

The Microsoft Azure PowerShell project is open source. If desired, you
can download the source code for the project and use it, rather than
using the official version. The project is hosted on GitHub at https://
github.com/Azure/azure-powershell. In addition, each version of
Microsoft Azure PowerShell can be obtained from https://github.
com/Azure/azure-sdk-tools/releases.

Getting Started with Azure and PowerShell

[8]

To install Microsoft Azure PowerShell, we will use the following steps:

1.	 Install the Microsoft Web Platform Installer from http://www.microsoft.
com/web/downloads/platform.aspx.

2.	 Open the Microsoft Web Platform Installer.
3.	 Search for Microsoft Azure PowerShell.
4.	 Select Add for Microsoft Azure PowerShell (Standalone), as shown in the

following screenshot:

Developers can select Microsoft Azure PowerShell with
Microsoft Azure SDK instead to install the development
components for Azure in addition to the PowerShell module.

5.	 Then click on Install.
6.	 Select I Accept to accept the Microsoft license terms.
7.	 Select Finish.
8.	 Finally, close the Web Platform Installer.

Chapter 1

[9]

Connecting to a Microsoft Azure subscription
Prior to running cmdlets to manage Microsoft Azure, we need to connect to
a Microsoft Azure subscription. There are three ways to connect to an Azure
subscription:

•	 Using Azure Active Directory credentials
•	 Using a publish settings file
•	 Using an uploaded management certificate

The third option, using an uploaded management certificate, requires developer tools
to be installed on the local machine. This is outside the scope of this book. If you would
like more information on using a management certificate with Microsoft Azure, refer
to http://msdn.microsoft.com/en-us/library/azure/gg551722.aspx.

Connecting to Azure using Azure Active
Directory credentials
Connecting to Azure subscription using Azure Active Directory credential is a fairly
simple process. One drawback, however, is that you need to enter your credentials
each time you start a new Azure PowerShell session, or every 12 hours if the session
is kept open.

To automate data center operations, entering credentials for each session
might not be ideal. Therefore, consider using a publish settings file, as
outlined in the next section, Connecting to Azure using a publish settings file,
or consider using a management certificate (http://msdn.microsoft.
com/en-us/library/azure/gg551722.aspx).

Use the following steps to connect to Microsoft Azure using Azure Active
Directory credentials:

1.	 Open Microsoft Azure PowerShell from the Start menu.

If you are having trouble finding the link in the Start menu,
use the search box in the Start menu.

Getting Started with Azure and PowerShell

[10]

2.	 Use the Add-AzureAccount cmdlet by entering it in the Command Prompt
and pressing Enter, as shown here:

3.	 When prompted, enter the e-mail address for the account used to manage
Microsoft Azure and select Continue (the Microsoft account, using your
e-mail address, used when creating an Azure subscription is automatically
added to an instance of Azure Active Directory):

4.	 Enter the password for your account and select Sign in.

Chapter 1

[11]

5.	 Once the sign-in is complete, the Command Prompt will indicate that the
account has been added and will indicate which subscription has been
selected, as shown here:

If you have multiple Microsoft Azure subscriptions that you
manage with the same Microsoft account, you can use the
Select-AzureSubscription cmdlet to switch between
subscriptions in the PowerShell session.

Connecting to Azure using a publish
settings file
For many automated data center operations, manually entering user credentials for
each PowerShell session (or every 12 hours) can be cumbersome. Alternatively, a
publish settings file can be downloaded from Azure that allows PowerShell sessions
to connect without entering user credentials. This is useful for highly automated
processes that do not have human interaction (such as a scheduled backup job).

Getting Started with Azure and PowerShell

[12]

To connect to Azure using a publish settings file, we will use the following steps
to retrieve and import an Azure publish settings file:

1.	 Open Microsoft Azure PowerShell from the Start menu.
2.	 Enter the Get-AzurePublishSettingsFile cmdlet and press Enter,

as shown here:

3.	 The Microsoft Azure portal will be opened in Internet Explorer. If prompted,
enter your credentials to log in to the Azure portal.

4.	 If you have multiple subscriptions associated with your account, you will be
prompted to select a subscription, as shown in the following screenshot:

Chapter 1

[13]

5.	 When prompted to download the Azure publish settings file, save it to the
local computer:

6.	 In the PowerShell window, use the Import-AzurePublishSettingsFile
cmdlet (as shown below) to import the Azure publish settings file,
which was downloaded in the previous step (PS C:\> Import-
AzurePublishSettingsFile C:\Files\Azure.publishsettings):

Whether we used the Azure Active Directory credentials method or Azure's
publish settings file method, we are now connected to Microsoft Azure in our
PowerShell session.

Getting Started with Azure and PowerShell

[14]

For more information on how to connect to Microsoft Azure with PowerShell and the
cmdlets used in this section, refer to the following resources:

•	 Create and upload a Management Certificate for Azure (http://msdn.
microsoft.com/en-us/library/azure/gg551722.aspx)

•	 The Import-AzurePublishSettingsFile cmdlet (http://msdn.
microsoft.com/en-us/library/dn495124.aspx)

•	 The Get-AzurePublishSettingsFile cmdlet (http://msdn.microsoft.
com/en-us/library/dn495224.aspx)

•	 The Select-AzureSubscription cmdlet (http://msdn.microsoft.com/
en-us/library/dn495203.aspx)

•	 The Add-AzureAccount cmdlet (http://msdn.microsoft.com/en-us/
library/dn722528.aspx)

•	 Microsoft Azure PowerShell Project on GitHub (https://github.com/
Azure/azure-powershell)

•	 Microsoft Web Platform Installer download (http://www.microsoft.com/
web/downloads/platform.aspx)

•	 Windows Management Framework 3.0 download (http://www.microsoft.
com/en-us/download/details.aspx?id=34595)

•	 Windows Management Framework 4.0 download (http://www.microsoft.
com/en-us/download/details.aspx?id=40855)

Creating a Microsoft Azure website using
PowerShell
Now that we are connected to our Microsoft Azure subscription in PowerShell,
we will create a simple Azure website to illustrate what we can do with
Azure PowerShell.

Many of the cmdlets used to instantiate new services, such as a website,
in Microsoft Azure include a -Location parameter. This parameter
specifies in which Azure data center the new service will be instantiated.
To get a list of the data centers available to your subscription, use the
Get-AzureLocation | Format-List -Property Name command
in PowerShell.

Chapter 1

[15]

To create an Azure website, we will use the following steps:

1.	 Use the New-AzureWebsite cmdlet to create the new Azure website
(PS C:\> New-AzureWebsite –Name "PowerShellAutomationIsAwesome"
-Location "WestUS"). The name specified will be used as part of the
default hostname of the website and must be unique, as shown in the
following screenshot:

2.	 When complete, detailed information about the new website will be
displayed as an output in the Command Prompt window:

Getting Started with Azure and PowerShell

[16]

3.	 By default, the URL to the newly created website will be the name used in
step 1 with .azurewebsites.net appended to it. In this example, the new
URL is http://powershellautomationisawesome.azurewebsites.net.
Navigate to the newly created website in a web browser to observe
the results, as shown here:

For more information about the cmdlets used in this section, refer to the
following resources:

•	 The New-AzureWebsite cmdlet (http://msdn.microsoft.com/en-us/
library/azure/dn495157.aspx)

•	 The Get-AzureLocation cmdlet (http://msdn.microsoft.com/en-us/
library/azure/dn495177.aspx)

Summary
In this chapter, we became acquainted with Windows PowerShell. You learned how
to connect Windows PowerShell to Microsoft Azure subscriptions. We will cover
many advanced topics related to PowerShell in the course of this book; however,
as we cover Azure-specific tasks; however, we will not dig into PowerShell itself
(beyond the introduction in this chapter). If you are not yet familiar with using
Windows PowerShell, refer to the Scripting with Windows PowerShell article on
TechNet at http://technet.microsoft.com/en-us/library/bb978526.aspx
to get better acquainted with the basic techniques and methodologies of scripting
with PowerShell.

In the next chapter, we will explore using PowerShell to manage Azure storage
accounts, including file, blob, table, and queue storage.

Chapter 2

[17]

Managing Azure Storage
with PowerShell

Microsoft Azure offers a variety of different services to store and retrieve data in
the cloud. This includes file, blob, table, and queue storage. Within Azure, each
of these types of data is contained within an Azure storage account. While Azure
SQL databases are also storage mechanisms, they are not part of an Azure storage
account. We will cover Azure SQL databases separately in Chapter 4, Managing Azure
SQL Databases with PowerShell.

Each of the example tasks covered in this chapter can be accomplished
using the latest version of Microsoft Azure PowerShell. However, some
tasks, such as file storage, are in preview and not available in the existing
Azure management portal found at https://manage.windowsazure.
com. These are available in the Azure preview portal found at https://
portal.azure.com. In future, the Azure preview portal will replace the
existing Azure management portal.

In this chapter, we will cover the basics of managing Azure storage accounts,
including uploading files and blobs, storing data in tables, and managing message
queues. In addition, we will apply these concepts by creating a PowerShell script that
backs up a folder to Azure blob storage, stores a list of the files in an Azure table, and
sends a message to an Azure queue indicating that the operation is completed.

Managing Azure Storage with PowerShell

[18]

Creating a Microsoft Azure storage
account
Before we can upload files or blogs, create tables, or create a queue, we first need
a Microsoft Azure storage account.

To list the storage accounts already associated with the current Azure
subscription, use the Get-AzureStorageAccount cmdlet without
any parameters.

To create a new Microsoft Azure storage account, we will use the following steps:

1.	 Open Microsoft Azure PowerShell from the Start menu and connect it to an
Azure subscription.

We must first be connected to Azure in order to create an Azure
Storage Account. If not connected to Azure, refer to the Connecting
to a Microsoft Azure subscription section in Chapter 1, Getting Started
with Azure and PowerShell.

2.	 Use the New-AzureStorageAccount cmdlet to create the new storage
account (PS C:\> New-AzureStorageAccount –StorageAccountName
"psautomation" –Location "West US" –Label "PSAutomation" –
Description "Storage account for PSAutomation"). Note that the
storage account name provided can only contain numbers and lowercase
letters. If any special characters, spaces, or uppercase letters are used, an
exception will be thrown:

Chapter 2

[19]

With the new Microsoft Azure storage account created, new default endpoints are
also created for each service offered by the storage account:

•	 Blob service (http://<StorageAccountName>.blob.core.windows.net)
•	 Table service (http://<StorageAccountName>.table.core.windows.net)
•	 Queue service (http://<StorageAccountName>.queue.core.windows.net)
•	 File service (http://<StorageAccountName>.file.core.windows.net)

As Microsoft Azure is a subscription-based service, most
instances of a service in Azure will incur cost over time. When
a service is no longer being used, deleting the instance will
prevent further charges for that item. To delete an Azure
storage account that is no longer needed, use the Remove-
AzureStorageAccount cmdlet with the name of the storage
account as the first parameter.

For more information about Microsoft Azure storage accounts and the cmdlet used
in this section, see the following resources:

•	 About Azure Storage accounts (http://azure.microsoft.com/en-us/
documentation/articles/storage-create-storage-account/)

•	 The Remove-AzureStorageAccount cmdlet (http://msdn.microsoft.com/
en-us/library/azure/dn495212.aspx)

•	 The Get-AzureStorageAccount cmdlet (http://msdn.microsoft.com/en-
us/library/azure/dn495134.aspx)

•	 The New-AzureStorageAccount cmdlet (http://msdn.microsoft.com/en-
us/library/azure/dn495115.aspx)

Azure File storage versus Azure Blob
storage
In a Microsoft Azure storage account, both the Azure File storage service and the
Azure Blob storage service can be used to store files. Deciding which service to
use depends on the purpose of the content and who will use the content. To break
down the differences and similarities between these two services, we will cover the
features, structure, and common uses for each service.

Managing Azure Storage with PowerShell

[20]

Azure File storage
Azure File storage provides shared storage using the Server Message Block (SMB)
protocol. This allows clients, such as Windows Explorer, to connect and browse File
storage (such as a typical network file share). In a Windows file share, clients can add
directory structures and files to the share. Similar to file shares, Azure File storage is
typically used within an organization and not with users outside it.

Azure File shares can only be mounted in Windows Explorer as a
drive within virtual machines running in Azure. They cannot be
mounted from computers outside Azure.

A few common uses of Azure File storage include:

•	 Sharing files between on-premise computers and Azure virtual machines
•	 Storing application configuration and diagnostic files in a shared location
•	 Sharing documents and other files with users in the same organization but

in different geographical locations

Azure Blob storage
A blob refers to a binary large object, which might not be an actual file. The Azure
Blob storage service is used to store large amounts of unstructured data. This data
can be accessed via HTTP or HTTPS, making it particularly useful for sharing large
amounts of data publicly. Within an Azure storage account, blobs are stored within
containers. Each container can be public or private, but it does not offer any directory
structure as the File storage service does.

A few common uses of Azure Blob storage include:

•	 Serving images, style sheets (CSS), and static web files for a website,
much like a content delivery network

•	 Streaming media
•	 Backups and disaster recovery
•	 Sharing files to external users

Chapter 2

[21]

For more information about Microsoft Azure File storage and Azure Blob storage,
refer to the following resources:

•	 How to use Azure File storage (http://azure.microsoft.com/en-us/
documentation/articles/storage-dotnet-how-to-use-files/)

•	 How to use Blob storage from .NET (http://azure.microsoft.com/en-us/
documentation/articles/storage-dotnet-how-to-use-blobs/)

Getting the Azure storage account keys
Managing services provided by Microsoft Azure storage accounts requires two
pieces of information: the storage account name and an access key. While we
can obtain this information from the Microsoft Azure web portal, we will do so
with PowerShell.

Azure storage accounts have a primary and a secondary
access key. If one of the access keys is compromised, it
can be regenerated without affecting the other.

To obtain the Azure storage account keys, we will use the following steps:

1.	 Open Microsoft Azure PowerShell from the Start menu and connect it to an
Azure subscription.

We must first be connected to Azure. If not connected
to Azure, refer to the Connecting to a Microsoft Azure
subscription section in Chapter 1, Getting Started with
Azure and PowerShell.

2.	 Use the Get-AzureStorageKey cmdlet with the name of the storage account
to retrieve the storage account key information and assign it to a variable:
PS C:\> $accountKey = Get-AzureStorageKey -
StorageAccountName psautomation

Managing Azure Storage with PowerShell

[22]

3.	 Use the Format-List cmdlet (PS C:\> $accountKey | Format-List –
Property Primary,Secondary) to display the Primary and Secondary
access key properties. Note that we are using the PowerShell pipeline to use
the Format-List cmdlet on the $accountKey variable:

4.	 Assign one of the keys (Primary or Secondary) to a variable for us to use
throughout this chapter:
PS C:\> $key = $accountKey.Primary

For more information about the PowerShell techniques and cmdlets used in this
section, refer to the following resources:

•	 The Get-AzureStorageKey cmdlet (http://msdn.microsoft.com/en-us/
library/azure/dn495235.aspx)

•	 Using the Format-List cmdlet (http://technet.microsoft.com/en-us/
library/ee176830.aspx)

•	 Understanding the Windows PowerShell Pipeline (http://technet.
microsoft.com/en-us/library/dd347728.aspx)

Chapter 2

[23]

Using Azure File storage
As mentioned in the Azure File storage versus Azure Blob storage section, Azure File
services act much like typical network files shares. To demonstrate Azure File
services, we will first create a file share. After this, we will create a directory, upload
a file, and list the files in a directory.

Azure File storage is a preview feature for Microsoft Azure at the
time of writing this book. It might need to be enabled on your
Microsoft Azure subscription before you can use it. Visit https://
account.windowsazure.com/PreviewFeatures to add the
Azure File storage service and any other preview features you wish
to test to your subscription.

To complete Azure File storage tasks, we will use the following steps:

1.	 In the PowerShell session from the Getting the Azure storage account keys section
in which we obtained an access key, use the New-AzureStorageContext
cmdlet to connect to the Azure storage account and assign it to a variable.
Note that the first parameter is the name of the storage account, whereas
the second parameter is the access key:
PS C:\> $context = New-AzureStorageContext psautomation $key

2.	 Create a new file share using the New-AzureStorageShare cmdlet and assign
it to a variable:
PS C:\> $share = New-AzureStorageShare psautomationshare –Context
$context

3.	 Create a new directory in the file share using the New-
AzureStorageDirectory cmdlet:
PS C:\> New-AzureStorageDirectory –Share $share –Path TextFiles

4.	 Before uploading a file to the newly created directory, we need to ensure that
we have a file to upload. To create a sample file, we can use the Set-Content
cmdlet to create a new text file:
PS C:\> Set-Content C:\Files\MyFile.txt –Value "Hello"

5.	 Upload a file to the newly created directory using the Set-
AzureStorageFileContent cmdlet:
PS C:\> Set-AzureStorageFileContent –Share $share –Source C:\
Files\MyFile.txt –Path TextFiles

Managing Azure Storage with PowerShell

[24]

6.	 Use the Get-AzureStorageFile cmdlet (PS C:\> Get-AzureStorageFile
–Share $share –Path TextFiles) to list the files in the directory (similar
to executing the dir or ls commands), as shown in the following screenshot:

For more information about Microsoft Azure File storage and the cmdlets used in
this section, refer to the following resources:

•	 How to use Azure File storage (http://azure.microsoft.com/en-us/
documentation/articles/storage-dotnet-how-to-use-files/)

•	 The Get-AzureStorageFile cmdlet (http://msdn.microsoft.com/en-us/
library/dn806383.aspx)

•	 The Set-AzureStorageFileContent cmdlet (http://msdn.microsoft.
com/en-us/library/dn806404.aspx)

•	 The Set-Content cmdlet (http://technet.microsoft.com/en-us/
library/hh849828.aspx)

•	 The New-AzureStorageDirectory cmdlet (http://msdn.microsoft.com/
en-us/library/dn806385.aspx)

•	 The New-AzureStorageShare cmdlet (http://msdn.microsoft.com/en-
us/library/dn806378.aspx)

•	 The New-AzureStorageContext cmdlet (http://msdn.microsoft.com/en-
us/library/dn806380.aspx)

Chapter 2

[25]

Using Azure Blog storage
As mentioned in the Azure File storage versus Azure Blob storage section, Azure Blob
storage can be used to store any unstructured data, including file content. Blobs
are stored within containers and permissions are set at the container level. The
permission levels that can be assigned to a container are shown in the following table:

Permission level Access provided
Container This provides anonymous read access to the container and all

blobs in the container. In addition, it allows anonymous users to
list the blobs in the container.

Blob This provides anonymous read access to blobs within the
container. Anonymous users cannot list all of the blobs in the
container.

Off This does not provide anonymous access. It is only accessible with
the Azure storage account keys.

To illustrate Azure Blob storage, we will use the following steps to create a public
container, upload a file, and access the file from a web browser:

1.	 In the PowerShell session from the Getting Azure storage account keys section
in which we obtained an access key, use the New-AzureStorageContext
cmdlet to connect to the Azure storage account and assign it to a variable.
Note that the first parameter is the name of the storage account, whereas
the second parameter is the access key:
PS C:\> $context = New-AzureStorageContext psautomation $key

2.	 Use the New-AzureStorageContainer cmdlet to create a new public
container. Note that the name must contain only numbers and lowercase
letters. No special characters, spaces, or uppercase letters are permitted:
PS C:\> New-AzureStorageContainer –Name textfiles –Context
$context –Permission Container

3.	 Before uploading a file to the newly created directory, we need to ensure that
we have a file to upload. To create a sample file, we can use the Set-Content
cmdlet to create a new text file:
PS C:\> Set-Content C:\Files\MyFile.txt –Value "Hello"

4.	 Upload a file using the Set-AzureStorageBlobContent cmdlet:
PS C:\> Set-AzureStorageBlobContent –File C:\Files\MyFile.txt
–Blob "MyFile.txt" –Container textfiles –Context $context

Managing Azure Storage with PowerShell

[26]

5.	 Navigate to the newly uploaded blob in Internet Explorer. The URL for the
blob is formatted as https://<StorageAccountName>.blob.core.windows.
net/<ContainerName>/<BlobName>. In our example, the URL is https://
psautomation.blob.core.windows.net/textfiles/MyFile.txt, as shown
in the following screenshot:

For more information about Microsoft Azure Blob storage and the cmdlets used in
this section, refer to the following resources:

•	 How to use Blob storage from .NET (http://azure.microsoft.com/en-us/
documentation/articles/storage-dotnet-how-to-use-blobs/)

•	 The Set-Content cmdlet (http://technet.microsoft.com/en-us/
library/hh849828.aspx)

•	 The New-AzureStorageContainer cmdlet (http://msdn.microsoft.com/
en-us/library/dn806381.aspx)

•	 The Set-AzureStorageBlobContent cmdlet (http://msdn.microsoft.
com/en-us/library/dn806379.aspx)

•	 The New-AzureStorageContext cmdlet (http://msdn.microsoft.com/
en-us/library/dn806380.aspx)

Using Azure Table storage
Azure Table storage is useful for storing large amounts of non-relational structured
data. Non-relational data refers to data stored in tables (such as SQL databases);
however, the tables have no relationship to each other; for instance, there are no
foreign key constraints. The service is a NoSQL data store.

Chapter 2

[27]

The components of Azure Table storage are shown in the following table:

Component Purpose
Table A table is a collection of entities, which closely correlates to a SQL

database table. However, unlike a SQL database table, a table in
Azure does not enforce a specific schema on the entities. Entities
with different sets of properties can be stored in the same table.

Entity An entity is a collection of properties, which closely correlates to a
SQL database row.

Property A property is a name-value pair, which closely correlates to a SQL
database field or column value.

Executing CRUD (create, read, update, and delete) operations for entities in an
Azure Table is intended to be completed within an application, such as an ASP.NET
website. Microsoft Azure PowerShell provides cmdlets to create and manage tables
but not to execute CRUD operations. In this example, we will create a new Azure
Table. We will cover how to use .NET to write to a table in the Using Microsoft Azure
storage to back up files section of this chapter.

To create a new table in Azure, we will use the following steps:

1.	 In the PowerShell session from the Getting Azure storage account keys section
in which we obtained an access key, use the New-AzureStorageContext
cmdlet to connect to the Azure storage account and assign it to a variable.
Note that the first parameter is the name of the storage account, whereas
the second parameter is the access key:
PS C:\> $context = New-AzureStorageContext psautomation $key

2.	 Use the New-AzureStorageTable cmdlet to create a new table:
PS C:\> New-AzureStorageTable -Name MyTable –Context $context

For more information about Microsoft Azure Table storage and the cmdlets used
in this section, refer to the following resources:

•	 The How to use Table Storage from .NET (http://azure.microsoft.com/
en-us/documentation/articles/storage-dotnet-how-to-use-tables/)

•	 The New-AzureStorageTable cmdlet (http://msdn.microsoft.com/
en-us/library/dn806417.aspx)

•	 The New-AzureStorageContext cmdlet (http://msdn.microsoft.com/
en-us/library/dn806380.aspx)

Managing Azure Storage with PowerShell

[28]

Using Azure Queue storage
Microsoft Azure Queue storage is used to store a large number of messages that can
be published or accessed via HTTP and HTTPS. Messages can be up to 64 KB in size.

A couple of common uses of Azure Queue storage include:

•	 Passing messages between separate applications (such as an Azure Web role
and an Azure Worker role)

•	 Creating a backlog of work for a process to complete

Similar to Azure Table storage, Microsoft Azure PowerShell provides cmdlets to
create and manage queues but no cmdlets to add to or read from the queues. In this
example, we will create a new queue. We will cover how to use .NET to write to a
queue in the Using Microsoft Azure storage to back up files section of this chapter.

To create a new queue in Azure, we will use the following steps:

1.	 In the PowerShell session from the Getting Azure storage account keys section
in which we obtained an access key, use the New-AzureStorageContext
cmdlet to connect to the Azure storage account and assign it to a variable.
Note that the first parameter is the name of the storage account, whereas the
second parameter is the access key:
PS C:\> $context = New-AzureStorageContext psautomation $key

2.	 Use the New-AzureStorageQueue cmdlet to create a new queue:
PS C:\> New-AzureStorageQueue –Name "MyQueue" –Context $context

For more information about Microsoft Azure Queue storage and the cmdlets used in
this section, see the following resources:

•	 How to use Queue storage from .NET (http://azure.microsoft.com/
en-us/documentation/articles/storage-dotnet-how-to-use-queues/)

•	 The New-AzureStorageQueue cmdlet (http://msdn.microsoft.com/
en-us/library/dn806382.aspx)

•	 The New-AzureStorageContext cmdlet (http://msdn.microsoft.com/
en-us/library/dn806380.aspx)

Chapter 2

[29]

Using Microsoft Azure storage to back
up files
In this chapter, we covered the basics of the services offered by a Microsoft Azure
storage account. This includes file, blob, table, and queue storage. To illustrate the
usefulness of these storage services, we will create a PowerShell script that backs up
a folder on the local computer to Azure Blob storage, writes a manifest of the files
backed up to Azure Table storage, and sends a message to Azure Queue storage
indicating that the backup is complete.

In this example, we will use .NET in PowerShell to complete Azure
Table and Azure Queue operations not exposed by cmdlets. As
such, we will need to have the Microsoft Azure SDK for .NET
installed. The Microsoft Azure SDK for .NET can be installed with
the Microsoft Web Platform Installer or from http://azure.
microsoft.com/en-us/develop/net/.

To create a backup script that uses Azure Blob, Azure Table, and Azure Queue
storage, we will use the following steps:

1.	 Open Windows PowerShell ISE from the Start menu to create a new
PowerShell script.

A PowerShell script, typically a plaintext file with the .ps1
file extension, contains a set of PowerShell commands. When
it is executed, PowerShell will execute each command in
the script in the same manner that the Windows Command
Prompt executes a batch file (.bat or .cmd).

2.	 Set up the variables that we need to create the rest of the script, including the
storage account name and access key, the path of the files to back up, and
the location of the Azure SDK. Set the values of the variable to match the
configuration of the system the script will run on, as shown here:
$azureStorageAccessKey = "<insert your key>"

$azureStorageAccountName = "<insert your account name>"

$pathToCompress = "C:\BackupFiles"

$azureSdkVersion = "v2.5"

$programFilesPath = "C:\Program Files"

Managing Azure Storage with PowerShell

[30]

3.	 Use the Add-Type cmdlet to import the Microsoft.WindowsAzure.Storage.
dll assembly into the session. Note that we are using the –ErrorAction
SilentlyContinue parameter to ignore errors, such as the assembly already
being loaded into the session:
Add-Type -Path ($programFilesPath + "\Microsoft
SDKs\Azure\.NET SDK\" + $azureSdkVersion +
"\ToolsRef\Microsoft.WindowsAzure.Storage.dll") -ErrorAction
SilentlyContinue

4.	 Add the functions to create ZIP files. PowerShell 3.0 does not have
built-in cmdlets to create ZIP files. The methods used in this example are
taken from http://blogs.msdn.com/b/daiken/archive/2007/02/12/
compress-files-with-windows-powershell-then-package-a-windows-
vista-sidebar-gadget.aspx. Alternatively, the PowerShell Community
Extensions (http://pscx.codeplex.com) include cmdlets to create ZIP files:
function New-Zip

{

 param([string]$zipfilename)

 set-content $zipfilename ("PK" + [char]5 + [char]6 +
("$([char]0)" * 18))

 (dir $zipfilename).IsReadOnly = $false

}

function Add-Zip

{

 param([string]$zipfilename)

 if(-not (test-path($zipfilename)))

 {

 set-content $zipfilename ("PK" + [char]5 + [char]6
+ ("$([char]0)" * 18))

 (dir $zipfilename).IsReadOnly = $false

 }

 $shellApplication = new-object -com shell.application

 $zipPackage = $shellApplication.NameSpace($zipfilename)

Chapter 2

[31]

 foreach($file in $input)

 {

 $zipPackage.CopyHere($file.FullName)

 Start-sleep -milliseconds 500

 }

}

5.	 Use the Get-ChildItem cmdlet to get the files in the backup directory. In this
example, we will exclude subdirectories:
$files = Get-ChildItem -Path $pathToCompress | Where-Object {
$_.PsIsContainer -eq $false }

6.	 Use the methods we added in step 4 to create a ZIP file that contains the files
from the backup directory. Note that we are using the Get-Date cmdlet to
use the current date and time to create a unique file name, and we are using
the $pwd session variable to get the current directory:
$backupDate = Get-Date

$zipName = ("Backup_" +
$backupDate.ToString("yyyy_MM_dd_HH_mm_ss") + ".zip")

$zipPath = [System.IO.Path]::Combine($pwd.Path, $zipName)

New-Zip $zipPath

$files | Add-Zip $zipPath

7.	 Use the New-AzureStorageContext cmdlet to open a new connection in the
Azure storage account:
$context = New-AzureStorageContext $azureStorageAccountName
$azureStorageAccessKey

8.	 Use the Get-AzureStorageContainer cmdlet to get the Azure Blob storage
container to add the ZIP file. If it does not already exist, use the New-
AzureStorageContainer cmdlet to create it. Note that PowerShell uses
operators, such as -eq, -gt, -lt, and -neq, for comparisons rather than code
operators (such as ==, >, <, and !=):
$container = Get-AzureStorageContainer -Name backups -
Context $context -ErrorAction SilentlyContinue

Managing Azure Storage with PowerShell

[32]

if ($container -eq $null)

{

 $container = New-AzureStorageContainer -Name backups -
Context $context -Permission Off

}

9.	 Use the Set-AzureBlobStorageContent cmdlet to upload the ZIP file
to Azure Blob storage:
Set-AzureStorageBlobContent -File $zipPath -Blob $zipName -
Container backups -Context $context

10.	 Use the Get-AzureStorageTable cmdlet to get the Azure Table
to store the file backup records. If the table does not exist, use the
New-AzureStorageTable cmdlet to create it:
$table = Get-AzureStorageTable backuprecords -Context
$context -ErrorAction SilentlyContinue

if ($table -eq $null)

{

 $table = New-AzureStorageTable backuprecords -Context
$context

}

11.	 For each file backup, create a new DynamicTableEntity object using the
New-Object cmdlet and insert it into the table. Note that we are assigning the
result of the insert operation to a variable. Although we are not making use
of it in this example, this variable could be used to determine the success
or failure of the operation:
$row = 0

foreach ($file in $files)

{

 $filePath = $file.FullName

 $entity = New-Object
Microsoft.WindowsAzure.Storage.Table.DynamicTableEntity -
ArgumentList $zipName, $row

 $entity.Properties.Add("BackupDate", [String]
$backupDate.ToString())

Chapter 2

[33]

 $entity.Properties.Add("BackupZip", [String] $zipName)

 $entity.Properties.Add("FilePath", [String] $filePath)

 $result =
$table.CloudTable.Execute([Microsoft.WindowsAzure.Storage.T
able.TableOperation]::Insert($entity))

 $row = $row + 1

}

Using the New-Object cmdlet in this context to instantiate
a .NET object is the equivalent of creating var entity
= new Microsoft.WindowsAzure.Storage.Table.
DynamicTableEntity(zipName, row); in C#. With PowerShell
built-in .NET, we can translate any .NET code into PowerShell
commands and can access any .NET class or function that we could
translate with .NET code.

12.	 Use the Get-AzureStorageQueue cmdlet to get the Azure Queue to
send a message to. If the queue does not already exist, use the New-
AzureStorageQueue cmdlet to create it:
$queue = Get-AzureStorageQueue backupqueue -Context $context -
ErrorAction SilentlyContinue

if ($queue -eq $null)

{

 $queue = New-AzureStorageQueue backupqueue -Context
$context

}

13.	 Use the New-Object cmdlet to create a new CloudQueueMessage object to
send to the queue:
$messageString = ("Backup '" + $zipName + "' completed. " +
$files.Count.ToString() + " files backed up.");

$message = New-Object
Microsoft.WindowsAzure.Storage.Queue.CloudQueueMessage -
ArgumentList $messageString

Managing Azure Storage with PowerShell

[34]

14.	 Send this message to the queue:
$queue.CloudQueue.AddMessage($message)

15.	 Save the PowerShell script with the name BackupFiles.ps1 for example.
16.	 Open Microsoft Azure PowerShell from the Start menu. Note that, as we

already have the storage account name and access key, we do not actually
need to connect to Azure with Active Directory credentials or a publish
settings file.

17.	 Execute the backup script (PS C:\> .\BackupFiles.ps1), as shown in the
following screenshot:

For this example, a complete copy of the script is included in the sample
code of this book. The complete script includes commands to output the
current operation to the console window.

Using these techniques, we could take this example further and create processes that
occur after a message has been sent to the Azure Queue. For instance, we could have
a service that takes the details of the backup from the queued message and the Azure
Table storage to e-mail someone the details of the backup or any errors that might
occur in the process.

For more information about the techniques and cmdlets used in this section, refer to
the following resources:

•	 Azure SDK for .NET (http://azure.microsoft.com/en-us/develop/net/)
•	 The Add-Type cmdlet (http://technet.microsoft.com/en-us/library/

hh849914.aspx)

Chapter 2

[35]

•	 Compress files with Windows PowerShell (http://blogs.msdn.com/b/
daiken/archive/2007/02/12/compress-files-with-windows-
powershell-then-package-a-windows-vista-sidebar-gadget.aspx)

•	 PowerShell Community Extensions (http://pscx.codeplex.com)
•	 The Get-ChildItem cmdlet (http://technet.microsoft.com/en-us/

library/hh849800.aspx)
•	 The Get-Date cmdlet (http://technet.microsoft.com/en-us/library/

hh849887.aspx)
•	 The New-Object cmdlet (http://technet.microsoft.com/en-us/

library/hh849885.aspx)

Summary
In this chapter, you learned about Microsoft Azure storage accounts and how to
interact with storage account services with PowerShell. This included file storage,
blob storage, table storage, and queue storage. In addition, we applied this
knowledge by creating a script that backs up a folder to blob storage, writes the
details to table storage, and sends a message to queue storage. With a little bit of
planning, these techniques can be incorporated in a variety of business applications
and processes.

Imagine a payroll processing company that receives payroll data from hundreds
of companies and then processes them in multiple, geographically-separate data
centers to spread the load and act as a fail-safe in the event a data center goes offline.
The customers could submit encrypted employee data to blob storage and send a
message to queue storage indicating that a payroll batch is ready to process. The
payroll company's processing applications take the next item in the queue, retrieve
the blob, and complete the payroll processing. Lastly, the payroll company could
then send paystubs to blob storage, payroll details to table storage, and a message
indicating the processing is complete to queue storage.

Similar to many Microsoft Azure services, storage accounts provide powerful
tools that can be included in solutions that solve real business needs and improve
antiquated business processes.

In the next chapter, we will explore how to create and manage virtual machines
in Microsoft Azure.

Chapter 3

[37]

Managing Azure Virtual
Machines with PowerShell

A virtual machine (VM) is an emulation of a computer system that allows an
operating system to run virtually inside the operating system installed on a
computer. Microsoft's implementation of virtual machine technologies is Hyper-V.
Hyper-V is available as a standalone server product called Hyper-V Server, as an
installable role in Windows 8 (64-bit) and newer client operating systems, and as an
installable role in Windows Server 2008 and newer server operating systems.

Virtual machines are incredibly useful for maximizing the utilization of available
computing power, and what can be afforded. For instance, let's say an organization
requires four servers for their operations for these purposes: Microsoft Exchange,
Microsoft SharePoint, Microsoft SQL Server, and Microsoft Active Directory. The
company could choose to purchase and maintain four physical servers. However,
to reduce the costs involved (including the cost of the hardware, electricity, and so
on) and to utilize the hardware in a better way (by not having a server with a lot
of unused hardware resources such as CPU and memory), it could choose to use
Hyper-V. The company could use one or two physical servers with the four servers
required running in virtual machines.

In addition to reducing the amount of physical hardware required and cost savings,
virtual machines are also incredibly useful in development and testing scenarios. For
instance, when testing changes to an environment, snapshots can be used to save the
state of a virtual machine prior to making the change. In the event the change needs
to be reverted, the virtual machine simply gets reverted back to the snapshot.

Although virtual machines are great at reducing costs and maximizing hardware
utilization, Microsoft Azure virtual machines can be used without any hardware
costs at all. They can also be accessed from anywhere in the world.

Managing Azure Virtual Machines with PowerShell

[38]

Virtual machines in Microsoft Azure
One of the first and most useful services offered by Microsoft Azure is virtual
machine hosting. Microsoft Azure virtual machines run on servers in the cloud as
part of Azure and do not require any hardware on the part of the customer. The
virtual disks and images for Azure virtual machines are stored using Microsoft
Azure blob storage, whereas virtual machines run in Hyper-V on Azure servers.

There are three key components to be aware of with Microsoft Azure virtual
machines: instances, images, and disks. Azure virtual machine instances define
and run the virtual machine. Configuration details, such as the amount of memory
and number of CPU cores, are defined as part of the virtual machine instance.

When creating new virtual machines, images in Microsoft Azure virtual machines
provide the template for the virtual disk. For instance, an image can include
Microsoft Windows Server 2012 R2 and Microsoft SQL Server 2014. When a new
virtual machine is created using an image, the new virtual machine will copy this
image and configure it for the virtual machine.

Microsoft Azure includes a number of images that are ready to use. The images
include various versions of Windows Server, various Microsoft server products
(such as SQL, Exchange, and SharePoint), and a number of preconfigured images
using non-Microsoft operating systems (such as Linux). In addition, you can create
your own images in Hyper-V and upload them to Microsoft Azure.

To use your own virtual disk as an image, you must run sysprep for
Windows-based machines or run waagent –deprovision for Linux-
based machines to prepare it as an image. For more information on
preparing image templates for Azure virtual machines, refer to http://
blogs.technet.com/b/keithmayer/archive/2013/01/17/
step-by-step-templating-vms-in-the-cloud-with-windows-
azure-and-powershell-31-days-of-servers-in-the-cloud-
part-17-of-31.aspx.

Lastly, Microsoft Azure virtual machines use virtual disks (.vhd files) stored in
Azure blob storage. When creating a new Azure virtual machine from an image,
these disks are generated automatically in the process. In addition, if you are
migrating a virtual machine to Azure, you can upload the virtual disk to Azure
blob storage and use it while creating a new virtual machine.

In this chapter, we will explore how to create and manage virtual machines in
Microsoft Azure. Note that we will cover how to connect to Azure virtual machines
via the Remote Desktop Protocol (RDP) in Chapter 8, Managing Azure Cloud Services
with PowerShell.

Chapter 3

[39]

For more information about virtual machines, Hyper-V, and Microsoft Azure virtual
machines, refer to the following resources:

•	 Hyper-V overview (http://technet.microsoft.com/library/hh831531.
aspx)

•	 Hyper-V (http://en.wikipedia.org/wiki/Hyper-V)
•	 Virtual machine (http://en.wikipedia.org/wiki/Virtual_machine)
•	 Microsoft Azure virtual machines (http://azure.microsoft.com/en-us/

services/virtual-machines/)

Creating a Microsoft Azure virtual
machine
Creating new Microsoft Azure virtual machines is a relatively easy process. We will
first select a virtual machine image to use and then create the virtual machine.

Selecting a virtual machine image
As creating new virtual machine images or templates is outside the scope of this
book, we are going to work with the existing images provided by Microsoft Azure to
create a virtual machine. To retrieve a list of available virtual machine images,
we will use the following steps:

1.	 Open Microsoft Azure PowerShell from the Start menu and connect it to an
Azure subscription.

We must first be connected to Azure in order to create and
manage virtual machines. If not connected to Azure, refer to the
Connecting to a Microsoft Azure subscription section in Chapter 1,
Getting Started with Azure and PowerShell.

2.	 Use the Get-AzureVMImage cmdlet to list the available images. Note that we
are using the Where-Object cmdlet to limit the results in order to display
only Windows Server 2012 R2 datacenter images, and we are using the
Format-List cmdlet to display only the name of the image (ImageName) and
its description (Label). There are hundreds of images available in Microsoft
Azure; limiting the results helps us to narrow down what we are looking for:
PS C:\> Get-AzureVMImage | Where-Object { $_.Label -Match
"Windows Server 2012 R2 Datacenter" } | Format-List -Property
ImageName,Label

Managing Azure Virtual Machines with PowerShell

[40]

There are a variety of ways in which we can filter the available
images to find what we are looking for. For instance, using Get-
AzureVMImage | Select-Object Label,OS,PublisherName
will list all the images with their title, operating system, and the
organization that published the image to Microsoft Azure.

3.	 Make a note of ImageName for the virtual machine image that we will
use when creating a new virtual machine in the next section, Creating
a virtual machine:

For more information about the cmdlets used in this example, use the Get-Help
cmdlet in PowerShell, or refer to the following resources:

•	 The Get-AzureVMImage cmdlet (http://msdn.microsoft.com/en-us/
library/azure/dn495275.aspx)

•	 The Where-Object cmdlet (http://technet.microsoft.com/en-us/
library/hh849715.aspx)

•	 The Format-List cmdlet (http://technet.microsoft.com/en-us/
library/hh849957.aspx)

Chapter 3

[41]

Creating a virtual machine
Having chosen an ImageName in the Selecting a virtual machine image section, we can
now create a new Microsoft Azure virtual machine instance.

When creating an Azure virtual machine, we will need to select
a size. The size of an Azure virtual machine dictates the amount
of memory provided and the number of CPU cores. The larger
the size, the more expensive the virtual machine will be to run.
Refer to http://msdn.microsoft.com/library/azure/
dn197896.aspx for the list of available sizes for Microsoft Azure
virtual machines. In this example, we will use Small, which
provides 1.75 GB of memory and 1 CPU core.

We will use the following steps to create a new Microsoft Azure virtual
machine instance:

1.	 Open Microsoft Azure PowerShell from the Start menu and connect it
to an Azure subscription.

We must first be connected to Azure in order to create and
manage virtual machines. If not connected to Azure, refer to the
Connecting to a Microsoft Azure subscription section in Chapter 1,
Getting Started with Azure and PowerShell.

2.	 Use the New-AzureQuickVM cmdlet (PS C:\> New-AzureQuickVM –
Windows –ServiceName "PSAutomation2012R2" –Name "PSAuto2012R2"
–Location "West US" –AdminUsername "PSAutomation" –
Password "Pa$$w0rd" –InstanceSize "Small" –ImageName
"a699494373c04fc0bc8f2bb1389d6106__Windows-Server-2012-R2-
201412.01-en.us-127GB.vhd") to create a new virtual machine instance
with the ImageName chosen in the Selecting a virtual machine image section.
Note that we set the initial administrator username and password for the
virtual machine:

Managing Azure Virtual Machines with PowerShell

[42]

In this example, we will use West US as the data center location
for the new virtual machine. To retrieve a full list of available
locations to choose from, use the Get-AzureLocation cmdlet.
For example, Get-AzureLocation | Select-Object
Name will list only the names of the locations.

When creating the new Azure virtual machine, an Azure cloud service is also
automatically provisioned for the virtual machine. This is used to connect to the
virtual machine, which we will cover in Chapter 8, Managing Azure Cloud Services
with PowerShell.

For more information about the cmdlets used in this section, use the Get-Help
cmdlet in PowerShell, or refer to the following resources:

•	 The New-AzureQuickVM cmdlet (http://msdn.microsoft.com/en-us/
library/azure/dn495183.aspx)

•	 The Get-AzureLocation cmdlet (http://msdn.microsoft.com/en-us/
library/azure/dn495177.aspx)

•	 The Select-Object cmdlet (http://technet.microsoft.com/en-us/
library/hh849895.aspx)

Chapter 3

[43]

Managing Microsoft Azure virtual
machines
Once Microsoft Azure virtual machines have been created, there are a number
of ways in which we can manage them with PowerShell. This includes starting,
stopping, and removing virtual machines. In addition, we will create a new virtual
disk and attach it to a virtual machine instance.

Listing the instances of Microsoft Azure
virtual machines
The first action we will take is to get a list of the virtual machine instances currently
in our Microsoft Azure subscription. We will see the name of the virtual machine, the
name of the cloud service associated with the virtual machine, and the provisioning
status of the instance. Secondly, we will check the power state of the virtual
machines. The power state indicates whether the virtual machine instance is running
or turned off. To complete these actions, we will use the following steps:

1.	 Open Microsoft Azure PowerShell from the Start menu and connect it to an
Azure subscription.

We must first be connected to Azure in order to manage virtual
machines. If not connected to Azure, refer to the Connecting to a
Microsoft Azure subscription section in Chapter 1, Getting Started with
Azure and PowerShell.

2.	 Use the Get-AzureVM cmdlet (PS C:\> Get-AzureVM) without any
parameters to list the virtual machine instances. Note that a ReadyRole status
means that the virtual machine has been provisioned and is ready for use:

Managing Azure Virtual Machines with PowerShell

[44]

3.	 Use the Get-AzureVM and Select-Object cmdlets (PS C:\> Get-AzureVM
| Select-Object Name,PowerState) to retrieve the list of virtual machine
instances and display the power states of the virtual machines:

4.	 Assign a virtual machine to a PowerShell variable for use in the Managing
the state of Microsoft Azure virtual machine instances section:
PS C:\> $vm = Get-AzureVM –Name "PSAuto2012R2" –ServiceName
"PSAutomation2012R2"

For more information about the cmdlets used in this section, use the Get-Help
cmdlet in PowerShell, or refer to the following resources:

•	 The Get-AzureVM cmdlet (http://msdn.microsoft.com/en-us/library/
azure/dn495236.aspx)

•	 The Select-Object cmdlet (http://technet.microsoft.com/en-us/
library/hh849895.aspx)

Managing the state of Microsoft Azure virtual
machine instances
With instances of Microsoft Azure virtual machines, we can start, stop, and restart
them. Starting an Azure virtual machine essentially turns on the virtual machine,
while stopping it essentially turns off the virtual machine. Also, restarting a virtual
machine essentially reboots a virtual machine. Unlike virtual machines in your own
instance of Hyper-V, Microsoft Azure virtual machines cannot be paused.

Chapter 3

[45]

Before you continue, be sure that you have a virtual machine assigned
to a PowerShell variable, as described earlier in the Listing the
instances of Microsoft Azure virtual machines section.

To restart, stop, and start a virtual machine in Microsoft Azure, we will use the
following steps:

1.	 Use the Restart-AzureVM cmdlet to restart the virtual machine instance:
PS C:\> Restart-AzureVM -Name $vm.Name -ServiceName
$vm.ServiceName

2.	 Use the Stop-AzureVM cmdlet to stop the virtual machine instance. Note
that, when you stop a virtual machine instance, its deployment network
configuration (including its IP addresses) will be discarded. To keep the
current IP addresses, the -StayProvisioned parameter can be used:
PS C:\> Stop-AzureVM -Name $vm.Name -ServiceName
$vm.ServiceName

3.	 Use the Start-AzureVM cmdlet to start the virtual machine instance:
PS C:\> Start-AzureVM -Name $vm.Name -ServiceName
$vm.ServiceName

For more information about the cmdlets used in this section, use the Get-Help
cmdlet in PowerShell, or refer to the following resources:

•	 The Restart-AzureVM cmdlet (http://msdn.microsoft.com/en-us/
library/azure/dn495199.aspx)

•	 The Stop-AzureVM cmdlet (http://msdn.microsoft.com/en-us/library/
azure/dn495269.aspx)

•	 The Start-AzureVM cmdlet (http://msdn.microsoft.com/en-us/
library/azure/dn495226.aspx)

Creating a snapshot of a Microsoft Azure
virtual machine instance
Microsoft Azure virtual machines do not offer a simple snapshot feature like
having your own instance of Hyper-V server does. However, we can create a copy
of the .vhd virtual disk file used by the virtual machine instance in Azure blob
storage. This essentially allows you to create a backup or snapshot of the virtual
machine instance.

Managing Azure Virtual Machines with PowerShell

[46]

Before you continue, be sure that you have a virtual machine assigned to
a PowerShell variable, as described in the Listing the instances of Microsoft
Azure virtual machines section.

To create a snapshot or backup of a Microsoft Azure virtual machine instance,
we will use the following steps:

1.	 Display the URL of the blob for the .vhd virtual disk file of the virtual
machine instance (PS C:\> $vm.VM.OSVirtualHardDisk):

2.	 Use the Get-AzureStorageBlob cmdlet to retrieve the blob record for
the .vhd virtual disk file and assign it to a variable. The names of the
container and blob are present in the MediaLink property (as shown
in the previous step):
PS C:\> $blob = Get-AzureStorageBlob –Container "vhds" –Blob
"PSAutomation2012R2-PSAuto2012R2-2015-1-17-17-15-22-804-0.vhd"

3.	 Open the blob so that it can be read:
PS C:\> $blob.ICloudBlob.OpenRead()

4.	 Use the Start-AzureStorageBlobCopy cmdlet (PS C:\> Start-
AzureStorageBlobCopy -ICloudBlob $blob.ICloudBlob
-DestContainer "vhds" -DestBlob "PSAutomation2012R2-PSAut
o2012R2-2015-1-17-17-15-22-804-0.vhd_Snapshot-2015-01-18"
-DestContext $blob.Context) to copy the blob of the .vhd virtual disk file.
Specify a name that makes sense for a snapshot, such as appending the word
"snapshot" and the date to the original filename:

Chapter 3

[47]

Another method to back up (or create a snapshot of) a virtual
disk is to use Azure blob storage snapshots. After getting the
blob record in step 2, the command $blob.ICloudBlob.
CreateSnapshot() will create a snapshot of the .vhd file
using blob storage snapshots:

For more information about the cmdlets used in this section, use the Get-Help
cmdlet in PowerShell, or refer to the following resources:

•	 The Start-AzureStorageBlobCopy cmdlet (http://msdn.microsoft.com/
en-us/library/dn806394.aspx)

•	 The Get-AzureStorageBlob cmdlet (http://msdn.microsoft.com/en-us/
library/dn806392.aspx)

Creating a new virtual disk and assigning it to
a Microsoft Azure virtual machine instance
Virtual disks act like hard drives to virtual machines. In this section, we will create
a new virtual disk and assign it to an Azure virtual machine instance. Afterwards,
we will remove the data disk.

Before you continue, be sure that you have a virtual machine
assigned to a PowerShell variable, as described in the Listing the
instances of Microsoft Azure virtual machines section.

Managing Azure Virtual Machines with PowerShell

[48]

To create, assign, and remove a virtual data disk, we will use the following steps:

1.	 Use the Add-AzureDataDisk and Update-AzureVM cmdlets to create a new
virtual disk and attach it to the virtual machine instance:
PS C:\> Add-AzureDataDisk -CreateNew -DiskSizeInGB 10 -
DiskLabel "DataDisk" -VM $vm -LUN 0 | Update-AzureVM

2.	 Use the Get-AzureDataDisk cmdlet (PS C:\> Get-AzureDataDisk -VM
$vm) to view the virtual data disks associated with the Azure virtual
machine instance:

3.	 Use the Remove-AzureDataDisk and Update-AzureVM cmdlets to remove
the virtual data disk from the Azure virtual machine instance and delete the
.vhd file for the virtual disk. If you want to keep the .vhd file for the virtual
disk, exclude the -DeleteVHD parameter:
PS C:\> Remove-AzureDataDisk –LUN 0 –VM $vm –DeleteVHD |
Update-AzureVM

For more information about the cmdlets used in this section, use the Get-Help
cmdlet in PowerShell, or refer to the following resources:

•	 The Add-AzureDataDisk cmdlet (http://msdn.microsoft.com/en-us/
library/azure/dn495298.aspx)

•	 The Remove-AzureDataDisk cmdlet (http://msdn.microsoft.com/en-us/
library/azure/dn495243.aspx)

Chapter 3

[49]

•	 The Update-AzureVM cmdlet (http://msdn.microsoft.com/en-us/
library/azure/dn495230.aspx)

•	 The Get-AzureDataDisk cmdlet (http://msdn.microsoft.com/en-us/
library/azure/dn495197.aspx)

Removing a Microsoft Azure virtual machine
instance
Once a Microsoft Azure virtual machine is no longer needed, it's good practice to
remove the virtual machine. This prevents any potential future subscription fees
and can free up space in an Azure storage account.

Before you continue, be sure that you have a virtual machine
assigned to a PowerShell variable, as described in the Listing the
instances of Microsoft Azure virtual machines section.

To remove a Microsoft Azure virtual machine instance, we will use the following steps:

1.	 Use the Remove-AzureVM cmdlet to delete the virtual machine instance. Use
the -DeleteVHD parameter if you would also like to delete the .vhd virtual
disk file associated with the virtual machine. If you would like to keep the
virtual disk file, exclude the -DeleteVHD parameter. In the event that you
need to use this virtual machine again, this allows you to create a new virtual
machine using this virtual disk:
PS C:\> Remove-AzureVM –Name $vm.Name –ServiceName
$vm.ServiceName

Managing Azure Virtual Machines with PowerShell

[50]

2.	 Use the Get-AzureVM cmdlet (PS C:\> Get-AzureVM) to verify that the
virtual machine instance no longer exists:

For more information about the cmdlets used in this section, use the Get-Help
cmdlet in PowerShell, or refer to the following resources:

•	 The Remove-AzureVM cmdlet (http://msdn.microsoft.com/en-us/
library/azure/dn495199.aspx)

•	 The Get-AzureVM cmdlet (http://msdn.microsoft.com/en-us/library/
azure/dn495236.aspx)

Downloading the example code
You can download the example code files for all Packt books you
have purchased from your account at http://www.packtpub.com.
If you purchased this book elsewhere, you can visit http://www.
packtpub.com/support and register to have the files e-mailed
directly to you.

Summary
In this chapter, you learned about Microsoft Azure virtual machines. This includes
creating, managing, and removing virtual machine instances. In addition, you learned
about creating and removing virtual disks for virtual machine instances. Connecting to
Microsoft Azure virtual machines with Microsoft Azure cloud services will be covered
in Chapter 8, Managing Azure Cloud Services with PowerShell. In the next chapter, we will
explore how to manage Azure SQL databases.

Chapter 4

[51]

Managing Azure SQL
Databases with PowerShell

In Chapter 2, Managing Azure Storage with PowerShell, we explored Azure Table
storage that allows us to store non-relational data entities. While table storage is
useful to store records with no related data, many enterprise applications require
much more complex data storage. SQL databases, such as Microsoft SQL Server and
Microsoft Azure SQL Database, provide complex data storage structures required by
these applications.

Microsoft Azure SQL Databases provide most of the functionality of an instance of
Microsoft SQL Server using the same syntax (T-SQL) and methodologies. While there
are a few key limitations (refer to the references at the end of this section), Azure
SQL Databases provide simplified management of SQL databases. In addition, Azure
SQL Databases allow for geo-replication and other redundancy or high-availability
features that allow organizations to scale databases globally without the need to have
their own data centers globally.

In this chapter, we will explore how to manage Microsoft Azure SQL Databases
using PowerShell. This includes managing SQL servers, SQL databases, and firewall
rules. In addition, we will connect to an Azure SQL Database to perform queries
against it.

Microsoft Azure virtual machines provide another way to host SQL
databases in Microsoft Azure. This method might be the best solution
depending on the requirements of an application. However, in this
chapter, we will cover Microsoft Azure SQL databases.

Managing Azure SQL Databases with PowerShell

[52]

For more information about SQL databases and Azure SQL databases, refer to the
following resources:

•	 Comparison of SQL Server with Azure SQL Database (http://social.
technet.microsoft.com/wiki/contents/articles/996.comparison-of-
sql-server-with-azure-sql-database.aspx)

•	 Azure SQL Database Transact-SQL reference (http://msdn.microsoft.
com/en-us/library/ee336281.aspx)

•	 Microsoft Azure SQL Database (http://azure.microsoft.com/en-us/
services/sql-database/)

Creating and connecting to Microsoft
Azure SQL Database Servers
Similar to Microsoft SQL Server Databases, SQL Databases in Microsoft Azure
are hosted by Microsoft Azure SQL Database Servers. Before creating any SQL
Databases, we must first have a database server and access to it. In this section,
we will create a new Microsoft Azure SQL Database Server and a firewall rule that
allows us to connect to it. In addition, we will create a connection context for the
database server, which allows us to create and manage databases in the sections
to follow.

Provisioning a new Microsoft Azure SQL
Database Server
To create a new Microsoft Azure SQL Database Server instance, we will use the
following steps:

1.	 Open Microsoft Azure PowerShell from the Start menu and connect it to an
Azure subscription.

We must first be connected to Azure in order to work with
Microsoft Azure SQL. If not connected to Azure, refer to the
Connecting to a Microsoft Azure subscription section in Chapter 1,
Getting Started with Azure and PowerShell.

Chapter 4

[53]

2.	 Use the New-AzureSqlDatabaseServer cmdlet (PS C:\> New-
AzureSqlDatabaseServer –Location "West US" –AdministratorLogin
"PSAutomation" –AdministratorLoginPassword "P@$$w0rd") to create
the new Azure SQL Database Server. The administrator username and
password provided in the command will be used to create a new SQL
account that has administrator privileges (note that sa cannot be used):

In this example, we will use West US as the data center location
for the new virtual machine. To retrieve a full list of available
locations to choose from, use the Get-AzureLocation cmdlet.
For example, Get-AzureLocation | Select-Object Name
will list only the names of the locations.

3.	 Make a note of the ServerName value returned. We will use this in the
sections to follow.

For more information about the cmdlets used in this section, use the Get-Help
cmdlet in PowerShell, or refer to the following resources:

•	 The New-AzureSqlDatabaseServer cmdlet (http://msdn.microsoft.com/
en-us/library/dn546730.aspx)

•	 The Get-AzureLocation cmdlet (http://msdn.microsoft.com/en-us/
library/azure/dn495177.aspx)

•	 The Select-Object cmdlet (http://technet.microsoft.com/en-us/
library/hh849895.aspx)

Managing Azure SQL Databases with PowerShell

[54]

Configuring a firewall rule for a Microsoft
Azure SQL Database server
By default, only other Microsoft Azure services are allowed through the firewall for
a Microsoft Azure SQL Database instance. To connect to a SQL database server from
outside Azure, such as from your local computer, a firewall rule needs to be added
for your public IP address. We will use the following steps to create a new firewall
rule for the database server that we created in the Provisioning a new Microsoft Azure
SQL Database Server section:

1.	 Open Microsoft Azure PowerShell from the Start menu and connect it to
an Azure subscription.

We must first be connected to Azure in order to work with Microsoft
Azure SQL. If not connected to Azure, refer to the Connecting to a
Microsoft Azure subscription section in Chapter 1, Getting Started with
Azure and PowerShell.

2.	 Obtain the public IP address you would like to add to the firewall. If you do
not know what your public IP address is, search on Google.com or Bing.com
for your IP address. Both search engines will return your current public IP
address at the beginning of the search results.

We could add all possible IP addresses to the firewall rule. However,
doing so would essentially leave your database server without the
protection the firewall offers.

3.	 Use the New-AzureSqlDatabaseServerFirewallRule cmdlet to create a
new firewall rule on the SQL database server for the public IP address from
the previous step. For a single IP address, the IP address acts as both the
starting and ending IP address for the firewall rule:
PS C:\> New-AzureSqlDatabaseServerFirewallRule -RuleName
"MyIPAddress" -ServerName "jztfvtq0e1" -StartIpAddress
123.123.123.123 -EndIpAddress 123.123.123.123

If you need to retrieve the name of the Azure SQL Database Server,
use the Get-AzureSqlDatabase cmdlet to list the names of the
servers in the current Azure subscription.

Chapter 4

[55]

For more information about the cmdlets used in this section, use the Get-Help
cmdlet in PowerShell, or refer to the following resources:

•	 The Get-AzureSqlDatabase cmdlet (http://msdn.microsoft.com/en-us/
library/dn546735.aspx)

•	 The New-AzureSqlDatabaseFirewallRule cmdlet (http://msdn.
microsoft.com/en-us/library/dn546724.aspx)

Connecting to a Microsoft Azure SQL
Database Server with PowerShell
With a new Microsoft Azure SQL Database Server created and a firewall rule added,
we can now connect to the database server. We will use the following steps to
connect to the database server:

1.	 Open Microsoft Azure PowerShell from the Start menu and connect it to an
Azure subscription.

We must first be connected to Azure in order to work with Microsoft
Azure SQL. If not connected to Azure, refer to the Connecting to a
Microsoft Azure subscription section in Chapter 1, Getting Started with
Azure and PowerShell.

2.	 Assign the SQL database administrator credentials (the username and
password used in the Provisioning a new Microsoft Azure SQL Database Server
section) to a PowerShell variable using the Get-Credential cmdlet (PS C:\>
$credentials = Get-Credential):

Managing Azure SQL Databases with PowerShell

[56]

3.	 Use the New-AzureSqlDatabaseServerContext cmdlet to create a new
connection to the SQL database server and assign the connection context
to a PowerShell variable:
PS C:\> $context = New-AzureSqlDatabaseServerContext -
ServerName "jztfvtq0e1" -Credential $credentials

If you need to retrieve the name of the Azure SQL Database
Server, use the Get-AzureSqlDatabase cmdlet to list the names
of the servers in the current Azure subscription.

For more information about the cmdlets used in this section, use the Get-Help
cmdlet in PowerShell, or refer to the following resources:

•	 The New-AzureSqlDatabaseServerContext cmdlet (http://msdn.
microsoft.com/en-us/library/dn546736.aspx)

•	 The Get-AzureSqlDatabase cmdlet (http://msdn.microsoft.com/en-us/
library/dn546735.aspx)

•	 The Get-Credential cmdlet (http://technet.microsoft.com/en-us/
library/hh849815.aspx)

Creating and managing Microsoft Azure
SQL Databases
Microsoft Azure SQL Databases provide a wide variety of capabilities to store and
manage relational data. While developing SQL databases (including tables and
stored procedures) is outside the scope of this book, we will cover the basics of
creating and interacting with Microsoft Azure SQL Databases.

Creating a new Microsoft Azure SQL Database
A SQL Database is the hierarchical container in which tables, stored procedures,
functions, and other SQL objects are stored. We will use the following steps to create
a new Microsoft Azure SQL Database:

1.	 Create a new connection context, as described in the Connecting to a Microsoft
Azure SQL Database Server with PowerShell section.

2.	 Use the New-AzureSqlDatabase cmdlet to create a new SQL Database:
PS C:\> New-AzureSqlDatabase –ConnectionContext $context –
DatabaseName "MyDatabase"

Chapter 4

[57]

3.	 Use the Get-AzureSqlDatabase cmdlet (PS C:\> Get-AzureSqlDatabase
–ConnectionContext $context) to verify the results of creating the
SQL Database:

For more information about the cmdlets used in this section, use the Get-Help
cmdlet in PowerShell, or refer to the following resources:

•	 The Get-AzureSqlDatabase cmdlet (http://msdn.microsoft.com/en-us/
library/dn546735.aspx)

•	 The New-AzureSqlDatabase cmdlet (http://msdn.microsoft.com/en-us/
library/dn546722.aspx)

Executing queries with a Microsoft Azure SQL
Database
Microsoft Azure PowerShell does not include cmdlets to interact with Microsoft
Azure SQL Database tables directly. However, as PowerShell is built on the .NET
Framework, we can use .NET code to execute queries in PowerShell.

Before completing this section, we should have the Microsoft Azure
SQL Database we created in the Creating a new Microsoft Azure SQL
Database section.

Managing Azure SQL Databases with PowerShell

[58]

We will use the following steps to create a simple SQL database table, insert a record,
and query the record:

1.	 Open Microsoft Azure PowerShell or Windows PowerShell from the
Start menu.

In this example, as we are only using .NET methods to
interact with the Microsoft Azure SQL Database, Microsoft
Azure PowerShell can be used but is not required.

2.	 Assign the connection string for the Microsoft Azure SQL Database to
a PowerShell variable. The connection string for .NET to connect to a
Microsoft Azure SQL Database is formatted as Server=tcp:<Server
Name>.database.windows.net,1433;Database=<Database Name>;User
ID=<User Name>@<Server Name>;Password=<Password>;Trusted_Conn
ection=False;Encrypt=True;Connection Timeout=30;. It includes the
server name (twice), the database name, the username, and the password:
PS C:\> $connectionString =
"Server=tcp:jztfvtq0e1.database.windows.net,1433;Database=MyDa
tabase;User ID=PSAutomation@jztfvtq0e1;
Password=P@$$w0rd;Trusted_Connection=False;Encrypt=True;
Connection Timeout=30;"

3.	 Use the New-Object cmdlet to create a new SqlConnection object and open
this SQL connection:
PS C:\> $connection = New-Object
System.Data.SqlClient.SqlConnection -ArgumentList
$connectionString

PS C:\> $connection.Open()

4.	 Use the New-Object cmdlet to create a new SqlCommand object, and execute
a SQL query to create a new SQL table:
PS C:\> $command = New-Object System.Data.SqlClient.SqlCommand

PS C:\> $command.CommandText = "CREATE TABLE [dbo].[MyData]
([RecordID] INT NOT NULL PRIMARY KEY IDENTITY(1,1), [MyValue]
NVARCHAR(MAX) NOT NULL)"

PS C:\> $command.Connection = $connection

PS C:\> $command.ExecuteNonQuery()

Chapter 4

[59]

5.	 Use the New-Object cmdlet to create a new SqlCommand object and execute a
SQL query to insert a new row in the table, as created in the previous step:
PS C:\> $command = New-Object System.Data.SqlClient.SqlCommand

PS C:\> $command.CommandText = "INSERT [dbo].[MyData]
([MyValue]) VALUES ('Hello')"

PS C:\> $command.Connection = $connection

PS C:\> $command.ExecuteNonQuery()

6.	 Use the New-Object cmdlet to create new DataTable and SqlDataAdapter
objects and execute a SQL query to select the row created in the previous step:
PS C:\> $result = New-Object System.Data.DataTable

PS C:\> $adapter = New-Object
System.Data.SqlClient.SqlDataAdapter -ArgumentList "SELECT *
FROM [dbo].[MyData]",$connection

PS C:\> $adapter.Fill($result)

7.	 Output the results of the SQL query from the previous step by entering the
$result variable (PS C:\> $result):

8.	 Close the database connection:
PS C:\> $connection.Close()

Managing Azure SQL Databases with PowerShell

[60]

For more information about the cmdlet and .NET classes used in this section,
refer to the following resources:

•	 The New-Object cmdlet (http://technet.microsoft.com/en-us/
library/hh849885.aspx)

•	 The System.Data.SqlClient.SqlConnection class (http://
msdn.microsoft.com/en-us/library/system.data.sqlclient.
sqlconnection(v=vs.110).aspx)

•	 The System.Data.SqlClient.SqlCommand class (http://msdn.microsoft.
com/en-us/library/system.data.sqlclient.sqlcommand(v=vs.110).
aspx)

•	 The System.Data.SqlClient.SqlDataAdapter class (http://
msdn.microsoft.com/en-us/library/system.data.sqlclient.
sqldataadapter(v=vs.110).aspx)

•	 The System.Data.DataTable class (http://msdn.microsoft.com/en-us/
library/system.data.datatable(v=vs.110).aspx)

Exporting and importing a Microsoft Azure
SQL Database
With applications that use SQL databases, there are a number of common scenarios
in which a SQL Database needs to be copied or backed up. A few examples include:

•	 Scheduling backups or snapshots of a database
•	 Copying a database from a staging to a production environment
•	 Saving the state of a database prior to making structural changes
•	 Making a copy of a production database to troubleshoot or investigate

in a non-production environment

Microsoft Azure Blob storage is used when exporting and importing Microsoft
Azure SQL Databases. We will use the following steps to export a database and
import it into a new database:

1.	 Create a new connection context, as described in the Connecting to a Microsoft
Azure SQL Database Server with PowerShell section.

Before we continue, we should have a database available; we
created one in the Creating and managing Microsoft Azure SQL
Databases section.

Chapter 4

[61]

2.	 Use the Get-AzureStorageKey and New-AzureStorageContext cmdlets
to create a new Microsoft Azure storage account context and assign it to a
variable. Refer to Chapter 2, Managing Azure Storage with PowerShell, for more
information about creating and connecting to an Azure storage account:
PS C:\> $accountKey = Get-AzureStorageKey –StorageAccountName
psautomation

PS C:\> $storageContext = New-AzureStorageContext psautomation
$accountKey.Primary

3.	 Use the New-AzureStorageContainer cmdlet to create a new Azure Blob
storage container for the SQL Database export:
PS C:\> $container = New-AzureStorageContainer –Name
sqlexports –Context $storageContext –Permission Off

4.	 Export the SQL Database using the Start-AzureSqlDatabaseExport cmdlet
and assign the following request to a variable:
PS C:\> $request = Start-AzureSqlDatabaseExport –
SqlConnectionContext $context –StorageContainer $container –
DatabaseName "MyDatabase" –BlobName
"MyDatabaseExport_2015_01_20"

5.	 Use the Get-AzureSqlDatabaseImportExportStatus cmdlet to check the
status of the export. Once the export is complete, continue to the next step:
PS C:\> Get-AzureSqlDatabaseImportExportStatus –Request
$request

6.	 Use the Start-AzureSqlDatabaseImport cmdlet to import the database into
a new SQL Database. By providing a database name that does not already
exist, a new one will be created automatically:
PS C:\> Start-AzureSqlDatabaseImport –SqlConnectionContext
$context –StorageContainer $container –DatabaseName
"MyDatabaseImported" –BlobName "MyDatabaseExport_2015_01_20"

For more information about importing and exporting Microsoft Azure SQL
Databases and the cmdlets used in this section, refer to the following resources:

•	 Operations for Azure SQL Databases (http://msdn.microsoft.com/en-
us/library/dn505719.aspx)

•	 The Get-AzureStorageKey cmdlet (http://msdn.microsoft.com/en-us/
library/azure/dn495235.aspx)

•	 The New-AzureStorageContext cmdlet (http://msdn.microsoft.com/en-
us/library/dn806380.aspx)

Managing Azure SQL Databases with PowerShell

[62]

•	 The New-AzureStorageContainer cmdlet (http://msdn.microsoft.com/
en-us/library/dn806381.aspx)

•	 The Start-AzureSqlDatabaseExport cmdlet (http://msdn.microsoft.
com/en-us/library/dn546720.aspx)

•	 The Get-AzureSqlDatabaseImportExportStatus cmdlet (http://msdn.
microsoft.com/en-us/library/dn546734.aspx)

•	 The Start-AzureSqlDatabaseImport cmdlet (http://msdn.microsoft.
com/en-us/library/dn546725.aspx)

Removing a Microsoft Azure SQL Database
As with most Microsoft Azure services, the last part of the life cycle of a Microsoft
Azure SQL Database is to remove it. This prevents any future charges for the
database and removes it completely from Microsoft Azure. To remove the SQL
Database we created in the Creating a new Microsoft Azure SQL Database section,
we will use the following steps:

1.	 Create a new connection context, as described in the Connecting to a Microsoft
Azure SQL Database Server with PowerShell section.

2.	 Use the Remove-AzureSqlDatabase cmdlet to delete the database from the
Microsoft Azure SQL Database Server instance:
PS C:\> Remove-AzureSqlDatabase –ServerName "jztfvtq0e1" –
DatabaseName "MyDatabase"

For more information about the Remove-AzureSqlDatabase cmdlet, use the Get-
Help cmdlet in PowerShell, or refer to http://msdn.microsoft.com/en-us/
library/dn546741.aspx.

Summary
Microsoft Azure SQL Databases are a powerful and effective way to store and
manage large amounts of relational data in the cloud. In this chapter, you learned
how to create and manage Microsoft Azure SQL Database Servers and Microsoft
Azure SQL Databases. In addition, you learned how to connect to and interact
with SQL data in PowerShell.

In the next chapter, you will learn how to create, deploy, and manage Microsoft
Azure websites using PowerShell.

Chapter 5

[63]

Deploying and Managing
Azure Websites
with PowerShell

The Internet live stats site (http://www.internetlivestats.com/) reports that,
in September 2014, the Internet reached a milestone of over 1 billion active websites.
One or more web servers host each of these websites. While some individuals and
organizations host websites on their own servers, many choose to rely on hosting
services provided by one of thousands of web hosting providers.

In addition to the network of global data centers, Microsoft Azure offers web hosting
services that include many features that are not found elsewhere. Some features of
Azure web hosting include:

•	 Support for common languages and frameworks, including .NET, Java, PHP,
and Python

•	 Database hosting, including Microsoft SQL, MySQL, and MongoDB
•	 Support for popular web applications, including WordPress, Drupal,

and DotNetNuke
•	 One-click deployment from Visual Studio
•	 Continuous deployment from Git and Team Foundation Server
•	 Automatic scaling based on load or schedules

In this chapter, we will cover the basics of creating and managing Microsoft Azure
websites with PowerShell. For more information about Microsoft Azure web hosting,
refer to http://azure.microsoft.com/en-us/services/websites/.

Deploying and Managing Azure Websites with PowerShell

[64]

Creating and configuring a new Microsoft
Azure website
Microsoft Azure websites offer a variety of configuration options, such as the
version of .NET, the version of PHP, application settings, and logging. To create and
configure a new website, we will use the following steps:

1.	 Open Microsoft Azure PowerShell from the Start menu and connect it to an
Azure subscription.

We must first be connected to Azure in order to work with
Microsoft Azure websites. If not connected to Azure, refer to the
Connecting to a Microsoft Azure subscription section in Chapter 1,
Getting Started with Azure and PowerShell.

2.	 Use the New-AzureWebsite cmdlet to create a new Microsoft Azure website.
The name provided will be used to create the initial domain name and must
be unique. For instance, psautomation will result in the initial domain name
of psautomation.azurewebsites.net:
PS C:\> New-AzureWebsite –Name psautomation –Location "West
US"

In this example, we will use West US as the data center location
for the new website. To retrieve a full list of available locations to
choose from, use the Get-AzureLocation cmdlet. For example,
Get-AzureLocation | Select-Object Name will list only
the names of the locations.

3.	 Use the Get-AzureWebsite cmdlet (PS C:\> Get-AzureWebsite –Name
psautomation | Select-Object HostNames) to retrieve the hostname
or domain name of the newly created website:

Chapter 5

[65]

4.	 Navigate to the newly created website in Internet Explorer.

You can navigate to the website manually in the Internet
Explorer or use the Show-AzureWebsite cmdlet to do it
automatically, for example, Show-AzureWebsite –Name
psautomation.

Deploying and Managing Azure Websites with PowerShell

[66]

5.	 Use the Set-AzureWebsite cmdlet to enable HTTP logging and configure
app settings to store Azure storage account access information:
PS C:\> $appSettings = New-Object Hashtable

PS C:\> $appSettings["StorageKey"] = "<Storage Account Key>"

PS C:\> $appSettings["StorageName"] = "psautomation"

PS C:\> Set-AzureWebsite –Name psautomation –
HttpLoggingEnabled 1 –AppSettings $appSettings

For more information about Microsoft Azure websites and the cmdlets used in this
example, refer to the following resources:

•	 The Set-AzureWebsite cmdlet (https://msdn.microsoft.com/en-us/
library/azure/dn495207.aspx)

•	 The Get-AzureWebsite cmdlet (https://msdn.microsoft.com/en-us/
library/azure/dn495127.aspx)

•	 The New-AzureWebsite cmdlet (https://msdn.microsoft.com/en-us/
library/azure/dn495157.aspx)

•	 The Show-AzureWebsite cmdlet (https://msdn.microsoft.com/en-us/
library/azure/dn495153.aspx)

•	 Microsoft Azure websites and apps (http://azure.microsoft.com/en-us/
services/websites/)

Deploying Microsoft Azure website
content
Microsoft Azure offers a variety of methods to deploy web content to an Azure
website. How to use each of these methods is outside the scope of this book.
However, we will explore the methods and ways to find more information
about each method.

Deploying from a source control system
Microsoft Azure websites support automated deployments from various cloud-based
source control systems and repositories. These include Visual Studio Online, Git
(including GitHub), Mercurial, and Dropbox. For more information about using each
of these sources, refer to the following resources:

•	 Visual Studio online:
°° Continuous delivery to Azure using Visual Studio online (http://

azure.microsoft.com/en-us/documentation/articles/cloud-
services-continuous-delivery-use-vso/)

Chapter 5

[67]

°° Continuous delivery to Azure using Visual Studio online and Git
(http://azure.microsoft.com/en-us/documentation/articles/
cloud-services-continuous-delivery-use-vso-git/)

•	 Git and Mercurial:
°° Publishing to Azure websites with Git (http://azure.microsoft.

com/en-us/documentation/articles/web-sites-publish-
source-control/)

•	 Dropbox:
°° Deploy to Windows Azure websites from Dropbox (http://azure.

microsoft.com/blog/2013/03/19/new-deploy-to-windows-
azure-web-sites-from-dropbox/)

Deploying from Visual Studio or WebMatrix
Microsoft Visual Studio (the 2012 version and higher) and Microsoft WebMatrix
(version 2 and higher) support one-click deployments to Microsoft Azure websites.
For more information about deploying to Azure websites with these development
tools, refer to the following resources:

•	 Get started with Azure websites and ASP.NET for Visual Studio (http://
azure.microsoft.com/en-us/documentation/articles/web-sites-
dotnet-get-started/)

•	 Develop and deploy a website with Microsoft WebMatrix (http://azure.
microsoft.com/en-us/documentation/articles/web-sites-dotnet-
using-webmatrix/)

Other deployment methods
In addition to deploying from source control, Visual Studio, or WebMatrix, content
can be deployed with FTP and various command-line tools. For a complete list of all
the available methods, refer to How to Deploy an Azure Website (http://azure.
microsoft.com/en-us/documentation/articles/web-sites-deploy/).

Deploying and Managing Azure Websites with PowerShell

[68]

Managing Microsoft Azure websites
Beyond creating and configuring Microsoft Azure websites, common management
tasks for Azure websites include checking the status of websites, gathering website
logs, starting and stopping websites, and removing websites. We will use the
following steps to complete these tasks, using the website we created in the Creating
and configuring a new Microsoft Azure website section:

1.	 Open Microsoft Azure PowerShell from the Start menu and connect it to an
Azure subscription.

We must first be connected to Azure in order to work with
Microsoft Azure websites. If not connected to Azure, refer to the
Connecting to a Microsoft Azure subscription section in Chapter 1,
Getting Started with Azure and PowerShell.

2.	 Use the Get-AzureWebsite cmdlet (PS C:\> Get-AzureWebsite) to list
the websites in the current Azure subscription and display the status of each:

3.	 Use the Get-AzureWebsiteLog cmdlet (PS C:\> Get-AzureWebsiteLog –
Name psautomation –Path http –Tail) to stream log entries from the
website to the PowerShell window. The log entries returned are directly
from Internet Information Services (IIS) that run the website in Azure.
This will run until you press the Ctrl and C keys at the same time to exit the
command. Note that, after pressing Ctrl + C, it might take up to a minute for
the command to exit:

Chapter 5

[69]

4.	 Use the Stop-AzureWebsite cmdlet to stop the website. This results in the
website no longer being served up by the IIS instance that runs the website
in Azure:
PS C:\> Stop-AzureWebsite psautomation

5.	 Use the Start-AzureWebsite cmdlet to start the website. Performing a stop
and start of a website is essentially the same thing as restarting IIS on a local
web server:
PS C:\> Start-AzureWebsite psautomation

6.	 Use the Remove-AzureWebsite cmdlet to remove the website from Microsoft
Azure. This will permanently remove the website and stop any recurring
subscription fees for the website:
PS C:\> Remove-AzureWebsite psautomation

For more information about the cmdlets used in this section, use the Get-Help
cmdlet in PowerShell, or refer to the following resources:

•	 The Remove-AzureWebsite cmdlet (https://msdn.microsoft.com/en-us/
library/azure/dn495151.aspx)

•	 The Start-AzureWebsite cmdlet (https://msdn.microsoft.com/en-us/
library/azure/dn495288.aspx)

•	 The Stop-AzureWebsite cmdlet (https://msdn.microsoft.com/en-us/
library/azure/dn495185.aspx)

•	 The Get-AzureWebsite cmdlet (https://msdn.microsoft.com/en-us/
library/azure/dn495127.aspx)

•	 The Get-AzureWebsiteLog cmdlet (https://msdn.microsoft.com/en-us/
library/azure/dn495187.aspx)

Deploying and Managing Azure Websites with PowerShell

[70]

Summary
In this chapter, we covered creating, configuring, and managing websites in Microsoft
Azure. In addition, you learned about the various methods available to publish content
to Microsoft Azure websites. In the next chapter, we will explore managing Microsoft
Azure virtual networks.

Chapter 6

[71]

Managing Azure Virtual
Networks with PowerShell

Microsoft Azure Virtual Network is a network overlay that allows Azure virtual
machines and services to communicate with each other while preventing services
outside the virtual network for accessing them. Virtual networks or VNets also allow
you to connect between the Azure Virtual Network and an organization's local
on-premise network.

There are three types of virtual networks that can be configured for Microsoft
Azure services:

•	 No virtual network: This is the default configuration for Microsoft Azure
services. The services are not connected to any virtual network and operate
as an isolated service. For instance, Azure virtual machines will not have any
access to any other Azure virtual machines by default.

•	 Cloud-only virtual network: This network exists only within Microsoft
Azure and allows any services within the virtual network to communicate
with each other as if they were on the same physical network.

•	 Cross-premises virtual network: This network extends an organization's
local on-premise network to an Azure Virtual Network. This allows
computers and services within the networks to communicate with each
other as if they were on the same physical network.

Cross-premises virtual networks provide three types of connectivity between
an Azure Virtual Network and an organization's network:

•	 Site-to-site VPN: This VPN creates a secure connection between an
on-premise network and a virtual network. The site-to-site VPN uses a
VPN device in the on-premise network that connects to the Azure Virtual
Network gateway in the cloud. The connection is created over the Internet.

Managing Azure Virtual Networks with PowerShell

[72]

•	 Point-to-site VPN: This VPN creates a secure connection between an
individual client computer and the virtual network. The connection is
created over the Internet.

•	 ExpressRoute: This uses a direct connection between the on-premise
network and a Microsoft Azure data center. The direct connection is
typically provided by a third-party service provider and does not use the
Internet for the connection. ExpressRoute is the most expensive option.
However, it allows you to have a more secure connection between the
on-premise network and virtual network. In addition, the bandwidth
available is much greater than using one of the VPN options. This option
is typically only used for organizations that have a large on-premise
network and a large implementation of Microsoft Azure services.

Private virtual networks in Microsoft Azure can only use valid private IPv4
addresses. The ranges of these IP addresses include: 10.0.0.0 - 10.255.255.255,
172.16.0.0 - 172.31.255.255, and 192.168.0.0 - 192.168.255.255.

In this chapter, we will explore how to create and manage cloud-only virtual
networks. In addition, we will create an Azure virtual machine and assign it to
the new virtual network. Configuring hybrid virtual networks requires advanced
networking configuration on an organization's local network, which is outside the
scope of this book.

For more information about Microsoft Azure Virtual Network, refer to the
following resources:

•	 Microsoft Azure Virtual Network (http://azure.microsoft.com/en-us/
services/virtual-network/)

•	 Microsoft Azure Virtual Network overview (https://msdn.microsoft.
com/library/azure/jj156007.aspx)

•	 Microsoft Azure About Secure Cross-Premises Connectivity (https://msdn.
microsoft.com/en-us/library/azure/dn133798.aspx)

•	 Microsoft Azure Virtual Network FAQ (https://msdn.microsoft.com/
library/azure/dn133803.aspx)

Creating and managing an Azure Virtual
Network
To create a new Azure Virtual Network, we must first create a network configuration
file. After we have created a configuration file, we can create the virtual network.
Then, we create new virtual machines in the virtual network.

Chapter 6

[73]

Creating an Azure Virtual Network
configuration file
An Azure Virtual Network file provides details about the virtual network. It is in
XML format and can include the elements shown in the following table:

Element name Required Description
DnsServer No This specifies the Domain Name Servers for

the virtual network (up to nine). If no DNS
servers are provided, the default Azure DNS
servers will be used.

LocalNetworkSite No This specifies information about local (on-
premise) network sites associated with the
virtual network (up to 10).

VPNGatewayAddress No This specifies the VPN tunnels used between
local (on-premise) network sites and the
virtual network.

AddressPrefix
(LocalNetworkSite)

No This specifies the address space for the local
(on-premise) network site.

VirtualNetworkSite Yes This specifies the name and location (or
affinity group) of the virtual network.

Gateway No This specifies the gateway used for cross-
premises connections from the virtual
network.

AddressPrefix
(Gateway)

No This specifies the address space for VPN
clients.

LocalNetworkSiteRef
(Gateway)

No This specifies the external networks to
connect to the gateway.

Connection (Gateway) No This specifies the type of local (on-premise)
network site.

VirtualNetworkSiteRef No This specifies another virtual network the
virtual network can communicate with.

DnsServerRef Yes This specifies which of the DNS servers are
used for the virtual network.

Subnet Yes This specifies the subnets within the address
space of the virtual network.

AddressPrefix
(Subnet)

Yes This specifies the address space for a subnet.

AddressPrefix
(VirtualNetworkSite)

Yes This specifies the address space for a virtual
network.

Managing Azure Virtual Networks with PowerShell

[74]

For this example, we will use the following steps to create a configuration file:

1.	 Open Notepad from the Start menu (or any plain text editor) to create the
new configuration file.

2.	 Add the following configuration data:
<?xml version="1.0" encoding="utf-8"?>
<NetworkConfiguration xmlns="http://schemas.microsoft.com/
ServiceHosting/2011/07/NetworkConfiguration">
 <VirtualNetworkConfiguration>
 <Dns>
 <DnsServers>
 <DnsServer name="DNS1" IPAddress="10.10.1.1"/>
 </DnsServers>
 </Dns>
 <VirtualNetworkSites>
 <VirtualNetworkSite name="PSAutomation"
Location="West US">
 <DnsServersRef>
 <DnsServerRef name="DNS1"/>
 </DnsServersRef>
 <Subnets>
 <Subnet name="SubProxyServer">
 <AddressPrefix>10.10.2.32/27</AddressPrefix>
 </Subnet>
 </Subnets>
 <AddressSpace>
 <AddressPrefix>10.10.1.0/16</AddressPrefix>
 </AddressSpace>
 </VirtualNetworkSite>
 </VirtualNetworkSites>
 </VirtualNetworkConfiguration>
</NetworkConfiguration>

3.	 Save the file as an XML file, for instance, C:\Files\VNetConfig.xml.

In this example, the configuration file creates a new virtual network called
PSAutomation with 10.10.1.1 as the DNS server, 10.10.1.0/16 as the address
space, and a subnet with 10.10.2.32/27 as the address space.

A single configuration file is used for each Azure subscription to
define up to 10 virtual networks. To change an existing virtual
network configuration, update the existing configuration file rather
than create a new one.

Chapter 6

[75]

Computer networking concepts, such as DNS servers and subnets, are outside the
scope of this book. For more information about computer networking and Azure
Virtual Network configuration, refer to the following resources:

•	 Computer network (http://en.wikipedia.org/wiki/Computer_network)
•	 Understanding TCP/IP addressing and subnetting (http://support2.

microsoft.com/kb/164015)
•	 Microsoft Azure Virtual Network Overview: (https://msdn.microsoft.

com/library/azure/jj156007.aspx)
•	 Microsoft Azure Virtual Network Configuration Schema (https://msdn.

microsoft.com/library/azure/jj157100)

Creating an Azure Virtual Network
With the configuration file created in the Creating an Azure Virtual Network configuration
file section, we can now create the Azure Virtual Network. We will use the following
steps to create a new Azure Virtual Network:

1.	 Open Microsoft Azure PowerShell from the Start menu and connect it to an
Azure subscription.

We must first be connected to Azure in order to work with Microsoft
Azure Virtual Network instances. If not connected to Azure, refer to
the Connecting to a Microsoft Azure subscription section in Chapter 1,
Getting Started with Azure and PowerShell.

2.	 Use the Set-AzureVNetConfig cmdlet to upload the configuration file and
create the Azure Virtual Network:
PS C:\> Set-AzureVNetConfig –ConfigurationPath
C:\Files\VNetConfig.xml

Managing Azure Virtual Networks with PowerShell

[76]

3.	 Use the Get-AzureVNetSite cmdlet (PS C:\> Get-AzureVNetSite) to verify
that the virtual network site we defined in the configuration file was created:

For more information about the cmdlets used in this section, use the Get-Help
cmdlet in PowerShell, or refer to the following resources:

•	 The Get-AzureVNetSite cmdlet (https://msdn.microsoft.com/en-us/
library/azure/dn495238.aspx)

•	 The Set-AzureVNetConfig cmdlet (https://msdn.microsoft.com/en-us/
library/azure/dn495195.aspx)

Creating virtual machines in an Azure Virtual
Network
With an Azure Virtual Network in place, we can create new virtual machines in the
virtual network. We will use the methods from the Creating a Microsoft Azure virtual
machine section in Chapter 3, Managing Azure Virtual Machines with PowerShell.

We will use the following steps to create a new virtual machine in a virtual network:

1.	 Open Microsoft Azure PowerShell from the Start menu and connect it to an
Azure subscription.

We must first be connected to Azure in order to work with Microsoft
Azure Virtual Network instances. If not connected to Azure, refer to
the Connecting to a Microsoft Azure subscription section in Chapter 1,
Getting Started with Azure and PowerShell.

Chapter 6

[77]

2.	 Use the New-AzureQuickVM cmdlet to create a new virtual machine.
Set the –VNetName parameter to associate the new virtual machine with
the virtual network:
PS C:\> New-AzureQuickVM –VNetName PSAutomation –Windows –
ServiceName "PSAutomation2012R2VNet" –Name "PSVNet2012R2" –
Location "West US" –AdminUsername "PSAutomation" –Password
"Pa$$w0rd" –InstanceSize "Small" –ImageName
"a699494373c04fc0bc8f2bb1389d6106__Windows-Server-2012-R2-
201412.01-en.us-127GB.vhd"

For more information about how to create an Azure virtual machine,
refer to the Creating a Microsoft Azure virtual machine section in
Chapter 3, Managing Azure Virtual Machines with PowerShell.

Backing up an Azure Virtual Network
configuration
When making changes to a Microsoft Azure Virtual Network configuration, it's
good practice to make a copy of the existing configuration in case it needs to be
reverted to a previous state. In addition, using the backed up network configuration
file will provide a starting point from which to make future changes to the virtual
network configuration.

We will use the following steps to back up an Azure Virtual Network
configuration file:

1.	 Open Microsoft Azure PowerShell from the Start menu and connect it to an
Azure subscription.

We must first be connected to Azure in order to work with Microsoft
Azure Virtual Network instances. If not connected to Azure, refer to
the Connecting to a Microsoft Azure subscription section in Chapter 1,
Getting Started with Azure and PowerShell.

2.	 Use the Get-AzureVNetConfig cmdlet with the –ExportToFile parameter
to export the existing virtual network configuration and save it as a file:
PS C:\> Get-AzureVNetConfig –ExportToFile C:\Files\Backup.xml

For more information about the Get-AzureVNetConfig cmdlet, use the Get-Help
cmdlet in PowerShell, or refer to https://msdn.microsoft.com/en-us/library/
azure/dn495309.aspx.

Managing Azure Virtual Networks with PowerShell

[78]

Removing an Azure Virtual Network
configuration
When virtual networks are no longer needed in a Microsoft Azure subscription,
we can remove the Azure Virtual Network configuration altogether. However,
if we remove an individual virtual network while leaving others in place, we should
edit the existing Azure Virtual Network configuration rather than remove it.

We will use the following steps to remove an Azure Virtual Network configuration
from an Azure subscription:

1.	 Open Microsoft Azure PowerShell from the Start menu and connect it to
an Azure subscription.

We must first be connected to Azure in order to work with Microsoft
Azure Virtual Network instances. If not connected to Azure, refer to
the Connecting to a Microsoft Azure subscription section in Chapter 1,
Getting Started with Azure and PowerShell.

2.	 Use the Remove-AzureVNetConfig cmdlet to remove the Azure Virtual
Network configuration from the Azure subscription:
PS C:\> Remove-AzureVNetConfig

For more information about the Remove-AzureVNetConfig cmdlet, use the Get-Help
cmdlet in PowerShell, or refer to https://msdn.microsoft.com/en-us/library/
azure/dn495250.aspx.

Summary
Microsoft Azure Virtual Network provides a comprehensive and powerful
mechanism to make Azure virtual machines and services part of an organization's
infrastructure. While we did not specifically cover how to connect an on-premise
network to Azure, we did cover the different types of virtual networks. In addition,
we covered how to create and manage Azure Virtual Network configurations.

In the next chapter, we will explore how to use and manage Microsoft Azure
Traffic Manager.

Chapter 7

[79]

Managing Azure Traffic
Manager with PowerShell

The Alexa website (http://www.alexa.com/) reports that Bing (http://www.bing.
com/) is the 25th most visited website on the Internet (as of January 2015). Bing
processes millions of search requests each day. With such a heavy load, it would
be impossible for a single web server to handle all of the Bing traffic and search
requests. In addition, if Bing became unavailable due to the web server being offline,
it would be disastrous in terms of end user experience, and users would choose a
different search engine.

Load-balancing web servers allow the loaded website traffic to be spread across
multiple web servers. It also allows the load of the website traffic to be spread across
multiple, geographically separate data centers. Proper implementation of load
balancing allows redundancy if a data center or server goes offline. It also allows
web requests to be processed quickly, enhancing the end user experience.

Without load balancing, most major websites on the Internet would be very slow.
For many users, they would simply not work. Any organization that relies on a
website for its livelihood should consider load-balancing their website to ensure
that it almost never goes offline and always provides a fast user experience.

Managing Azure Traffic Manager with PowerShell

[80]

Microsoft Azure Traffic Manager provides load-balancing configuration options for
Microsoft Azure websites, cloud services, and other web-based endpoints. Traffic
Manager distributes user traffic over multiple locations, including both Azure and
on-premise data centers. Traffic can be distributed using three methods:

•	 Failover: This has a primary endpoint for all traffic and uses a backup
endpoint when the primary endpoint is unavailable

•	 Round-robin: This has multiple endpoints that distribute the traffic load
based on weighted rules

•	 Performance: This has multiple endpoints in different geographic locations,
and incoming requests use the data center with the lowest latency

Traffic Manager allows you to use nested configurations. For instance, a large public
website could be configured with performance-based load balancing to direct traffic to
US-based and Europe-based Azure data centers based on which single location has the
lowest latency for a request. For European data centers, failover load balancing could
be configured between the North Europe and West Europe data centers. For the US
data centers, round-robin load-balancing could be configured between the West US
and East US data centers:

Performance Traffic

Manager

European Failover

Traffic Manager

US Round Robin

Traffic Manager

North Europe West Europe West US East US

Incoming Request

Chapter 7

[81]

In this chapter, we will create two Microsoft Azure websites, each in a different data
center, and use Microsoft Traffic Manager to provide a failover when the primary
website is offline. For more information about load balancing and Microsoft Traffic
Manager, refer to the following resources:

•	 Load balancing computing (http://en.wikipedia.org/wiki/Load_
balancing_(computing))

•	 Microsoft Azure Traffic Manager (http://azure.microsoft.com/en-us/
services/traffic-manager/)

•	 Microsoft Azure Traffic Manager Overview (https://msdn.microsoft.
com/en-us/library/azure/hh744833.aspx)

•	 Microsoft Azure About Traffic Manager Load Balancing Methods
(https://msdn.microsoft.com/en-us/library/azure/dn339010.aspx)

Creating Microsoft Azure websites for
load balancing
In the Creating and configuring a new Microsoft Azure website section of Chapter 5,
Deploying and Managing Azure Websites with PowerShell, we covered how to create
a new Microsoft Azure website. We will use that method to create two new Azure
websites with the following steps:

1.	 Open Microsoft Azure PowerShell from the Start menu and connect it to an
Azure subscription.

We must first be connected to Azure in order to work with
Microsoft Azure websites. If not connected to Azure, refer to the
Connecting to a Microsoft Azure subscription section in Chapter 1,
Getting Started with Azure and PowerShell.

2.	 Use the New-AzureWebsite cmdlet to create a new Microsoft Azure website:
PS C:\> New-AzureWebsite –Name psautoprimary –Location "West
US"

In this example, we will use West US as the data center location
for the new website. To retrieve a full list of available locations to
choose from, use the Get-AzureLocation cmdlet. For example,
Get-AzureLocation | Select-Object Name will list only
the names of the locations.

Managing Azure Traffic Manager with PowerShell

[82]

3.	 Use the New-AzureWebsite cmdlet to create a new Microsoft Azure website
with a different name and data center:
PS C:\> New-AzureWebsite –Name psautofailover –Location "East
US"

4.	 Use the Get-AzureWebsite cmdlet (PS C:\> Get-AzureWebsite) to observe
the two newly created websites:

5.	 Before we can add a Microsoft Azure website to a Traffic Manager profile,
we must set the hosting mode to Standard. Free and Shared hosted websites
do not support Traffic Manager. We must make this change in the Microsoft
Azure management portal. Navigate to https://manage.windowsazure.
com in Internet Explorer and log in if prompted.

6.	 Navigate to the left-hand side of the page and select Websites.
7.	 Select the Azure website (for example, psautoprimary).

Chapter 7

[83]

8.	 Under the SCALE section, set the WEB HOSTING PLAN MODE to
STANDARD. Click on SAVE at the bottom of the page:

9.	 Repeat steps 6 to 8 for the second Azure website.

For more information about how to create and manage Microsoft Azure websites,
refer to Chapter 5, Deploying and Managing Azure Websites with PowerShell.

Creating and managing Microsoft Azure
Traffic Manager profiles
With the two Microsoft Azure websites created in the Creating Microsoft Azure
websites for load balancing section, we can now create a new Microsoft Azure Traffic
Manager profile to load-balance the two websites. We will use the following steps
to load-balance the two websites with Traffic Manager:

1.	 Open Microsoft Azure PowerShell from the Start menu and connect it to an
Azure subscription.

We must first be connected to Azure in order to work with Microsoft
Traffic Manager. If not connected to Azure, refer to the Connecting to
a Microsoft Azure subscription section in Chapter 1, Getting Started with
Azure and PowerShell.

Managing Azure Traffic Manager with PowerShell

[84]

2.	 Use the New-AzureTrafficManagerProfile cmdlet to create a new Traffic
Manager profile. The DomainName parameter provided is where incoming
requests will be directed and it must end with .trafficmanager.net.
The MonitorPort parameter provided is the TCP/IP port to monitor the
endpoints (for HTTP traffic, this is typically port 80):
PS C:\> New-AzureTrafficManagerProfile –Name "psautomation" –
DomainName "psautomation.trafficmanager.net" –
LoadBalancingMethod "Failover" –Ttl 30 –MonitorProtocol "Http"
–MonitorPort 80 –MonitorRelativePath "/"

3.	 Use the Get-AzureTrafficManagerProfile cmdlet to assign the newly
created Traffic Manager profile to a PowerShell variable:
PS C:\> $profile = Get-AzureTrafficManagerProfile –Name
"psautomation"

4.	 Use the Add-AzureTrafficManagerEndpoint and Set-
AzureTrafficManagerProfile cmdlets to create a new endpoint for
each Azure website and assign them to the Traffic Manager profile:
PS C:\> Add-AzureTrafficManagerEndpoint –TrafficManagerProfile
$profile –DomainName "psautoprimary.azurewebsites.net" –Status
"Enabled" –Type "AzureWebsite" | Set-
AzureTrafficManagerProfile

PS C:\> Add-AzureTrafficManagerEndpoint –TrafficManagerProfile
$profile –DomainName "psautofailover.azurewebsites.net" –
Status "Enabled" –Type "AzureWebsite" | Set-
AzureTrafficManagerProfile

Chapter 7

[85]

5.	 Use the Get-AzureTrafficManagerProfile cmdlet to ensure that the
MonitorStatus is Online and the Status is Enabled:
PS C:\> Get-AzureTrafficManagerProfile –Name "PSAutomation"

Managing Azure Traffic Manager with PowerShell

[86]

6.	 Navigate to the Traffic Manager domain name (for example, http://
psautomation.trafficmanager.net) in Internet Explorer to observe
the results:

7.	 Use the Stop-AzureWebsite cmdlet to stop the primary Azure website:
PS C:\> Stop-AzureWebsite –Name psautoprimary

8.	 Use the Get-AzureTrafficManagerProfile cmdlet to display the status
of the endpoints (it might take up to 30 seconds for the endpoint status
to update):
PS C:\> (Get-AzureTrafficManagerProfile –Name
"psautomation").Endpoints

Chapter 7

[87]

9.	 Use the Get-AzureTrafficManagerProfile cmdlet to assign the Traffic
Manager profile to a PowerShell variable. We already did this in step 3.
However, doing this again will retrieve an updated copy of the profile
with the endpoints:
PS C:\> $profile = Get-AzureTrafficManagerProfile –Name
"psautomation"

10.	 Use the Remove-AzureTrafficManagerEndpoint and Set-
AzureTrafficManagerProfile cmdlets to remove the primary endpoint
from the Traffic Manager profile:
PS C:\> Remove-AzureTrafficManagerEndpoint –
TrafficManagerProfile $profile –DomainName
"psautoprimary.azurewebsites.net" | Set-
AzureTrafficManagerProfile

11.	 Use the Remove-AzureTrafficManagerProfile cmdlet to remove the Traffic
Manager profile from the Microsoft Azure subscription:
PS C:\> Remove-AzureTrafficManagerProfile –Name "psautomation"

For more information about the cmdlets used in this section, use the Get-Help
cmdlet in PowerShell, or refer to the following resources:

•	 The Remove-AzureTrafficManagerProfile cmdlet (https://msdn.
microsoft.com/en-us/library/azure/dn690247.aspx)

•	 The Remove-AzureTrafficManagerEndpoint cmdlet (https://msdn.
microsoft.com/en-us/library/azure/dn690251.aspx)

•	 The Set-AzureTrafficManagerProfile cmdlet (https://msdn.
microsoft.com/en-us/library/azure/dn690254.aspx)

•	 The Get-AzureTrafficManagerProfile cmdlet (https://msdn.
microsoft.com/en-us/library/azure/dn690255.aspx)

•	 The Add-AzureTrafficManagerEndpoint cmdlet (https://msdn.
microsoft.com/en-us/library/azure/dn690257.aspx)

•	 The New-AzureTrafficManagerProfile cmdlet (https://msdn.
microsoft.com/en-us/library/azure/dn690246.aspx)

Summary
In this chapter, we explored load-balancing Microsoft Azure services with Microsoft
Azure Traffic Manager. We covered how to create, manage, and remove Traffic
Manager profiles and endpoints. In the next chapter, we will explore how to manage
Microsoft Azure cloud services with PowerShell.

Chapter 8

[89]

Managing Azure Cloud
Services with PowerShell

Microsoft Azure offers a variety of ways to host websites and web services. In
Chapter 5, Deploying and Managing Azure Websites with PowerShell, we covered how
to host websites using Microsoft Azure websites. Websites and services can also
be hosted in Microsoft Azure virtual machines, which we covered in Chapter 3,
Managing Azure Virtual Machines with PowerShell. Microsoft Azure also offers a third
option: cloud services. Under the hood, Azure Cloud Services make use of Azure
virtual machine instances to host websites and services. However, they are fully
managed by Microsoft Azure. Microsoft Azure handles all routine maintenance,
operating system updates, and attempts to recover from hardware failures.

Microsoft Azure Cloud Service roles consist of an application (such as a website)
and a configuration file. These roles can either be a web role, which hosts a web
application, or a worker role, which is used for asynchronous or long-running tasks.
Each instance of a cloud service role correlates to an Azure virtual machine that runs
the cloud service. Cloud services provide easy scaling of instances, depending on the
workload of the cloud service.

Microsoft Azure Cloud Service instances provide additional flexibility that Azure
websites do not provide. For instance, the start-up items on the instances can be
configured. In addition, any MSI-based application can be installed on the instances.
Lastly, cloud services provide staging and production environments seamlessly.
This provides a highly flexible environment that does not require server maintenance
on the part of the Azure customer.

Managing Azure Cloud Services with PowerShell

[90]

Determining which type of hosting to use for a particular application depends
greatly on the application itself. Consider the following scenarios:

•	 A company has a legacy web application that only runs on older versions
of Windows, such as Windows Server 2003. In this case, an Azure virtual
machine would provide the flexibility required to run the legacy application.

•	 A company has an e-commerce website that uses a web application and
a SQL database. In this case, an Azure website that uses an Azure SQL
database would provide the required functionality.

•	 A payroll company receives a large number of incoming payroll processing
requests from its customers via a website. The payroll is processed
asynchronously and provided back to the customer via the website when
complete. In this case, an Azure Cloud Service worker role could be used to
handle all the asynchronous processing and an Azure Cloud Service web role
could be used to provide the interface to the customers.

Microsoft Azure virtual machines also take advantage of Azure Cloud Services.
When a new Azure virtual machine is created, a cloud service is also created along
with it to provide access to the virtual machine with the Remote Desktop Protocol
(RDP). In this chapter, we will deploy and manage a cloud service for a simple web
role. In addition, we will use a cloud service to connect to an Azure virtual machine
with RDP.

For more information about Microsoft Azure cloud services, refer to the
following resources:

•	 Microsoft Azure Cloud Services (http://azure.microsoft.com/en-us/
services/cloud-services/)

•	 What is a cloud service? (http://azure.microsoft.com/en-us/
documentation/articles/cloud-services-what-is/)

•	 Comparison between Microsoft Azure websites, cloud services, and virtual
machines (http://azure.microsoft.com/en-us/documentation/
articles/choose-web-site-cloud-service-vm/)

Chapter 8

[91]

Connecting to a Microsoft Azure virtual
machine with a Microsoft Azure Cloud
Service
In Chapter 3, Managing Azure Virtual Machines with PowerShell, we created a new
Microsoft Azure virtual machine. In that example, the virtual machine was named
PSAuto2012R2, and the cloud service was named PSAutomation2012R2. We will use
the following steps to manage this cloud service and connect to the virtual machine
with RDP:

1.	 Open Microsoft Azure PowerShell from the Start menu and connect it to an
Azure subscription.

We must first be connected to Azure in order to create and manage
cloud services. If not connected to Azure, refer to the Connecting to a
Microsoft Azure subscription section in Chapter 1, Getting Started with Azure
and PowerShell. In addition, we should have an Azure virtual machine
up-and-running. Refer to Chapter 3, Managing Azure Virtual Machines
with PowerShell, for more detail on how to create a new virtual machine.

2.	 Use the Get-AzureService cmdlet (PS C:\> Get-AzureService) to retrieve
the Azure cloud services in the current Azure subscription, as shown here:

Managing Azure Cloud Services with PowerShell

[92]

3.	 Use the Get-AzureRole cmdlet (PS C:\> Get-AzureRole –ServiceName
PSAutomation2012R2 –InstanceDetails) to retrieve the details of the
Azure cloud service instances:

4.	 Use the Get-AzureRole cmdlet to retrieve the cloud service endpoints for the
virtual machine cloud service instance. By default, there is an endpoint for
remote desktop and an endpoint for remote PowerShell. Make a note of the
public TCP/IP port for the remote desktop endpoint:
PS C:\> $role = Get-AzureRole –ServiceName PSAutomation2012R2
–RoleName PSAuto2012R2 –InstanceDetails

PS C:\> $role.InstanceEndpoints

Chapter 8

[93]

5.	 Open Remote Desktop Connection from the Start menu or using the mstsc
command in the PowerShell window.

6.	 In the Computer field, enter the full URL for the Azure Cloud Service and
the TCP/IP port number from step 4 as follows:
<Cloud Service Name>.cloudapp.net:<Port>

For instance:
psautomation2012r2.cloudapp.net:64380

7.	 Click on Connect and enter the credentials that were used when creating the
virtual machine.

Managing Azure Cloud Services with PowerShell

[94]

8.	 Close the Remote Desktop Connection window.
9.	 In the PowerShell window, use the Get-AzureRemoteDesktopFile cmdlet

to save a RDP connection file on the local computer:
PS C:\> Get-AzureRemoteDesktopFile –ServiceName
PSAutomation2012R2 –Name PSAuto2012R2 –LocalPath
C:\RDP\PSAuto2012R2.rdp

10.	 Double-click on the newly created RDP file in Windows Explorer to open
Remote Desktop Connection and connect it to the virtual machine.

For more information about RDP and the cmdlets used in this section, refer to the
following resources:

•	 The Get-AzureService cmdlet (https://msdn.microsoft.com/en-us/
library/azure/dn495131.aspx)

•	 The Get-AzureRole cmdlet (https://msdn.microsoft.com/en-us/
library/azure/dn495196.aspx)

•	 The Get-AzureRemoteDesktopFile cmdlet (https://msdn.microsoft.
com/en-us/library/azure/dn495261.aspx)

Chapter 8

[95]

•	 Remote Desktop Protocol (https://msdn.microsoft.com/en-us/library/
aa383015(v=vs.85).aspx)

•	 Remote Desktop Protocol on Wikipedia (http://en.wikipedia.org/wiki/
Remote_Desktop_Protocol)

Creating and managing Microsoft Azure
Cloud Services
Deploying an application to a Microsoft Azure Cloud Service uses a cloud service
package file that contains the application and a cloud service configuration file.
Creating these files can be accomplished with Microsoft Visual Studio. However,
this is outside the scope of this book. In order to publish a cloud service application
in this section, a sample project has been included in the sample code of this book;
this contains a cloud web role and a cloud worker role. Before you continue, ensure
the files from the sample project are available on your computer.

We will use the following steps to create and manage an Azure Cloud Service with
the sample application:

1.	 Open Microsoft Azure PowerShell from the Start menu and connect it to an
Azure subscription.

We must first be connected to Azure in order to create and manage
cloud services. If not connected to Azure, refer to the Connecting to a
Microsoft Azure subscription section in Chapter 1, Getting Started with
Azure and PowerShell.

2.	 Use the New-AzureService cmdlet to create a new Azure Cloud Service:
PS C:\> New-AzureService –ServiceName "psautomation" –Location
"West US"

In this example, we will use West US as the data center location for
the new cloud service. To retrieve a full list of available locations to
choose from, use the Get-AzureLocation cmdlet. For example,
Get-AzureLocation | Select-Object Name will list only the
names of the locations.

Managing Azure Cloud Services with PowerShell

[96]

3.	 Use the New-AzureDeployment cmdlet and the sample application files to
create a new deployment of the sample application cloud service:
PS C:\> New-AzureDeployment –ServiceName psautomation –Package
C:\Files\Azure\PSAutomationCloudService.cspkg –Configuration
C:\Files\Azure\ServiceConfiguration.Cloud.cscfg –Slot
Production

4.	 Use the Get-AzureRole cmdlet to display the instances created by
the application deployment:
PS C:\> Get-AzureRole –ServiceName psautomation –
InstanceDetails

Chapter 8

[97]

5.	 Use the Remove-AzureDeployment cmdlet to retract the deployment of the
cloud service application:
PS C:\> Remove-AzureDeployment –ServiceName psautomation –Slot
Production

6.	 Use the Get-AzureRole cmdlet to verify that the deployment and the
instances have been removed:
PS C:\> Get-AzureRole –ServiceName psautomation

7.	 Use the Remove-AzureService cmdlet to remove the Azure Cloud Service
from the Azure subscription:

PS C:\> Remove-AzureService –ServiceName psautomation

For more information about Azure Cloud Service applications and the cmdlets used
in this section, refer to the following resources:

•	 Microsoft Azure Cloud Services documentation (http://azure.microsoft.
com/en-us/documentation/services/cloud-services/)

•	 How to create and deploy a cloud service (http://azure.microsoft.com/
en-us/documentation/articles/cloud-services-how-to-create-
deploy/)

•	 Microsoft Azure downloads (http://azure.microsoft.com/en-us/
downloads/)

•	 Get started with Azure Cloud Services and ASP.NET (http://azure.
microsoft.com/en-us/documentation/articles/cloud-services-
dotnet-get-started/)

•	 How to manage cloud services (http://azure.microsoft.com/en-us/
documentation/articles/cloud-services-how-to-manage/)

•	 How to configure cloud services (http://azure.microsoft.com/en-us/
documentation/articles/cloud-services-how-to-configure/)

Managing Azure Cloud Services with PowerShell

[98]

Summary
Microsoft Azure Cloud Services provide an infrastructure to deploy large multitiered
applications that include web and worker roles. In addition, cloud services provide
endpoints to access Microsoft Azure virtual machines with remote PowerShell and
RDP. In this chapter, we explored how to access a virtual machine with a cloud
service. In addition, we created, deployed, and managed a new cloud service with
a sample application.

In the next chapter, we will explore how to manage Microsoft Azure Active Directory.

Chapter 9

[99]

Managing Azure Active
Directory with PowerShell

By offering user and computer authentication and authorization, certificate
management, group policy, federated services, and so on, Microsoft Active Directory
is often the cornerstone of an organization's data center infrastructure. With Azure,
the capabilities of Active Directory are extended to the cloud to provide features
such as single sign-on with cloud services (including Office 365 and Salesforce.com),
multifactor authentication, and integration with existing on-premise deployments of
Active Directory.

Azure utilizes Active Directory domains to manage authentication and authorization
to Azure services. When a new Azure account is created, a default directory is
automatically configured. The Microsoft account used for the Azure account is
added to this directory as a Global Administrator.

Many organizations use scripting to manage their data center operations, and some
organizations even require it. Active Directory is typically involved in these processes.
In this chapter, we will explore how to automate some of the common tasks of Azure
Active Directory management with PowerShell. However, Active Directory itself is a
very large topic and one we will not cover in-depth in this chapter.

In this chapter, we will explore how to automate common tasks in Azure Active
Directory management with PowerShell. We will cover the following topics:

•	 Connecting to Azure Active Directory
•	 Creating a new Azure Active Directory domain
•	 Configuring an Azure Active Directory domain
•	 Managing Azure Active Directory users and groups

Managing Azure Active Directory with PowerShell

[100]

•	 Using PowerShell to bulk-import users and groups to Azure Active Directory

A number of books and articles have been written about Active
Directory. For more in-depth information about Active Directory, here
are a few resources to get you started:

•	 The Active Directory Design Principles article by Packt
Publishing (https://www.packtpub.com/books/content/
active-directory-design-principles-part-1)

•	 The Active Directory Domain Services article by TechNet
(http://technet.microsoft.com/en-us/
windowsserver/dd448614)

•	 The book Active Directory with PowerShell, Uma Yellapragada, Packt
Publishing (https://www.packtpub.com/networking-
and-servers/active-directory-powershell)

Connecting to Azure Active Directory
The PowerShell tools for Azure Active Directory are separate from the tools used
to manage other Azure services, which we covered in Chapter 1, Getting Started with
Azure and PowerShell. Before you connect to Azure Active Directory, download and
install the following tools:

•	 Microsoft Online Services Sign-In Assistant (http://www.microsoft.com/
en-us/download/details.aspx?id=41950)

•	 Microsoft Azure Active Directory Module (http://go.microsoft.com/
fwlink/p/?linkid=236297)

After installing these tools, reboot the computer to complete the installation.

If you use the Azure Active Directory module, you will encounter
a known issue if you attempt to use the 32-bit version on a 64-bit
computer. If you use the 32-bit version on a 64-bit computer and
receive errors such as the term is not recognized, refer to http://
stackoverflow.com/questions/16018732/msonline-cant-
be-imported-on-powershell-connect-msolservice-error.

Chapter 9

[101]

Creating an administrator account
Microsoft accounts and single sign-on accounts (for instance, using Active Directory
Federation Services from an on-premise Active Directory domain) typically do not
work to connect to Azure Active Directory in PowerShell. As a result, we will create
a new Active Directory domain user in the Azure web portal that we can use to
connect. To do this, follow these steps:

1.	 Log in to the Azure portal in a web browser at https://manage.
windowsazure.com.

2.	 From the left-hand side navigation panel, select ACTIVE DIRECTORY
and then select Default Directory, as shown in the following screenshot:

Managing Azure Active Directory with PowerShell

[102]

3.	 Select the USERS tab and then click on ADD USER at the bottom of
the screen:

4.	 Enter the name in the USER NAME field and click on the next button:

Chapter 9

[103]

5.	 Select Global Administrator for ROLE and provide FIRST NAME, LAST
NAME, DISPLAY NAME, and ALTERNATE EMAIL ADDRESS for the
new user. Click on the next button:

6.	 Click on CREATE.

Managing Azure Active Directory with PowerShell

[104]

7.	 Make a note of the full username and the temporary password for
the new user:

8.	 To enable this user to create new Active Directory domains, rather than just
manage the Default Directory, we will need to add this user as an Azure
Administrator. From the left-hand side of the Azure management portal,
select SETTINGS, ADMINISTRATORS, and then click on ADD, as shown
in the following screenshot:

Chapter 9

[105]

9.	 In the EMAIL ADDRESS field, enter the full username of the user we
created (for example, DomainAdmin@azure.onmicrosoft.com), select
SUBSCRIPTION, and click on the checkmark button to complete the
process of adding the user:

Managing Azure Active Directory with PowerShell

[106]

10.	 Before the newly created account can be used, we need to change the
temporary password. First, log out from the Azure portal by selecting your
account name in the top-right corner of the page and clicking on SIGN OUT.

11.	 Click on SIGN IN to return to the login page.
12.	 Use the username and temporary password of the newly created account

to log in.
13.	 When prompted, provide a new password for the account.

With the new administrator account created and the password set, we can now
connect to Azure Active Directory with PowerShell.

Connecting to Azure Active Directory
When we installed the Azure Active Directory module for PowerShell, the MSOnline
module was registered with PowerShell. To make the cmdlets from the module
available, we can either select the Windows Azure Active Directory Module for
Windows PowerShell entry from the Start menu, or we can manually import the
MSOnline module. To do this, follow these steps:

1.	 Open Windows Azure Active Directory Module for Windows PowerShell
from the Start menu or add the module to an existing PowerShell session
using the following command:
PS C:\> Import-Module MSOnline

2.	 Use the Connect-MsolService cmdlet to connect to Azure Active Directory.
You will be prompted to enter your credentials. Use the full username and
password for the administrator account we created:

Chapter 9

[107]

The PowerShell session is now connected to Azure Active Directory.

In the event you receive an error message while attempting to connect
to Azure Active Directory, Microsoft has some troubleshooting steps
that will resolve most cases; refer to http://support.microsoft.
com/kb/2494043.

For more information about Azure Active Directory and the cmdlet used in this
section, refer to the following resources:

•	 What is Azure Active Directory? (http://azure.microsoft.com/en-us/
documentation/articles/active-directory-whatis/)

•	 Manage Azure AD using Windows PowerShell (http://msdn.microsoft.
com/en-us/library/azure/jj151815.aspx)

•	 The Connect-MsolService cmdlet (http://msdn.microsoft.com/en-us/
library/azure/dn194123.aspx)

Creating a new Azure Active Directory
domain
Each new Azure account includes a Default Directory with a default domain
(for instance, azure.onmicrosoft.com) that contains the Microsoft account that
created the Azure account. While the default domain might be sufficient for small
organizations or organizations that do not use Azure Active Directory for their
user authentication and authorization, larger organizations and organizations that
rely heavily on Azure Active Directory will want to create a new Active Directory
domain and customize it based on their needs.

Active Directory domains are assigned with fully qualified domain names. This
provides a mechanism to find the domain within a network as well as to identify
computers and so on within the domain. In a private network, Active Directory can
work with a DNS server (domain name server) to ensure the domain name points
to the Active Directory domain controllers (servers). However, with an Azure
Active Directory domain, a public domain name from a registrar is required and
the DNS settings for the domain are manually configured. In many organizations,
a single group in the organization manages public domain names. DNS settings
would have to be coordinated with this group. For other organizations or simple
testing environments, a domain name will need to be purchased from GoDaddy.
com, Name.com, or NetworkSolutions.com.

Managing Azure Active Directory with PowerShell

[108]

Before you continue, ensure that you are connected to Azure Active
Directory in a PowerShell session, as outlined in the Connecting to
Azure Active Directory section.

In this tutorial, we will use PowerShell to create a new Azure Active Directory
domain in the default directory. However, we will not cover how to configure the
DNS settings. Microsoft has provided instructions on how to configure the DNS
settings at various registrars on MSDN (http://msdn.microsoft.com/library/
azure/jj151803.aspx#BKMK_cname). To create a new Azure Active Directory
domain in the default directory, follow these steps:

1.	 Use the New-MsolDomain cmdlet to create a new Active Directory domain
and assign it to a PowerShell variable. The name provided should be in the
form of a fully qualified domain name (FQDN). It should match the domain
name purchased from a registrar or should be provided by the group in the
organization that manages public domain names:
PS C:\> $domain = New-MsolDomain –Name PowerShell.local

2.	 Enter the variable and press Enter. The variable can be used to retrieve
information about the new domain or to configure it:
PS C:\> $domain

3.	 Use the Get-MsolDomainVerificationDns cmdlet to retrieve the label
to be used when updating the DNS settings of the domain name:
PS C:\> Get-MsolDomainVerificationDns -DomainName
PowerShell.local

Chapter 9

[109]

4.	 Use the label for the domain to add a TXT or MX record to the DNS settings
for the domain name. In the sample used for the screenshots, the TXT record
will be ms43896406, and the MX record will be ms43896406.msv1.invalid.
Microsoft provides instructions to update the DNS records at many of the
common domain name registrars on MSDN at http://msdn.microsoft.
com/library/azure/jj151803.aspx#BKMK_cname.

Once DNS records are updated, it can take up to 48 hours for
them to propagate.

5.	 Once the DNS records for the domain are configured, use the Confirm-
MsolDomain cmdlet to process the verification of the domain:

PS C:\> Confirm-MsolDomain -DomainName PowerShell.local

For more information about verifying domain names and the cmdlets used in this
section, refer to the following resources:

•	 The New-MsolDomain cmdlet (http://msdn.microsoft.com/en-us/
library/azure/dn194081.aspx)

•	 Verify a domain at any domain name registrar (http://msdn.microsoft.
com/library/azure/jj151803.aspx)

•	 The Confirm-MsolDomain cmdlet (http://msdn.microsoft.com/en-us/
library/azure/dn194117.aspx)

Managing Azure Active Directory with PowerShell

[110]

Configuring an Azure Active Directory
domain
Once an Active Directory domain is created in Azure, there are a few options that
can be configured for the domain. These options include converting to and from a
federated domain, authentication settings, and password policy options.

Before you continue, ensure that you are connected to Azure Active
Directory in a PowerShell session, as outlined in the Connecting to
Azure Active Directory section.

In this tutorial, we will configure the password policy for the domain that we
created in the Creating a new Azure Active Directory domain section. The password
policy includes two options: NotificationDays and ValidityPeriod. The
NotificationDays option sets how many calendar days the password change
notification should be sent before the password expires, and the ValidityPeriod
option sets how many calendar days the passwords are valid for. To configure the
password policy for the domain, follow these steps:

1.	 Use the Get-MsolPasswordPolicy cmdlet to view the current password
policy settings. By default, nothing will be set for the NotificationDays
and ValidityPeriod values:
PS C:\> Get-MsolPasswordPolicy -DomainName PowerShell.local

2.	 Use the Set-MsolPasswordPolicy cmdlet to set the password policy settings:

PS C:\> Set-MsolPasswordPolicy -DomainName PowerShell.local -
NotificationDays 14 -ValidityPeriod 90

For more information about the cmdlets used in this section, use the Get-Help
cmdlet in PowerShell, or refer to the following resources:

•	 The Get-MsolPasswordPolicy cmdlet (http://msdn.microsoft.com/en-
us/library/azure/dn169219.aspx)

•	 The Set-MsolPasswordPolicy cmdlet (http://msdn.microsoft.com/en-
us/library/azure/dn169224.aspx)

Chapter 9

[111]

Managing Azure Active Directory users
and groups
Active Directory can be used to manage a wide variety of objects, such as computers,
users, contacts, and printers. Of all these objects, users and groups are the most
commonly used. A user in Active Directory typically represents a person (or service
accounts used by other applications) and provides a mechanism to store personal
data about this person. A group in Active Directory can have users or other groups
as members, but does not actually contain them and does not provide hierarchal
organization to the domain; organizational units (OUs) provide hierarchal
organization. Groups can have policies, authorization, and so on assigned to them
that are inherited by the members in the group.

To illustrate how groups and users relate to each other, consider the following aspects:

•	 We have three groups: Services, Support, and Development
•	 We have two users: John and Jane
•	 The membership of each group is as follows:

°° Services: Support
°° Support: John
°° Development: Jane

•	 The Services group provides access to the Services file share, and the
Development group provides access to the Development file share

In this example, Jane has access to the Development file share as she is a member
of the Development group. In addition, John has access to the Services file share
because he is a member of the Support group that is a member of the Services group.

For more information about how Active Directory domains are structured, refer to
http://en.wikipedia.org/wiki/Active_Directory.

Before you continue, ensure that you are connected to Azure Active
Directory in a PowerShell session, as outlined in the Connecting to
Azure Active Directory section.

Managing Azure Active Directory with PowerShell

[112]

For this tutorial, we will create users and groups (described in the preceding example).
In addition, we will assign group membership. To do this, follow these steps:

1.	 Use the New-MsolUser cmdlet to create a user account for Jane and John and
assign them to variables. The username must include the domain name, for
example, jane@powershell.local, as shown here:
PS C:\> $jane = New-MsolUser -UserPrincipalName
"jane@powershell.local" -DisplayName "Jane" -Password
"P@assword1234~"

PS C:\> $john = New-MsolUser -UserPrincipalName
"john@powershell.local" -DisplayName "John" -Password
"P@assword1234~"

2.	 Use the New-MsolGroup cmdlet to create a group for Support, Services,
and Development and assign them to variables:
PS C:\> $services = New-MsolGroup -DisplayName "Services"

PS C:\> $support = New-MsolGroup -DisplayName "Support"

PS C:\> $development = New-MsolGroup -DisplayName
"Development"

3.	 Use the Add-MsolGroupMember cmdlet to add Jane to the members of
Development and John to the members of Support. In addition, assign
Support to the members of Services:
PS C:\> Add-MsolGroupMember -GroupObjectId
$development.ObjectId -GroupMemberObjectId $jane.ObjectId

PS C:\> Add-MsolGroupMember -GroupObjectId $support.ObjectId -
GroupMemberObjectId $john.ObjectId

PS C:\> Add-MsolGroupMember -GroupObjectId $services.ObjectId
-GroupMemberObjectId $support.ObjectId -GroupMemberType Group

4.	 Use the Get-MsolGroupMember cmdlet to view the membership of each group:
PS C:\> Get-MsolGroupMember -GroupObjectId $services.ObjectId

Users and groups in Azure Active Directory have a number of properties that can be
set with PowerShell. Updating these properties can be done using the Set-MsolUser
and Set-MsolGroup cmdlets (for example, PS C:\> Set-MsolUser -ObjectId
$jane.ObjectId -City "London").

For more information about Active Directory and the cmdlets used in this section,
refer to the following resources:

•	 Active Directory (http://en.wikipedia.org/wiki/Active_Directory)
•	 The New-MsolUser cmdlet (http://msdn.microsoft.com/en-us/library/

azure/dn194096.aspx)

Chapter 9

[113]

•	 The New-MsolGroup cmdlet (http://msdn.microsoft.com/en-us/
library/azure/dn194083.aspx)

•	 The Set-MsolUser cmdlet (http://msdn.microsoft.com/en-us/library/
azure/dn194136.aspx)

•	 The Set-MsolGroup cmdlet (http://msdn.microsoft.com/en-us/
library/azure/dn194086.aspx)

•	 The Add-MsolGroupMember cmdlet (http://msdn.microsoft.com/en-us/
library/azure/dn194129.aspx)

•	 The Get-MsolGroupMember cmdlet (http://msdn.microsoft.com/en-us/
library/azure/dn194085.aspx)

Using PowerShell to bulk import users
and groups into Azure Active Directory
While running one-off commands in PowerShell can be useful, managing Azure
Active Directory with PowerShell really comes into its own when scripting large
amounts of tedious tasks. With PowerShell, we can complete a process in a few
minutes that might take hours or days for a human to complete manually.

Imagine a medium-sized company with about 1,000 users. The company's human
resources system has details (such as names and contact information exported to a
spreadsheet in CSV format). The company implements Azure services as part of the
company infrastructure and needs to create a user account in Azure Active Directory
for each user. Someone could take days to complete it manually in the web interface
but, with PowerShell, this can be done in just a few minutes.

Before you continue, ensure that you are connected to Azure Active
Directory in a PowerShell session, as outlined in the Connecting to
Azure Active Directory section.

In this tutorial, we will create a .csv file with some user details, and we will use this
data to create users in Azure Active Directory with PowerShell. To do this, follow
these steps:

1.	 Create a .csv file with data that looks like the following code snippet:
"Username","Password","DisplayName","City"
"rose@powershell.local","P@ssword1234~","Rose","London"
"jose@powershell.local","P@ssword1234~","Jose","London"
"pierre@powershell.local","P@ssword1234~","Pierre","London"
"diego@powershell.local","P@ssword1234~","Diego","London"
"sherlock@powershell.local","P@ssword1234~","Sherlock","London"

Managing Azure Active Directory with PowerShell

[114]

You can create the .csv file with any plain text editor (such as
Notepad) or spreadsheet software (such as Microsoft Excel).

2.	 Use the Import-Csv cmdlet to import the user data from the .csv file
to a PowerShell object:
PS C:\> $users = Import-Csv C:\Files\Users.csv

3.	 Use the ForEach-Object and New-MsolUser cmdlets to enumerate each user
in the imported data and create the user account:
PS C:\> $users | ForEach-Object { New-MsolUser -
UserPrincipalName $_.Username -Password $_.Password -
DisplayName $_.DisplayName -City $_.City }

Chapter 9

[115]

For more information about the cmdlets used in this section, use the Get-Help
cmdlet in PowerShell, or refer to the following resources:

•	 The Import-Csv cmdlet (http://technet.microsoft.com/en-us/
library/hh849891.aspx)

•	 The ForEach-Object cmdlet (http://technet.microsoft.com/en-us/
library/hh849731.aspx)

•	 The New-MsolUser cmdlet (http://msdn.microsoft.com/en-us/library/
azure/dn194096.aspx)

Summary
Azure Active Directory offers a myriad of features and services for Azure customers.
In this chapter, we covered the basics of how to manage Azure Active Directory
from PowerShell and showcased an example where PowerShell automation can save
administrators time and effort. Using these techniques and ideas, many mundane
and repetitive tasks can be automated to allow administrators to focus on more
important tasks.

In the next chapter, we will explore how to automate Microsoft Azure tasks in
PowerShell using runbooks and automation cmdlets.

Chapter 10

[117]

Automating Azure
with PowerShell

Throughout this book, we have covered individual management tasks from
uploading files to blob storage to creating users in Active Directory. Each of the
individual tasks we covered gave us an opportunity to simplify and streamline
managing Azure services from PowerShell. Many organizations have complex tasks
that utilize a number of separate individual commands to complete. These tasks can
be long, tedious, and error-prone. In addition, many of these tasks are scheduled to
run automatically on a repeating schedule.

For example, a company might need to back up an Azure website and Azure SQL
database on an hourly schedule. Completing this task manually every hour would be
difficult to accomplish. The company can use a scheduled task in Windows (either on
a local computer or in an Azure virtual machine) to perform the tasks. However, this
takes up resources and requires a computer to be running constantly.

To simplify the repetitive and complex tasks that administrators perform with
Azure, Microsoft Azure Automation provides a framework to create and schedule
workflows. These workflows, also known as runbooks, are PowerShell scripts
that define a series of tasks to perform when run. In this chapter, we will explore
Microsoft Azure Automation by creating and managing runbooks.

Automating Azure with PowerShell

[118]

Creating a Microsoft Azure Automation
account
Runbooks in Microsoft Azure run within the context of an Azure Automation
account. Before we create and manage runbooks, we will first create a new Azure
Automation account and a set of credentials to access Azure Automation with.
Storing credentials in Azure Automation allows workflows to connect to Azure
as the account provided.

We will use the following steps to create a new account and credentials:

1.	 Log in to the Microsoft Azure management portal in Internet Explorer at
https://manage.windowsazure.com.

2.	 From the left-hand side navigation menu, click on AUTOMATION.
3.	 Select CREATE AN AUTOMATION ACCOUNT, as shown in

the following screenshot:

4.	 Enter a name for the new account and select a region:

Chapter 10

[119]

5.	 Next click on the checkmark to finish the process.
6.	 Now select the newly created Azure Automation account.
7.	 Click on the ASSETS tab, as shown here:

8.	 Select ADD SETTING at the bottom of the page.
9.	 Next select ADD CREDENTIAL to add the type of setting.
10.	 Select Windows PowerShell Credential as CREDENTIAL TYPE

and enter PSAutomation as the name of the credential:

Automating Azure with PowerShell

[120]

11.	 Provide a username and password for the credentials. We will use the
username and password of the Microsoft account that we used to manage
Microsoft Azure:

12.	 Finally, click on the checkmark to finish the process.

For more information about Microsoft Azure Automation accounts, refer to the
following resources:

•	 Microsoft Azure Automation (https://msdn.microsoft.com/en-us/
library/azure/dn643629.aspx)

•	 Microsoft Azure Automation accounts (https://msdn.microsoft.com/
en-us/library/azure/dn794195.aspx)

Creating and managing runbooks in
Microsoft Azure
With the Microsoft Azure Automation account and credentials created in the
Creating a Microsoft Azure Automation account section, we can now create and
manage runbooks. We will use the following steps to create and manage runbooks:

Chapter 10

[121]

1.	 Open Microsoft Azure PowerShell from the Start menu and connect it to an
Azure subscription.

We must first be connected to Azure in order to create and
manage runbooks. If not connected to Azure, refer to the
Connecting to a Microsoft Azure subscription section in Chapter 1,
Getting Started with Azure and PowerShell.

2.	 Use the New-AzureAutomationRunbook cmdlet to create a new runbook:
PS C:\> New-AzureAutomationRunbook –Name "PSAutomationStarter"
–AutomationAccountName psautomation

3.	 Open Notepad or any plain text editor of your choice.
4.	 Define the runbook workflow with the following code:

workflow PSAutomationStarter
{
 # Retrieve credentials from the Automation account
 $creds = Get-AutomationPSCredential -Name 'PSAutomation'

 # Connect to the Azure account
 Add-AzureAccount -Credential $creds

 # Select Azure subscription
 Select-AzureSubscription -SubscriptionName 'Pay-As-You-
Go'

 # Get the Azure virtual machines in the Azure
subscription
 Get-AzureVM
}

In this workflow, we are retrieving the credentials we stored
in the Automation account, connecting to Azure, selecting
an Azure subscription, and getting a list of the Azure virtual
machines in the Azure subscription. To get the name of your
Azure subscription, use the Get-AzureSubscription cmdlet.

5.	 Save the runbook workflow as a .ps1 file, for example, C:\Files\Azure\
PSAutomationStarter.ps1.

Automating Azure with PowerShell

[122]

6.	 Use the Set-AzureAutomationRunbookDefinition cmdlet to set the
runbook workflow for the runbook we created in step 2:
PS C:\> Set-AzureAutomationRunbookDefinition –Name
|"PSAutomationStarter" –Path
C:\Files\Azure\PSAutomationStarter.ps1 –AutomationAccountName
psautomation -Overwrite

7.	 Use the Publish-AzureAutomationRunbook cmdlet to publish the runbook
workflow and make it available for use:
PS C:\> Publish-AzureAutomationRunbook –Name
PSAutomationStarter –AutomationAccountName psautomation

8.	 Use the Start-AzureAutomationRunbook cmdlet to run the runbook
workflow:
PS C:\> Start-AzureAutomationRunbook –Name PSAutomationStarter
–AutomationAccountName psautomation

9.	 Use the Get-AzureAutomationJob cmdlet to check the status of the
runbook workflow:
PS C:\> Get-AzureAutomationJob –RunbookName
PSAutomationStarter –AutomationAccountName psautomation

Chapter 10

[123]

10.	 If the status returns Completed, use the Get-AzureAutomationJobOutput
cmdlet to retrieve the output from the runbook workflow, using the ID
returned from the previous step:
PS C:\> Get-AzureAutomationJobOutput –Id 9da91f24-e5c6-4864-
b85e-856ed87345a6 –Stream Any –AutomationAccountName
psautomation

11.	 Use the New-AzureAutomationSchedule cmdlets to create a new schedule:
PS C:\> New-AzureAutomationSchedule –Name "DailyReport" –
StartTime (Get-Date).AddDays(1) –ExpiryTime (Get-
Date).AddDays(31) –Description "Daily report of VMs" –
AutomationAccountName psautomation

12.	 Use the Register-AzureAutomationScheduledRunbook cmdlet to associate
the runbook workflow with the newly created schedule:
PS C:\> Register-AzureAutomationScheduledRunbook –ScheduleName
"DailyReport" –Name "PSAutomationStarter" –
AutomationAccountName psautomation

13.	 Use the Unregister-AzureAutomationScheduledRunbook cmdlet to
remove the association with the schedule:
PS C:\> Unregister-AzureAutomationScheduledRunbook –
ScheduleName "DailyReport" –Name "PSAutomationStarter" –
AutomationAccountName psautomation

Automating Azure with PowerShell

[124]

14.	 Use the Remove-AzureAutomationSchedule cmdlet to remove the schedule:
PS C:\> Remove-AzureAutomationSchedule –Name "DailyReport" –
AutomationAccountName psautomation

15.	 Use the Remove-AzureAutomationRunbook cmdlet to remove the runbook
workflow:
PC C:\> Remove-AzureAutomationRunbook –Name
PSAutomationStarter –AutomationAccountName psautomation

For more information about Microsoft Azure Automation, runbooks, and the cmdlets
used in this section, refer to the following resources:

•	 Microsoft Azure Automation in Depth: Runbook Authoring (http://
azure.microsoft.com/blog/2014/07/03/azure-automation-in-depth-
runbook-authoring/)

•	 Azure Automation: Runbook Input, Output, and Nested Runbooks (http://
azure.microsoft.com/blog/2014/08/12/azure-automation-runbook-
input-output-and-nested-runbooks/)

•	 The New-Azure AutomationRunbook cmdlet (https://msdn.microsoft.
com/en-us/library/dn690272.aspx)

•	 The Set-AzureAutomationRunbookDefinition cmdlet (https://msdn.
microsoft.com/en-us/library/dn690267.aspx)

•	 The Publish-AzureAutomationRunbook cmdlet (https://msdn.
microsoft.com/en-us/library/dn690266.aspx)

•	 The Start-AzureAutomationRunbook cmdlet (https://msdn.microsoft.
com/en-us/library/dn690259.aspx)

•	 The Get-AzureAutomationJob cmdlet (https://msdn.microsoft.com/en-
us/library/dn690263.aspx)

•	 The Get-AzureAutomationJobOutput cmdlet (https://msdn.microsoft.
com/en-us/library/dn690268.aspx)

•	 The New-AzureAutomationSchedule cmdlet (https://msdn.microsoft.
com/en-us/library/dn690271.aspx)

•	 The Register-AzureAutomationScheduledRunbook cmdlet (https://
msdn.microsoft.com/en-us/library/dn690265.aspx)

•	 The Unregister-AzureAutomationScheduledRunbook cmdlet (https://
msdn.microsoft.com/en-us/library/dn690273.aspx)

•	 The Remove-AzureAutomationSchedule cmdlet (https://msdn.
microsoft.com/en-us/library/dn690279.aspx)

•	 The Remove-AzureAutomationRunbook cmdlet (https://msdn.microsoft.
com/en-us/library/dn690264.aspx)

Chapter 10

[125]

Summary
Microsoft Azure Automation provides a framework to streamline, automate, and
simplify complex and repetitive Azure management tasks. In this chapter, we started
out with creating a new Azure Automation account. We then created and managed
a simple Azure Automation runbook workflow. Using these techniques, nearly any
Microsoft Azure management task can be automated and scheduled.

Throughout this book, we explored how to use PowerShell to manage several
Microsoft Azure services. This book was by no means exhaustive. There are many
Azure services that we did not cover, such as RemoteApp, Machine Learning, Media
Services, Service Bus, Visual Studio Online, and Operational Insights. Microsoft
is continually improving its existing services and features and simultaneously
adding new ones. We encourage you to explore and discover what Microsoft Azure
has to offer. Visit http://azure.microsoft.com/en-us/ to see all of the current
Microsoft Azure offerings. Keep yourself up-to-date with the latest Microsoft Azure
announcements on the Microsoft Azure blog (http://azure.microsoft.com/
blog/). Also, check out the new and upcoming preview features of Microsoft Azure
at http://azure.microsoft.com/en-us/services/preview/.

We used Microsoft Azure PowerShell to accomplish most of the tasks throughout
this book. Microsoft Azure PowerShell is an open source project with new and
updated cmdlets added every month to make managing Azure services with
PowerShell more compelling, streamlined, and reproducible. The agility of this
toolset is made possible with the contributions of over one hundred contributors to
the project from around the globe. If you would like to contribute ideas, code, bug
fixes, and so on to the Microsoft Azure PowerShell project, refer to the project on
GitHub at https://github.com/Azure/azure-powershell.

Lastly, it's our sincere hope that the information in this book proves to be a valuable
foundation for you in managing Microsoft Azure with PowerShell. As you explore
the additional capabilities of Microsoft Azure and Microsoft Azure PowerShell,
it's more than likely that you will have questions. The Microsoft Azure forums
(https://social.msdn.microsoft.com/forums/azure/en-US/home) and Stack
Overflow (http://stackoverflow.com/questions/tagged/azure) are excellent
resources to discuss Microsoft Azure and Azure PowerShell with other IT and
development professionals from around the world.

[127]

Index
A
Add-AzureDataDisk cmdlet

URL 48
Add-AzureTrafficManagerEndpoint cmdlet

URL 87
Add-MsolGroupMember cmdlet

URL 113
Add-Type cmdlet

URL 34
Alexa

URL 79
Azure Active Directory

administrator account, creating 101-106
connecting to 100, 106
credentials, used for connecting

to Azure 9, 10
domain, configuring 110
domain, creating 107-109
resources 107
users and groups bulk-import, with

PowerShell 113-115
users and groups, managing 111, 112

Azure Blob storage
about 20
resources 21
uses 20

Azure Blog storage
illustrating 25, 26
permission levels 25
resources 26
using 25

Azure Cloud Service. See Microsoft Azure
Cloud Service

Azure File storage
about 20
resources 21, 24
tasks, completing 23, 24
uses 20
versus Azure Blob storage 19

Azure management portal
URL 17

Azure preview portal
URL 17

Azure Queue storage
about 28
queue, creating 28
resources 28
using 28

Azure SDK for .NET
URL 34

Azure storage account keys
obtaining 21, 22

Azure Table storage
about 26
components 27
resources 27
table, creating 27
using 26

Azure Virtual Network. See Microsoft
Azure Virtual Network

B
backup

creating, Azure storage used 29-34
Bing

URL 79

[128]

C
cloud-only virtual network 71
cmdlets 2
configuration file, Azure Virtual Network

creating 73, 74
resources 75

Confirm-MsolDomain cmdlet
URL 109

Connect-MsolService cmdlet
URL 107

cross-premises virtual network
about 71
ExpressRoute 72
point-to-site VPN 72
site-to-site VPN 71

D
deployment methods, Microsoft Azure

website content 67
distributing methods, traffic

failover 80
performance 80
round-robin 80

domain, Azure Active Directory
configuring 110
creating 107-109
reference link 111
resources 109

Dropbox
URL 67

E
ExpressRoute 72

F
ForEach-Object cmdlet

URL 115
Format-List cmdlet

URL 22
fully qualified domain name (FQDN) 108

G
Get-AzureAutomationJob cmdlet

URL 124
Get-AzureAutomationJobOutput cmdlet

URL 124
Get-AzureLocation cmdlet

URL 16
Get-AzureRemoteDesktopFile cmdlet

URL 94
Get-AzureRole cmdlet

URL 94
Get-AzureService cmdlet

URL 94
Get-AzureSqlDatabase cmdlet

URL 55
Get-AzureSqlDatabaseImportExportStatus

cmdlet
URL 62

Get-AzureStorageAccount cmdlet
URL 19

Get-AzureStorageBlob cmdlet
URL 47

Get-AzureStorageFile cmdlet
URL 24

Get-AzureStorageKey cmdlet
URL 22

Get-AzureTrafficManagerProfile cmdlet
URL 87

Get-AzureVM cmdlet
URL 44

Get-AzureVMImage cmdlet
URL 40

Get-AzureVNetSite cmdlet
URL 76

Get-AzureWebsite cmdlet
URL 66

Get-AzureWebsiteLog cmdlet
URL 69

Get-ChildItem cmdlet
URL 35

Get-Credential cmdlet
URL 56

Get-Date cmdlet
URL 35

[129]

Get-MsolGroupMember cmdlet
URL 113

Get-MsolPasswordPolicy cmdlet
URL 110

H
Hyper-V

URL 39

I
Import-Csv cmdlet

URL 115
Internet Information Services (IIS) 68
Internet live stats

URL 63

L
load balancing

about 79
Microsoft Azure website, creating for 81, 82

M
management certificate with

Microsoft Azure
reference link 9

Microsoft Azure
about 1
runbooks, creating 120-124
runbooks, managing 120-124
URL 1
URL, for blog 1

Microsoft Azure Active Directory Module
URL 100

Microsoft Azure Automation
account, creating 118-120
resources 124

Microsoft Azure Cloud Service
about 89
Azure virtual machine, connecting to 91-94
creating 95-97
managing 95-97
resources 90, 97

Microsoft Azure connection,
PowerShell used

about 5
Azure Active Directory credentials,

connecting to 9-11
Microsoft Azure subscription 6
Microsoft Azure subscription,

connecting to 9
publish settings file, using 11-13
software prerequisites 6

Microsoft Azure PowerShell
about 7
installing 8

Microsoft Azure SQL Databases
about 51, 56
creating 56
exporting 60
importing 60
managing 56
queries, executing with 57-59
removing 62
resources 52
resources, for exporting/importing 61

Microsoft Azure SQL Database Server
connecting to 52
connecting, with PowerShell 55, 56
creating 52
firewall rule, configuring 54, 55
provisioning 52, 53

Microsoft Azure storage account
creating 18, 19
reference link 19
services 19

Microsoft Azure subscription
URL 23

Microsoft Azure Traffic Manager
about 80
profiles, creating 83-87
profiles, managing 83-87
resources 81

Microsoft Azure virtual machines
about 38
connecting, to Azure Cloud Service 91-94
creating 39
images 38

[130]

instance, creating 41, 42
instance, removing 49, 50
instances, listing 43, 44
key components 38
managing 43
resources 39
snapshot, creating 45, 46
state, managing 44
URL 39
virtual disk, assigning to 48
virtual disk, creating 47, 48
virtual disk, removing 49
virtual disks 38
virtual machine image, selecting 39

Microsoft Azure Virtual Network
about 71
configuration, backing up 77
configuration, removing 78
configuration file, creating 73, 74
creating 72-76
managing 72-76
resources 72
virtual machine, creating 76
virtual networks 71

Microsoft Azure web hosting
URL 63

Microsoft Azure website
about 64
configuring 64-66
content, deploying 66
content, deploying from source control

system 66
content, deploying from Visual Studio

or WebMatrix 67
creating 64-66
creating, for load balancing 81, 82
creating, PowerShell used 14-16
managing 68, 69
resources 66

Microsoft Developer Network (MSDN) 6
Microsoft Online Services Sign-In Assistant

URL 100
Microsoft Visual Studio 67
Microsoft WebMatrix 67

N
New-Azure AutomationRunbook cmdlet

URL 124
New-AzureAutomationSchedule cmdlet

URL 124
New-AzureQuickVM cmdlet

URL 42
New-AzureSqlDatabase cmdlet

URL 57
New-AzureSqlDatabaseFirewallRule

cmdlet
URL 55

New-AzureSqlDatabaseServer cmdlet
URL 53

New-AzureSqlDatabaseServerContext
cmdlet

URL 56
New-AzureStorageAccount cmdlet

URL 19
New-AzureStorageContainer cmdlet

URL 26
New-AzureStorageContext cmdlet

URL 24
New-AzureStorageDirectory cmdlet

URL 24
New-AzureStorageQueue cmdlet

URL 28
New-AzureStorageShare cmdlet

URL 24
New-AzureStorageTable cmdlet

URL 27
New-AzureTrafficManagerProfile cmdlet

URL 87
New-AzureWebsite cmdlet

URL 16
New-MsolDomain cmdlet

URL 109
New-MsolGroup cmdlet

URL 113
New-MsolUser cmdlet

URL 112
New-Object cmdlet

URL 35
no virtual network 71

[131]

O
Office 365 99
organizational units (OUs) 111

P
permission levels, Azure Blog storage

blob 25
container 25
off 25

point-to-site VPN 72
PowerShell Community Extensions

URL 35
PowerShell ISE 4
Publish-AzureAutomationRunbook cmdlet

URL 124
publish settings file

used, for connecting to Azure 11-14

R
Register-AzureAutomationScheduled

Runbook cmdlet
URL 124

Remote Desktop Protocol (RDP)
URL 95

Remove-AzureAutomationRunbook cmdlet
URL 124

Remove-AzureDataDisk cmdlet
URL 48

Remove-AzureStorageAccount cmdlet
URL 19

Remove-AzureTrafficManagerEndpoint
cmdlet

URL 87
Remove-AzureTrafficManagerProfile cmdlet

URL 87
Remove-AzureVM cmdlet

URL 50
Remove-AzureVNetConfig cmdlet

URL 78
Remove-AzureWebsite cmdlet

URL 69
Restart-AzureVM cmdlet

URL 45

runbooks
about 117
creating, in Azure 120-124
managing, in Azure 120-124
resources 124

S
Salesforce.com 99
Select-Object cmdlet

URL 42
Server Message Block (SMB) protocol 20
Set-AzureAutomationRunbookDefinition

cmdlet
URL 124

Set-AzureStorageBlobContent cmdlet
URL 26

Set-AzureStorageFileContent cmdlet
URL 24

Set-AzureTrafficManagerProfile cmdlet
URL 87

Set-AzureVNetConfig cmdlet
URL 76

Set-AzureWebsite cmdlet
URL 66

Set-Content cmdlet
URL 24

Set-MsolGroup cmdlet
URL 113

Set-MsolPasswordPolicy cmdlet
URL 110

Set-MsolUser cmdlet
URL 113

Show-AzureWebsite cmdlet
URL 66

site-to-site VPN 71
software prerequisites, Microsoft Azure

connection
Microsoft Azure PowerShell 7
Windows PowerShell 3.0 6, 7

Start-AzureAutomationRunbook cmdlet
URL 124

Start-AzureSqlDatabaseExport cmdlet
URL 62

[132]

Start-AzureSqlDatabaseImport cmdlet
URL 62

Start-AzureStorageBlobCopy cmdlet
URL 47

Start-AzureVM cmdlet
URL 45

Start-AzureWebsite cmdlet
URL 69

Stop-AzureVM cmdlet
URL 45

Stop-AzureWebsite cmdlet
URL 69

System.Data.DataTable class
URL 60

System.Data.SqlClient.SqlCommand class
URL 60

System.Data.SqlClient.SqlConnection class
URL 60

System.Data.SqlClient.SqlDataAdapter
class

URL 60

U
Unregister-AzureAutomation

ScheduledRunbook cmdlet
URL 124

Update-AzureVM cmdlet
URL 49

users and groups, Azure Active Directory
managing 111, 112

user traffic
distributing methods 80

V
virtual machine (VM)

about 37
URL 39

virtual networks, Microsoft Azure Virtual
Network

cloud-only virtual network 71
cross-premises virtual network 71
no virtual network 71

Visual Studio online
URL 66

W
Where-Object cmdlet

URL 40
Windows PowerShell

about 2-4
cmdlets 2
resources 5
versions 5

Windows PowerShell Integrated Scripting
Environment. See PowerShell ISE

Windows PowerShell Pipeline
URL 22

Thank you for buying
Automating Microsoft Azure with PowerShell

About Packt Publishing
Packt, pronounced 'packed', published its first book, Mastering phpMyAdmin for Effective MySQL
Management, in April 2004, and subsequently continued to specialize in publishing highly
focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution-based books give
you the knowledge and power to customize the software and technologies you're using to get
the job done. Packt books are more specific and less general than the IT books you have seen in
the past. Our unique business model allows us to bring you more focused information, giving
you more of what you need to know, and less of what you don't.

Packt is a modern yet unique publishing company that focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website at www.packtpub.com.

About Packt Enterprise
In 2010, Packt launched two new brands, Packt Enterprise and Packt Open Source, in order
to continue its focus on specialization. This book is part of the Packt Enterprise brand, home
to books published on enterprise software – software created by major vendors, including
(but not limited to) IBM, Microsoft, and Oracle, often for use in other corporations. Its titles
will offer information relevant to a range of users of this software, including administrators,
developers, architects, and end users.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would
like to discuss it first before writing a formal book proposal, then please contact us; one of our
commissioning editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

PowerShell 3.0 Advanced
Administration Handbook
ISBN: 978-1-84968-642-6 Paperback: 370 pages

A fast-paced PowerShell guide with real-world
scenarios and detailed solutions

1.	 Discover and understand the concept of
Windows PowerShell 3.0.

2.	 Learn the advanced topics and techniques
for a professional PowerShell scripting.

3.	 Explore the secret of building custom
PowerShell snap-ins and modules.

4.	 Take advantage of PowerShell integration
capabilities with other technologies for better
administration skills.

Microsoft Windows Azure
Development Cookbook
ISBN: 978-1-84968-222-0 Paperback: 392 pages

Over 80 advanced recipes for developing scalable
services with the Windows Azure platform

1.	 Packed with practical, hands-on recipes for
building advanced, scalable cloud-based
services on the Windows Azure platform
explained in detail to maximize your learning.

2.	 Extensive code samples showing how to use
advanced features of Windows Azure blobs,
tables, and queues.

3.	 Understand remote management of Azure
services using the Windows Azure Service
Management REST API.

Please check www.PacktPub.com for information on our titles

Windows Azure Programming
Patterns for Start-ups
ISBN: 978-1-84968-560-3 Paperback: 292 pages

A step-by-step guide to create easy solutions to build
your business using Windows Azure services

1.	 Explore the different features of Windows
Azure and its unique concepts.

2.	 Get to know the Windows Azure platform by
code snippets and samples by a single start-up
scenario throughout the whole book.

3.	 A clean example scenario demonstrates
the different Windows Azure features.

Instant Windows PowerShell
ISBN: 978-1-84968-874-1 Paperback: 54 pages

Manage and automate your Windows Server
Environment efficiently using PowerShell

1.	 Learn something new in an Instant!
A short, fast, focused guide delivering
immediate results.

2.	 Learn to use PowerShell web access to secure
Windows management anywhere, any time,
on any device.

3.	 Understand to secure and sign the scripts
you write using the script signing feature
in PowerShell.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Author
	Acknowledgments
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Getting Started with Azure and PowerShell
	Introducing Windows PowerShell
	Connecting to Microsoft Azure using PowerShell
	Microsoft Azure subscriptions
	Software prerequisites
	Windows PowerShell 3.0 or newer
	Microsoft Azure PowerShell

	Connecting to a Microsoft Azure subscription
	Connecting to Azure using Azure Active Directory credentials
	Connecting to Azure using a publish
settings file

	Creating a Microsoft Azure website using PowerShell
	Summary

	Chapter 2: Managing Azure Storage
with PowerShell
	Creating a Microsoft Azure storage account
	Azure File storage versus Azure Blob storage
	Azure File storage
	Azure Blob storage

	Getting the Azure storage account keys
	Using Azure File storage
	Using Azure Blog storage
	Using Azure Table storage
	Using Azure Queue storage
	Using Microsoft Azure storage to back
up files
	Summary

	Chapter 3: Managing Azure Virtual Machines with PowerShell
	Virtual machines in Microsoft Azure
	Creating a Microsoft Azure virtual machine
	Selecting a virtual machine image
	Creating a virtual machine

	Managing Microsoft Azure virtual machines
	Listing the instances of Microsoft Azure virtual machines
	Managing the state of Microsoft Azure virtual machine instances
	Creating a snapshot of a Microsoft Azure virtual machine instance
	Creating a new virtual disk and assigning it to a Microsoft Azure virtual machine instance
	Removing a Microsoft Azure virtual machine instance

	Summary

	Chapter 4: Managing Azure SQL Databases with PowerShell
	Creating and connecting to Microsoft Azure SQL Database Servers
	Provisioning a new Microsoft Azure SQL Database Server
	Configuring a firewall rule for a Microsoft Azure SQL Database server
	Connecting to a Microsoft Azure SQL Database Server with PowerShell

	Creating and managing Microsoft Azure SQL Databases
	Creating a new Microsoft Azure SQL Database
	Executing queries with a Microsoft Azure SQL Database
	Exporting and importing a Microsoft Azure SQL Database
	Removing a Microsoft Azure SQL Database

	Summary

	Chapter 5: Deploying and Managing Azure Websites with PowerShell
	Creating and configuring a new Microsoft Azure website
	Deploying Microsoft Azure website content
	Deploying from a source control system
	Deploying from Visual Studio or WebMatrix
	Other deployment methods

	Managing Microsoft Azure websites
	Summary

	Chapter 6: Managing Azure Virtual Networks with PowerShell
	Creating and managing an Azure Virtual Network
	Creating an Azure Virtual Network configuration file
	Creating an Azure Virtual Network
	Creating virtual machines in an Azure Virtual Network
	Backing up an Azure Virtual Network configuration
	Removing an Azure Virtual Network configuration

	Summary

	Chapter 7: Managing Azure Traffic Manager with PowerShell
	Creating Microsoft Azure websites for load balancing
	Creating and managing Microsoft Azure Traffic Manager profiles
	Summary

	Chapter 8: Managing Azure Cloud Services with PowerShell
	Connecting to a Microsoft Azure virtual machine with a Microsoft Azure Cloud Service
	Creating and managing Microsoft Azure Cloud Services
	Summary

	Chapter 9: Managing Azure Active Directory with PowerShell
	Connecting to Azure Active Directory
	Creating an administrator account
	Connecting to Azure Active Directory

	Creating a new Azure Active Directory domain
	Configuring an Azure Active Directory domain
	Managing Azure Active Directory users and groups
	Using PowerShell to bulk import users and groups into Azure Active Directory
	Summary

	Chapter 10: Automating Azure
with PowerShell
	Creating a Microsoft Azure Automation account
	Creating and managing runbooks in Microsoft Azure
	Summary

	Index

