Neependra Khare

Docker
COOKDOOK

80 hands-on recipes to efficiently work with the Docker 1.6
environment on Linux

111 Packt

Docker Cookbook

80 hands-on recipes to efficiently work with the Docker 1.6
environment on Linux

Neependra Khare

open source

community experience distilled

PUBLISHING
BIRMINGHAM - MUMBAI

Docker Cookbook

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the publisher,
except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its dealers
and distributors will be held liable for any damages caused or alleged to be caused directly or
indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies
and products mentioned in this book by the appropriate use of capitals. However, Packt
Publishing cannot guarantee the accuracy of this information.

First published: June 2015

Production reference: 1080615

Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham B3 2PB, UK.

ISBN 978-1-78398-486-2

www . packtpub.com

Credits

Author
Neependra Khare

Reviewers
Scott Collier

Julien Duponchelle
Allan Espinosa

Vishnu Gopal

Acquisition Editor
Kevin Colaco

Content Development Editor

Rohit Kumar Singh

Technical Editor
Vivek Arora

Copy Editors
Puja Lalwani

Laxmi Subramanian

Project Coordinator
Mary Alex

Proofreaders
Stephen Copestake

Safis Editing

Indexer
Tejal Soni

Graphics
Abhinash Sahu

Production Coordinator

Aparna Bhagat

Cover Work
Aparna Bhagat

About the Author

Neependra Khare is currently working as a principal performance engineer in Red Hat's
system design and engineering team. He has more than 11 years of IT experience. Earlier,
he worked as a system administrator, support engineer, and filesystem developer. He loves
teaching. He has conducted a few corporate training sessions and taught full semester
courses. He is also a co-organizer of the Docker Meetup Group, in Bangalore, India.

He lives with his wife and two-year-old daughter in Bangalore, India. His Twitter handle is
@neependra and his personal website is http://neependra.net/. He has also created
a website for the book, which you can visit at http: //dockercookbook.github.io/.

I would like to thank my parents who fought all odds and made me the
person | am today. My wife, Kanika, has been the first and best support for
this book. She took care of our daughter, Navya, when | was away writing
this book.

It has been a bigger piece than expected, as new features in Docker and the
ecosystems around it were evolving very fast. | have learned a lot during the
process and the Docker community (blogs, IRC, mailing list, and meet ups)
has been of great help.

I am thankful to all the reviewers of the book, who gave their valuable time
to go through the content, pointed out my mistakes, and provided me with
great suggestions.

I would also like to thank my current employer who gave me some time
to work on this book and my coworker Jeremy Eder (2jeremyeder) from
whom | learned a lot.

About the Reviewers

Scott Collier is a senior principal system engineer in the systems design and engineering
team at Red Hat. He is currently focused on product integration for anything that has to do
with containers. He is a Red Hat Certified Architect (RHCA) with over 18 years of experience
inIT.

He was also a technical reviewer on The Docker Book.

I would like to say thanks to Neependra for giving me the opportunity to
collaborate on this book. It was a pleasure! I'd also like to thank my wife,
Laura, for giving me the weekends to do this review.

Julien Duponchelle is a French engineer. He is a graduate of Epitech. During his work
experience, he contributed to several open source projects and focused on tools, which
make the work of IT teams easier.

After he directed the educational area at ETNA, a French IT school, he has accompanied
several start-ups as a lead backend engineer and participated in many significant and
successful fund raising events (Plizy and Youboox).

I would like to warmly thank, Maélig, my girlfriend, for her benevolence and
great patience at the time when | was working on this book or on open
source projects in general, over so many evenings.

Allan Espinosa is an active open source contributor to various distributed system tools
such as Docker and Chef. He maintains several Docker images for popular open source
software that were popular before the official release from the upstream open source
groups themselves.

He completed his master's of science in computer science from the University of Chicago.

There, he worked on scaling data-intensive applications across supercomputing centers
in the United States.

| would like to thank my wife, Kana, for the continuous support that allowed
me to spend significant time with this review project.

Vishnu Gopal has a degree in Human-Computer Interaction from University
College London, and was a part of the team that built SlideShare, which was then
acquired by LinkedIn. He has picked up a variety of skills in his career, from having
worked as a software engineer to architecting products that have served millions of
users a day. He blogs at http://vishnugopal . com and still likes to be known by
his GitHub profile at http://github.com/vishnugopal.

I would like to thank my wife, Uma, for her smiles and constant distractions
that keep me sane.

www.PacktPub.com

Support files, eBooks, discount offers, and more
For support files and downloads related to your book, please visit www . PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www . PacktPub.com and as a print

book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www . PacktPub. com, you can also read a collection of free technical articles, sign up
for a range of free newsletters and receive exclusive discounts and offers on Packt books
and eBooks.

[@ PACKT

https://www2.packtpub.com/books/subscription/packtlib

®

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can search, access, and read Packt's entire library of books.

Why Subscribe?

» Fully searchable across every book published by Packt
» Copy and paste, print, and bookmark content

» On demand and accessible via a web browser

Free Access for Packt account holders

If you have an account with Packt at www . PacktPub. com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

Table of Contents

Preface v
Chapter 1. Introduction and Installation 1
Introduction 1
Verifying the requirements for Docker installation 9
Installing Docker 10
Pulling an image and running a container 11
Adding a nonroot user to administer Docker 14
Setting up the Docker host with Docker Machine 15
Finding help with the Docker command line 18
Chapter 2: Working with Docker Containers 19
Introduction 20
Listing/searching for an image 20
Pulling an image 22
Listing images 24
Starting a container 25
Listing containers 28
Looking at the logs of containers 29
Stopping a container 30
Deleting a container 31
Setting the restart policy on a container 33
Getting privileged access inside a container 34
Exposing a port while starting a container 35
Accessing the host device inside the container 36
Injecting a new process to a running container 37
Returning low-level information about a container 38
Labeling and filtering containers 40

Table of Contents

Chapter 3: Working with Docker Images 43
Introduction 44
Creating an account with Docker Hub 45
Creating an image from the container 46
Publishing an image to the registry 48
Looking at the history of an image 50
Deleting an image 51
Exporting an image 53
Importing an image 54
Building images using Dockerfiles 54
Building an Apache image - a Dockerfile example 60
Accessing Firefox from a container - a Dockerfile example 63
Building a WordPress image - a Dockerfile example 67
Setting up a private index/registry 72
Automated builds - with GitHub and Bitbucket 76
Creating the base image - using supermin 79
Creating the base image - using Debootstrap 81
Visualizing dependencies between layers 82

Chapter 4: Network and Data Management for Containers 83
Introduction 83
Accessing containers from outside 88
Managing data in containers 90
Linking two or more containers 94
Developing a LAMP application by linking containers 96
Networking of multihost containers with Flannel 98
Assigning IPv6 addresses to containers 103

Chapter 5: Docker Use Cases 107
Introduction 107
Testing with Docker 108
Doing Cl/CD with Shippable and Red Hat OpenShift 111
Doing Cl/CD with Drone 117
Setting up PaaS with OpenShift Origin 120
Building and deploying an app on OpenShift v3 from the source code 124
Configuring Docker as a hypervisor driver for OpenStack 128

Chapter 6: Docker APIs and Language Bindings 133
Introduction 133
Configuring the Docker daemon remote API 134
Performing image operations using remote APls 136
Performing container operations using remote APIs 139

Table of Contents

Exploring Docker remote API client libraries 141
Securing the Docker daemon remote API 142
Chapter 7: Docker Performance 147
Introduction 147
Benchmarking CPU performance 151
Benchmarking disk performance 153
Benchmarking network performance 155
Getting container resource usage using the stats feature 157
Setting up performance monitoring 158
Chapter 8: Docker Orchestration and Hosting Platforms 161
Introduction 161
Running applications with Docker Compose 163
Setting up cluster with Docker Swarm 165
Setting up CoreOS for Docker orchestration 167
Setting up a Project Atomic host 172
Doing atomic update/rollback with Project Atomic 177
Adding more storage for Docker in Project Atomic 178
Setting up Cockpit for Project Atomic 182
Setting up a Kubernetes cluster 185
Scaling up and down in a Kubernetes cluster 188
Setting up WordPress with a Kubernetes cluster 190
Chapter 9: Docker Security 197
Introduction 197
Setting Mandatory Access Control (MAC) with SELinux 200
Allowing writes to volume mounted from the host with SELinux ON 203
Removing capabilities to breakdown the power of a root user
inside a container 204
Sharing namespaces between the host and the container 206
Chapter 10: Getting Help and Tips and Tricks 209
Introduction 209
Starting Docker in debug mode 210
Building a Docker binary from the source 211
Building images without using cached layers 212
Building your own bridge for container communication 212
Changing the default execution driver of Docker 214
Selecting the logging driver for containers 214
Getting real-time Docker events for containers 215
Index 219

Preface

With Docker™, containers are becoming mainstream and enterprises are ready to use them in
production. This book is specially designed to help you get up-to-speed with the latest Docker
version and give you the confidence to use it in production. This book also covers Docker use
cases, orchestration, clustering, hosting platforms, security, and performance, which will help
you understand the different aspects of production deployment.

Docker and its ecosystem are evolving at a very high pace, so it is very important to understand
the basics and build group up to adopt to new concepts and tools. With step-by-step
instructions to practical and applicable recipes, Docker Cookbook will not only help you with
the current version of Docker (1.6), but with the accompanying text it, will provide you with
conceptual information to cope up with the minor changes in the new versions of Docker.

To know more about the book, visit http://dockercookbook.github.io/.

Docker™ is a registered trademark of Docker, Inc.

What this book covers

Chapter 1, Introduction and Installation, compares containers with bare metal and virtual
machines. It helps you understand Linux kernel features, which enables containerization;
finally, we'll take a look at installation recipes.

Chapter 2, Working with Docker Containers, covers most of the container-related recipes such
as starting, stopping, and deleting containers. It also helps you to get low-level information
about containers.

Chapter 3, Working with Docker Images, explains image-related operations such as pulling,
pushing, exporting, importing, base image creation, and image creation using Dockerfiles.
We also set up a private registry.

Chapter 4, Network and Data Management for Containers, covers recipes to connect a
container with another container, in the external world. It also covers how we can share
external storage from other containers and the host system.

(v |-

http://dockercookbook.github.io/

Preface

Chapter 5, Docker Use Cases, explains most of the Docker use cases such as using Docker
for testing, Cl/CD, setting up Paa$S, and using it as a compute engine.

Chapter 6, Docker APIs and Language Bindings, covers Docker remote APIs and Python
language bindings as examples.

Chapter 7, Docker Performance, explains the performance approach one can follow
to compare the performance of containers with bare metal and VMs. It also covers
monitoring tools.

Chapter 8, Docker Orchestration and Hosting Platforms, provides an introduction to Docker
compose and Swarm. We look at CoreOS and Project Atomic as container-hosting platforms
and then Kubernetes for Docker Orchestration.

Chapter 9, Docker Security, explains general security guidelines, SELinux for mandatory
access controls, and other security features such as changing capabilities and sharing
namespaces.

Chapter 10, Getting Help and Tips and Tricks, provides tips and tricks and resources to get
help related to Docker administration and development.

What you need for this book

The recipes in this cookbook will definitely run on Fedora 21-installed physical machines

or VMs, as | used that configuration as the primary environment. As Docker can run on
many platforms and distributions, you should be able to run most of the recipes without any
problem. For a few recipes, you will also need Vagrant (https://www.vagrantup.com/)
and Oracle Virtual Box (https://www.virtualbox.org/).

Who this book is for

Docker Cookbook is for developers, system administrators, and DevOps engineers who want
to use Docker in his/her development, QA, or production environments.

It is expected that the reader has basic Linux/Unix skills such as installing packages, editing
files, managing services, and so on.

Any experience in virtualization technologies such as KVM, XEN, and VMware will help the
reader to relate with container technologies better, but it is not required.

https://www.vagrantup.com/
https://www.virtualbox.org/

Preface

In this book, you will find several headings that appear frequently (Getting ready, How to do it,
How it works, There's more, and See also).

To give clear instructions on how to complete a recipe, we use these sections as follows:

Getting ready

This section tells you what to expect in the recipe, and describes how to set up any software or
any preliminary settings required for the recipe.

How to do it...

This section contains the steps required to follow the recipe.

This section usually consists of a detailed explanation of what happened in the previous section.

There's more...

This section consists of additional information about the recipe in order to make the reader
more knowledgeable about the recipe.

See also

This section provides helpful links to other useful information for the recipe.

In this book, you will find a number of text styles that distinguish between different kinds of
information. Here are some examples of these styles and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: "You can use
the --driver/-d option to create choosing one of many endpoints available for deployment."

Preface

A block of code is set as follows:

[Unit]
Description=MyApp
After=docker.service
Requires=docker.service

[Service]

TimeoutStartSec=0
ExecStartPre=-/usr/bin/docker kill busyboxl
ExecStartPre=-/usr/bin/docker rm busyboxl
ExecStartPre=/usr/bin/docker pull busybox

ExecStart=/usr/bin/docker run --name busyboxl busybox /bin/sh -c
"while true; do echo Hello World; sleep 1; done"

When we wish to draw your attention to a particular part of a code block, the relevant lines or
items are set in bold:

[Service]

Type=notify
EnvironmentFile=-/etc/sysconfig/docker
EnvironmentFile=-/etc/sysconfig/docker-storage

ExecStart=/usr/bin/docker -d -H £d:// $OPTIONS
$DOCKER_STORAGE_OPTIONS

LimitNOFILE=1048576
LimitNPROC=1048576

[Install]
WantedBy=multi-user.target

Any command-line input or output is written as follows:
$ docker pull fedora

New terms and important words are shown in bold. Words that you see on the screen, for
example, in menus or dialog boxes, appear in the text like this: "Go to the project home page
and under the APIs & auth section, select APls, and enable Google Compute Engine APL."

Warnings or important notes appear in a box like this.

a1

Q Tips and tricks appear like this.

Preface

Reader feedback

Feedback from our readers is always welcome. Let us know what you think about this book—
what you liked or disliked. Reader feedback is important for us as it helps us develop titles
that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention the
book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support

Now that you are the proud owner of a Packt book, we have a number of things to help you to
get the most from your purchase.

Although we have taken every care to ensure the accuracy of our content, mistakes do happen.
If you find a mistake in one of our books—maybe a mistake in the text or the code—we would be
grateful if you could report this to us. By doing so, you can save other readers from frustration
and help us improve subsequent versions of this book. If you find any errata, please report
them by visiting http://www.packtpub.com/submit-errata, selecting your book,
clicking on the Errata Submission Form link, and entering the details of your errata. Once your
errata are verified, your submission will be accepted and the errata will be uploaded to our
website or added to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Piracy of copyrighted material on the Internet is an ongoing problem across all media. At
Packt, we take the protection of our copyright and licenses very seriously. If you come across
any illegal copies of our works in any form on the Internet, please provide us with the location
address or website name immediately so that we can pursue a remedy.

Please contact us at copyrighte@epacktpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors and our ability to bring you valuable content.

[ix |-

www.packtpub.com/authors
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

Preface

If you have a problem with any aspect of this book, you can contact us at questionse
packtpub.com, and we will do our best to address the problem.

Introduction and
Installation

In this chapter, we will cover the following recipes:

» Verifying the requirements for Docker installation
» Installing Docker

» Pulling an image and running a container

» Adding a nonroot user to administer Docker

» Setting up the Docker host with Docker Machine

» Finding help with the Docker command line

Introduction

At the very start of the IT revolution, most applications were deployed directly on physical
hardware, over the host OS. Because of that single user space, runtime was shared between
applications. The deployment was stable, hardware-centric, and had a long maintenance
cycle. It was mostly managed by an IT department and gave a lot less flexibility to developers.
In such cases, hardware resources were regularly underutilized.

Introduction and Installation

The following diagram depicts such a setup:

TRADITIONAL

APP A APP B ﬂ

BINS/LIBS

0S & SHARED SERVICES

HARDWARE

Traditional application deployment (https://rhsummit.files.wordpress.com/2014/04/
rhsummit20l4-application-centric packaging with docker and linux containers-
20140412riek7.pdf)

To overcome the limitations set by traditional deployment, virtualization was invented. With
hypervisors such as KVM, XEN, ESX, Hyper-V, and so on, we emulated the hardware for virtual
machines (VMs) and deployed a guest OS on each virtual machine. VMs can have a different
0S than their host; that means we are responsible for managing the patches, security, and
performance of that VM. With virtualization, applications are isolated at VM level and defined
by the life cycle of VMs. This gives better return on investment and higher flexibility at the
cost of increased complexity and redundancy. The following diagram depicts a typical
virtualized environment:

INFRASTRUCTURE AS A SERVICE (IAAS)

APP A APP A APP B

BINS/ BINS/ BINS/
LIBS LIBS LIBS

GUEST GUEST GUEST
0s 0s 0s

HYPERVISOR

HOST 0S

SERVER

Application deployment in a virtualized environment (https://rhsummit.files.wordpress.com/2014/04/
rhsummit2014-application-centric packaging with docker and linux containers-
20140412riek7.pdf)

—21

https://rhsummit.files.wordpress.com/2014/04/rhsummit2014-application-centric_packaging_with_docker_and_linux_containers-20140412riek7.pdf
https://rhsummit.files.wordpress.com/2014/04/rhsummit2014-application-centric_packaging_with_docker_and_linux_containers-20140412riek7.pdf
https://rhsummit.files.wordpress.com/2014/04/rhsummit2014-application-centric_packaging_with_docker_and_linux_containers-20140412riek7.pdf
https://rhsummit.files.wordpress.com/2014/04/rhsummit2014-application-centric_packaging_with_docker_and_linux_containers-20140412riek7.pdf
https://rhsummit.files.wordpress.com/2014/04/rhsummit2014-application-centric_packaging_with_docker_and_linux_containers-20140412riek7.pdf
https://rhsummit.files.wordpress.com/2014/04/rhsummit2014-application-centric_packaging_with_docker_and_linux_containers-20140412riek7.pdf

Chapter 1

After virtualization, we are now moving towards more application-centric IT. We have removed
the hypervisor layer to reduce hardware emulation and complexity. The applications are
packaged with their runtime environment and are deployed using containers. OpenVZ, Solaris
Zones, and LXC are a few examples of container technology. Containers are less flexible
compared to VMs; for example, we cannot run Microsoft Windows on a Linux OS. Containers
are also considered less secure than VMs, because with containers, everything runs on the
host OS. If a container gets compromised, then it might be possible to get full access to

the host OS. It can be a bit too complex to set up, manage, and automate. These are a few
reasons why we have not seen the mass adoption of containers in the last few years, even
though we had the technology.

Application-Centric IT & PaaS

HOST 0S, SHARED SERVICES

HARDWARE, VIRT, CLOUD

Application deployment with containers (https://rhsummit.files.wordpress.com/2014/04/
rhsummit201l4-application-centric_packaging with docker_and linux containers-
20140412riek7.pdf)

With Docker, containers suddenly became first-class citizens. All big corporations such as
Google, Microsoft, Red Hat, IBM, and others are now working to make containers mainstream.

Docker was started as an internal project by Solomon Hykes, who is the current CTO of
Docker, Inc., at dotCloud. It was released as open source in March 2013 under the Apache
2.0 license. With dotCloud's platform as a service experience, the founders and engineers of
Docker were aware of the challenges of running containers. So with Docker, they developed
a standard way to manage containers.

https://rhsummit.files.wordpress.com/2014/04/rhsummit2014-application-centric_packaging_with_docker_and_linux_containers-20140412riek7.pdf
https://rhsummit.files.wordpress.com/2014/04/rhsummit2014-application-centric_packaging_with_docker_and_linux_containers-20140412riek7.pdf
https://rhsummit.files.wordpress.com/2014/04/rhsummit2014-application-centric_packaging_with_docker_and_linux_containers-20140412riek7.pdf

Introduction and Installation

Docker uses Linux's underlying kernel features which enable containerization. The following
diagram depicts the execution drivers and kernel features used by Docker. We'll talk about
execution drivers later. Let's look at some of the major kernel features that Docker uses:

Docker *
libcontainer

4 4 A

Lo systemd-
[libvirt }[Ixc }[nspawn }

-
Linux
cgroups namespaces netlink

selinux netfilter e

el F &
capabilities apparmor 7 5
x L =
et

The execution drivers and kernel features used by Docker (http://blog.docker.com/wp-content/
uploads/2014/03/docker-execdriver-diagram.png)

Namespaces

Namespaces are the building blocks of a container. There are different types of namespaces
and each one of them isolates applications from each other. They are created using the clone
system call. One can also attach to existing namespaces. Some of the namespaces used by
Docker have been explained in the following sections.

The pid namespace

The pid namespace allows each container to have its own process numbering. Each pid
forms its own process hierarchy. A parent namespace can see the children namespaces
and affect them, but a child can neither see the parent namespace nor affect it.

If there are two levels of hierarchy, then at the top level, we would see a process running
inside the child namespace with a different PID. So, a process running in a child namespace
would have two PIDs: one in the child namespace and the other in the parent namespace.
For example, if we run a program on the container (container. sh), then we can see the
corresponding program on the host as well.

—4a1]

http://blog.docker.com/wp-content/uploads/2014/03/docker-execdriver-diagram.png
http://blog.docker.com/wp-content/uploads/2014/03/docker-execdriver-diagram.png

Chapter 1

On the container:

bash-4.3# ps aux | grep container
0.0 11664 2656 ? S 07:37 0:00 sh container.sh

0.0 9084 840 7 S+ 07:43 0:00 grep container

On the host:

[root@dockerhost ~]# ps aux | grep container

root 29778 0.0 0.0 11664 2660 pts/3 S 07:37 0:00 sh .sh
root 29912 0.0 0.0 113004 2160 pts/4 S+ 07:45 0:00 grep --color=auto
[root@dockerhost ~1# []

The net namespace

With the pid namespace, we can run the same program multiple times in different isolated
environments; for example, we can run different instances of Apache on different containers.
But without the net namespace, we would not be able to listen on port 80 on each one of
them. The net namespace allows us to have different network interfaces on each container,
which solves the problem | mentioned earlier. Loopback interfaces would be different in each
container as well.

To enable networking in containers, we can create pairs of special interfaces in two different
net namespaces and allow them to talk to each other. One end of the special interface
resides inside the container and the other in the host system. Generally, the interface inside
the container is named etho0, and in the host system, it is given a random name such as
vethcfla. These special interfaces are then linked through a bridge (docker0) on the host
to enable communication between containers and route packets.

Inside the container, you would see something like the following:

bash-4.3# ip a
1: lo: <LOOPBACK, UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN group default
1link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
inet 127.0.0.1/8 scope host lo
valid_1ft forever preferred_l1ft forever
inet6é ::1/128 scope host
valid_1ft forever preferred_l1ft forever
1 eth0: <BROADCAST,UP,LOWER_UP> mtu 1500 qdisc noqueue state UP group default
link/ether 02:42:ac:11:00:0b brd ff:ff:ff:ff:ff:ff
inet 172.17.0.11/16 scope global etho
valid_1ft forever preferred_l1ft forever
inet6 2001:db8:1::242:acll:b/64 scope global
valid_1ft forever preferred_l1ft forever
inet6 feB80::42:acff:fell:b/64 scope link
valid_1ft forever preferred_lft forever
bash-4.3# [|

Introduction and Installation

And in the host, it would look like the following:

244: docker0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue state UP group default
link/ether 56:84:7a:fe:97:99 brd ff:ff:ff:ff:ff:ff
inet 172.17.42.1/16 scope global dockero
valid_1ft forever preferred_l1ft forever
inet6 fe80::5484:7aff:fefe:9799/64 scope link
valid_1ft forever preferred_lft forever
inet6é fe80::1/64 scope link

valid_1ft forever preferred_l1ft forever
1 veth25448b8: <BROADCAST,UP,LOWER_UP> mtu 1500 qdisc noqueue master docker® state UP group de
fault
link/ether f6:c4:52:c4:68:ba brd ff:ff:ff:ff:ff:ff
inet6 fe80::f4c4:52ff:fec4:68ba/64 scope link
valid_1ft forever preferred_l1ft forever
[root@dockerhost ~1# []

Also, each net namespace has its own routing table and firewall rules.

The ipc namespace

Inter Process Communication (ipc) provides semaphores, message queues, and shared
memory segments. It is not widely used these days but some programs still depend on it.

If the ipc resource created by one container is consumed by another container, then the
application running on the first container could fail. With the ipc namespace, processes
running in one namespace cannot access resources from another namespace.

The mnt namespace

With just a chroot, one can inspect the relative paths of the system from a chrooted
directory/namespace. The mnt namespace takes the idea of a chroot to the next level.
With the mnt namespace, a container can have its own set of mounted filesystems and
root directories. Processes in one mnt hamespace cannot see the mounted filesystems
of another mnt namespace.

The uts namespace
With the uts namespace, we can have different hostnames for each container.

The user namespace

With user namespace support, we can have users who have a nonzero ID on the host but
can have a zero ID inside the container. This is because the user namespace allows per
namespace mappings of users and groups IDs.

There are ways to share namespaces between the host and container and container and
container. We'll see how to do that in subsequent chapters.

Chapter 1

Control Groups (cgroups) provide resource limitations and accounting for containers. From
the Linux Kernel documentation:

Control Groups provide a mechanism for aggregating/partitioning sets of tasks,
and all their future children, into hierarchical groups with specialized behaviour.

In simple terms, they can be compared to the ulimit shell command or the setrlimit
system call. Instead of setting the resource limit to a single process, cgroups allow the limiting
of resources to a group of processes.

Control groups are split into different subsystems, such as CPU, CPU sets, memory block
1/0, and so on. Each subsystem can be used independently or can be grouped with others.
The features that cgroups provide are:

» Resource limiting: For example, one cgroup can be bound to specific CPUs, so all
processes in that group would run off given CPUs only

» Prioritization: Some groups may get a larger share of CPUs

» Accounting: You can measure the resource usage of different subsystems for billing

» Control: Freezing and restarting groups

Some of the subsystems that can be managed by cgroups are as follows:

» blkio: It sets |/0 access to and from block devices such as disk, SSD, and so on
» Cpu: It limits access to CPU
» Cpuacct: It generates CPU resource utilization
» Cpuset: It assigns the CPUs on a multicore system to tasks in a cgroup
» Devices: It devises access to a set of tasks in a cgroup
» Freezer: It suspends or resumes tasks in a cgroup
» Memory: It sets limits on memory use by tasks in a cgroup
There are multiple ways to control work with cgroups. Two of the most popular ones are

accessing the cgroup virtual filesystem manually and accessing it with the 1ibcgroup library.
To use 1ibcgroup in fedora, run the following command to install the required packages:

$ sudo yum install libecgroup libcgroup-tools

Introduction and Installation

Once installed, you can get the list of subsystems and their mount point in the pseudo
filesystem with the following command:

$ lssubsys -M

$ lssubsys -M

cpuset /sys/fs/cgroup/cpuset

cpu, cpuacct /sys/fs/cgroup/cpu, cpuacct
memory /sys/fs/cgroup/memory

devices /sys/fs/cgroup/devices

freezer /sys/fs/cgroup/freezer

net_cls,net_prio /sys/fs/cgroup/net_cls,net_prio
blkio /sys/fs/cgroup/blkio

perf_event /sys/fs/cgroup/perf_event

hugetlb /sys/fs/cgroup/hugetlb

Although we haven't looked at the actual commands yet, let's assume that we are running a
few containers and want to get the cgroup entries for a container. To get those, we first need
to get the container ID and then use the 1scgroup command to get the cgroup entries of a
container, which we can get from the following command:

[rootidockerhost ~]1# docker

CONTAINER ID M, HAND CREATED 0 NAMES

1dfadedd792 mysgl: 1. ntrypoint.sh mysq 28 hours age] s € some -mysql
979b949cc9d4 f - 30 hours ago s backstabbing_turing

2¢295. mount

29d592c295. mount

:inckEr-dEvil:emapp -mi
L1cf4d2b181b7f2ddd13

f2a393f5e9d592c295 . mount

21cf4d2b181b7f2ddd E
mnt-1dfad, a393f5e9d592c295. mount
E1b7f2d

For more details, visit https: //docs.docker.com/articles/
S

runmetrics/.

The Union filesystem

The Union filesystem allows the files and directories of separate filesystems, known as layers,
to be transparently overlaid to create a new virtual filesystem. While starting a container,
Docker overlays all the layers attached to an image and creates a read-only filesystem.

On top of that, Docker creates a read/write layer which is used by the container's runtime
environment. Look at the Pulling an image and running a container recipe of this chapter for
more details. Docker can use several Union filesystem variants, including AUFS, Btrfs, vfs,
and DeviceMapper.

Docker can work with different execution drivers, such as 1ibcontainer, 1xc, and libvirt
to manage containers. The default execution driver is 1ibcontainer, which comes with
Docker out of the box. It can manipulate namespaces, control groups, capabilities, and

so on for Docker.

—e1]

https://docs.docker.com/articles/runmetrics/
https://docs.docker.com/articles/runmetrics/

Chapter 1

Verifying the requirements for Docker

installation

Docker is supported on many Linux platforms, such as RHEL, Ubuntu, Fedora, CentOS,
Debian, Arch Linux, and so on. It is also supported on many cloud platforms, such as Amazon
EC2, Rackspace Cloud, and Google Compute Engine. With the help of a virtual environment,
Boot2Docker, it can also run on 0S X and Microsoft Windows. A while back, Microsoft
announced that it would add native support to Docker on its next Microsoft Windows release.

In this recipe, let's verify the requirements for Docker installation. We will check on the system
with Fedora 21 installation, though the same steps should work on Ubuntu as well.

Getting ready

Log in as root on the system with Fedora 21 installed.

How to do it...

Perform the following steps:

1. Docker is not supported on 32-bit architecture. To check the architecture on your
system, run the following command:

$ uname -i

%86 64

2. Docker is supported on kernel 3.8 or later. It has been back ported on some of
the kernel 2.6, such as RHEL 6.5 and above. To check the kernel version, run the
following command:

$ uname -r

3.18.7-200.£fc21.x86 64

3. Running kernel should support an appropriate storage backend. Some of these are
VFS, DeviceMapper, AUFS, Btrfs, and OverlayFS.

Mostly, the default storage backend or driver is devicemapper, which uses the
device-mapper thin provisioning module to implement layers. It should be installed by
default on the majority of Linux platforms. To check for device-mapper, you can run
the following command:

$ grep device-mapper /proc/devices

253 device-mapper

In most distributions, AUFS would require a modified kernel.

Introduction and Installation

4. Support for cgroups and namespaces are in kernel for sometime and should be
enabled by default. To check for their presence, you can look at the corresponding
configuration file of the kernel you are running. For example, on Fedora, | can do
something like the following:

$ grep -i namespaces /boot/config-3.18.7-200.fc21.x86 64
CONFIG NAMESPACES=y

$ grep -i cgroups /boot/config-3.18.7-200.fc21.x86 64
CONFIG_ CGROUPS=y

With the preceding commands, we verified the requirements for Docker installation.

» Installation document on the Docker website at https://docs.docker.com/
installation/

Installing Docker

As there are many distributions which support Docker, we'll just look at the installation steps
on Fedora 21 in this recipe. For others, you can refer to the installation instructions mentioned
in the See also section of this recipe. Using Docker Machine, we can set up Docker hosts on
local systems, on cloud providers, and other environments very easily. We'll cover that in a
different recipe.

Getting ready

Check for the prerequisites mentioned in the previous recipe.

How to do it...

1. Install Docker using yum:
$ yum -y install docker

The preceding command will install Docker and all the packages required by it.

]

https://docs.docker.com/installation/
https://docs.docker.com/installation/

Chapter 1

There's more...

The default Docker daemon configuration file is located at /etc/sysconfig/docker, which
is used while starting the daemon. Here are some basic operations:

» To start the service:

$ systemctl start docker

» To verify the installation:

$ docker info

» To update the package:
$ yum -y update docker

» To enable the service start at boot time:

$ systemctl enable docker

» To stop the service:
$ systemctl stop docker

See also

» The installation document is on the Docker website at https://docs.docker.
com/installation/

Pulling an image and running a container

I am borrowing this recipe from the next chapter to introduce some concepts. Don't worry

if you don't find all the explanation in this recipe. We'll cover all the topics in detail later in
this chapter or in the next few chapters. For now, let's pull an image and run it. We'll also get
familiar with Docker architecture and its components in this recipe.

Getting ready

Get access to a system with Docker installed.

How to do it...

1. To pull an image, run the following command:
$ docker pull fedora

s

https://docs.docker.com/installation/
https://docs.docker.com/installation/

Introduction and Installation

2. List the existing images by using the following command:

$ docker images

[root@dockerhost ~]# docker images
REPOSITORY TAG IMAGE ID CREATED VIRTUAL SIZE

docker.io/mysql latest 56f320bd6adc 12 days ago 282.9 MB
docker.io/fedora latest 93be8052dfb8 12 days ago 241.3 MB

3. Create a container using the pulled image and list the containers as:

Docker has client-server architecture. Its binary consists of the Docker client and server
daemon, and it can reside in the same host. The client can communicate via sockets or the
RESTful API to either a local or remote Docker daemon. The Docker daemon builds, runs,
and distributes containers. As shown in the following diagram, the Docker client sends the
command to the Docker daemon running on the host machine. The Docker daemon also
connects to either the public or local index to get the images requested by the client:

Host

Docker Daemon

Container 1
docker pull
docker run 4+—» Container 2
docker ...

Container 3

Container ...

Docker client-server architecture (https://docs.docker.com/introduction/understanding-docker/)

So in our case, the Docker client sends a request to the daemon running on the local system,
which then connects to the public Docker Index and downloads the image. Once downloaded,
we can run it.

https://docs.docker.com/introduction/understanding-docker/

Chapter 1

There's more...

Let's explore some keywords we encountered earlier in this recipe:

>

Images: Docker images are read-only templates and they give us containers during
runtime. There is the notion of a base image and layers on top of it. For example,
we can have a base image of Fedora or Ubuntu and then we can install packages or
make modifications over the base image to create a new layer. The base image and
new layer can be treated as a new image. For example, in following figure, Debian is
the base image and emacs and Apache are the two layers added on top of it. They
are highly portable and can be shared easily:

references
parent
image

Docker Image layers (http://docs.docker.com/terms/images/
docker-filesystems-multilayer.png)

Layers are transparently laid on top of the base image to create a single coherent
filesystem.

Registries: A registry holds Docker images. It can be public or private from where you
can download or upload images. The public Docker registry is called Docker Hub,
which we will cover later.

Index: An index manages user accounts, permissions, search, tagging, and all that
nice stuff that's in the public web interface of the Docker registry.

Containers: Containers are running images that are created by combining the

base image and the layers on top of it. They contain everything needed to run an
application. As shown in preceding diagram, a temporary layer is also added while
starting the container, which would get discarded if not committed after the container
is stopped and deleted. If committed, then it would create another layer.

Repository: Different versions of an image can be managed by multiple tags, which
are saved with different GUID. A repository is a collection of images tracked by GUIDs.

[}

http://docs.docker.com/terms/images/ docker-filesystems-multilayer.png
http://docs.docker.com/terms/images/ docker-filesystems-multilayer.png

Introduction and Installation

See also

» The documentation on the Docker website at http://docs.docker.com/
introduction/understanding-docker/

» With Docker 1.6, the Docker community and Microsoft Windows released a Docker
native client for Windows http://azure.microsoft.com/blog/2015/04/16/
docker-client-for-windows-is-now-available

Adding a nonroot user to administer Docker

For ease of use, we can allow a nonroot user to administer Docker by adding them to a
Docker group.

Getting ready

1. Create the Docker group if it is not there already:
$ sudo group add docker

2. Create the user to whom you want to give permission to administer Docker:

$ useradd dockertest

How to do it...

Run the following command to allow the newly created user to administer Docker:

$ sudo gpasswd -a dockertest docker

The preceding command will add a user to the Docker group. The added user will thus be
able to perform all Docker operations. This can be the security risk. Visit Chapter 9, Docker
Security for more details.

http://docs.docker.com/introduction/understanding-docker/
http://docs.docker.com/introduction/understanding-docker/
http://azure.microsoft.com/blog/2015/04/16/docker-client-for-windows-is-now-available
http://azure.microsoft.com/blog/2015/04/16/docker-client-for-windows-is-now-available

Chapter 1

Setting up the Docker host with Docker

Machine

Earlier this year, Docker released Orchestration tools (https://blog.docker.
com/2015/02/orchestrating-docker-with-machine-swarm-and-compose/)

and Machine, Swarm, and Compose deploy containers seamlessly. In this recipe, we'll cover
Docker Machine and look at the others in later chapters. Using the Docker Machine tool
(https://github.com/docker/machine/), you can set up Docker hosts locally on cloud
with one command. It is currently in beta mode and not recommended for production use. It
supports environments such as VirtualBox, OpenStack, Google, Digital Ocean, and others. For
a complete list, you can visit https://github.com/docker/machine/tree/master/
drivers. Let's use this tool and set up a host in Google Cloud.

We will be using Docker Machine just for this recipe. Recipes mentioned
in this or other chapters may or may not work on the host set up by
Y= .
Docker Machine.

Getting ready

Docker Machine does not appear with the default installation. You need to download it from
its GitHub releases link (https://github.com/docker/machine/releases). Please
check the latest version and distribution before downloading. As a root user, download the
binary and make it executable:

$ curl -L
https://github.com/docker/machine/releases/download/v0.2.0/docker-
machine linux-amd64 > /usr/local/bin/docker-machine

$ chmod a+x /usr/local/bin/docker-machine

If you don't have an account on Google Compute Engine (GCE), then you can sign up for a

free trial (https://cloud.google.com/compute/docs/signup) to try this recipe. | am
assuming that you have a project on GCE and have the Google Cloud SDK installed on the
system on which you downloaded Docker Machine binary. If not, then you can follow these steps:

1. Set up the Google Cloud SDK on your local system:
$ curl https://sdk.cloud.google.com | bash
2. Create a project on GCE (https://console.developers.google.com/

project) and get its project ID. Please note that the project name and its ID
are different.

3. Go to the project home page and under the APIs & auth section, select APls, and
enable Google Compute Engine API.

]

https://blog.docker.com/2015/02/orchestrating-docker-with-machine-swarm-and-compose/
https://blog.docker.com/2015/02/orchestrating-docker-with-machine-swarm-and-compose/
https://github.com/docker/machine/tree/master/drivers
https://github.com/docker/machine/tree/master/drivers
https://console.developers.google.com/project
https://console.developers.google.com/project

Introduction and Installation

How to do it...

1. Assign the project ID we collected to a variable, GCE_PROJECT:

$ export GCE PROJECT="<Your Project ID>"

2. Run the following command and enter the code which is provided on the popped up
web browser:

$ docker-machine create -d google --google-
project=$GCE_PROJECT --google-machine-type=nl-standard-2 --
google-disk-size=50 cookbook

INFO[0000] Opening auth URL in browser.

INFO[0015] Saving token in
/home/nkhare/.docker/machine/machines/cookbook/gce token

INFO[0015] Creating host...
INFO[0015] Generating SSH Key
INFO[0015] Creating instance.
INFO[0016] Creating firewall rule.
INFO[0020] Waiting for Instance...
INFO[0066] Waiting for SSH...
INFO[0066] Uploading SSH Key
INFO[0067] Waiting for SSH Key

INFO[0224] "cookbook" has been created and is now the active
machine.

INFO[0224] To point your Docker client at it, run this in your
shell: eval "$(docker-machine linux-amdé4 env cookbook)"
3. List the existing hosts managed by Docker Machine:

$./docker-machine linux-amdé64 1s

$ docker-machine 1s
NAME ACTIVE DRIVER STATE URL SWARM

cookbook * google Running tcp://104.154.84.152:2376

You can manage multiple hosts with Docker Machine. The * indicates the active one.

Chapter 1

4. To display the commands to set up the environment for the Docker client:

$./docker-machine linux-amdé64 env cookbook

$ docker-machine env cookbook

export DOCKER_TLS_VERIFY=1

export DOCKER_CERT_PATH="/home/nkhare/.docker/machine/machines/cookbook"
export DOCKER_HOST=tcp://104.154.84.152:2376

Run this command to configure your shell: eval "$(docker-machine env cookbook)"

So, if you point the Docker client with the preceding environment variables, we would
connect to the Docker daemon running on the GCE.

5. And to point the Docker client to use our newly created machine, run the
following command:
$ eval "$(./docker-machine linux-amdé4 env cookbook)™"

From now on, all the Docker commands will run on the machine we provisioned on GCE, until
the preceding environment variables are set.

Docker Machine connects to the cloud provider and sets up a Linux VM with Docker Engine.
It creates a .docker/machine/ directory under the current user's home directory to save
the configuration.

There's more...

Docker Machine provides management commands, such as create, start, stop,
restart, kill, remove, ssh, and others to manage machines. For detailed options,
look for the help option of Docker Machine:

$ docker-machine -h

You can use the --driver/-d option to create choosing one of the many endpoints
available for deployment. For example, to set up the environment with VirtualBox, run the
following command:

$ docker-machine create --driver virtualbox dev

$ docker-machine 1s
ACTIVE DRIVER STATE URL SWARM

google Running tcp://104.154.84.152:2376
virtualbox Runninhg tcp://192.168.99.101: 2376

Here, dev is the machine name. By default, the latest deployed machine becomes primary.

[}

Introduction and Installation

» Documentation on the Docker website at https://docs.docker.com/machine/

» Guide to setting up Docker on Google Compute Engine at https://docs.docker.
com/installation/google/

Finding help with the Docker command line

Docker commands are well documented and can be referred to whenever needed. Lots of
documentation is available online as well, but it might differ from the documentation for the
Docker version you are running.

Getting ready

Install Docker on your system.

How to do it...

1. On a Linux-based system, you can use the man command to find help as follows:

$ man docker

2. Subcommand-specific help can also be found with any of the following commands:
$ man docker ps

$ man docker-ps

The man command uses the man pages installed by the Docker package to show help.

» Documentation on the Docker website at http://docs.docker.com/
reference/commandline/cli/

https://docs.docker.com/machine/
https://docs.docker.com/installation/google/
https://docs.docker.com/installation/google/
http://docs.docker.com/reference/commandline/cli/
http://docs.docker.com/reference/commandline/cli/

Working with
Docker Containers

In this chapter, we will cover the following recipes:

» Listing/searching for an image

» Pulling an image

» Listing images

» Starting a container

» Listing containers

» Stopping a container

» Looking at the logs of containers

» Deleting a container

» Setting the restart policy on a container

» Getting privileged access inside a container

» Exposing a port while starting a container

» Accessing the host device inside the container
» Injecting a hew process to a running container
» Returning low-level information about a container

» Labeling and filtering containers

Working with Docker Containers

Introduction

In the previous chapter, after installing Docker, we pulled an image and created a container
from it. Docker's primary objective is running containers. In this chapter, we'll see the different
operations we can do with containers such as starting, stopping, listing, deleting, and so

on. This will help us to use Docker for different use cases such as testing, Cl/CD, setting up
Paa$S, and so on, which we'll cover in later chapters. Before we start, let's verify the Docker
installation by running the following command:

$ docker version

$ docker version

Client version: 1.5.0

Client API version: 1.17

Go version (client): gol.3.3

Git commit (client): a8a3lef/1.5.0
0S/Arch (client): linux/amd64
Server version: 1.5.0

Server API version: 1.17

Go version (server): gol.3.3

Gii commit (server): a8a3lef/1.5.0
$

This will give the Docker client and server version, as well as other details.

I am using Fedora 20/21 as my primary environment to run the recipes. They should also
work with the other environment.

Listing/searching for an image

We need an image to start the container. Let's see how we can search images on the
Docker registry. As we have seen in Chapter 1, Introduction and Installation, a registry holds
the Docker images and it can be both public and private. By default, the search will happen
on the default public registry, which is called Docker Hub and is located at https://hub.
docker.com/.

Getting ready

Make sure the Docker daemon is running on the host and you can connect through the
Docker client.

How to do it...

1. To search an image on a Docker registry, run the following command:

docker search TERM

=]

https://hub.docker.com/
https://hub.docker.com/

Chapter 2

The following is an example to search a Fedora image:

$ docker search fedora | head -n5

% docker search fedora | head -n5

DESCRIPTION OFFICIAL AUTOMATED
Official Fedora 21 base image and semi-off... [OK]

[OK]
[0K]
[OK]

The preceding screenshot lists the name, description, and number of stars awarded to the
image. It also points out whether the image is official and automated or not. STARS signifies
how many people liked the given image. The OFFICIAL column helps us identify whether the
image is built from a trusted source or not. The AUTOMATED column is a way to tell whether an
image is built automatically with push in GitHub or Bitbucket repositories. More details about
AUTOMATED can be found in the next chapter.

sl . .)
‘Q The convention for image name is <user>/<name>,

but it can be anything.

Docker searches for images on the Docker public registry, which has a repository for images
athttps://registry.hub.docker.com/.

We can configure our private index as well, which it can search for.

There's more...

» To list the images that got more than 20 stars and are automated, run the following
command:

$ docker search -s 20 --automated fedora

$ docker search -s 20 --automated fedora
NAME DESCRIPTION STARS OFFICIAL AUTOMATED
fedora/apache 29 [OK]

fedora/couchdb 28 [OK]
fedora/mariadb 22 [OK]
s i

In Chapter 3, Working with Docker Images, we will see how to set up automated
builds.

» From Docker 1.3 onwards, the --insecure-registry option to Docker daemon
is provided, which allows us to search/pull/commit images from an insecure
registry. For more details, look at https://docs.docker.com/reference/
commandline/cli/#insecure-registries

s

https://registry.hub.docker.com/
https://docs.docker.com/reference/commandline/cli/#insecure-registries
https://docs.docker.com/reference/commandline/cli/#insecure-registries

Working with Docker Containers

» The Docker package on RHEL 7 and Fedora provides options to add and block the
registry with the --add-registry and --block-registry options respectively,
to have better control over the image search path. For more details, look at the
following links:

o http://rhelblog.redhat.com/2015/04/15/understanding-
the-changes-to-docker-search-and-docker-pull-in-red-hat-
enterprise-linux-7-1/

o https://github.com/docker/docker/pull/10411

See also

» For help with the Docker search, run the following command:

$ docker search --help

» The documentation on the Docker website https://docs.docker.com/
reference/commandline/cli/#search

Pulling an image

After searching the image, we can pull it to the system by running the Docker daemon. Let's
see how we can do that.

Getting ready

Make sure the Docker daemon is running on the host and you can connect through the
Docker client.

How to do it...

1. To pull an image on the Docker registry, run the following command:
docker pull NAME[:TAG]
The following is an example to pull the Fedora image:

$ docker pull fedora

are pulling has been verified. Important: image t E Br ture and should not be relied on to

e for federa:latest

http://rhelblog.redhat.com/2015/04/15/understanding-the-changes-to-docker-search-and-docker-pull-in-red-hat-enterprise-linux-7-1/
http://rhelblog.redhat.com/2015/04/15/understanding-the-changes-to-docker-search-and-docker-pull-in-red-hat-enterprise-linux-7-1/
http://rhelblog.redhat.com/2015/04/15/understanding-the-changes-to-docker-search-and-docker-pull-in-red-hat-enterprise-linux-7-1/
https://github.com/docker/docker/pull/10411
https://docs.docker.com/reference/commandline/cli/#search
https://docs.docker.com/reference/commandline/cli/#search

Chapter 2

The pull command downloads all layers from the Docker registry, which are required to
create that image locally. We will see details about layers in the next chapter.

>

Image tags group images of the same type. For example, CentOS can have images
with tags such as centos5, centosé6, and so on. For example, to pull an image with
the specific tag, run the following command:

$ docker pull centos:centos?7

By default, the image with latest tag gets pulled. To pull all images corresponding to
all tags, use the following command:

$ docker pull --all-tags centos

With Docker 1.6 (https://blog.docker.com/2015/04/docker-
release-1-6/), we can build and refer to images by a new content-addressable
identifier called a digest. It is a very useful feature when we want to work with

a specific image, rather than tags. To pull an image with a specific digest, we can
consider the following syntax:

$ docker pull <image>@sha256:<digest>

Here is an example of a command:

$ docker pull debian@sha256:cbbf2£9a99b47£fc460d422812b6a5adff7dfee
951d8fa2e4a98caa0382cfbdbf

Digest is supported only with the Docker registry v2.

Once an image gets pulled, it resides on local cache (storage), so subsequent
pulls will be very fast. This feature plays a very important role in building Docker
layered images.

>

Look at the help option of Docker pull:
$ docker pull --help

The documentation on the Docker website https://docs.docker.com/
reference/commandline/cli/#pull

s

https://blog.docker.com/2015/04/docker-release-1-6/
https://blog.docker.com/2015/04/docker-release-1-6/
https://docs.docker.com/reference/commandline/cli/#pull
https://docs.docker.com/reference/commandline/cli/#pull

Working with Docker Containers

Listing images

We can list the images available on the system running the Docker daemon. These images
might have been pulled from the registry, imported through the docker command, or created
through Docker files.

Getting ready

Make sure the Docker daemon is running on the host and you can connect through the
Docker client.

How to do it...

1. Run the following command to list the images:

$ docker images

$ docker images

REFOSITORY TAG IMAGE ID CREATED VIRTUAL SIZE
latest 88194 60dd 6 210 M
14.04 : : 2 we 188.3 MB
14.04.2 2d24f Wee 0 188.3 MB
latest d2 Gcb 16 0 188.3 MB

ubuntu t 0150218.1 d24 € e C .3 MB

ubuntu 3 2d24f82 - .3 MB

nginx a t - 89951 : 0 3. MB
fedora a t 2 = go 41.3 MB
2 |

The Docker client talks to the Docker server and gets the list of images at the server end.

There's more...

» All the images with the same name but different tags get downloaded. The interesting
thing to note here is that they have the same name but different tags. Also, there are
two different tags for the same IMAGE 1D, which is 2d24f826cb16.

» You might see a different output for REPOSITORY, as shown in the following
screenshot, with the latest Docker packages.

$ docker images
REPOSITORY TAG IMAGE ID CREATED VIRTUAL SIZE
docker. io/ubuntu latest 07f8eB8c5e660 8 days ago 188.3 MB

docker.io/debian latest 41b730702607 9 days ago 125.1 MB
docker. io/mysql latest 56f320bd6adc 2 weeks ago 282.9 MB

This is because the image listing prints the Docker registry hostname as well. As shown in the
preceding screenshot, docker.io is the registry hostname.

=

Chapter 2

See also

» Look at the help option of docker images

$ docker images --help

» The documentation on the Docker website https://docs.docker.com/
reference/commandline/cli/#images

Starting a container

Once we have images, we can use them to start the containers. In this recipe, we will start a
container with the fedora: latest image and see what all things happen behind the scene.

Getting ready

Make sure the Docker daemon is running on the host and you can connect through the
Docker client.

How to do it...

1. The syntax used to start a container is as follows:
docker run [OPTIONS] IMAGE[:TAG] [COMMAND] [ARG...]
Here is an example of a command:
$ docker run -i -t --name=f21 fedora /bin/bash
By default, Docker picks the image with the latest tag:

» The -1i option starts the container in the interactive mode
» The -t option allocates a pseudo-tty and attaches it to the standard input

So, with the preceding command, we start a container from the fedora: latest image,
attach pseudo-tty, name it £21, and run the /bin/bash command. If the name is not
specified, then a random string will be assigned as the name.

Also, if the image is not available locally, then it will get downloaded from the registry first and
then run. Docker will run the search and pull commands before running the run command.

=]

https://docs.docker.com/reference/commandline/cli/#images
https://docs.docker.com/reference/commandline/cli/#images

Working with Docker Containers

Under the hood, Docker:

>

>

Will merge all the layers that make that image using UnionFS.
Allocates a unique ID to a container, which is referred to as Container ID.

Allocates a filesystem and mounts a read/write layer for the container. Any changes
on this layer will be temporary and will be discarded if they are not committed.

Allocates a network/bridge interface.
Assigns an IP address to the container.
Executes the process specified by the user.

Also, with the default Docker configuration, it creates a directory with the container's ID inside
/var/lib/docker/containers, which has the container's specific information such as
hostname, configuration details, logs, and /etc/hosts.

There's more...

>

=]

To exit from the container, press Ctrl + D or type exit. It is similar to exiting from a
shell but this will stop the container.

The run command creates and starts the container. With Docker 1.3 or later, it is
possible to just create the container using the create command and run it later
using the start command, as shown in the following example:

$ ID=$ (docker create -t -i fedora bash)
$ docker start -a -i $ID

The container can be started in the background and then we can attach to it
whenever needed. We need to use the -d option to start the container in the
background:

$ docker run -d -i -t fedora /bin/bash
0df95cc49e258b74be713¢c31d5a28b9d590906ed9d6ela2dc756 72aa48£28c4f
The preceding command returns the container ID of the container to which we can
attach later, as follows:

$ ID='docker run -d -t -i fedora /bin/bash’

$ docker attach $ID

Chapter 2

In the preceding case, we chose /bin/bash to run inside the container. If we attach
to the container, we will get an interactive shell. We can run a noninteractive process
and run it in the background to make a daemonized container like this:

$ docker run -d fedora /bin/bash -c¢ "while [1]; do echo
hello docker ; sleep 1; done"

To remove the container after it exits, start the container with the - - rm option,
as follows:

$ docker run --rm fedora date
As soon as the date command exits, the container will be removed.

The --read-only option of the run command will mount the root filesystem in the
read-only mode:

$ docker run --read-only -d -i -t fedora /bin/bash

Remember that this option just makes sure that we cannot modify anything on the
root filesystem, but we are writing on volumes, which we'll cover later in the book.
This option is very useful when we don't want users to accidentally write content
inside the container, which gets lost if the container is not committed or copied out
on non-ephemeral storage such as volumes.

You can also set custom labels to containers, which can be used to group the
containers based on labels. Take a look at the Labeling and filtering containers
recipe in this chapter for more details.

M A container can be referred in three ways: by name, by container ID
Q (0df95cc49e258b74be713¢31d5a28b9d590906ed9d6ela2dc75672
aa48f28c4f), and by short container ID (0df95cc49e25)

>

Look at the help option of docker run:

$ docker run --help

The documentation on the Docker website https://docs.docker.com/
reference/commandline/cli/#run

The Docker 1.3 release announcement http://blog.docker.com/2014/10/
docker-1-3-signed-images-process-injection-security-options-
mac-shared-directories/

https://docs.docker.com/reference/commandline/cli/#run
https://docs.docker.com/reference/commandline/cli/#run
http://blog.docker.com/2014/10/docker-1-3-signed-images-process-injection-security-options-mac-shared-directories/
http://blog.docker.com/2014/10/docker-1-3-signed-images-process-injection-security-options-mac-shared-directories/
http://blog.docker.com/2014/10/docker-1-3-signed-images-process-injection-security-options-mac-shared-directories/

Working with Docker Containers

Listing containers

We can list both running and stopped containers.

Getting ready

Make sure the Docker daemon is running on the host and you can connect through the
Docker client. You will also need a few running and/or stopped containers.

How to do it...

1. To list the containers, run the following command:

docker ps [OPTIONS]

COMMAND CREATED P 5 HAMES
‘nginx -g ‘daeson of g second ge Up 9 seconds 4 p, 80/tecp sharp_albattani
“fbin/bash -¢ ‘while 2 minutes ago Up 2 minutes dreamy_heisenberg

The Docker daemon can look at the metadata associated with the containers and list them
down. By default, the command returns:

» The container ID

» The image from which it got created

» The command that was run after starting the container

» The details about when it got created

» The current status

» The ports that are exposed from the container

» The name of the container

There's more...

» To list both running and stopped containers, use the -a option as follows:

COMMAND CREATED s PORTS

About a te ago 0) About a minute ago
-g 'daemon of & m) s
ash -¢ 'while

443/ tcp, B8O tcp

Chapter 2

» To return just the container IDs of all the containers, use the -ag option as follows:

$ docker ps -aq
1d3b7d81bac4
7eb319alc662

66291ec5c9dd
3 |

» To show the last created container, including the non-running container, run the
following command:

$ docker ps -1

» Usingthe --filter/-f option to ps we can list containers with specific labels. Look
at the Labeling and filtering containers recipe in this chapter for more details.

Look at the man page of docker ps to see more options:

» Look at the help option of docker ps:
$ docker ps --help

» The documentation on the Docker website https://docs.docker.com/
reference/commandline/cli/#ps

Looking at the logs of containers

If the container emits logs or output on STDOUT/STDERR, then we can get them without
logging into the container.

Getting ready

Make sure the Docker daemon is running on the host and you can connect through the
Docker client. You will also need a running container, which emits logs/output on STDOUT.

How to do it...

1. To get logs from the container, run the following command:

docker logs [-f|--follow[=falsel] [-t]|--timestamps[=false]]
CONTAINER

https://docs.docker.com/reference/commandline/cli/#ps
https://docs.docker.com/reference/commandline/cli/#ps

Working with Docker Containers

2. Let's take the example from the earlier section of running a daemonized container
and look at the logs:

$ docker run -d fedora /bin/bash -c¢ "while [1]; do echo
hello docker ; sleep 1; done"

c “"while [1]; do echo hello docker ; sleep 1; done"
f 0018a738fd6 :f6bd2
f 8a738fd6677a2ef6ba2l

o docker
docker
docker
docker
docker
docker

o docker
docker

0 do:EI'.'e r

Docker will look at the container's specific log file from /var/lib/docker/
containers/<Container ID> and show the result.

There's more...

With the -t option, we can get the timestamp with each log line and with - £ we can get tailf
like behavior.

See also

» Look at help option of docker logs:
$ docker logs --help

» Documentation on the Docker website https://docs.docker.com/reference/
commandline/cli/#logs

Stopping a container

We can stop one or more containers at once. In this recipe, we will first start a container and
then stop it.

Getting ready

Make sure the Docker daemon is running on the host and you can connect through the
Docker client. You will also need one or more running containers.

NED

https://docs.docker.com/reference/commandline/cli/#logs
https://docs.docker.com/reference/commandline/cli/#logs

Chapter 2

How to do it...

1. To stop the container, run the following command:
docker stop [-t|--time[=10]] CONTAINER [CONTAINER...]

2. If you already have a running container, then you can go ahead and stop it; if not, we
can create one and then stop it as follows:

$ ID='docker run -d -i fedora /bin/bash’
$ docker stop $ID

This will save the state of the container and stop it. It can be started again, if needed.

There's more...

» To stop a container after waiting for some time, use the --time/ -t option.
» To stop all the running containers run the following command:

$ docker stop 'docker ps -q'

See also

» Look at help option of docker stop:
$ docker stop --help

» The documentation on the Docker website https://docs.docker.com/
reference/commandline/cli/#stop

Deleting a container

We can delete a container permanently, but before that we have to stop the container or use
the force option. In this recipe, we'll start, stop, and delete a container.

Getting ready

Make sure the Docker daemon is running on the host and you can connect through
the Docker client. You will also need some containers in a stopped or running state to
delete them.

Es

https://docs.docker.com/reference/commandline/cli/#stop
https://docs.docker.com/reference/commandline/cli/#stop

Working with Docker Containers

How to do it...

1.

Use the following command:
$ docker rm [OPTIONS] CONTAINER [CONTAINER]

Let's first start a container, stop it, and then delete it using the following commands:

$ ID='docker run -d -i fedora /bin/bash '
$ docker stop $ID

$ docker rm $ID

As we can see from the preceding screenshot, the container did not show up, which just
entered the docker ps command after stopping it. We had to provide the -a option to list it.
After the container is stopped, we can delete it.

There's more...

>

>

To forcefully delete a container without an intermediate stop, use the - £ option.

To delete all the containers, we first need to stop all the running containers and then
remove them. Be careful before running the commands as these will delete both the
running and the stopped containers:

$ docker stop 'docker ps -q'
$ docker rm 'docker ps -aq'

There are options to remove a specified link and volumes associated with the
container, which we will explore later.

The Docker daemon will remove the read/write layer, which was created while starting the
container.

Chapter 2

See also

» Look at the help option of docker rm
$ docker rm --help

» The documentation on the Docker website https://docs.docker.com/
reference/commandline/cli/#rm

Setting the restart policy on a container

Before Docker 1.2, there used to be an option to restart the container. With the release of
Docker 1.2, it has been added with the run command with flags to specify the restart policy.
With this policy, we can configure containers to start at boot time. This option is also very
useful when a container dies accidentally.

Getting ready

Make sure the Docker daemon is running on the host and you can connect through the
Docker client.

How to do it...

You can set the restart policy using the following syntax:

$ docker run --restart=POLICY [OPTIONS] IMAGE [: TAG] [COMMAND]
[ARG...]

Here is an example of a command:
$ docker run --restart=always -d -i -t fedora /bin/bash
There are three restart policies to choose from:

» no: This does not start the container if it dies
» on-failure: This restarts the container if it fails with nonzero exit code
» always: This always restarts the container without worrying about the return code

There's more...

You can also give an optional restart count with the on-failure policy as follows:
$ docker run --restart=on-failure:3 -d -i -t fedora /bin/bash

The preceding command will only restart the container three times, if any failure occurs.

s

https://docs.docker.com/reference/commandline/cli/#rm
https://docs.docker.com/reference/commandline/cli/#rm

Working with Docker Containers

» Look at the help option of docker run
$ docker run --help

» The documentation on the Docker website https://docs.docker.com/
reference/commandline/cli/#run.

» If arestart does not suit your requirements, then use systemd (http://
freedesktop.org/wiki/Software/systemd/) for solutions to automatically
restart the container on failure. For more information, visit https://docs.
docker.com/articles/host integration/.

Getting privileged access inside a container

Linux divides the privileges traditionally associated with superuser into distinct units,

known as capabilities (run man capabilities on a Linux-based system), which can be
independently enabled and disabled. For example, the net _bind service capability allows
nonuser processes to bind the port below 1,024. By default, Docker starts containers with
limited capabilities. With privileged access inside the container, we give more capabilities to
perform operations normally done by root. For example, let's try to create a loopback device
while mounting a disk image.

$ docker run --privileged -i -t fedora /bin/bash

bash-4.3# dd if=/dev/zero of=disk.img bs=1M count=100 & /dev/null
bash-4.3# mkfs -t minix disk.img &> /dev/null

bash-4.3# mount disk.img /mnt/

mount: /disk.img: failed to setup loop device: No such file or directory
bash-4.3# 1s

Getting ready

Make sure the Docker daemon is running on the host and you can connect through the
Docker client.

How to do it...

1. To use the privileged mode, use the following command:

$ docker run --privileged [OPTIONS] IMAGE[:TAG] [COMMAND]
[ARG...]

https://docs.docker.com/reference/commandline/cli/#run
https://docs.docker.com/reference/commandline/cli/#run
http://freedesktop.org/wiki/Software/systemd/
http://freedesktop.org/wiki/Software/systemd/
https://docs.docker.com/articles/host_integration/
https://docs.docker.com/articles/host_integration/

Chapter 2

2. Now let's try the preceding example with the privileged access:

$ docker run --privileged -i -t fedora /bin/bash

$ docker run --privileged -i -t fedora /bin/bash
bash-4.3# dd if=/dev/zero of=disk.img hs=1M count=100 &> /dev/null
bash-4.3# mkfs -t minix disk.img &> /dev/null

bash-4.3# mount disk.img /mnt/

bash-4.3# mount | grep disk

/disk.img on /mnt type minix (rw, relatime)
bash-4.3#

By providing almost all capabilities inside the container.

There's more...

This mode causes security risks as containers can get root-level access on the Docker host.
With Docker 1.2 or new, two new flags - -cap-add and - -cap-del have been added to
give fine-grained control inside a container. For example, to prevent any chown inside the
container, use the following command:

$ docker run --cap-drop=CHOWN [OPTIONS] IMAGEI[:TAG] [COMMAND]
[ARG...]

Look at Chapter 9, Docker Security, for more details.

» Look at the help option of docker run:
$ docker run --help

» The documentation on the Docker website https://docs.docker.com/
reference/commandline/cli/#run

» The Docker 1.2 release announcement http://blog.docker.com/2014/08/
announcing-docker-1-2-0/

Exposing a port while starting a container

There are a number of ways by which ports on the container can be exposed. One of them is
through the run command, which we will cover in this chapter. The other ways are through the
Docker file and the - -1ink command. We will explore them in the other chapters.

s

https://docs.docker.com/reference/commandline/cli/#run
https://docs.docker.com/reference/commandline/cli/#run
http://blog.docker.com/2014/08/announcing-docker-1-2-0/
http://blog.docker.com/2014/08/announcing-docker-1-2-0/

Working with Docker Containers

Getting ready

Make sure the Docker daemon is running on the host and you can connect through the
Docker client.

How to do it...

1. The syntax to expose a port is as follows:

$ docker run --expose=PORT [OPTIONS] IMAGE [: TAG] [COMMAND]
[ARG...]

For example, to expose port 22 while starting a container, run the following command:

$ docker run --expose=22 -i -t fedora /bin/bash

There's more...

There are multiple ways to expose the ports for a container. For now, we will see how we can
expose the port while starting the container. We'll look other options to expose the ports in
later chapters.

See also

» Look at the help option of docker run:
$ docker run --help

» Documentation on the Docker website https://docs.docker.com/reference/
commandline/cli/#run

Accessing the host device inside the

container

From Docker 1.2 onwards, we can give access of the host device to a container with the
--device option to the run command. Earlier, one has bind mount it with the -v option
and that had to be done with the - -privileged option.

Getting ready

Make sure the Docker daemon is running on the host and you can connect through the
Docker client. You will also need a device to pass to the container.

NEQ

https://docs.docker.com/reference/commandline/cli/#run
https://docs.docker.com/reference/commandline/cli/#run

Chapter 2

How to do it...

1. You can give access of a host device to the container using the following syntax:

$ docker run --device=<Host Device>:<Container Device
Mapping>:<Permissions> [OPTIONS] IMAGE[:TAG] [COMMAND]
[ARG...]

Here is an example of a command:

$ docker run --device=/dev/sdc:/dev/xvdc -i -t fedora /bin/bash

The preceding command will access /dev/sdc inside the container.

See also

» Look at the help option of docker run
$ docker run --help

» The documentation on the Docker website https://docs.docker.com/
reference/commandline/cli/#run

Injecting a new process to a running

container

While doing development and debugging, we might want to look inside the already running
container. There are a few utilities, such as nsenter (https://github.com/jpetazzo/
nsenter), that allow us to enter into the namespace of the container to inspect it. With the
exec option, which was added in Docker 1.3, we can inject a new process inside a running
container.

Getting ready

Make sure the Docker daemon is running on the host and you can connect through the
Docker client. You might also need a running container to inject a process in.

https://docs.docker.com/reference/commandline/cli/#run
https://docs.docker.com/reference/commandline/cli/#run
https://github.com/jpetazzo/nsenter
https://github.com/jpetazzo/nsenter

Working with Docker Containers

How to do it...

1. You can inject a process inside a running container with the following command:

$ docker exec [-d|--detach[=false]] [--help]l [-i]--

interactive[=false]] [-t|--tty[=falsel] CONTAINER COMMAND
[ARG...]

2. Let's start an nginx container and then inject bash into that:

$ ID='docker run -d nginx'

$ docker run -it $ID bash

$ ID="docker run -d nginx"
$ docker exec -it $ID bash

root@01e99df9d7f4: /# |l

The exec command enters into the namespace of the container and starts the new process.

» Look at help option of Docker inspect:

$ docker exec --help

» The documentation on the Docker website https://docs.docker.com/
reference/commandline/cli/#exec

Returning low-level information about a

container

While doing the debugging, automation, and so on, we will need the container configuration
details. Docker provides the inspect command to get those easily.

Getting ready

Make sure the Docker daemon is running on the host and you can connect through the
Docker client.

NED

https://docs.docker.com/reference/commandline/cli/#exec
https://docs.docker.com/reference/commandline/cli/#exec

Chapter 2

How to do it...

1. To inspect a container/image, run the following command:

$ docker inspect [-f|--format="" CONTAINER | IMAGE
[CONTAINER | IMAGE...]

2. We'll start a container and then inspect it:

$ ID='docker run -d -i fedora /bin/bash’

$ docker inspect $ID

{

"Args": [],

"Config": {
"AttachStderr": false,
"AttachStdin": false,
"AttachStdout": false,
"Cmd": [

"/bin/bash"
1,
H

Docker will look into the metadata and configuration for the given image or container and
present it.

There's more...

With the -f | --format option we can use the Go (programming language) template to get
the specific information. The following command will give us an IP address of the container:

$ docker inspect --format='{{.NetworkSettings.IPAddress}}' $ID
172.17.0.2

Working with Docker Containers

» Look at the help option of docker inspect

$ docker inspect --help

» The documentation on the Docker website https://docs.docker.com/
reference/commandline/cli/#inspect

Labeling and filtering containers

With Docker 1.6, a feature has been added to label containers and images, through which

we can attach arbitrary key-value metadata to them. You can think of them as environment
variables, which are not available to running applications inside containers but they are
available to programs (Docker CLI) that are managing images and containers. Labels attached
to images also get applied to containers started via them. We can also attach labels to
containers while starting them.

Docker also provides filters to containers, images, and events (https://docs.docker.
com/reference/commandline/cli/#filtering), which we can use in conjunction
with labels to narrow down our searches.

For this recipe, let's assume that we have an image with the label, distro=fedora21l. In the
next chapter, we will see how to assign a label to an image.

$ docker images

REPOSITORY TAG IMAGE ID CREATED VIRTUAL SIZE
f21 latest d5f771d03056 2 hours 241.3 MB
docker.io/fedora latest 93be8052dfh8 2 weeks 241.3 MB

docker.io/centos latest fd44297e2ddb 2 weeks 215.7 MB

$ docker images --filter label=distro=fedora2l

REPOSITORY TAG IMAGE ID CREATED VIRTUAL SIZE
21 latest d5f771d03056 2 hours 241.3 MB

As you can see from the preceding screenshot, if we use filters with the docker images
command, we only get an image where the corresponding label is found in the image's
metadata.

Getting ready

Make sure that the Docker daemon 1.6 and above is running on the host and you can connect
through the Docker client.

How to do it...

1. To start the container with the --1abel/-1 option, run the following command:

$ docker run --label environment=dev £21 date

=)

https://docs.docker.com/reference/commandline/cli/#inspect
https://docs.docker.com/reference/commandline/cli/#inspect
https://docs.docker.com/reference/commandline/cli/#filtering
https://docs.docker.com/reference/commandline/cli/#filtering

Chapter 2

2. Let's start a container without a label and start two others with the same label:

% docker run --name containerl f21 date
Sun May 10 00:04:39 EDT 2015
% docker run --name container2 --label environment=dev f21 date

Sun May 10 00:05:17 EDT 2015
% docker run --name container3 --label environment=dev f21 date
Sun May 10 00:05:48 EDT 2015

If we list all the containers without a label, we will see all the containers, but if we use label,
then we get only containers, which matches the label.

IMAGE CREATED STATUS 5
f2l:latest “dat About a minute ago Exited (0] About a minute ago container3

f21:latest "date” About a minute ago Exited (0] About a minute ago container2

f21:latest “date” 2 minutes ago Exited (0] 2 minutes ago containerl
-a --filter label=environment=dev

IMAGE COMMAND CREATED 5 5 NAMES

f2l:latest e About a minute ago & 0] About & minute ago container3

f21:latest "date About a minute ago Exited (0] About a minute ago container2

Docker attaches label metadata to containers while starting them and matches the label
while listing them or other related operations.

» We can list all the labels attached to a container through the inspect command,
which we saw in an earlier recipe. As we can see, the inspect command returns
both the image and the container labels.

$ docker inspect -f '{{.Config.Labels}}' container2

map [environment:dev distro:fedora2l]

» You can apply labels from a file (with the - -from-£file option) that has a list of
labels, separated by a new EOL.

» These labels are different from the Kubernetes label, which we will see in Chapter 8,
Docker Orchestration and Hosting Platforms.

See also

» The documentation on the Docker website https://docs.docker.com/
reference/builder/#label

» http://rancher.com/docker-labels/

@l

https://docs.docker.com/reference/builder/#label
https://docs.docker.com/reference/builder/#label
http://rancher.com/docker-labels/

Working with
Docker Images

In this chapter, we will cover the following recipes:

» Creating an account with Docker Hub

» Creating an image from the container

» Publishing an image to the registry

» Looking at the history of an image

» Deleting an image

» Exporting an image

» Importing an image

» Building images using Dockerfiles

» Building an Apache image - a Dockerfile example

» Accessing Firefox from a container - a Dockerfile example
» Building a WordPress image - a Dockerfile example
» Setting up a private index/registry

» Automated Builds - with GitHub and Bitbucket

» Creating the base image - using supermin

» Creating the base image - using Debootstrap

» Visualizing dependencies between layers

Working with Docker Images

Introduction

In this chapter, we will focus on operations relating to images. As we know, images are required
to run containers. You can either use existing images or create new custom images. You will
need to create custom images to suit your development and deployment environment. Once you
create an image, you can share it through the public or private registry. Before we explore more
about Docker images, let's look at the output of the docker info command:

¢$ docker info
Containers: 21
Images: 21
Storage Driver: devicemapper
Pool Name: docker-253:1-1442198-pool
Pool Blocksize: 65.54 kB
Backing Filesystem: extfs
Data file: /dev/loop0
Metadata file: /dev/loopl
Data Space Used: 1.857 GB
Data Space Total: 107.4 GB
Metadata Space Used: 2.941 MB
Metadata Space Total: 2.147 GB
Udev Sync Supported: true
Data loop file: /var/lib/docker/devicemapper/devicemapper/data
Metadata loop file: /var/lib/docker/devicemapper/devicemapper/metadata
Library Version: 1.02.93 (2015-01-30)
Execution Driver: native-0.2
Kernel Version: 3.18.7-200.fc2l.x86_64
Operating System: Fedora 21 (Twenty One)
CPUs: 24

Total Memory: 62.84 GiB
Name: gprfc080.sbu.lab.eng.bos. redhat.com
ID: 2UHM:JEBT:WHPH:JO2A:ULF7:YPPQ:KTYV:6XR4:2PV7:CKAJ: AWS7:R34T
nkhare
: [https: //index.docker.io/v1l/]

The preceding command gives the current system-wide info as follows:

» It has 21 containers and 21 images.

» The current storage driver, devicemapper, and its related information, such as
thin pool name, data, metadata file, and so on. Other types of storage drivers are
aufs, btrfs, overlayfs, vfs, and so on. Devicemapper, btrfs, and overlayfs have native
support in the Linux kernel. AUFS support needs a patched kernel. We talked about
the Union filesystem in Chapter 1, Introduction and Installation.

» To leverage the kernel features that enable containerization, the Docker daemon has
to talk to the Linux kernel. This is done through the execution driver. libconatiner
or native is one of that type. The others are 1ibvirt, 1xc, and so on, which we
saw in Chapter 1, Introduction and Installation.

» The kernel version on the host operating system.

» The user account that is registered on the registry mentioned in the next section to
pull/push images.

I am using Fedora 20/21 as my primary environment to run the recipes.
L They should also work with other environments.

=

Chapter 3

Creating an account with Docker Hub

Docker Hub is like GitHub for images. It is a public registry on which you can host images both
public and private, share them and collaborate with others. It has integration with GitHub,
Bitbucket, and can trigger automated builds.

As of now, the creation of an account on Docker Hub is free. A repository can hold different
versions of an image. You can create any number of public repositories for your images. By
default, you will have one private repository, which will not be accessible to the public. You
can buy more private repositories. You can create an account either through a web browser
or from the command line.

Getting ready

To sign up from the command line, you will need to have Docker installed on your system.

How to do it...

1. To create an account through a web browser on Docker Hub, visit
https://hub.docker.com/account/signup/ and create an account:

#docker What Is Docker? Use Cases Try It! Explore Install & Docs m

Create your Docker account

Already have an account? Login instead.

Username:

Required. 4 to 30 lower case characters. Letters and digits only.

Password:
Password conflrmation:
Enter the same password as above, for verification

Emall:

Malling List:

@ Subscribe to the Docker Weekly mailing list

Sign up or 0 Sign up with Github

=]

https://hub.docker.com/account/signup/

Working with Docker Images

2. To create an account using the command line, run the following command and
submit the required details:

$ docker login

The preceding steps will create a Docker Hub account for you. Once the account is created,
you'll get a confirmation mail, through which you need to confirm your identity.

» The documentation on the Docker website:
o https://docs.docker.com/docker-hub

o https://docs.docker.com/docker-hub/accounts/

Creating an image from the container

There are a couple of ways to create images, one is by manually committing layers and the
other way is through Dockerfiles. In this recipe, we'll see the former and look at Dockerfiles
later in the chapter.

As we start a new container, a read/write layer gets attached to it. This layer will get destroyed
if we do not save it. In this recipe, we will see how to save that layer and make a new image
from the running or stopped container using the docker commit command.

Getting ready

To get a Docker image, start a container with it.

How to do it...

1. To do the commit, run the following command:

docker commit -a|--author[=""] -m|--message[=""] CONTAINER
[REPOSITORY [: TAG]]

2. Let's start a container and create/modify some files using the install httpd
package:

$ docker run -i -t fedora /bin/bash

bash-4.3# yum install -y httpd JJ

=)

https://docs.docker.com/docker-hub
https://docs.docker.com/docker-hub/accounts/

Chapter 3

3. Then, open a new terminal and create a new image by doing the commit:

$ docker commit -a "Neependra Khare" -m "Fedora with HTTPD
package" 0al5686588ef nkhare/fedora:httpd

COMMAND CREATED STATUS PORTS HNAMES

“fbin/bash" 3 hours ago Up 55 minutes reverent_goldstine
"Fed h HTTPD pa " Bal5e86588ef nkhare/fedora:httpd

2eTea7Bc3becdc3bfde31dd31a32611%edbT4c02d7e

fedora:latest

TAG IMAGE ID CREATED VIRTUAL SIZE
httpd d26caelblb6f 5 seconds ago 241.3
latest BBf9454e60dd 9 days ago

3

2d24f826cbl6

t o
latest 0f89951 3
latest B34629358fe2 ee ago 241.3 MB

As you can see, the new image is now being committed to the local repository with
nkhare/fedora as a name and httpd as a tag.

In Chapter 1, Introduction and Installation, we saw that while starting a container, a read/
write filesystem layer will be created on top of the existing image layers from which the
container started, and with the installation of a package, some files would have been
added/modified in that layer. All of those changes are currently in the ephemeral read/write
filesystem layer, which is assigned to the container. If we stop and delete the container, then
all of the earlier mentioned modifications would be lost.

Using commit, we create a new layer with the changes that have occurred since the container
started, which get saved in the backend storage driver.

There's more...

» To look for files, which are changed since the container started:
$ docker diff CONTAINER

In our case, we will see something like the following code:
$ docker diff 0al5686588ef

Cc /var/log

A /var/log/httpd

C /var/log/lastlog

@1

Working with Docker Images

We can see a prefix before each entry of the output. The following is a list of
those prefixes:

o A: This is for when a file/directory has been added

o C:Thisis for when a file/directory has been modified

o D: This is for when a file/directory has been deleted

» By default, a container gets paused while doing the commit. You can change its
behavior by passing - -pause=false to commit.

» Look at the help option of docker commit:

$ docker commit --help

» The documentation on the Docker website https://docs.docker.com/
reference/commandline/cli/#commit

Publishing an image to the registry

Let's say you have created an image that suits the development environment in your
organization. You can either share it using tar ball, which we'll see later in this chapter, or
put in a central location from where the user can pull it. This central location can be either
a public or a private registry. In this recipe, we'll see how to push the image to the registry
using the docker push command. Later in this chapter, we'll cover how to set up the
private registry.

Getting ready

You will need a valid account on Docker Hub to push images/repositories.

A local registry must be set up if you are pushing images/repositories locally.

How to do it...

$ docker push NAME [:TAG]

By default, the preceding command will use the username and registry shown in the docker
info command to push the images. As shown in the preceding screenshot, the command will
use nkhare as the username and https://index.docker.io/v1/ as the registry.

https://docs.docker.com/reference/commandline/cli/#commit
https://docs.docker.com/reference/commandline/cli/#commit

Chapter 3
To push the image that we created in the previous section, run the following command:
$ docker push nkhare/fedora:httpd

% docker push nkhare/fedora:httpd
The push refers to a repository [nkhare/fedoral (len: 1)
Sending image list
Fushing r khare/fedora (1 tags)
already pushed, skipping

already pushed, skipping
already pushed, skippi
el already pushed, s
Pushing tag for rev [d26caelblb&f] on

$

Let's say you want to push the image to the local registry, which is hosted on a host called
local-registry. To do this, you first need to tag the image with the registry host's name or
IP address with the port number on which the registry is running and then push the images.

$ docker tag [-f|--force[=false] IMAGE
[REGISTRYHOST/] [USERNAME/] NAME [: TAG]

$ docker push [REGISTRYHOST/] [USERNAME/]NAME [:TAG]

For example, let's say our registry is configured on shadowfax.example.com, then to tag
the image use the following command:

$ docker tag nkhare/fedora:httpd
shadowfax.example.com:5000/nkhare/fedora:httpd

Then, to push the image, use the following command:

$ docker push shadowfax.example.com:5000/nkhare/fedora:httpd

It will first list down all the intermediate layers that are required to make that specific image. It
will then check to see, out of those layers, how many are already present inside the registry. At
last, it will copy all the layers, which are not present in the registry with the metadata required
to build the image.

Working with Docker Images

There's more...

As we pushed our image to the public registry, we can log in to Docker Hub and look for
the image:

-
w Search... Q, Browse Repos Documentation Community Help nkhare s~
o
nkhare v Your Repositories
Show: All A Sort by: Last Updated v
Summary
Fitter by name.
Repositaries
a minute ago AT
Starred nkhare/fedora r aER
1] 4]
Manage
Settings

Private Repositories

Buy more!

\ |

Status Security Education Resources Blogs Fomums Feedback Contact

©2014 Docker, Inc. Terms » Privacy « Trademarks

» Look at the help option of docker push
$ docker push --help

» The documentation on the Docker website https://docs.docker.com/
reference/commandline/cli/#push

Looking at the history of an image

It is handy to know how the image that we are using has been created. The docker history
command helps us find all the intermediate layers.

Getting ready

Pull or import any Docker image.

SNED

https://docs.docker.com/reference/commandline/cli/#push
https://docs.docker.com/reference/commandline/cli/#push

Chapter 3

How to do it...

1. To look at the history of the image, consider the following syntax:
$ docker history [OPTIONS] IMAGE

Here's an example using the preceding syntax:
$ docker history nkhare/fedora:httpd

$ docker history nkhare/fedora:httpd

IMAGE CREATED CREATED BY SIZE
7calcd2ffaae About a minute ago /bin/bash 180.5 MB
834629358Te2 10 weeks ago /bin/sh -c #(nop) ADD file:1314084600b39a33b9 241.3 MB
00a0c78eech6d 4 months ago /bin/sh -c #(nop) MAINTAINER Lokesh Mandvekar © B
511136ea3c5a 21 months ago 0B

s 1

From the metadata of an image, Docker can know how an image is being created. With the
history command, it will look at the metadata recursively to get to the origin.

There's more...

Look at the commit message of a layer that got committed:

$ docker inspect --format='{{.Comment}}' nkhare/fedora:httpd
Fedora with HTTPD package

Currently, there is no direct way to look at the commit message for each layer using one single

command, but we can use the inspect command, which we saw earlier, for each layer.

See also

» Look at the help option of docker history:
$ docker history --help

» The documentation on the Docker website https://docs.docker.com/
reference/commandline/cli/#history

Deleting an image

To remove the image from the host, we can use the docker rmi command. However, this
does not remove images from the registry.

i

https://docs.docker.com/reference/commandline/cli/#history
https://docs.docker.com/reference/commandline/cli/#history

Working with Docker Images

Getting ready

Make sure one or more Docker images are locally available.

How to do it...

1. To remove the image, consider the following syntax:

$ docker rmi [OPTIONS] IMAGE [IMAGE...]
In our case, here's an example using the preceding syntax:

$ docker rmi nkhare/fedora:httpd

$ docker rmi nkhare/fedora:httpd

Untagged: nkhare/fedora:httpd

Deieted: 7calcd2ffaae53ab9dfe3d39f131413a8ad0885cbbd59blaeel0965bag870c484
$

There's more...

If you want to remove all containers and images, then do following; however, be sure about
what you are doing, as this is very destructive:

» To stop all containers, use the following command:

$ docker stop 'docker ps -q'

» To delete all containers, use the following command:

$ docker rm 'docker ps -a -q'
» To delete all images, use the following command:

$ docker rmi 'docker images -gq'

» Look at the help option of docker rmi:

$ docker rmi --help

» The documentation on the Docker website https://docs.docker.com/
reference/commandline/cli/#rmi

=

https://docs.docker.com/reference/commandline/cli/#rmi
https://docs.docker.com/reference/commandline/cli/#rmi

Chapter 3

Exporting an image

Let's say you have a customer who has very strict policies that do not allow them to use
images from the public domain. In such cases, you can share images through tarballs, which
later can be imported on another system. In this recipe, we will see how to do that using the
docker save command.

Getting ready

Pull or import one or more Docker images on the Docker host.

How to do it...

1. Use the following syntax to save the image in the tar file:
$ docker save [-o]|--output=""] IMAGE [:TAG]
For example, to create a tar archive for Fedora, run the following command:

$ docker save --output=fedora.tar fedora

If the tag name is specified with the image name we want to export, such as
fedora:latest, then only the layers related to that tag will get exported.

There's more...

If --output or -ois not used, then the output will be streamed to STDOUT:
$ docker save fedora:latest > fedora-latest.tar

Similarly, the contents of the container's filesystem can be exported using the following
command:

$ docker export CONTAINER > containerXYZ.tar

See also

» Look at the help option of docker save and docker export
$ docker save -help

$ docker export --help

» The documentation on the Docker website:
o https://docs.docker.com/reference/commandline/cli/#save

0 https://docs.docker.com/reference/commandline/
cli/#export

-

https://docs.docker.com/reference/commandline/cli/#save
https://docs.docker.com/reference/commandline/cli/#export
https://docs.docker.com/reference/commandline/cli/#export

Working with Docker Images

Importing an image

To get a local copy of the image, we either need to pull it from the accessible registry or
import it from the already exported image, as we saw in the earlier recipe. Using the docker
import command, we import an exported image.

Getting ready

You need an accessible exported Docker image.

How to do it...

1. Toimport an image, we can use following syntax:
$ docker import URL|- [REPOSITORY[:TAG]]

Here's an example using the preceding syntax:

$ cat fedora-latest.tar | docker import - fedora:latest
Alternatively, you can consider the following example:
$ docker import http://example.com/example.tar example/image

The preceding example will first create an empty filesystem and then import the contents.

See also

» Look at the help option of docker import
$ docker import --help

» The documentation on the Docker website https://docs.docker.com/
reference/commandline/cli/#import

Building images using Dockerfiles

Dockerfiles help us in automating image creation and getting precisely the same image
every time we want it. The Docker builder reads instructions from a text file (a Dockerfile) and
executes them one after the other in order. It can be compared as Vagrant files, which allows
you to configure VMs in a predictable manner.

=

https://docs.docker.com/reference/commandline/cli/#import
https://docs.docker.com/reference/commandline/cli/#import

Chapter 3

Getting ready

A Dockerfile with build instructions.

» Create an empty directory:
$ mkdir sample image

$ cd sample image
» Create a file named Dockerfile with the following content:

$ cat Dockerfile

Pick up the base image

FROM fedora

Add author name

MAINTAINER Neependra Khare

Add the command to run at the start of container

CMD date

How to do it...

1. Run the following command inside the directory, where we created Dockerfile to build
the image:

$ docker build .

$ docker build .
Sending build context to Docker daemon 2.048 kB
Sending build context to Docker daemon
Step 0 : FROM fedora
---> 834629358fe2
Step 1 : MAINTAINER Neependra Khare
---> Running in c5d4dd2b3dbo

---> eb9f10384509
Removing intermediate container c5d4dd2b3db9
Step 2 : CMD date

---> Running in ffb9303abl24

---> 4778dd1f1la7a
Removing intermediate container ffb9303abl24
Suicessfully built 4778ddlfla7a
$

s

Working with Docker Images

We did not specify any repository or tag name while building the image. We can give
those with the -t option as follows:

$ docker build -t fedora/test .

$ docker build -t fedora/test .
Sending build context to Docker daemon 2.048 kB
Sending build context to Docker daemon
Step 0 : FROM fedora
---> B834629358fe2
Step 1 : MAINTAINER Neependra Khare

---> Using cache
---> eb9f10384509
Step 2 : CMD date
---> Using cache
---> 4778dd1f1la7a
Successfully built 4778dd1lfla7a

The preceding output is different from what we did earlier. However, here we are using a
cache after each instruction. Docker tries to save the intermediate images as we saw earlier
and tries to use them in subsequent builds to accelerate the build process. If you don't want
to cache the intermediate images, then add the - -no-cache option with the build. Let's take
a look at the available images now:

TAG IMAGE ID CREATED VIRTUAL SIZE
latest 4778dd1fla7a 3 minutes ago 241.3 MB
latest BBTS d 10 days ago 210 MB

14.04 d2 {5 ago 188.3 MB
14.04.2 2 ago

latest 2 : 3 ago

trusty & 3 s ago E
trusty-20150218.1 2 5 & 3w (S ago 188.3 MB
latest 4 {89951 3w 93.41 MB

ago
latest 35 10 weeks ago 241.3 MB

A context defines the files used to build the Docker image. In the preceding command,

we define the context to the build. The build is done by the Docker daemon and the entire
context is transferred to the daemon. This is why we see the Sending build context

to Docker daemon 2.048 kB message. If there is a file named .dockerignore in the
current working directory with the list of files and directories (new line separated), then those
files and directories will be ignored by the build context. More details about . dockerignore
can be found at https://docs.docker.com/reference/builder/#the-
dockerignore-file.

5]

https://docs.docker.com/reference/builder/#the-dockerignore-file
https://docs.docker.com/reference/builder/#the-dockerignore-file

Chapter 3

After executing each instruction, Docker commits the intermediate image and runs a
container with it for the next instruction. After the next instruction has run, Docker will
again commit the container to create the intermediate image and remove the intermediate
container created in the previous step.

For example, in the preceding screenshot, eb9£10384509 is an intermediate image
and ¢5d4dd2b3db9 and ££b9303ab124 are the intermediate containers. After the last
instruction is executed, the final image will be created. In this case, the final image is
4778dd1fla7a:

$ docker images

REPOSITORY TAG IMAGE ID CREATED VIRTUAL SIZE

<none> <none= 4778dd1fla7a 2 minutes ago 241.3 MB
latest B88f9454e60dd C 2 MB
trusty 2d247826ch 3 week .3 MB
trusty-20150218.1 : b16 3 MB

14.04 2 b 3 (5 a] .2 MB
14.04.2 ol 24 b 3 waeks .3 MB
latest h 3 : .3 MB
latest 2 f8995] 3 weeks : 93.41 MB
latest 0 weeks ago 241.3 MB

The -a option can be specified with the docker images command to look for
intermediate layers:

$ docker images -a

The format of the Dockerfile is:
INSTRUCTION arguments

Generally, instructions are given in uppercase, but they are not case sensitive. They are
evaluated in order. A # at the beginning is treated like a comment.

Let's take a look at the different types of instructions:

» FROM: This must be the first instruction of any Dockerfile, which sets the base image
for subsequent instructions. By default, the latest tag is assumed to be:

FROM <image>

Alternatively, consider the following tag:

FROM <images>:<tag>

There can be more than one FROM instruction in one Dockerfile to create
multiple images.

7}

Working with Docker Images

If only image names, such as Fedora and Ubuntu are given, then the images will be
downloaded from the default Docker registry (Docker Hub). If you want to use private
or third-party images, then you have to mention this as follows:

[registry hostname[:port]/] [user name/] (repository
name:version_ tag)

Here is an example using the preceding syntax:
FROM registry-host:5000/nkhare/£f20:httpd

MAINTAINER: This sets the author for the generated image, MAINTAINER <names.
RUN: We can execute the RUN instruction in two ways—first, run in the shell (sh -c):
RUN <command> <paraml> ... <pamamN>

Second, directly run an executable:
RUN ["executable", "paraml",...,"paramN"]

As we know with Docker, we create an overlay—a layer on top of another layer—to
make the resulting image. Through each RUN instruction, we create and commit a
layer on top of the earlier committed layer. A container can be started from any of the
committed layers.

By default, Docker tries to cache the layers committed by different RUN instructions,
so that it can be used in subsequent builds. However, this behavior can be turned off
using - -no-cache flag while building the image.

LABEL: Docker 1.6 added a new feature to the attached arbitrary key-value pair
to Docker images and containers. We covered part of this in the Labeling and
filtering containers recipe in Chapter 2, Working with Docker Containers. To give
a label to an image, we use the LABEL instruction in the Dockerfile as LABEL
distro=fedora2l.

CMD: The CMD instruction provides a default executable while starting a container. If
the CMD instruction does not have an executable (parameter 2), then it will provide
arguments to ENTRYPOINT.

CMD ["executable", "paraml",...,"paramN"]

CMD ["paraml", ... , "paramN"]

CMD <command> <paraml> ... <pamamN>

Only one CcMD instruction is allowed in a Dockerfile. If more than one is specified, then
only the last one will be honored.

ENTRYPOINT: This helps us configure the container as an executable. Similar to CMD,
there can be at max one instruction for ENTRYPOINT; if more than one is specified,
then only the last one will be honored:

ENTRYPOINT |["executable", "paraml",...,"paramN"]
ENTRYPOINT <command> <paraml> ... <pamamN>

Chapter 3

Once the parameters are defined with the ENTRYPOINT instruction, they cannot be
overwritten at runtime. However, ENTRYPOINT can be used as CMD, if we want to use
different parameters to ENTRYPOINT.

EXPOSE: This exposes the network ports on the container on which it will listen
at runtime:

EXPOSE <port> [<port> ...]
We can also expose a port while starting the container. We covered this in the

Exposing a port while starting a container recipe in Chapter 2, Working with Docker
Containers.

ENV: This will set the environment variable <key> to <values. It will be passed all
the future instructions and will persist when a container is run from the resulting
image:

ENV <key> <value>

ADD: This copies files from the source to the destination:
ADD <src> <dest>
The following one is for the path containing white spaces:
ADD ["<src>"... "<dest>"]
o <src>: This must be the file or directory inside the build directory from

which we are building an image, which is also called the context of the build.
A source can be a remote URL as well.

o <dests>: This must be the absolute path inside the container in which the
files/directories from the source will be copied.
COPY: This is similar to ADD.COPY <src> <dests:
COPY ["<src>"... "<dest>"]
VOLUME: This instruction will create a mount point with the given name and flag it as
mounting the external volume using the following syntax:
VOLUME ["/data"]

Alternatively, you can use the following code:
VOLUME /data

USER: This sets the username for any of the following run instructions using the
following syntax:

USER <username>/<UID>

Working with Docker Images

» WORKDIR: This sets the working directory for the RUN, CMD, and ENTRYPOINT
instructions that follow it. It can have multiple entries in the same Dockerfile. A
relative path can be given which will be relative to the earlier WORKDIR instruction
using the following syntax:

WORKDIR <PATH>

» ONBUILD: This adds trigger instructions to the image that will be executed later, when
this image will be used as the base image of another image. This trigger will run as
part of the FROM instruction in downstream Dockerfile using the following syntax:

ONBUILD [INSTRUCTION]

» Look at the help option of docker build:
$ docker build -help

» The documentation on the Docker website https://docs.docker.com/
reference/builder/

Building an Apache image - a Dockerfile

example

I am going to refer Dockerfiles from the Fedora-Dockerfiles GitHub repo (https://github.
com/fedora-cloud/Fedora-Dockerfiles) after forking it. If you are using Fedora, then
you can also install the fedora-dockerfiles package to get the sample Dockerfiles in /
usr/share/fedora-dockerfiles. In each of the subdirectories, you will put a Dockerfile,
the supporting files and a README file.

The Fedora-Dockerfiles GitHub repo would have the latest examples and | highly recommend
that you try out latest bits.

Getting ready

Clone the Fedora-Dockerfiles Git repo using the following command:
$ git clone https://github.com/nkhare/Fedora-Dockerfiles.git
Now, go to the apache subdirectory:

$ cd Fedora-Dockerfiles/apache/
$ cat Dockerfile

FROM fedora:20

&)

https://docs.docker.com/reference/builder/
https://docs.docker.com/reference/builder/
https://github.com/fedora-cloud/Fedora-Dockerfiles
https://github.com/fedora-cloud/Fedora-Dockerfiles

Chapter 3

MAINTAINER "Scott Collier" <scollier@redhat.com>

RUN yum -y update && yum clean all
RUN yum -y install httpd && yum clean all
RUN echo "Apache" >> /var/www/html/index.html

EXPOSE 80

Simple startup script to avoid some issues observed with container
restart

ADD run-apache.sh /run-apache.sh

RUN chmod -v +x /run-apache.sh

CMD ["/run-apache.sh"]
The other supporting files are:

» README.md: This is the README file
» run-apache.sh: This is the script to run HTTPD in the foreground
» LICENSE: This is the GPL license

How to do it...

With the following build command, we can build a new image:

$ docker build -t fedora/apache .
Sending build context to Docker daemon 23.55 kB
Sending build context to Docker daemon
Step 0 : FROM fedora:20
---> 6cece30db4f9
Step 1 : MAINTAINER "Scott Collier" <scollier@redhat.com>
---> Running in 2048200e6338
---> ae8e3c258061
Removing intermediate container 2048200e6338
Step 2 : RUN yum -y update && yum clean all
---> Running in df8bc8ee31l7
.... Installing/Update packages ...

Cleaning up everything

Working with Docker Images

---> 5a6d449e59f6
Removing intermediate container df8bc8ee3ll7
Step 3 : RUN yum -y install httpd && yum clean all
---> Running in 24449e520£f18
.... Installing HTTPD ...
Cleaning up everything
---> ael625544ef6
Removing intermediate container 24449e520f18
Step 4 : RUN echo "Apache" >> /var/www/html/index.html
---> Running in a35cbcd8d97a
---> 25leea3lb3ce
Removing intermediate container a35cbcd8d97a
Step 5 : EXPOSE 80
---> Running in 734e54f4bf58
---> 19503ae2a8cf
Removing intermediate container 734e54f4bf58
Step 6 : ADD run-apache.sh /run-apache.sh
---> de35d746£43b
Removing intermediate container 3eec9a46da64
Step 7 : RUN chmod -v +x /run-apache.sh
---> Running in 3664efba393f

mode of '/run-apache.sh' changed from 0644 (rw-r--r--) to 0755 (rwxr-
Xr-X)

---> 1cb729521c3f
Removing intermediate container 3664efba393f
Step 8 : CMD /run-apache.sh

---> Running in cd5e7534e815

---> 5f8041b6002c
Removing intermediate container cd5e7534e815

Successfully built 5£8041b6002c

The build process takes a base image, installs the required HTTPD package and creates an
HTML page. Then, it exposes port 80 to serve the web page and sets instructions to start
Apache at the start of the container.

&

Chapter 3

There's more...

Let's run the container from the created image, get its IP address, and access the web page
from it:

$ ID="docker run -d -p 80 fedora/apache’
$ docker inspect --format='{{.NetworkSettings.IPAddress}}' S$ID
172.17.0.22

» Look at the help option of docker build:
$ docker build --help

» The documentation on the Docker website https://docs.docker.com/
reference/builder/

Accessing Firefox from a container - a

Dockerfile example

We can do something more interesting through a Dockerfile, such as creating a container that
just runs Firefox. This kind of use case can help run multiple browsers of different versions on
the same machine, which can be very helpful in doing multibrowser testing.

Getting ready

Clone the Fedora-Dockerfiles Git repo using the following command:

$ git clone https://github.com/nkhare/Fedora-Dockerfiles.git
Then, go to the £irefox subdirectory.

$ cd Fedora-Dockerfiles/firefox
$ cat Dockerfile
FROM fedora

MAINTAINER scollier <emailscottcollier@gmail.com>

Install the appropriate software
RUN yum -y update && yum clean all
RUN yum -y install xllvnc \

(&5}

https://docs.docker.com/reference/builder/
https://docs.docker.com/reference/builder/

Working with Docker Images

firefox xorg-xll-server-Xvfb \
xorg-x11-twm tigervnc-server \
xterm xorg-xll-font \
xulrunner-26.0-2.£fc20.x86 64 \
dejavu-sans-fonts \
dejavu-serif-fonts \

xdotool && yum clean all

Add the xstartup file into the image
ADD ./xstartup /

RUN mkdir /.vnc

RUN xllvnc -storepasswd 123456 /.vnc/passwd
RUN \cp -f ./xstartup /.vnc/.

RUN chmod -v +x /.vnc/xstartup

RUN sed -i '/\/etc\/X11l\/xinit\/xinitrc-common/a [-x
/usr/bin/firefox] && /usr/bin/firefox &' /etc/X1ll/xinit/xinitrc

EXPOSE 5901

CMD ["vncserver", "-fg"]

ENTRYPOINT ["vncserver", "-fg" 1]
Supporting files:

» README.md: This is a README file
» LICENSE: This is the GPL license
» xstartup: This is the script to set up the X11 environment

How to do it...

Run the following command to build the image:

$ docker build -t fedora/firefox
Sending build context to Docker daemon 24.58 kB
Sending build context to Docker daemon
Step 0 : FROM fedora
---> 834629358fe2
Step 1 : MAINTAINER scollier <emailscottcollier@gmail.com>

=

Chapter 3

---> Running in ae0fd3c2cbe
---> 7ffc6c9af827
Removing intermediate container ae0fd3c2cbe
Step 2 : RUN yum -y update && yum clean all
---> Running in 1c67b8772718
..... Installing/Update packages ...
---> 075d6ceef3d0
Removing intermediate container 1c67b8772718

Step 3 : RUN yum -y install xllvnc firefox xorg-xll-server-Xvfb xorg-
x1ll-twm tigervnc-server xterm xorg-xll-font xulrunner-26.0-
2.fc20.x86 64 dejavu-sans-fonts dejavu-serif-fonts xdotool && yum
clean all

..... Installing required packages packages ...
Cleaning up everything

---> 986be48760a6
Removing intermediate container c338aladécaf
Step 4 : ADD ./xstartup /

---> 24fa08ldceab
Removing intermediate container fe98d86baé67f
Step 5 : RUN mkdir /.vnc

---> Running in fdb8fe7e697a

---> 18f266ace765
Removing intermediate container fdb8fe7e697a
Step 6 : RUN xllvnc -storepasswd 123456 /.vnc/passwd
---> Running in c5b7cdbalb7f
stored passwd in file: /.vnc/passwd

---> e4fcf9bl7aal
Removing intermediate container c5b7cdbal57f
Step 7 : RUN \cp -f ./xstartup /.vnc/.

---> Running in 21d0dc4edbde

---> 4c53914323cb
Removing intermediate container 21d0dc4edb4e
Step 8 : RUN chmod -v +x /.vnc/xstartup

---> Running in 38£18£07c996

mode of '/.vnc/xstartup' changed from 0644 (rw-r--r--) to 0755 (rwxr-
Xr-Xx)

---> caa278024354

Working with Docker Images

Removing intermediate container 38£18£07c996

Step 9 : RUN sed -i '/\/etc\/X11l\/xinit\/xinitrc-common/a [-x /usr/bin/
firefox] && /usr/bin/firefox &' /etc/X1ll/xinit/xinitrc

---> Running in 233e99cab02c

---> 421le944ac8b’7
Removing intermediate container 233e99cab02c
Step 10 : EXPOSE 5901

---> Running in 530cd361lcb3c

---> 5de01995c156
Removing intermediate container 530cd36lcb3c
Step 11 : CMD vncserver -fg

---> Running in db89498ae8ce

---> 899be39b7feb
Removing intermediate container db89498ae8ce

Successfully built 899be39b7feb

We start with the base Fedora image, install X Windows System, Firefox, a VNC server, and other
packages. We then set up the VNC server to start X Windows System, which will start Firefox.

» To start the container, run the following command:
$ docker run -it -p 5901:5901 fedora/firefox

And give 123456 as the password.

» While running the container, we mapped the 5901 port of the host to 5901 port of
the container. In order to connect to the VNC server inside the container, just run the
following command from another terminal:

$ vncviewer localhost:1

Alternatively, from another machine in the network, replace localhost with the
Docker host's IP address or FQDN.

» Look at the help option of docker build:
$ docker build --help

(&)

Chapter 3

» The documentation on the Docker website https://docs.docker.com/
reference/builder/

Building a WordPress image - a Dockerfile

example

So far we have seen the example of running just one service inside a container. If we want to
run an application, which requires us to run one or more services simultaneously, then, either
we will need to run them on the same container or run them on different containers and link
them together. WordPress is one such example that requires a database and web service.

Docker only likes one process per container running in the foreground. Thus, in order to make
Docker happy, we have a controlling process that manages the database and web services.
The controlling process, in this case, is supervisord (http://supervisord.org/). Thisis a
trick we are using to make Docker happy.

Again, we will use a Dockerfile from the Fedora-Dockerfiles repository.

Getting ready

Clone the Fedora-Dockerfiles Git repo using the following command:
$ git clone https://github.com/nkhare/Fedora-Dockerfiles.git
Then, go to the wordpress_single container subdirectory:

$ cd Fedora-Dockerfiles/systemd/wordpress_single container
$ cat Dockerfile

FROM fedora

MAINTAINER scollier <scollier@redhat.com>

RUN yum -y update && yum clean all

RUN yum -y install httpd php php-mysqgl php-gd pwgen supervisor bash-
completion openssh-server psmisc tar && yum clean all

ADD ./start.sh /start.sh

ADD ./foreground.sh /etc/apache2/foreground.sh

ADD ./supervisord.conf /etc/supervisord.conf

RUN echo %sudo ALL=NOPASSWD: ALL >> /etc/sudoers

ADD http://wordpress.org/latest.tar.gz /wordpress.tar.gz
RUN tar xvzf /wordpress.tar.gz

RUN mv /wordpress/* /var/www/html/.

RUN chown -R apache:apache /var/www/

&7}

https://docs.docker.com/reference/builder/
https://docs.docker.com/reference/builder/
http://supervisord.org/

Working with Docker Images

RUN chmod 755 /start.sh

RUN chmod 755 /etc/apache2/foreground.sh
RUN mkdir /var/run/sshd

EXPOSE 80

EXPOSE 22

CMD ["/bin/bash", "/start.sh"]

The supporting files used in the preceding code are explained as follows:

» foreground.sh: This is a script to run HTTPS in the foreground.

» LICENSE, LICENSE.txt, and UNLICENSE.txt: These files contain the license
information.

» README.md: This is a README file.

» supervisord.conf: This is a resulting container which will have to run SSHD,
MySQL, and HTTPD at the same time. In this particular case, the supervisor is used to
manage them. It is a configuration file of the supervisor. More information about this
can be found at http://supervisord.org/.

» start.sh: Thisis a script to set up MySQL, HTTPD, and to start the supervisor
daemon.

How to do it...

$ docker build -t fedora/wordpress
Sending build context to Docker daemon 41.98 kB
Sending build context to Docker daemon
Step 0 : FROM fedora
---> 834629358fe2
Step 1 : MAINTAINER scollier <scollier@redhat.com>
---> Using cache
---> f2leaf47c9fc
Step 2 : RUN yum -y update && yum clean all
---> Using cache
---> a8f497a6e57c

Step 3 : RUN yum -y install httpd php php-mysql php-gd pwgen supervisor
bash-completion openssh-server psmisc tar && yum clean all

---> Running in 303234ebflel
updating/installing packages
Cleaning up everything

---> ccl9a5f5c4aa

&)

http://supervisord.org/

Removing intermediate container 303234ebflel

Step 4 : ADD ./start.sh /start.sh
---> 3f911077da44

Removing intermediate container c2bdé643236ef

Step 5 : ADD ./foreground.sh /etc/apache2/foreground.sh
---> 3799902a60c5

Removing intermediate container c99b8e910009

Step 6 : ADD ./supervisord.conf /etc/supervisord.conf
---> £232433b8925

Removing intermediate container 0584b945f6f7

Step 7 : RUN echo %sudo ALL=NOPASSWD: ALL >> /etc/sudoers
---> Running in 581db01d7350
---> ec686e945dfd

Removing intermediate container 581db01d7350

Chapter 3

Step 8 : ADD http://wordpress.org/latest.tar.gz /wordpress.tar.gz

Downloading [==
MB/6.186 MB

---> e4e902c389%a4
Removing intermediate container 6bfecfbe798d
Step 9 : RUN tar xvzf /wordpress.tar.gz
---> Running in ¢d772500a776
.......... untarring wordpress
---> d2c5176228e5
Removing intermediate container cd772500a776
Step 10 : RUN mv /wordpress/* /var/www/html/.
---> Running in 7bl9abeb509c
---> 09400817c55f
Removing intermediate container 7bl9abeb509c
Step 11 : RUN chown -R apache:apache /var/www/
---> Running in £6b9b6d83b5c
---> b35a901735d9
Removing intermediate container £6b9b6d83b5c
Step 12 : RUN chmod 755 /start.sh
---> Running in 81718f8d52fa
---> 87470a002el2

Removing intermediate container 81718f8d52fa

>] 6.186

Working with Docker Images

Step 13 : RUN chmod 755 /etc/apache2/foreground.sh
---> Running in 040c09148elc
---> 1c76£1511685
Removing intermediate container 040c09148elc
Step 14 : RUN mkdir /var/run/sshd
---> Running in 77177a33aeel
---> £339dd1f3e6b
Removing intermediate container 77177a33aeel
Step 15 : EXPOSE 80
---> Running in £27c0b96d1l7f
---> 6078£0d7b70b
Removing intermediate container £27c0b96dl7f
Step 16 : EXPOSE 22
---> Running in eb7c¢7d90b860
---> 38f36e5c7cab
Removing intermediate container eb7c¢7d90b860
Step 17 : CMD /bin/bash /start.sh
---> Running in 5635fe4783da
---> cla327532355
Removing intermediate container 5635fe4783da

Successfully built cla327532355

As with the other recipes, we start with the base image, install the required packages,

and copy the supporting files. We will then set up sudo, download, and untar WordPress
inside the HTTPD document root. After this, we expose the ports and run the start.sh scripts,
which sets up MySQL, WordPress, HTTPS permissions and gives control to supervisord.

In the supervisord. conf, you will see entries, such as the following services that
supervisord manages:

[program:mysqld]
command=/usr/bin/mysqld safe
[program:httpdl]
command=/etc/apache2/foreground.sh
stopsignal=6

[program: sshd]

command=/usr/sbin/sshd -D

[

stdout_logfile=/var/log/supervisor/% (program name)s.log

stderr logfile=/var/log/supervisor/% (program name)s.log

autorestart=true

There's more...

» Start the container, get its IP address and open it through a web browser. You should

see the Welcome screen, as shown in the following screenshot, after doing the
language selection:

Welcome

Site Title

Username

Password, twice

A passward will be
automatically generated
for you if you leave this
blank

Your E-mail

Privacy

Install WordPress

Welcome to the famous five minute WordPress installation process! You may want to browse the ReadMe
documentation at your leisure, Otherwise, just fill in the information below and you'll be on your way to
using the most extendable and powerful personal publishing platform in the world,

Information needed

Please provide the following information. Don't worry, you can always change these settings later,

Usernames can have only alphanumeric characters, spaces, underscores, hyphens, periodsand
the @ symbol

Strength indicator

Hint: The password should be at least seven characters long. To make it stronger, use upper and
lower case letters, numbers, and symbols like 1774 % & &)

Double-check your email address before continuing,

¥ Allow search engines to index this site.

Chapter 3

Working with Docker Images

» Itis now possible to run systemd inside the container, which is a more preferred way.
Systemd can manage more than one service .You can look at the example of systemd
athttps://github.com/fedora-cloud/Fedora-Dockerfiles/tree/
master/systemd.

» Look at the help option of docker build:
$ docker build --help

» The documentation on the Docker website https://docs.docker.com/
reference/builder/

Setting up a private index/registry

As we saw earlier, the public Docker registry is the available Docker Hub (https://
registry.hub.docker.com/) through which users can push/pull images. We can also
host a private registry either on a local environment or on the cloud. There are a few ways
to set up the local registry:
» Use the Docker registry from Docker Hub
» Build an image from Dockerfile and run a registry container:
https://github.com/fedora-cloud/Fedora-Dockerfiles/tree/master/

registry

» Configure the distribution-specific package such as Fedora, which provides the
docker-registry package that you can install and configure.

The easiest way to set it up is through the registry container itself.

Getting ready

Make sure the Docker daemon is running on the host and you can connect through the
Docker client.

How to do it...

1. To run the registry on the container, run the following command:
$ docker run -p 5000:5000 registry

2. To test the newly created registry, perform the following steps:

=

https://github.com/fedora-cloud/Fedora-Dockerfiles/tree/master/systemd
https://github.com/fedora-cloud/Fedora-Dockerfiles/tree/master/systemd
https://docs.docker.com/reference/builder/
https://docs.docker.com/reference/builder/
https://registry.hub.docker.com/
https://registry.hub.docker.com/
https://github.com/fedora-cloud/Fedora-Dockerfiles/tree/master/registry
https://github.com/fedora-cloud/Fedora-Dockerfiles/tree/master/registry

Chapter 3
1. Start a container and its ID by using the following command:
$ ID='docker run -d -i fedora /bin/bash’

2. If needed, attach to the newly created container and make some changes.
Then, commit those changes to the local repository:

$ docker commit $ID fedora-20

3. To push the image to the local registry, we need to tag the image with the hostname
or IP address of the registry host. Let's say our registry host is registry-host;
then, to tag it, use the following command:

$ docker tag fedora-20 registry-host:5000/nkhare/£20

4. As we have not configured HTTPS correctly while starting the registry, we will get
an error such as the ping attempt failed with error: Get https://
dockerhost:5000/v1/_ ping, which is expected. For our example to work, we
need to add the - -insecure-registry registry-host:5000 option to the

daemon. If you have started the Docker daemon manually, then we have to run the
command as follows to allow insecure registry:

$ docker -d --insecure-registry registry-host:5000

5. To push the image, use the following command:
$ docker push registry-host:5000/nkhare/£20

6. To pull the image from the local registry, run the following command:
$ docker pull registry-host:5000/nkhare/£20

The preceding command to pull the image will download the official registry image from
Docker Hub and run it on port 5000. The -p option publishes the container port to the host
system's port. We will look at the details about port publishing in the next chapter.

The registry can also be configured on any existing servers using the docker-registry app. The
steps to do this are available at the docker-registry GitHub page:

https://github.com/docker/docker-registry

Let's look at Dockerfile of docker-registry to understand how the registry image is being
created and how to set different configuration options:

VERSION 0.1
DOCKER-VERSION 0.7.3

(75}

Working with Docker Images

AUTHOR: Sam Alba <sam@docker.com>

DESCRIPTION: Image with docker-registry project and dependencies
TO BUILD: docker build -rm -t registry .

TO_RUN: docker run -p 5000:5000 registry

Latest Ubuntu LTS
FROM ubuntu:14.04

Update

RUN apt-get update \

Install pip

&& apt-get install -y \
swig \
python-pip \

Install deps for backports.lzma (python2 requires it)
python-dev \
python-mysqgldb \
python-rsa \
libssl-dev \
liblzma-dev \
libeventl-dev \

&& rm -rf /var/lib/apt/lists/*

COPY . /docker-registry
COPY ./config/boto.cfg /etc/boto.cfg

Install core

RUN pip install /docker-registry/depends/docker-registry-core

Install registry

RUN pip install file:///docker-registry#egg=docker-
registry[bugsnag,newrelic, cors]

RUN patch \

$(python -c 'import boto; import os; print
os.path.dirname (boto. file)')/connection.py \

7

Chapter 3

< /docker-registry/contrib/boto _header patch.diff

ENV DOCKER REGISTRY CONFIG /docker-registry/config/config sample.yml

ENV SETTINGS FLAVOR dev

EXPOSE 5000

CMD ["docker-registry"]

With the preceding Dockerfile, we will:

>

>

>

4

>

>

>

Take Ubuntu's base image install/update packages
Copy the docker-registry source code inside the image
Use the pip install docker-registry

Set up the configuration file to use while running the registry using the environment
variable

Set up the flavor to use while running the registry using the environment variable
Expose port 5000
Run the registry executable

Flavors in the configuration file (/docker-registry/config/config sample.yml)
provide different ways to configure the registry. With the preceding Dockerfile, we will set the
dev flavor using the environment variables. The different types of flavors are:

>

>

>

>

common: This is used by all the other flavors as base settings

local: This stores data on the local filesystem

s3: This stores data in an AWS S3 bucket

dev: This is the basic configuration using the local flavors

test: This is used by unit tests

prod: This is the production configuration (basically a synonym for the S3 flavor)
gcs: This stores data in Google cloud storage

swift: This stores data in OpenStack Swift

glance: This stores data in OpenStack Glance, with a fallback to the local storage
glance-swift: This stores data in OpenStack Glance, with a fallback to Swift

elliptics: This stores data in Elliptics key-value storage

For each of preceding flavors, different configuration options such as loglevel, authentication,
and so on are available. The documentation for all of the options are available on the GitHub
page of docker-registry, which | mentioned earlier.

Working with Docker Images

» The documentation on GitHub https://github.com/docker/docker-registry

Automated builds - with GitHub and

Bitbucket

We have seen earlier how to push the Docker images to Docker Hub. Docker Hub allows us
to create automated images from a GitHub/Bitbucket repository using its build clusters. The
GitHub/Bitbucket repository should contain the Dockerfile and the content required to copy/
add inside the image. Let's look at a GitHub example in the upcoming sections.

Getting ready

You will need an account on Docker Hub and GitHub. You will also need a GitHub repository
with a corresponding Dockerfile at the top level.

How to do it...

1. Loginto Docker Hub (https://hub.docker.com/) and click on the green
plus sign. Add the Repository icon on the top right-hand side corner and click on
Automated Build. Select GitHub as a source to use for automated build. Then,
select the Public and Private (recommended) option to connect to GitHub. Provide
the GitHub username/password when prompted. Select the GitHub repository to
perform automated build.

=
el
w Browse Repos Documentation Community Help nkhare »v

GitHub: Add Automated Build

For more information on Automated Builds, please read the Automated Build documentation.

Select a Repository 1o build

= nkhare

nkhare/DataAnalysis- Select

nkhare/docker-automated-build Select

nkhare/dstat Select

nkhare/GitAnalysis Select

7@

https://github.com/docker/docker-registry
https://hub.docker.com/

Chapter 3

2. After selecting the GitHub repository, it will ask you to pick its branch to use for
automated build. It will also ask for a tag name to use after the image it automatically
built. By default, the latest tag name will be used. Then, click on the Save and
trigger build button to start the automated build process. That's it!! Your build is now
submitted. You can click on the build status to check the status of the build.

When we select a GitHub repository for automated build, GitHub enables the Docker service
for that repository. You can look at the Settings section of the GitHub repository for more
configuration. Whenever we make any changes to this GitHub repository, such as commits, an
automated build gets triggered using the Dockerfile that resides in the GitHub repository.

nkhare / docker-automated-build @unwatch~ 1 drstar 0 Y For

Options Webhooks Add webhook

CelEueatos Webhooks allow external services to be notified when certain events happen on GitHub. When the specified events
; happen, we'll send a POST request to each of the URLs you provide, Learn more in our Webhooks Guide.
Webhooks & Services

Deploy keys

Services iZ Add service ~

re-built integrations that perform certain actions when events occur on GitHub. For more information
eck out our Service Hooks Guide

(77}

Working with Docker Images

You can get the details such as the Dockerfile, build details tags, and other information, by
going to the Your Repositories section. It also has the details of how to pull your image:

Q, Browse Repos

AUTOMATED BUILD REPOSITORY
nkhare / docker-automated-build

No description set

0))
Information Dockerfile Build Details

Build Details

Type Name Dockerflle Locatlon

Branch master !

Builds History

Documentation

Community

nkhare

Updated 13 minutesago
Pull this reposita docker pull nkhare/doc ker-automated-build

Tags

Edit Bulld Details

Tag Name

latest

P Start a Build

Build Details

% Source Project Page
% Source Reposlitory

Properiies

©2014-09-10 04:49:24

] nkhare
build Id Status Created Date Last Updated
bvg7ihd4s9rh 3ucBtssdwke Finished 2014-09-10 05:56:03 2014-09-10 05:56:48 .
Sellings
b47]c53dwbvscsem7bitwsg Finished 2014-09-10 05:49:58 2014-09-10 05:50:54
§ % Description
buouquhyygSaryxxinmsuu7? Finished 2014-09-10 05:48:18 2014-09-10 05:49:02
% Automated Build
bnex6kalm33kwxbl8blbri Finished 2014-09-10 04:54:13 2014-09-10 04:55:01 3 Webhooks
b42xnivsmyi4imysmsmaoda Error 2014-09-10 04:51:33 2014-09-10 04:51:36 & Collaborators
% Build Triggers
bxg2t8xc2chyqktk2ydngm9 Error 2014-09-10 04:49:24 2014-09-10 04:49:27 % Repository Links
= Mark as unlisted
& Make Private
Tl Delete Repository
Status Security Education Resources Blogs Forums Feedback Contact

©2014 Docker, Inc. Terms « Privacy » Trademarks

The images that get created using the automated build process cannot be pushed through the
docker push command.

You can change the settings in the Webhooks & Services section of the repository on GitHub
to unregister the Docker service. This will stop doing the automated builds.

@

Chapter 3

See also

» The steps for setting up automated build with Bitbucket are almost identical. The
hook for automated build gets configured under the Hooks section of Bitbucket
repository's Settings section.

» The documentation on the Docker website https://docs.docker.com/docker-
hub/builds/

Creating the base image - using supermin

Earlier in this chapter, we used the FROM instruction to pick the base image to start with. The
image we create can become the base image to containerize another application and so on.
From the very beginning to this chain, we will have a base image from the underlying Linux
distribution that we want to use such as Fedora, Ubuntu, CentOS, and so on.

To build such a base image, we will need to have a distribution-specific base system installed
into a directory, which can then be imported as an image to Docker. With chroot utility, we
can fake a directory as the root filesystem and then put all the necessary files inside it before
importing it as a Docker image. Supermin and Debootstrap are the kind of tools that can help
us make the preceding process easier.

Supermin is a tool to build supermin appliances. These are tiny appliances, which get fully
instantiated on the fly. Earlier this program was called febootstrap.

Getting ready

Install supermin on the system where you want to build the base image. You can install
supermin on Fedora with the following command:

$ yum install supermin

How to do it...

1. Usingthe prepare mode install bash, coreutils, and the related dependencies
inside a directory.

$ supermin --prepare -o OUTPUTDIR PACKAGE [PACKAGE ...]
Here's an example using the preceding syntax:
$ supermin --prepare bash coreutils -o f21 base

2. Now, with the build mode, create a chrooted environment for the base image:
$ supermin --build -o OUTPUTDIR -f chroot|ext2 INPUT [INPUT ...]

(7]

https://docs.docker.com/docker-hub/builds/
https://docs.docker.com/docker-hub/builds/

Working with Docker Images

Here's an example using the preceding syntax :
$ supermin --build --format chroot £21 base -o £21 image

3. If we do 1s on the output directory, we will see a directory tree similar to any Linux
root filesystem:
$ 1s £21 image/
bin boot dev etc home 1ib 1ib64 media mnt opt proc root
run sbin srv sys tmp usr var

4. Now we can export the directory as a Docker image with the following command:
$ tar -C f21 image/ -c . | docker import - nkhare/f21 base
d6db8b798dee30ad9c84480e£7497222£063936a398ecf639e60599eed7£6560

5. Now, look at the docker images output. You should have a new image with
nkhare/f21 base asthe name.

Supermins has two modes, prepare and build. With the prepare mode, it just puts all the
requested packages with their dependencies inside a directory without copying the host 0OS
specific files.

With the build mode, the previously created supermin appliance from the prepare mode
gets converted into a full blown bootable appliance with all the necessary files. This step
will copy the required files/binaries from the host machine to the appliance directory, so the
packages must be installed on the host machines that you want to use in the appliance.

The build mode has two output formats, chroot, and ext2. With the chroot format, the directory
tree gets written into the directory, and with the ext2 format, a disk image gets created. We
exported the directory created through the chroot format to create the Docker image.

Supermin is not specific to Fedora and should work on any Linux distribution.

See also

» Look at the man page of supermin for more information using the following command:

$ man supermin

» The online documentation http://people.redhat.com/~rjones/supermin/
» The GitHub repository https://github.com/libguestfs/supermin

http://people.redhat.com/~rjones/supermin/
https://github.com/libguestfs/supermin

Chapter 3

Debootstrap is a tool to install a Debian-based system into a directory of an already installed
system.

Getting ready

Install debootstrap on the Debian-based system using the following command:

$ apt-get install debootstrap

How to do it...

The following command can be used to create the base image using Debootstrap:

$ debootstrap [OPTION...] SUITE TARGET [MIRROR [SCRIPT]]

SUITE refers to the release code name and MIRROR is the respective repository. If you
wanted to create the base image of Ubuntu 14.04.1 LTS (Trusty Tahr), then do the following:

1. Create a directory on which you want to install the OS. Debootstrap also creates the
chroot environment to install a package, as we saw earlier with supermin.

$ mkdir trusty chroot

2. Now, using debootstrap, install Trusty Tahr inside the directory we created earlier:
$ debootstrap trusty ./trusty chroot
http://in.archive.ubuntu.com/ubuntu/

3. You will see the directory tree similar to any Linux root filesystem, inside the directory
in which Trusty Tahr is installed.

$ 1ls ./trusty chroot
bin boot dev etc home 1lib 1ib64 media mnt opt proc
root run sbin srv sys tmp wusr var

4. Now we can export the directory as a Docker image with the following command:
$ tar -C trusty chroot/ -c¢ . | docker import -

nkhare/trusty base

5. Now, look at the docker images output. You should have a new image with
nkhare/trusty base as the name.

s

Working with Docker Images

» The Debootstrap wiki page https://wiki.debian.org/Debootstrap

» There are a few other ways to create base images. You can find links to them at
https://docs.docker.com/articles/baseimages/.

Visualizing dependencies between layers

As the number of images grows, it becomes difficult to find relation between them. There are a
few utilities for which you can find the relation between images.

Getting ready

One or more Docker images on the host running the Docker daemon.

How to do it...

1. Run the following command to get a tree-like view of the images:

$ docker images -t

The dependencies between layers will be fetched from the metadata of the Docker images.

From --viz to docker images, we can see dependencies graphically; to do this, you will
need to have the graphviz package installed:

$ docker images --viz | dot -Tpng -o /tmp/docker.png
$ display /tmp/docker.png

As it states in the warning that appears when running the preceding commands, the -t and
- -viz options might get deprecated soon.

» The following project tries to visualize Docker data as well by using raw JSON output
from Docker https://github.com/justone/dockviz

https://wiki.debian.org/Debootstrap
https://docs.docker.com/articles/baseimages/
https://github.com/justone/dockviz

Network and Data
Management for
Containers

In this chapter, we will cover the following recipes:

» Accessing containers from outside

» Managing data in containers

» Linking two or more containers

» Developing a LAMP application by linking containers
» Networking of multihost container with Flannel

» Assigning IPv6 addresses to containers

Introduction

Until now, we have worked with a single container and accessed it locally. But as we move to
more real world use cases, we will need to access the container from the outside world, share
external storage within the container, communicate with containers running on other hosts,
and so on. In this chapter, we'll see how to fulfill some of those requirements. Let's start by
understanding Docker's default networking setup and then go to advanced use cases.

Network and Data Management for Containers

When the Docker daemon starts, it creates a virtual Ethernet bridge with the name dockero.
For example, we will see the following with the ip addr command on the system that runs
the Docker daemon:

8: docker0@: <NO-CARRIER,BROADCAST,MULTICAST,UP> mtu 1500 qdisc noqueue state DOWN group default|
link/ether 56:84:7a:fe:97:99 brd ff:ff:ff:ff:ff:ff
inet 172.17.42.1/16 scope global docker@

valid_1ft forever preferred_lft forever
inet6 feB80::5484:7aff:fefe:9799/64 scope link
valid_1ft forever preferred_l1ft forever

As we can see, docker0 has the IP address 172.17.42.1/16. Docker randomly
chooses an address and subnet from a private range defined in RFC 1918
(https://tools.ietf.org/html/rfc1918). Using this bridged interface,
containers can communicate with each other and with the host system.

By default, every time Docker starts a container, it creates a pair of virtual interfaces,
one end of which is attached to the host system and other end to the created container.
Let's start a container and see what happens:

[root@dockerhost ~]# docker run -it centos bash
[root@b5a59b4a5776 /1# ip a
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 gqdisc noqueue state UNKNOWN
Llink/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
inet 127.0.0.1/8 scope host 1o
valid_lft forever preferred_lft forever
inet6 ::1/128 scope host
valid_1lft forever preferred_lft forever
113: eth0: <BROADCAST,UP,LOWER_UP> mtu 1500 qdisc noqueue state UP
link/ether 02:42:ac:11:00:01 brd ff:ff:ff:ff:ff:ff
inet 172.17.0.1/16 scope global eth®
valid_1lft forever preferred_lft forever
inet6 fe80::42:acff:fell:1/64 scope link
valid_lft forever preferred_lft forever

The end that is attached to the etho interface of the container gets the 172.17.0.1/16 IP
address. We also see the following entry for the other end of the interface on the host system:

114: vethfdcfc6d: <BROADCAST,UP,LOWER_UP> mtu 1500 gqdisc noqueue master do
ckerQ state UP group default
link/ether 6e:95:eb:21:2e:e7 brd ff:ff:ff:ff:ff:ff

inet6 feB0::6c95:ebff:fe2l:2ee7/64 scope link
valid_1ft forever preferred_lft forever

Now, let's create a few more containers and look at the docker0 bridge with the brct1
command, which manages Ethernet bridges:

=

https://tools.ietf.org/html/rfc1918

Chapter 4

[root@dockerhost ~]# brctl show docker0®
bridge name bridge id STP enabled interfaces

dockerQ 8000.56847ate9799 no veth5bf068b
veth7a38b57
vethfdcfcbd

Every veth* binds to the docker0 bridge, which creates a virtual subnet shared between the
host and every Docker container. Apart from setting up the docker0 bridge, Docker creates
IPtables NAT rules, such that all containers can talk to the external world by default but not
the other way around. Let's look at the NAT rules on the Docker host:

[root@dockerhost ~]# iptables -t nat -L -n

Chain PREROUTING (policy ACCEPT)

target prot opt source destination

DOCKER all -- 0.0.0.0/0 0.0.0.0/0 ADDRTYPE match dst-type LOCAL

Chain INPUT (policy ACCEPT)
target prot opt source destination

Chain OUTPUT (policy ACCEPT)
target prot opt source destination
DOCKER all -- 0.0.0.0/0 1127.0.0.0/8 ADDRTYPE match dst-type LOCAL

Chain POSTROUTING (policy ACCEPT)
‘target prot opt source destination
MASQUERADE all -- 172.17.0.0/16 0.0.0.0/0

Chain DOCKER (2 references)
target prot opt source destination

If we try to connect to the external world from a container, we will have to go through the
Docker bridge that was created by default:

[root@b5ab9b4a5776 /1# traceroute redhat.com

traceroute to redhat.com (10.4.164.55), 30 hops max, 60 byte packets
172.17.42.1 (172.17.42.1) 0.050 ms 0.083 ms 0.027 ms
10.16.159.252 (10.16.159.252) 0.422 ms 0.427 ms 0.457 ms
10.16.253.42 (10.16.253.42) 0.592 ms 0.622 ms 0.669 ms

2

3

4 10.16.253.39 (10.16.253.39) 77.859 ms 77.970 ms 78.040 ms

5 redirect-redhat-com.edge.prod.ext.phx2.redhat.com (10.4.164.55) 77.627 ms 77.58
6 ms 77.546 ms

Later in this chapter, we will see how the external world can connect to a container.
When starting a container, we have a few modes to select its networking:

» --net=bridge: This is the default mode that we just saw. So, the preceding
command that we used to start the container can be written as follows:

$ docker run -i -t --net=bridge centos /bin/bash

&1

Network and Data Management for Containers

» --net=host: With this option, Docker does not create a network namespace for the
container; instead, the container will network stack with the host. So, we can start the
container with this option as follows:

$ docker run -i -t --net=host centos bash
We can then run the ip addr command within the container as seen here:

$ docker run -i -t --net=host centos /bin/bash
[root@dockerhost /]1# ip addr
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN
link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
inet 127.0.0.1/8 scope host lo
valid_1ft forever preferred 1ft forever
inet6 ::1/128 scope host
valid_1ft forever preferred_1ft forever
: enol: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc mq state UP glen 1000
link/ether 90:bl:1c:12:96:c8 brd ff:ff:ff:.ff: ff:ff
inet 10.16.154.221/21 brd 10.16.159.255 scope global dynamic enol
valid_1ft 63984sec preferred_lft 63984sec
inet6 fe80::92bl:1cff:fel2:96c8/64 scope link
valid_1ft forever preferred 1ft forever
: eno2: <NO-CARRIER,BROADCAST,MULTICAST,UP> mtu 1500 gdisc mq state DOWN qlen 1000
link/ether 90:bl:1c:12:96:c9 brd ff:ff:ff:ff:ff:ff
: eno3: <NO-CARRIER, BROADCAST, MULTICAST,UP> mtu 1500 gdisc mgq state DOWN qlen 1000
link/ether 90:b :12:96:ca brd ff:ff:ff. ff: ff:Ff
: eno4: <NO-CARRIER,BROADCAST,MULTICAST,UP> mtu 1500 gdisc mq state DOWN qlen 1000
link/ether 90:bl:1c:12:96:ch brd ff:ff:ff: ff: ff:ff
: enp5s0f0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 gdisc mq state UP qlen 1000
link/ether a0:36:9f:13:d2:14 brd ff:ff:ff:. ff:. ff:Ff
: enp5s0fl: <NO-CARRIER, BROADCAST,MULTICAST,UP> mtu 1500 qdisc mq state DOWN qlen 1000
link/ether a0:36:9f:13:d2:16 brd ff:ff:ff: ff: ff:ff
: docker@: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 gdisc noqueue state UP
link/ether 56:84:7a:fe:97:99 brd ff:ff:ff:.ff:. ff:ff
inet 172.17.42.1/16 scope global docker®
valid_1ft forever preferred_1ft forever
inet6 fe80::5484:7aff:fefe:9799/64 scope link
valid_1ft forever preferred 1ft forever
170: vethad9ad4fb: <BROADCAST,UP,LOWER_UP> mtu 1500 qdisc noqueue master docker®@ state UP
link/ether 0a:e3:93:df:46:55 brd ff:ff:ff: ff: ff:ff
inet6 fe80::8e3:93ff:fedf:4655/64 scope link
valid_1ft forever preferred 1ft forever

We can see all the network devices attached to the host. An example of using such
a configuration is to run the nginx reverse proxy within a container to serve the web
applications running on the host.

» --net=container:NAME or ID:With this option, Docker does not create a new
network namespace while starting the container but shares it from another container.
Let's start the first container and look for its IP address:

$ docker run -i -t --name=centos centos bash

$ docker run -i -t --name=centos centos bash
[root@ec6035dfb18f /1# ip addr
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN
link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
inet 127.0.0.1/8 scope host 1o
valid_1ft forever preferred_lft forever
inet6 ::1/128 scope host
valid_1ft forever preferred_l1ft forever
179: eth@: <BROADCAST,UP,LOWER_UP> mtu 1500 qdisc nogqueue state UP

link/ether 02:42:ac:11:00:3f brd ff:ff:ff:ff:ff:ff
inet 172.17.0.63/16 scope global eth
valid_1ft forever preferred_lft forever
inet6 fe80::42:acff:fell:3f/64 scope link
valid_lft forever preferred_lft forever

Chapter 4

Now start another as follows:

$ docker run -i -t --net=container:centos ubuntu bash

[root@dockerhost ~1# docker run -i -t --net=container:centos ubuntu bash
root@ec6035dfh18f: /# ip addr
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN group default
link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
inet 127.0.0.1/8 scope host lo
valid_1ft forever preferred_l1ft forever
inet6 ::1/128 scope host

valid_1ft forever preferred_lft forever
179: eth0: <BROADCAST,UP,LOWER_UP> mtu 1500 qdisc noqueue state UP group default
link/ether 02:42:ac:11:00:3f brd ff:ff:ff:ff:ff:ff
inet 172.17.0.63/16 scope global eth0
valid_1ft forever preferred_lft forever
inet6 fe80::42:acff:fell:3f/64 scope link
valid_1ft forever preferred_lft forever

As we can see, both containers contain the same IP address.

Containers in a Kubernetes (http://kubernetes.io/) Pod use this trick to
connect with each other. We will revisit this in Chapter 8, Docker Orchestration and
Hosting Platforms.

» --net=none: With this option, Docker creates the network namespace inside the
container but does not configure networking.

» For more information about the different networking we discussed in the

preceding section, visit https://docs.docker.com/articles/
’ networking/#how-docker-networks-a-container.

From Docker 1.2 onwards, it is also possible to change /etc/host, /etc/hostname, and
/etc/resolv.conf on a running container. However, note that these are just used to run a
container. If it restarts, we will have to make the changes again.

So far, we have looked at networking on a single host, but in the real world, we would like to
connect multiple hosts and have a container from one host to talk to a container from another
host. Flannel (https://github.com/coreos/flannel), Weave (https://github.
com/weaveworks/weave), Calio (http://www.projectcalico.org/getting-
started/docker/), and Socketplane (http://socketplane.io/) are some solutions
that offer this functionality. Later in this chapter, we will see how to configure Flannel to
multihost networking. Socketplane joined Docker Inc in March '15.

Community and Docker are building a Container Network Model (CNM) with libnetwork
(https://github.com/docker/libnetwork), which provides a native Go
implementation to connect containers. More information on this development can be found at
http://blog.docker.com/2015/04/docker-networking-takes-a-step-in-the-
right-direction-2/.

7}

http://kubernetes.io/
https://docs.docker.com/articles/networking/#how-docker-networks-a-container
https://docs.docker.com/articles/networking/#how-docker-networks-a-container
https://github.com/coreos/flannel
https://github.com/weaveworks/weave
https://github.com/weaveworks/weave
http://www.projectcalico.org/getting-started/docker/
http://www.projectcalico.org/getting-started/docker/
http://socketplane.io/
https://github.com/docker/libnetwork
http://blog.docker.com/2015/04/docker-networking-takes-a-step-in-the-right-direction-2/
http://blog.docker.com/2015/04/docker-networking-takes-a-step-in-the-right-direction-2/

Network and Data Management for Containers

Accessing containers from outside

Once the container is up, we would like to access it from outside. If you have started the
container with the - -net=host option, then it can be accessed through the Docker host IP.
With - -net=none, you can attach the network interface from the public end or through other
complex settings. Let's see what happens in by default—where packets are forwarded from the
host network interface to the container.

Getting ready

Make sure the Docker daemon is running on the host and you can connect through the
Docker client.

How to do it...

1. Let's start a container with the - P option:
$ docker run --expose 80 -i -d -P --name £f20 fedora /bin/bash

[root@dockerhost ~]# docker run --expose BO -i -d -P --name centosl centos /bin/bash
o9 ba3f303f8651adalbIes7165c15af 72df f666e519140c09
[r ~1# docker ps

CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES
09add15fcd3d centos:latest " /bin/bash" 15 seconds ago Up 14 seconds 0.0.0.0:49159->80/tcp _ centosl

This automatically maps any network port of the container to a random high port of
the Docker host between 49000 to 49900.

In the PORTS section, wesee 0.0.0.0:49159->80/tcp, Which is of the following
form:

<Host Interface>:<Host Port> -> <Container

Interface>/<protocol>

So, in case any request comes on port 49159 from any interface on the Docker host,
the request will be forwarded to port 80 of the centos1 container.

We can also map a specific port of the container to the specific port of the host using
the -p option:

$ docker run -i -d -p 5000:22 --name centos2 centos /bin/bash

[root@dockerhost ~]# docker run -i -d -p 5000:22 --name centes2 centes /bin/bash
1bds1

hds: 7b93ebc9dce353ab007d52elbasbf f 113

dockerhost ~]# docker ps
IMAGH COMMAND CREATED STATUS PORTS NAMES
centos: latest “/bin/bash" 6 seconds ago Up 5 seconds 0.0.0.0:5000->22/tcp _centos2

In this case, all requests coming on port 5000 from any interface on the Docker host will be
forwarded to port 22 of the centos2 container.

(e

Chapter 4

With the default configuration, Docker sets up the firewall rule to forward the connection from
the host to the container and enables IP forwarding on the Docker host:

[root@dockerhost ~]# iptables -t nat -L -n

Chain PREROUTING (policy ACCEPT)

target prot opt source destination

DOCKER all -- 0.0.0.0/0 0.0.0.0/0 ADDRTYPE match dst-type LOCAL

Chain INPUT (policy ACCEPT)
target prot opt source destination

Chain OUTPUT (policy ACCEPT)
target prot opt source destination
DOCKER all -- 0.0.0.0/0 1127.0.0.0/8 ADDRTYPE match dst-type LOCAL

Chain POSTROUTING (policy ACCEPT)

target prot opt source destination

MASQUERADE all -- 172.17.0.0/16 0.0.0.0/0

MASQUERADE tcp -- 172.17.0.4 172.17.0.4 tcp dpt:22

Chain DOCKER (2 references)
destination
0.0.0.0/0

tcp 0.0.0.0/0 tcp dpt:5000 to0:172.17.0.4:22

As we can see from the preceding example, a DNAT rule has been set up to forward all traffic
on port 5000 of the host to port 22 of the container.

By default, with the -p option, Docker will forward all the requests coming to any interface to
the host. To bind to a specific interface, we can specify something like the following:

$ docker run -i -d -p 192.168.1.10:5000:22 --name £20 fedora /bin/bash

In this case, only requests coming to port 5000 on the interface that has the IP
192.168.1.10 on the Docker host will be forwarded to port 22 of the £20 container. To map
port 22 of the container to the dynamic port of the host, we can run following command:

$ docker run -i -d -p 192.168.1.10::22 --name f20 fedora /bin/bash
We can bind multiple ports on containers to ports on hosts as follows:

$ docker run -d -i -p 5000:22 -p 8080:80 --name f20 fedora /bin/bash
We can look up the public-facing port that is mapped to the container's port as follows:

$ docker port £20 80
0.0.0.0:8080

To look at all the network settings of a container, we can run the following command:

$ docker inspect -f "{{ .NetworkSettings }}" £20

Network and Data Management for Containers

See also

» Networking documentation on the Docker website at https://docs.docker.com/
articles/networking/.

Managing data in containers

Any uncommitted data or changes in containers get lost as soon as containers are deleted. For
example, if you have configured the Docker registry in a container and pushed some images,

as soon as the registry container is deleted, all of those images will get lost if you have not
committed them. Even if you commit, it is not the best practice. We should try to keep containers
as light as possible. The following are two primary ways to manage data with Docker:

» Data volumes: From the Docker documentation (https://docs.docker.com/
userguide/dockervolumes/), a data volume is a specially-designated directory
within one or more containers that bypasses the Union filesystem to provide several
useful features for persistent or shared data:

o Volumes are initialized when a container is created. If the container's base
image contains data at the specified mount point, that data is copied into
the new volume.

o Data volumes can be shared and reused between containers.
o Changes to a data volume are made directly.
o Changes to a data volume will not be included when you update an image.
o Volumes persist until no containers use them.
» Data volume containers: As a volume persists until no container uses it, we can use

the volume to share persistent data between containers. So, we can create a named
volume container and mount the data to another container.

Getting ready

Make sure that the Docker daemon is running on the host and you can connect through the
Docker client.

How to do it...

1. Add a data volume. With the -v option with the docker run command, we add a
data volume to the container:

$ docker run -t -d -P -v /data --name £20 fedora /bin/bash

https://docs.docker.com/articles/networking/
https://docs.docker.com/articles/networking/
https://docs.docker.com/userguide/dockervolumes/
https://docs.docker.com/userguide/dockervolumes/

Chapter 4

We can have multiple data volumes within a container, which can be created by
adding -v multiple times:

$ docker run -t -d -P -v /data -v /logs --name £f20 fedora
/bin/bash

1
‘Q The VOLUME instruction can be used in a Dockerfile to add data

volume as well by adding something similar to VOLUME ["/data"].

We can use the inspect command to look at the data volume details of a container:
$ docker inspect -f "{{ .Config.Volumes }}" £20
$ docker inspect -f "{{ .Volumes }}" £20

[root@dockerhost ~]# docker inspect -f "{{ .Config.Volumes }}" f20

map[/data:map[] /logs:map[]]
[root@dockerhost ~]# docker inspect -f "{{ .Volumes }}" f20

map[/data:/var/lib/docker/vfs/dir/edcebda828154c4355701fdc f49bc982ac9944b4d24922
611946 f0abcOd70fd2 /logs:/var/lib/docker/vfs/dir/cab583e68bh69bc5e63ddf40602a69b
84d740d6adb6babfeal fa842911db2e45]

If the target directory is not there within the container, it will be created.

2. Next, we mount a host directory as a data volume. We can also map a host directory
to a data volume with the -v option:

$ docker run -i -t -v
/source_on host:/destination on container fedora /bin/bash
Consider the following example:

$ docker run -i -t -v /srv:/mnt/code fedora /bin/bash

This can be very useful in cases such as testing code in different environments,
collecting logs in central locations, and so on. We can also map the host directory in
read-only mode as follows:

$ docker run -i -t -v /srv:/mnt/code:ro fedora /bin/bash

We can also mount the entire root filesystem of the host within the container with the
following command:

$ docker run -i -t -v /:/host:ro fedora /bin/bash

Network and Data Management for Containers

If the directory on the host (/srv) does not exist, then it will be created, given

that you have permission to create one. Also, on the Docker host where SELinux

is enabled and if the Docker daemon is configured to use SELinux (docker -d
--selinux-enabled), you will see the permission denied error if you try to
access files on mounted volumes until you relabel them. To relabel them, use either
of the following commands:

$ docker run -i -t -v /srv:/mnt/code:z fedora /bin/bash

$ docker run -i -t -v /srv:/mnt/code:Z fedora /bin/bash
Please visit Chapter 9, Docker Security, for more detail.

3. Now, create a data volume container. While sharing the host directory to a container
through volume, we are binding the container to a given host, which is not good. Also,
the storage in this case is not controlled by Docker. So, in cases when we want data
to be persisted even if we update the containers, we can get help from data volume
containers. Data volume containers are used to create a volume and nothing else;
they do not even run. As the created volume is attached to a container (not running),
it cannot be deleted. For example, here's a named data container:

$ docker run -d -v /data --name data fedora echo "data volume
container"

This will just create a volume that will be mapped to a directory managed by Docker.
Now, other containers can mount the volume from the data container using the
- -volumes-from option as follows:

$ docker run -d -i -t --volumes-from data --name clientl
fedora /bin/bash
We can mount a volume from the data volume container to multiple containers:

$ docker run -d -i -t --volumes-from data --name client2
fedora /bin/bash

[root@dockerhost ~]# docker run -d -v /data --name data fedora echo “data volume container”
25498baf036c59h267000c96c 2e529849d81993745af20540F7bed7140cdd62a
[root@dockerhost ~]# docker inspect -f "{{ .Volumes }}" data
map[/data:/var/lib/docker/vfs/dir/bl2e737e412842bc707c56c4aat399320654cc3683489177b416dBcc fad30020]
[roct@dockerhost ~]# docker run -it --volumes-from data --name clientl f fbin/bash

1s /data/

touch fdata/filel
exit
[root@dockerhost ~]# 1s /var/lib/docker/vfs/dir/bl2e737e412842bcT707c56c4aaT3993e0654cc3683489177b416dBcc Fad430020
filel
[rootRdockerhost ~]# docker run -it --volumes-from data --name client2 fedora /bin/bash
bash-4.3# 1s /data/
filel

We can also use - -volumes-£from multiple times to get the data volumes from
multiple containers. We can also create a chain by mounting volumes from the
container that mounts from some other container.

[

Chapter 4

In case of data volume, when the host directory is not shared, Docker creates a directory
within /var/1lib/docker/ and then shares it with other containers.

>

Volumes are deleted with -v flag to docker rm, only if no other container is using it.
If some other container is using the volume, then the container will be removed (with
docker rm) butthe volume will not be removed.

In the previous chapter, we saw how to configure the Docker registry, which by

default starts with the dev flavor. In this registry, uploaded images were saved in

the /tmp/registry folder within the container we started. We can mount a
directory from the host at /tmp/registry within the registry container, so whenever
we upload an image, it will be saved on the host that is running the Docker registry.
So, to start the container, we run following command:

$ docker run -v /srv:/tmp/registry -p 5000:5000 registry

To push an image, we run the following command:
$ docker push registry-host:5000/nkhare/£f20

After the image is successfully pushed, we can look at the content of the directory
that we mounted within the Docker registry. In our case, we should see a directory
structure as follows:

/srv/
F— images
I

3f2fed40e4b0941403cd928b6b94e0fd236dfc54656c00e456747093d10157ac
— ancestry
F— _checksum

F— json

L— layer

ea3c5a64f264b78b5433614aec563103b4d4702£3ba7d4d2698e22¢c158
— ancestry
F— _checksum

F— json

L— layer

T TETT T

3263a

i)

8c28ele54a8d7666cb835e9fabadb7bl7385d46a7afe55bc5a7¢c1994c

Network and Data Management for Containers

— ancestry
F— _checksum

I
I
| | F— Json

| | L— layer

| [I—
£fd241224e9cf32f33a7332346a4f2ea39c4d5087b76392clac5490bf2ec55b68

— ancestry
— _checksum

|

|

| F— json

| L— layer

— repositories

| L— nkhare

| L— £20

| F— _index_ images
| F— json

|
|

— tag latest
L— taglatest_ json

See also

» The documentation on the Docker website at https://docs.docker.com/
userguide/dockervolumes/

» http://container42.com/2013/12/16/persistent-volumes-with-
docker-container-as-volume-pattern/

» http://container42.com/2014/11/03/docker-indepth-volumes/

Linking two or more containers

With containerization, we would like to create our stack by running services on different
containers and then linking them together. In the previous chapter, we created a WordPress
container by putting both a web server and database in the same container. However, we
can also put them in different containers and link them together. Container linking creates a
parent-child relationship between them, in which the parent can see selected information of
its children. Linking relies on the naming of containers.

Getting ready

Make sure the Docker daemon is running on the host and you can connect through the
Docker client.

=

https://docs.docker.com/userguide/dockervolumes/
https://docs.docker.com/userguide/dockervolumes/
http://container42.com/2013/12/16/persistent-volumes-with-docker-container-as-volume-pattern/
http://container42.com/2013/12/16/persistent-volumes-with-docker-container-as-volume-pattern/
http://container42.com/2014/11/03/docker-indepth-volumes/

Chapter 4

How to do it...

1. Create a named container called centos_server:

$ docker run -d -i -t --name centos server centos /bin/bash

$ ID="docker run -d -i -t --name centos_server centos /bin/bash’

$ docker inspect --format='{{.NetworkSettings.IPAddress}}' $ID
172.17.0.79

2. Now, let's start another container with the name client and link it with the
centos_server container using the - -1ink option, which takes the
name:alias argument. Then look at the /etc/hosts file:

$ docker run -i -t --link centos server:server --name client
fedora /bin/bash

$ docker run -i -t --link centos_server:server --name client fedora /bin/bash
bash-4.3# cat /etc/hosts
172.17.0.80 f812bb9b24f6
127.0.0.1 localhost
B localhost ip6-localhost ip6-loopback
110 ip6-localnet
1310 ip6-mcastprefix
111 ip6-allnodes
112 ip6-allrouters
172.17.0.79 server

HOSTNAME=f812bh9b2416
TERM=xterm
PATH=/usr/local/sbin: /usr/local/bin: /usr/sbin: /usr/bin: /sbin: /bin

SERVER_NAME=/client/server
|_=/usr/bin/env

In the preceding example, we linked the centos_server container to the client container
with an alias server. By linking the two containers, an entry of the first container, which is
centos_server in this case, is added to the /etc/hosts file in the client container. Also,
an environment variable called SERVER NAME is set within the client to refer to the server.

CREATED STATUS NAMES

13 minutes age Up 13 minutes client
18 minutes ag Up 18 minutes Centos Server

Now, let's create a mysgl container:

$ docker run --name mysqgl -e MYSQL ROOT PASSWORD=mysecretpassword -d
mysql

[55]-

Network and Data Management for Containers

Then, let's link it from a client and check the environment variables:

$ docker run -i -t --link mysql:mysqgl-server --name client fedora
/bin/bash

$ docker run -i -t --link mysql:mysql-server --name client fedora /bin/bash
bash-4.3# env

MYSQL_SERVER_ENV_MYSQL_VERSION=5.6.23

HOSTNAME=2fa051aeh7cf

MYSQL_SERVER_ENV_MYSQL_MAJOR=5.6

TERM=xterm

MYSQL_SERVER_PORT_3306_TCP=tcp://172.17.0.82:3306
MYSQL_SERVER_PORT_3306_TCP_PORT=3306
MYSQL_SERVER_PORT=tcp://172.17.0.82:3306
MYSQL_SERVER_PORT_3306_TCP_ADDR=172.17.0.82
PATH=/usr/local/sbin: /usr/local/bin: /usr/sbin: /usr/bin: /sbin: /bin
PWD=/

MYSQL_SERVER_ENV_MYSQL_ROOT_PASSWORD=mysecretpassword

SHLVL=1

HOME=/root

MYSQL_SERVER_NAME=/client/mysql-server
MYSQL_SERVER_PORT_3306_TCP_PROTO=tcp

|_=/usr/bin/env

Also, let's look at the docker ps output:

CREATED STATUS PORTS NAMES
2 minutes ago Up 2 minutes elient

2fa051aeb7ct a h"
5256a801c87d iy 5 st " trypoint.sh mysg 2 minutes ago Up 2 minutes 3306/ tcp mysgl

If you look closely, we did not specify the -P or -p options to map ports between two containers
while starting the c1ient container. Depending on the ports exposed by a container, Docker
creates an internal secure tunnel in the containers that links to it. And, to do that, Docker sets
environment variables within the linker container. In the preceding case, mysql is the linked
container and client is the linker container. As the mysgl container exposes port 3306, we see
corresponding environment variables (MYSQL _SERVER_ *) within the client container.

1
‘\Q As linking depends on the name of the container, if you want to reuse

a name, you must delete the old container.

» Documentation on the Docker website at https://docs.docker.com/
userguide/dockerlinks/

Developing a LAMP application by linking

containers

Let's extend the previous recipe by creating a LAMP application (WordPress) by linking the
containers.

5]

https://docs.docker.com/userguide/dockerlinks/
https://docs.docker.com/userguide/dockerlinks/

Chapter 4

Getting ready

To pull MySQL and WordPress images from the Docker registry:

» For MySQL:
o Forimage, visit https://registry.hub.docker.com/ /mysqgl/
o For Dockerfile, visit https://github.com/docker-library/docker-
mysqgl
» For WordPress:

o Forimage, visit https://registry.hub.docker.com/ /wordpress/

o For Dockerfile, visit https://github.com/docker-library/
wordpress

How to do it...

1. First, start a mysqgl container:
$ docker run --name mysql -e
MYSQL ROOT PASSWORD=mysecretpassword -d mysql
2. Then, start the wordpress container and link it with the mysqgl container:

$ docker run -d --name wordpress --link mysqgl:mysql -p 8080:80
wordpress

ORD=mysecretpassword -d mysql
aql -p BOBO:80 wordpress
CREATED STATUS
sordpress:latest entrypeint.sh apac 6 seconds ago Up 5 seconds

.] mysql:latest " ypoint.sh mysq 13 secends ago Up 12 seconds

[rooti#dockerhost ~]# |

We have the Docker host's 8080 port to container 80 port, so we can connect WordPress by
accessing the 8080 port on the Docker host with the http://<DockerHost>:8080 URL.

Alink is created between the wordpress and mysgl containers. Whenever the wordpress
container gets a DB request, it passes it on to the mysgl container and gets the results. Look
at the preceding recipe for more details.

https://registry.hub.docker.com/_/mysql/
https://github.com/docker-library/docker-mysql
https://github.com/docker-library/docker-mysql
https://registry.hub.docker.com/_/wordpress/
https://github.com/docker-library/wordpress
https://github.com/docker-library/wordpress

Network and Data Management for Containers

Networking of multihost containers

VAL ERELLE

In this recipe, we'll use Flannel (https://github.com/coreos/flannel) to set up
multihost container networking. Flannel is a generic overlay network that can be used

as an alternative to Software Defined Networking (SDN). It is an IP-based solution that
uses Virtual Extensible LAN (VXLAN), in which unique IP addresses are assigned to each
container on a unique subnet given to the host that is running that container. So, in this
kind of a solution, a different subnet and communication occurs within each host in the
cluster, using the overlay network. Flannel uses the etcd service (https://github.com/
coreos/etcd) for the key-value store.

Getting ready

For this recipe, we will require three VMs or physical machines with Fedora 21 installed.

How to do it...

1. Let's call one machine/VM master and other two minionl and minion2. According
to your system's IP addresses, update the /etc/hosts file as follows:

[root@master ~]# cat /etc/hosts
127.0.0.1 localhost localhost.localdomain localhost4 localhost4.localdomaing
il Llocalhost localhost.localdomain localhost6é localhost6.localdomain6

ié.16.154.215 master.example.com
10.16.154.217 minionl.example.com
10.16.154.219 minion2.example.com

2. |Install etcd, Flannel, and Docker on all the systems we set up:
$ yum install -y etcd flannel docker

3. Modify the value of the ETCD LISTEN CLIENT URLSto http://master.
example.com:4001 inthe /etc/etcd/etcd. conf file as follows

ETCD_LISTEN CLIENT URLS="http://master.example.com:4001"

4. Inthe master, start the etcd service and check its status:
$ systemctl start etecd
$ systemctl enable etcd
$ systemctl status etcd

5. Inthe master, create a file called £lannel -config. json with the following content:

{

"Network": "10.0.0.0/16",
"SubnetLen": 24,

5]

https://github.com/coreos/flannel
https://github.com/coreos/etcd
https://github.com/coreos/etcd

Chapter 4

"Backend": {
"Type": "vxlan",
"VNI": 1

}

6. Upload the preceding configuration file to etcd using config as the key:

$ curl -L
http://master.example.com:4001/v2/keys/coreos.com/network/conf
ig -XPUT --data-urlencode value@flannel-config.json

[root@master —]# curl -L http://master.example.com:4001/v2/keys/coreos.com/network/config -XPUT --data-urlencode v
@lue@dflannel-config. json

{"action":"set", "node": {"key":"/coreos.com/network/config", "value": " {\n\"Network\": \"10.0.0.0/16\", \n\ "Subnetlen'
"o 24 A0\ "Backend\": {\n\"Type\": \wvxlan\",\n\"VNI\": 1\n Athniywn", "modifiedIndex”:4, "createdIndex” 4

7. In master, update FLANNEL_OPTIONS inthe /etc/sysconfig/flanneld file to
reflect the interface of the system. Also, update FLANNEL ETCD to use hostname
instead of the 127.0.0.1:4001 address.

Flanneld configuration options

etcd url location. Point this to the server where etcd runs
FLANNEL_ETCD="http://master.example.com:4001"

etcd config key. This is the configuration key that flannel queries
For address range assignment
FLANNEL_ETCD_KEY="/coreos.com/network"

Any additional options that you want to pass
FLANNEL_OPTIONS="enol"

8. Toenable and start the £1anneld service in master:
$ systemctl enable flanneld
$ systemctl start flanneld
$ systemctl status flanneld

rvice; enabled)
] 2:55 EDT: 19min ago
(flanneld)
ce/flanneld . service
bin/flanneld -etcd-endpoints=http://master. example.com:4001 -etcd-prefix=/coreos.com/network encl

.example. flanneld[22762] : I6511 . T44 2 in.go:247] Installing signal handlers
.example. flanneld[22762]: I08511 744574 2 in. 18] Determining IP address of defaul...erf
.example. flanneld[22762] : I0511 LT 2 main.go:205] Using 10.16.154.215 as external interf
.example. flanneld[22762] : I0511 . 2 subnet.go:320] Picking subnet in range 10.0.1 255.0
.example. flanneld[22762] : IB511 . - r subnet.go:83] Subnet lease acquired: 10.0.5
.example. L L + IBS11 3 . 2 main.go:215] VILAN mode initialized
.example. L Ld[2 + IBS11 5 . 2 . 115] Watching for L2/L3 misses

+ IB511 . 798 2 wvxlan. c for new subnet leases

10511 127, 34 vxlan.go:184] Subnet added: 10.0

s

Network and Data Management for Containers

9. From the minion systems, check the connectivity to master for etcd:
[root@minionl ~]# curl -L
http://master.example.com:4001/v2/keys/coreos.com/network/conf
ig

10. Update the /etc/sysconfig/flanneld file in both minions to point to the etcd
server running in master and update FLANNEL OPTIONS to reflect the interface of
the minion host:

[root@minion2 ~]# cat /etc/sysconfig/flanneld
Flanneld configuration options

etcd url location. Point this to the server where etcd runs
FLANNEL_ETCD="http://master .example.com:4001"

etcd config key. This is the configuration key that flannel queries
For address range assignment
FLANNEL_ETCD_KEY="/coreos.com/network"

Any additional options that you want to pass
FLANNEL_OPTIONS="enol"

11. To enable and start the £1anneld service in both the minions:
$ systemctl enable flanneld
$ systemctl start flanneld
$ systemctl status flanneld

12. In any of the hosts in the cluster, run the following command:

$ curl -L
http://master.example.com:4001/v2/keys/coreos.com/network/subn
ets | python -mjson.tool

100

Chapter 4

[rect@minien2 -L http://master.example.com:4001/v2/keys/coreos.com/network/subnets | python -mjson.teel
% Total % % Xferd Average Speed Time Time Current
Dlead Upload Tetal 5§ Left Speed

lo0 910 100 910 a o 332 B --reotee sotectes soteste- dddk
{

"action": “get™,

"node": {

"createdIndex”:

"kay
“modif:

5,
2015-05-13T03:42:55.794196309.
m/network/subnets/10.0.5.0-24",

i\ wxlan\”,\"BackendData\ " : {\"VtepMAC\" :%"b6:14:01:5d:37 :e5\ "} }|

:27.5979781142",
ubnets/10.0.62.0-24",

10.16.154.219\", \ "BackendType\ " :\ "vxlan\ ", \ "BackendData\ " : {\ "ViepMAC\"

05-13T04:03:46.41104952",
network/subnets/10.0.18.0-24",

“valuae" PublicIPY\":4\"10.16.154.2 BackendType\ " :\"vxlan\" \"BackendData\": {\"VtepMAC\":\"5e:4f:ca:Te:44:94

This tells us the number of hosts in the network and the subnets associated (look at
the key for each node) with them. We can associate the subnet with the MAC address
on the hosts. On each host, the /run/flannel/docker and /run/flannel/

subnet . env files are populated with subnet information. For instance, in minion2,
you would see something like the following:

[root@minion2 ~]# cat /run/flannel/docker
DOCKER_OPT_BIP="--bip=10.0.62.1/24"
DOCKER_OPT_MTU="- -mtu=1450"

DOCKER_NETWORK_OPTIONS=" --bip=10.0.62.1/24 --mtu=1450 "
[root@minion2 ~]# ||

13. To restart the Docker daemon in all the hosts:

$ systemctl restart docker

Network and Data Management for Containers

Then, look at the IP address of the docker0 and flannel .1 interfaces. In
minion2, it looks like the following:

8: flannel.l: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1450 qdisc noqueue state UNKNOWN group default
link/ether c6:6a:ff:0d:7d:ab brd ff:ff:ff:ff:ff:ff
inet 10.0.62.0/16 scope global flannel.l
valid_1ft forever preferred_lft forever
inet6 fe80::c46a:ffff:feld:7dab/64 scope link
valid_1ft forever preferred_lft forever

9: docker0: <NO-CARRIER,BROADCAST,MULTICAST,UP> mtu 1450 qdisc noqueue state DOWN group default
link/ether 56:84:7a:fe:97:99 brd ff:ff:ff:ff:ff:ff
inet 10.0.62.1/24 scope global docker0
valid 1ft forever preferred_1ft forever
inetb fe80::5484:7aff:fefe:9799/64 scope link
valid 1ft forever preferred_1ft forever
[root@minion2 ~]#

We can see that the docker0 interface got the IP from the same subnet as the
flannel.1 interface, which is used to route all traffic.

14. We are all set to spawn two containers in any of the hosts and they should be able to
communicate. Let's create one container in minionl and get its IP address:

run -it centos bash

mtu 65536 qdisc noqueue state UNKNOWN
: :00:00 00 : 0:00:00:00
/8 scope host lo
forever preferred_Lft forever

15. Now create another container in minion2 and ping the container running in
minionl as follows:

[root@minion2 ~]# docker run -it centos bash
[root@453461610a2f /]# ip a
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN
link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
inet 127.0.0.1/8 scope host lo
valid_Llft forever preferred_l1ft forever
inet6 ::1/128 scope host
valid_1ft forever preferred_l1ft forever
: ethO: <BROADCAST,UP,LOWER_UP> mtu 1450 gdisc noqueue state UP
link/ether 02:42:0a:00:3e:04 brd ff:ff:ff:ff:ff:Ff
inet 10.0.62.4/24 scope global eth@
valid_1ft forever preferred_l1ft forever
inet6 fe80::42:aff:fe00:3e04/64 scope link
valid_1ft forever preferred_1ft forever
[root@45346f610a2f /]# ping -c 4 10.0.18.4
PING 10.0.18.4 (10.0.18.4) 56(84) bytes of data.
64 bytes from icmp_seq=1 tt1=62 time=0.534
64 bytes from .0.18.4: icmp_seq=2 ttl=62 time=0.386
64 bytes from .0.18.4: icmp_seq=3 tt1=62 time=0.409
64 bytes from .0.18.4: icmp_seq=4 tt1=62 time=0.408

--- 10.0.18.4 ping statistics ---
4 packets transmitted, 4 received, 0% packet loss, time 2999ms
rtt min/avg/max/mdev = 0.386/0.434/0.534/0.060 ms

102

Chapter 4

With Flannel, we first configure the overlay with the 10.0.0.0/16 network. Then, each host
picks up a random /24 network; for instance, in our case, minion2 getsthe 10.0.62.0/24
subnet and so on. Once configured, a container in the host gets the IP address from that
chosen subnet. Flannel encapsulates the packets and sends it to remote hosts using UDP.

Also, during installation, Flannel copies a configuration file (f1lannel . conf) within
/usr/lib/systemd/system/docker.service.d/, which Docker uses to configure itself

See also

» The diagram from Flannel GitHub to help you understand the theory of operations at
https://github.com/coreos/flannel/blob/master/packet-01.png

» The documentation on the CoreOS website at https://coreos.com/blog/
introducing-rudder/

» Scott Collier's blog post about setting Flannel on Fedora at http://www.
colliernotes.com/2015/01/flannel-and-docker-on-fedora-getting.
html

Assigning IPv6 addresses to containers

By default, Docker assigns IPv4 addresses to containers. With Docker 1.5, a feature has been
added to support IPv6 addresses.

Getting ready

Make sure the Docker daemon (version 1.5 and above) is running on the host and you can
connect through the Docker client.

How to do it...

1. To start the Docker daemon with the - -ipvé option, we can add this option in the
daemon's configuration file (/etc/sysconfig/docker on Fedora) as follows:

OPTIONS='--selinux-enabled --ipvé6'

Alternatively, if we start Docker in daemon mode, then we can start it as follows:
$ docker -d --ipvé

https://github.com/coreos/flannel/blob/master/packet-01.png
https://coreos.com/blog/introducing-rudder/
https://coreos.com/blog/introducing-rudder/
http://www.colliernotes.com/2015/01/flannel-and-docker-on-fedora-getting.html
http://www.colliernotes.com/2015/01/flannel-and-docker-on-fedora-getting.html
http://www.colliernotes.com/2015/01/flannel-and-docker-on-fedora-getting.html

Network and Data Management for Containers

By running either of these commands, Docker will set up the docker0 bridge with
the IPv6 local link address £e80: : 1.

$ ip a show docker0
244: docker®: <NO-CARRIER, BROADCAST,MULTICAST,UP> mtu 1500 gdisc noqueue state DOWN group def
link/ether 56:84:7a:fe:97:99 brd ff:ff:ff:ff:ff:ff

inet 172.17.42.1/16 scope global dockero
valid 1ft forever preferred_lft forever

inet6 feB0::1/64 scope link tentative
valid_1ft forever preferred 1ft forever

2. Let's start the container and look for the IP addresses assigned to it:

$ ID="docker run -itd centos bash’

$ docker inspect $ID | grep IP
"GloballFv6Address": "",
"GlobaliFvePrefixLen": @,
"IFAddress":

"IPPrefixLen'

"IFveGateway": ,
"LinkLocallFveAddress": "fe80::42:acff:fell:3",
"LinkLocallFv6PrefixLen": 64,

As we can see, both the IPv4 and local link IPv6 addresses are available to the container. To
ping on the IPv6 address of a container from the host machine, run the following command:

$ ping6 -I docker0 fe80::42:acff:fell:3
To ping the docker0 bridge from the container, run the following command:

[root@c7562¢c38bd0f /]1# ping6é -I ethO0 fe80::1

Docker configures the docker0 bridge to assign IPv6 addresses to containers, which enables
us to use the IPv6 address of containers.

By default, containers will get the link-local address. To assign them a globally routable
address, you can pass the IPv6 subnet pick address with - -fixed-cidr-vé as follows:

$ docker -d --ipvé --fixed-cidr-v6="2001:db8:1::/64"

$ ID="docker run -itd centos bash”

$ docker inspect $ID | grep IP
"GloballFv6Address": "2001:db8:1::242:acll:2",
"GloballiFv6PrefixLen": 64,
"IFAddress": "172.17.0.2",

"IFPrefixLen": 16,

"IFv6Gateway": "feB80::1",
"LinkLocallFv6Address": "fe80::42:acff:fell:2",
"LinkLocallPv6PrefixLen": 64,

Chapter 4

From here, we can see that the globally routable address (GloballPv6Address) is now
being set.

See also

» The Docker 1.5 release notes at https://blog.docker.com/2015/02/docker-
1-5-ipve6e-support-read-only-containers-stats-named-dockerfiles-
and-more/.

» The documentation on the Docker website at http://docs.docker.com/v1.5/
articles/networking/#ipve.

» You might need to delete the exiting docker0 bridge on the host before setting the
IPv6 option. To understand how to do so, visit http://docs.docker.com/v1.5/
articles/networking/#customizing-docker0.

https://blog.docker.com/2015/02/docker-1-5-ipv6-support-read-only-containers-stats-named-dockerfiles-and-more/
https://blog.docker.com/2015/02/docker-1-5-ipv6-support-read-only-containers-stats-named-dockerfiles-and-more/
https://blog.docker.com/2015/02/docker-1-5-ipv6-support-read-only-containers-stats-named-dockerfiles-and-more/
http://docs.docker.com/v1.5/articles/networking/#ipv6
http://docs.docker.com/v1.5/articles/networking/#ipv6
http://docs.docker.com/v1.5/articles/networking/#customizing-docker0
http://docs.docker.com/v1.5/articles/networking/#customizing-docker0

Docker Use Cases

In this chapter, we will cover the following recipes:

» Testing with Docker

Doing CI/CD with Shippable and Red Hat OpenShift
» Doing CI/CD with Drone

» Setting up PaaS with OpenShift Origin

v

» Building and deploying an app on OpenShift v3 from the source code

» Configuring Docker as a hypervisor driver for Openstack

Introduction

Now we know how to work with containers and images. In the last chapter, we also saw how
to link containers and share data between the host and other containers. We also saw how
containers from one host can communicate with other containers from other hosts.

Now let's look at different use cases of Docker. Let's list a few of them here:

» Quick prototyping of ideas: This is one of my favorite use cases. Once we have an
idea, it is very easy to prototype it with Docker. All we have to do is set up containers
to provide all the backend services we need and connect them together. For example,
to set up a LAMP application, get the web and DB servers and link them, as we saw in
the previous chapter.

» Collaboration and distribution: GitHub is one of the best examples of collaborating
and distributing the code. Similarly, Docker provides features such as Dockerfile,
registry, and import/export to share and collaborate with others. We have covered
all this in earlier chapters.

Docker Use Cases

» Continuous Integration (Cl): The following definition on Martin Fowler's website
(http://www.martinfowler.com/articles/continuousIntegration.
html) covers it all:

"Continuous Integration is a software development practice where
members of a team integrate their work frequently, usually each
person integrates at least daily - leading to multiple integrations per
day. Each integration is verified by an automated build (including
test) to detect integration errors as quickly as possible. Many teams
find that this approach leads to significantly reduced integration
problems and allows a team to develop cohesive software more
rapidly. This article is a quick overview of Continuous Integration
summarizing the technique and its current usage."

Using recipes from other chapters, we can build an environment for Cl using Docker. You can
create your own Cl environment or get services from companies such as Shippable and Drone.
We'll see how Shippable and Drone can be used for Cl work later in this chapter. Shippable

is not a hosted solution but Drone is, which can give you better control. | thought it would be
helpful if | talk about both of them here:

» Continuous Delivery (CD): The next step after Cl is Continuous Delivery, through
which we can deploy our code rapidly and reliably to our customers, the cloud and
other environments without any manual work. In this chapter, we'll see how we can
automatically deploy an app on Red Hat OpenShift through Shippable CI.

» Platform-as-a-Service (PaaS): Docker can be used to build your own PaaS. It can be
deployed using tools/platforms such as OpenShift, CoreOS, Atomic, Tsuru, and so on.
Later in this chapter, we'll see how to set up PaaS using OpenShift Origin (https://
www . openshift.com/products/origin).

Testing with Docker

While doing the development or QA, it will be helpful if we can check our code against
different environments. For example, we may wish to check our Python code between
different versions of Python or on different distributions such as Fedora, Ubuntu, CentOS,
and so on. For this recipe, we will pick up sample code from Flask's GitHub repository, which
is a microframework for Python (http://flask.pocoo.org/). | chose this to keep things
simple, and it is easier to use for other recipes as well.

For this recipe, we will create images to have one container with Python 2.7 and other with
Python 3.3. We'll then use a sample Python test code to run against each container.

108

http://www.martinfowler.com/articles/continuousIntegration.html
http://www.martinfowler.com/articles/continuousIntegration.html
https://www.openshift.com/products/origin
https://www.openshift.com/products/origin

Chapter 5

Getting ready

» As we are going to use example code from Flask's GitHub repository, let's clone it:
$ git clone https://github.com/mitsuhiko/flask

» Create a Dockerfile 2.7 file as follows and then build an image from it:
$ cat /tmp/ Dockerfile 2.7
FROM python:2.7
RUN pip install flask
RUN pip install pytest
WORKDIR /test
CMD ["/usr/local/bin/py.test"]

» To build the python2. 7test image, run the following command:
$ docker build -t python2.7test - < /tmp/Dockerfile 2.7

» Similarly, create a Dockerfile with python: 3.3 as the base image and build the
python3.3test image:

$ cat /tmp/Dockerfile 3.3
FROM python:3.3

RUN pip install flask

RUN pip install pytest
WORKDIR /test

CMD ["/usr/local/bin/py.test"]

» To build the image, run the following command:
$ docker build -t python3.3test - < /tmp/Dockerfile 3.3

Make sure both the images are created.

[root@dockerhost ~]# docker images
REPOSITORY TAG IMAGE ID CREATED VIRTUAL SIZE

python3.3test latest 73edbee758be 8 minutes ago 764.8 MB
python2.7test latest 6a3551f69fab8 10 minutes ago 756.3 MB

How to do it...

Now, using Docker's volume feature, we will mount the external directory that contains the
source code and test cases. To test with Python 2.7, do the following:

1. Go to the directory that contains the Flask examples:
$ cd /tmp/flask/examples/

Docker Use Cases

2. Start a container with the python2 . 7 test image and mount blueprintexample
under /test:

$ docker run -d -v “pwd /blueprintexample:/test python2.7test

$ pwd
/root/flask/examples
$ ID="docker run -d -v /root/flask/examples/blueprintexample:/test python2.7test’
$ docker logs $ID
test session starts
platform linux2 -- Python 2.7.9 -- py-1.4.26 -- pytest-2.6.4
collected 1 items

test_blueprintexample.py .

== 1 passed in 0.17 seconds ==

3. Similarly, to test with Python 3.3, run the following command:
$ docker run -d -v “pwd”/blueprintexample:/test python3.3test

4. While running the preceding test on Fedora/RHEL/CentOS where SELinux is enabled,
you will get a Permission denied error. To fix it, relabel the host directory while
mounting it within the container as follows:

$ docker run -d -v “pwd /blueprintexample:/test:z
python2.7test

% For more details on SELinux, please look at Chapter 9,
s Docker Security.

As you can see from the Dockerfile, before running CMD, which runs the py . test binary,
we change our working directory to /test. And while starting the container, we mount our
source code to /test. So, as soon as the container starts, it will run the py . test binary
and run tests.

There's more...

» Inthis recipe, we have seen how to test our code with different versions of Python.
Similarly, you can pick up different base images from Fedora, CentOS, Ubuntu and
test them on different Linux distributions.

» If you use Jenkins in your environment, then you can use its Docker plugin to
dynamically provision a slave, run a build, and tear it down on the Docker host. More
details about this can be found at https://wiki.jenkins-ci.org/display/
JENKINS/Docker+Plugin.

https://wiki.jenkins-ci.org/display/JENKINS/Docker+Plugin
https://wiki.jenkins-ci.org/display/JENKINS/Docker+Plugin

Chapter 5

Doing CI/CD with Shippable and Red Hat

OpenShift

In the preceding recipe, we saw an example of how Docker can be used for testing in a local
Dev and QA environment. Let's look at an end-to-end example to see how Docker is now used
in the Cl/CD environment. In this recipe, we'll see how we can use Shippable (http://www.
shippable.com/) to perform Cl/CD and deploy it on Red Hat's OpenShift environment
(https://openshift.redhat.com).

Shippable is a SaaS platform that lets you easily add Continuous Integration/Deployment to
your GitHub and Bitbucket(Git) repositories, which is completely built on Docker. Shippable
uses build minions, which are Docker-based containers, to run workloads. Shippable supports
many languages such as Ruby, Python, Node.js, Java, Scala, PHP, Go, and Clojure. The default
build minions are of Ubuntu 12.04 LTS and Ubuntu 14.04. They have also added support to
use custom images from Docker Hub as minions. Shippable Cl needs information about the
project and build instructions in a ym1 file called shippable.yml, which you have to provide
in your source code repo. The ym1 file contains the following instructions:

» Dbuild image: This is a Docker image to use to build
» language: This will show the programming language
o versions: You can specify different versions of the language to get tested
in a single build instruction.
» before install: These are the instructions before running the build
» script: Thisis a binary/script to run the test

» after success: These are instructions after the build succeeds; this is used
to perform deployment on PaaS such as Heroku, Amazon Elastic Beanstalk, AWS
OpsWorks, Google App Engine, Red Hat OpenShift, and others.

Red Hat's OpenShift is a PaaS platform to host your application. Currently, it uses non-
Docker based container technology to host the application, but the next version of OpenShift
(https://github.com/openshift/origin) is being built on Kubernetes and Docker.
This tells us the pace at which Docker is being adopted in the enterprise world. We'll see how
to set up OpenShift v3 later in this chapter.

For this recipe, we will use the same example code we used in the previous recipe, to first test
on Shippable and then deploy it on OpenShift.

Getting ready

1. Create an account on Shippable (https://www.shippable.com/).

2. Forkthe flask example from https://github.com/openshift/flask-
example.

http://www.shippable.com/
http://www.shippable.com/
https://github.com/openshift/flask-example
https://github.com/openshift/flask-example

Docker Use Cases

3. Create an app on OpenShift for the forked repository with the following steps:

1.

Create an account (https://www.openshift.com/app/account/new)
on OpenShift and log in.

Select Python 2.7 Cartridge for the application.

Update the Public URL section you want. In the Source Code section, provide
the URL of our forked repo. For this example, | have put down blueprint
and https://github.com/nkhare/flask-example respectively:

OPENSHIFT ONLINE

Applications

Public URL

Source Code

2) Configure the application

hupdi bBlueprint -neependrarhcoud. com

https://github.cominkhare/flas master

4.

Click on Create Application to create the new app. Once created, you should
be able to access the Public URL we mentioned in the previous step.

Once the app is created, OpenShift provides a way to manage/update the source
code for this app in the Making code changes section. As we want to deploy the
app using Shippable, we don't have to follow those instructions.

4. Clone the forked repository on the local system:

$ git clone git@github.com:nkhare/flask-example.git

5. Let's use the same blueprint example that we used earlier. To do so, follow these
instructions:

1.

Clone the flask repository:
$ git clone https://github.com/mitsuhiko/flask.git

Copy the blueprint example:

$ cp -Rv flask/examples/blueprintexample/* flask-example/
wsgi/

https://www.openshift.com/app/account/new

Chapter 5

Update the flask-example/wsgi/application file to import the app module
from the blueprintexample module. So, the last line in the flask-example/
wsgi/application file looks like the following:

from blueprintexample import app as application

Add the requirements. txt file with the following contents at the top level of the
flask-example repository:

flask

pytest

Add the shippable.yml file with following content:
language: python

python:
- 2.6
- 2.7

install:
- pip install -r requirements.txt

Make folders for the reports
before script:
- mkdir -p shippable/testresults
- mkdir -p shippable/codecoverage

script:
- py.test

archive: true

Commit the code and push it in your forked repository.

Docker Use Cases

How to do it...
1

Log in to Shippable.

After logging in, click on SYNC ACCOUNT to get your forked repository listed, if it
has not already been listed. Find and enable the repo that you want to build and
run tests. For this example, | chose flask-example from my GitHub repos. After
enabling it, you should see something like the following:

Shippable
= nkhare 5
c &~ &4 B

3. Click on the play button and select branch to build. For this recipe, | chose master:

If the build is successful, then you will see the success icon.

Next time you do a commit in your repository, a build on Shippable will be triggered and
the code will be tested. Now, to perform Continuous Deployment on OpenShift, let's follow
the instructions provided on the Shippable website (http://docs.shippable.com/

deployment/openshift/):

1. Get the deployment key from your Shippable dashboard (located on the right-hand
side, below Repos):

= nkhare
o W a By

http://docs.shippable.com/deployment/openshift/
http://docs.shippable.com/deployment/openshift/

Chapter 5

2. Copy it under the (https://openshift.redhat.com/app/console/settings)
Settings | Public Keys section on OpenShift as follows:

OPENSHIFT ONLINE

Settings
Your public key has been created

Public Keys

DOpenShilt uses a public key Lo securely encrypl the connection between your local machine and your application and to autherize you to upload code. Learn more about 5

Keynan\e '|ypl? Contents
default sshorsa AnABE3NzA. AUSOAIR] Delete
shippable ssh-rsa AAAB3NZE. PIWIRQYX Delete

3. Get the Source Code repository link from the OpenShift application page, which will
be used as OPNESHIFT REPO in the next step:

OPENSHIFT ONLINE

Applications

hon123-neependra.rhcloud.com mange Started 1

nevpendra and

Cartridges source Code

ssh/{555427dRAZRZ ecaed 30000

Status Gears Storage Ry

Started 1zmall 1GD

Python 2.7

Pass this URL to *gir done’to copy the repositony

Remote Access

Databases Continuous Integration
Add MongoDB 2.4 O Enable Jenkins Want te log in to yowr application?
Add My5QL 5.5
Add PostgreSQL 9.2 Dielere this application

4. After the deployment key is installed, update the shippable.yml file as follows:

env:
global:
- OPENSHIFT_REPO:SSh://545ea4964382ec337f000009@b1ueprint—
neependra.rhcloud.com/~/git/blueprint.git

language: python
python:

- 2.6
- 2.7

https://openshift.redhat.com/app/console/settings

Docker Use Cases

install:
- pip install -r requirements.txt

Make folders for the reports
before script:

- mkdir -p shippable/testresults

- mkdir -p shippable/codecoverage

- git remote -v | grep “openshift || git remote add openshift
SOPENSHIFT REPO

- cd wsgi

script:
- py.test

after success:
- git push -f openshift $BRANCH:master

archive: true

OPENSHIFT REPO should reflect the app you have deployed using OpenShift. It will
be different from what is shown in this example.

Now commit these changes and push it to GitHub. You will see a build on Shippable
triggered and a new app deployed on OpenShift.

Visit your app's homepage, and you should see its updated contents.

At every build instruction, Shippable spins off new containers depending on the image and
language type specified in the shippable.yml file and runs the build to perform testing. In
our case, Shippable will spin off two containers, one for Python 2.6 and the other for Python 2.7.
Shippable adds a webhook to your GitHub repository as follows when you register it with them:

Webhooks & Services

Deploy keys

nkhare / flask-example @unwatch~ 1 vestar o Y

forked from openshiftflask-example

Webhooks Add webhook

Webhooks allow external servi otified when certain events happen on GitHub. Wi
happen, we'll send a FOST re h of the URLs you provide. Learn more in our V

¥ https:/fapi shippable.com/projects/545e9e69c6f08030643d (and p request) " ®

So every time a change is committed to GitHub, a build on Shippable gets triggered and after
the success, it is deployed on OpenShift.

116

Chapter 5

See also

» Detailed documentation is available on the Shippable website at http://docs.
shippable.com/

Doing CI/CD with Drone

As mentioned on the Drone website (https://drone.io/), Drone is a hosted Continuous
Integration service. It enables you to conveniently set up projects to automatically build,
test, and deploy as you make changes to your code. They provide an open source version of
their platform, which you can host in your environment or on cloud. As of now, they support
languages such as C/C++, Dart, Go, Haskell, Groovy, Java, Node.js, PHP, Python, Ruby, and
Scala. Using Drone, you can deploy your application on platforms such as Heroku, Dotcloud,
Google App Engine, and S3. You can also SSH (rsync) your code to a remote server for
deployment.

For this recipe, let's use the same example that we used in the earlier recipes.

Getting ready

Log in to Drone (https://drone.io/).

Click on New Project and set up repository. In our case, we'll pick the same
repository from GitHub that we used in the previous recipe (https://github.com/
nkhare/flask-example):

nkhare / flask-example

3. Once selected, it will ask you to select the programming language for the selected
repository. | selected Python in this case.

4. 1t will then prompt you to set up the build script. For this recipe, we'll put the following
and save it:
pip install -r requirements.txt --use-mirrors
cd wsgi

py.test

http://docs.shippable.com/
http://docs.shippable.com/
https://github.com/nkhare/flask-example
https://github.com/nkhare/flask-example

Docker Use Cases

How to do it...

1. Trigger a manual build by clicking on Build Now, as shown in the following
screenshot:

CIFCIHEICI Mew Logout

flask-example

Dle.git History Downloads Settings

Build & Test : ke
o Build Now . N

Deployments

build script.
)

Use this testing changes

s atth

hanges first

o Language
Motifications
Python 2.7 M

Artifacts

Databases
Status Badges MySQL

FostgreSQL
Repository more
Members Environment Variables
P
Enter one per line {ex: FOO=bar)
Commands

working directory /home /ubuntu/src/github. com/nkhare/flask-exanple

pip install -r reguirements.txt --use-mirrors
cd wsgi
py.test

Enter one command per line (ex: echo foo)

The build process starts a new container, clones the source code repository, and runs the
commands that we specified in the Commands section (running the test cases) within it.

Chapter 5

» Once the build is complete, you can look at the console output.

» Drone also adds a webhook in GitHub; so the next time you commit changes in the
repository, a build will be triggered.

» Drone also supports Continuous Deployment to different cloud environments, as
we have seen in the earlier recipe. To set that up, go to the Settings tab, select
Deployment, and then select Add New Deployment. Select your cloud provider
and set it up:

er |_|E|D Mew Project Logout

flask-example

History Downloads Settings

Build & Test
Y 4
Deployments
Motifications ’
Artifacts
Heroku AppEngine (seta) dotCloud (seta
Status Badges
Repositany
>
Members -
SSH Amazon 53 (Beta)

See also

» The Drone documentation at http://docs.drone.io/

» The steps to configure a self-hosted Drone environment, which is in the alpha stage
as of now, at https://github.com/drone/drone

Docker Use Cases

Setting up PaaS with OpenShift Origin

Platform-as-a-Service is a type of cloud service where the consumer controls the software
deployments and configuration settings for applications (mostly web), and the provider
provides servers, networks, and other services to manage those deployments. The provider
can be external (a public provider) or internal (an IT department in an organization). There are
many PaaS providers, such as Amazon (http://aws.amazon.com/), Heroku (https://
www . heroku.com/), OpenShift (https://www.openshift.com/), and so on. In the
recent past, containers seem to have become the natural choice for applications to get
deployed to.

Earlier in this chapter, we looked at how we can build a Cl/CD solution using Shippable and
OpenShift, where we deployed our app to OpenShift PaaS. We deployed our app on Openshift
Online, which is the Public Cloud Service. At the time of writing this book, the OpenShift
Public Cloud Service uses non-Docker container technology to deploy apps to the Public
Cloud Service. The OpenShift team has been working on OpenShift v3 (https://github.
com/openshift/origin), which is a PaaS that leverages technologies such as Docker and
Kubernetes (http://kubernetes. io) among others, providing a complete ecosystem to
service your cloud-enabled apps. They plan to move this to the Public Cloud Service later this
year. As we have talked about Kubernetes in Chapter 8, Docker Orchestration and Hosting
Platforms, it is highly recommended to read that chapter first before continuing with this
recipe. | am going to borrow some of the concepts from that chapter.

OpensShift CLI Tool

OpensShift API Build
Server Controller

L J

)

) Kube Proxy

Deployment

Controller
[|
-
OpenShift Master — 3 Registry Pod Web Pod DB Pod
Eted -

Registry _
Container Container BL3) iy
[‘ I
Kubernetes API { Scheduler J] [

Server

L J Kubelet % Docker

e 0
Kube Controller { peplcatiol }

Web

Controller OpenShift Node

L J

Kubernetes Master

OpenShift All-In-One

https://blog.openshift.com/openshift-v3-deep-dive-docker-kubernetes/

120

https://www.heroku.com/
https://www.heroku.com/
https://github.com/openshift/origin
https://github.com/openshift/origin
https://blog.openshift.com/openshift-v3-deep-dive-docker-kubernetes/

Chapter 5

Kubernetes provides container cluster management with features such as scheduling pods
and service discovery, but it does not have the concept of complete application, as well as the
capabilities to build and deploy Docker images from the source code. OpenShift v3 extends
the base Kubernetes model and fills those gaps. If we fast-forward and look at Chapter 8,
Docker Orchestration and Hosting Platforms, for the Kubernetes section, you will notice that
to deploy an app, we need to define Pods, Services, and Replication-Controllers. OpenShift v3
tries to abstract all that information and let you define one configuration file that takes care of
all the internal wiring. Furthermore, OpenShift v3 provides other features such as automated
deployment through source code push, the centralized administration and management of an
application, authentication, team and project isolation, and resource tracking and limiting, all
of which are required for enterprise deployment.

In this recipe, we will set up all-in-one OpenShift v3 Origin on a VM and start a pod. In the
next recipe, we will see how to build and deploy an app through source code using the
Source-to-image (STI) build feature. As there is active development happening on OpenShift
v3 Origin, | have selected a tag from the source code and used that code-base in this recipe
and the next one. In the newer version, the command-line options may change. With this
information in hand, you should be able to adapt to the latest release. The latest example can
be found at https://github.com/openshift/origin/tree/master/examples/
hello-openshift.

Getting ready

Set up Vagrant (https://www.vagrantup.com/) and install the VirtualBox provider
(https://www.virtualbox.org/). The instructions on how to set these up are outside
the scope of this book.
1. Clone the OpenShift Origin repository:
$ git clone https://github.com/openshift/origin.git

2. Checkoutthevo0.4.3 tag:
$ cd origin
$ git checkout tags/v0.4.3

3. Startthe VM:

$ vagrant up --provider=virtualbox

4. Login to the container:

$ vagrant ssh

https://github.com/openshift/origin/tree/master/examples/hello-openshift
https://github.com/openshift/origin/tree/master/examples/hello-openshift

Docker Use Cases

How to do it...

1.

122

Build the OpenShift binary:
$ cd /data/src/github.com/openshift/origin

$ make clean build

Go to the hello-openshift examples:

$ cd /data/src/github.com/openshift/origin/examples/hello-
openshift

Start all the OpenShift services in one daemon:

$ mkdir logs

$ sudo
/data/src/github.com/openshift/origin/ output/local/go/bin/ope
nshift start --public-master=localhost &> logs/openshift.log &

OpenShift services are secured by TLS. Our client will need to accept the server
certificates and present its own client certificate. Those are generated as part of
Openshift start in the current working directory.

$ export
OPENSHIFTCONFIG="pwd /openshift.local.certificates/admin/.kube
config

$ export
CURL CA BUNDLE="pwd~ /openshift.local.certificates/ca/cert.crt

$ sudo chmod a+rwX "$OPENSHIFTCONFIG"

Create the pod from the hello-pod. json definition:

$ osc create -f hello-pod.json

Chapter 5

6. Connect to the pod:

$ curl localhost:6061

When OpenShift starts, all Kubernetes services start as well. Then, we connect to the
OpenShift master through CLI and request it to start a pod. That request is then forwarded
to Kubernetes, which starts the pod. In the pod configuration file, we mentioned to map port
6061 of the host machine with port 8080 of the pod. So, when we queried the host on port
6061, we got a reply from the pod.

If you run the docker ps command, you will see the corresponding containers running.

» The Learn More section on https://github.com/openshift/origin

» The OpenShift 3 beta 3 Video tutorial at https://blog.openshift .com/
openshift-3-beta-3-training-commons-briefing-12/

» The latest OpenShift training at https://github.com/openshift/training

» The OpenShift v3 documentation at http://docs.openshift.org/latest/
welcome/index.html

https://blog.openshift.com/openshift-3-beta-3-training-commons-briefing-12/
https://blog.openshift.com/openshift-3-beta-3-training-commons-briefing-12/
http://docs.openshift.org/latest/welcome/index.html
http://docs.openshift.org/latest/welcome/index.html

Docker Use Cases

Building and deploying an app on OpenShift

v3 from the source code

OpenShift v3 provides the build process to build an image from source code. The following are
the build strategies that one can follow to build images:

» Docker build: In this, users will supply to the Docker context (Dockerfiles and support
files), which can be used to build images. OpenShift just triggers the docker build
command to create the image.

» Source-to-image (STI) build: In this, the developer defines the source code repository
and the builder image, which defines the environment used to create the app. STI
then uses the given source code and builder image to create a new image for the
app. More details about STl can be found at https://github.com/openshift/
source-to-image.

» Custom build: This is similar to the Docker build strategy, but users might customize
the builder image that will be used for build execution.

In this recipe, we are going to look at the STI build process. We are going to look at sample-
app from the OpenShift v3 Origin repo (https://github.com/openshift/origin/
tree/v0.4.3/examples/sample-app). The corresponding STl build file is located at
https://github.com/openshift/origin/blob/v0.4.3/examples/sample-app/
application-template-stibuild. json.

In the BuildConfig section, we can see that the source is pointing to a GitHub repo
(git://github.com/openshift/ruby-hello-world.git)and the image under the
strategy section is pointing to the openshift/ruby-20-centos?7 image. So, we will use
the openshift/ruby-20-centos?7 image and build a new image using the source from
the GitHub repo. The new image, after the build is pushed to the local or third-party Docker
registry, depending on the settings. The BuildConf ig section also defines triggers on when
to trigger a new build, for instance, when the build image changes.

In the same STl build file (application-template-stibuild. json), you will find
multiple DeploymentConfig sections, one of each pod. A DeploymentConfig section
has information such as exported ports, replicas, the environment variables for the pod, and
other info. In simple terms, you can think of DeploymentConfig as an extended replication
controller of Kubernetes. It also has triggers to trigger new deployment. Each time a new
deployment is created, the latestVersion field of DeploymentConfig is incremented. A
deploymentCause is also added to DeploymentConfig describing the change that led to
the latest deployment.

ImageRepository, which was recently renamed as ImageStrean, is a stream of related
images. BuildConfig and DeploymentConfig watch ImageStream to look for image
changes and react accordingly, based on their respective triggers.

124

https://github.com/openshift/source-to-image
https://github.com/openshift/source-to-image
https://github.com/openshift/origin/tree/v0.4.3/examples/sample-app
https://github.com/openshift/origin/tree/v0.4.3/examples/sample-app
https://github.com/openshift/origin/blob/v0.4.3/examples/sample-app/application-template-stibuild.json
https://github.com/openshift/origin/blob/v0.4.3/examples/sample-app/application-template-stibuild.json

Chapter 5

The other sections that you will find in the STl build file are services for pods (database and
frontend), a route for the frontend service through which the app can be accessed, and a
template. A template describes a set of resources intended to be used together that can be
customized and processed to produce a configuration. Each template can define a list of
parameters that can be modified for consumption by containers.

Similar to STI build, there are examples of Docker and custom build in the same sample-app
example folder. | am assuming you have the earlier recipe, so we will continue from there.

Getting ready

You should have completed the earlier recipe, Setting up PaaS with OpenShift Origin.

Your current working directory should be /data/src/github.com/openshift/origin /
examples/hello-openshift inside the VM, started by Vagrant.

How to do it...

1. Deploy a private Docker registry to host images created by the STl build process:
$ sudo openshift ex registry --create --
credentials=./openshift.local.certificates/openshift-
registry/.kubeconfig

2. Confirm the registry has started (this can take a few minutes):

$ osc describe service docker-registry

[vagrant@openshiftdev sample-appl$%$ osc describe service docker-registry
Name: docker-registry

Labels: docker-registry=default

Selector: docker-registry=default

IP: 172.30.48.154

Port: <unnamed> 5000/TCP
Endpoints: 172.17.0.10:5000

Session Affinity: None

No events.

3. Create a new project in OpenShift. This creates a namespace test to contain the
builds and an app that we will generate later:

$ openshift ex new-project test --display-name="OpenShift 3
Sample" --description="This is an example project to
demonstrate OpenShift v3" --admin=test-admin

4. Login with the test-admin user and switch to the test project, which will be used
by every command from now on:

$ osc login -u test-admin -p pass

$ osc project test

Docker Use Cases

5. Submit the application template for processing (generating shared parameters
requested in the template) and then request the creation of the processed template:
$ osc process -f application-template-stibuild.json | osc
create -f -

6. This will not trigger the build. To start the build of your application, run the following
command:
$ osc start-build ruby-sample-build

7. Monitor the build and wait for the status to go to complete (this can take a few
minutes):

$ osc get builds

8. Get the list of services:

$ osc get services

[vagrant@openshiftdev sample-app]$% osc get services

NAME LABELS SELECTOR IP PORT(5)
database template=application-template-stibuild name=database 172.30.128.8: 5434/TCP
frontend template=application-template-stibuild name=f rontend 172 432

In the BuildConfig (ruby-sample-build) section, we specified our source as the ruby-
hello-world Gitrepo (git://github.com/openshift/ruby-hello-world.git)
and our image as openshift/ruby-20-centos7. So the build process takes that image,
and with STI builder, a new image called origin-ruby-sample is created after building our
source on openshift/ruby-20-centos7. The new image is then pushed to the Docker
registry we created earlier.

With DeploymentConfig, frontend and backend pods are also deployed and linked to
corresponding services.

There's more...

» The preceding frontend service can be accessed through the service IP and
corresponding port, but it will not be accessible from the outside world. To make
it accessible, we give our app an FQDN; for instance, in the following example, it is
defined as www . example . com:

[vagrant@openshiftdev sample-app]$% osc get services

NAME LABELS SELECTOR PORT(5)
database template=application-template-stibuild d
frontend template=application-template-stibuild

126

Chapter 5

OpenShift v3 provides an HAProxy router, which can map over FQDN to the
corresponding pod. For more information, please visit http://docs.openshift.
org/latest/architecture/core _objects/routing.html. You will also
require an entry in the external DNS to resolve the FQDN provided here.

OpenShift v3 Origin is also a management GUI. To look at our deployed app on the
GUI, bind the username test-admin to the view role in the default namespace so
you can observe the progress in the web console:

$ openshift ex policy add-role-to-user view test-admin

Then, through the browser, connectto https://<host>:8443/console and log
in through the test-admin user by giving any password. As Vagrant forwards the
traffic of port 8443 on the host machine to the VM, you should be able to connect
through the host on which VM is running. Then select OpenShift 3 Sample as the
project and explore:

OPENSHIFT ORIGIN Dotumentation & test-admin +

Projects

Openshift 3 sample v

Filter by labels

Overview Browse Services
i database
Builds
‘_:_‘ Created: a day ago
Browse Deployments IP: 172.30,128.83
Port:
Image Streams Container port:
Settings Protocol:
Pods Selectors: name=database
Routes: none
Services
frontend
Created: a day ago
IP:172.30.34.189
Port:
Container port:
Protocol:
Selectors: name=frontend
Routes: wanar E‘a*\}JIE com
» Inthe multiple node setup, your pods can be scheduled on different systems.

OpenShift v3 connects pods though the overlay network pod running on one node
can access another. It is called openshift-sdn. For more details, please visit
https://github.com/openshift/openshift-sdn.

http://docs.openshift.org/latest/architecture/core_objects/routing.html
http://docs.openshift.org/latest/architecture/core_objects/routing.html

Docker Use Cases

» The Learn More section at https://github.com/openshift/origin

» The OpenShift 3 beta 3 video tutorial at https://blog.openshift .com/
openshift-3-beta-3-training-commons-briefing-12/

» The latest OpenShift training at https://github.com/openshift/training

» The OpenShift v3 documentation at http://docs.openshift.org/latest/
welcome/index.html

Configuring Docker as a hypervisor driver for

OpenStack

| am assuming that the reader has some exposure to OpenStack for this recipe, as covering
it is outside the scope of this book. For more information on OpenStack and its components,
please visit http://www.openstack.org/software/.

In OpenStack, Nova supports different hypervisors for computation, such as KVM, XEN,
VMware, HyperV, and others. We can provision VMs using these drivers. Using Ironic
(https://wiki.openstack.org/wiki/Ironic), you can provision bare metal as well.
Nova added support for containers provisioning using Docker in the Havana (https://www.
openstack.org/software/havana/) release, but currently, it lives out of the mainline for
faster dev cycle. There are plans to merge it in the mainline in the future. Under the hood, it

looks like this:
N nova.conf:
ova compute_driver=docker.DockerDriver

Virt API

drlve_r APl Docker
(hypervisor) docker-registry

(container)

A

Glance

https://wiki.openstack.org/wiki/File:Docker-under-the-hood.png

128

https://blog.openshift.com/openshift-3-beta-3-training-commons-briefing-12/
https://blog.openshift.com/openshift-3-beta-3-training-commons-briefing-12/
http://docs.openshift.org/latest/welcome/index.html
http://docs.openshift.org/latest/welcome/index.html
https://www.openstack.org/software/havana/
https://www.openstack.org/software/havana/
https://wiki.openstack.org/wiki/File:Docker-under-the-hood.png

Chapter 5

DevStack (http://docs.openstack.org/developer/devstack/overview.html)
is a collection of scripts to quickly create an OpenStack development environment. It is not
a general-purpose installer, but it is a very easy way to get started with OpenStack. In this
recipe, we'll configure DevStack's environment with Docker as Nova driver on Fedora21.

Getting ready

Install Docker on the system.
Clone nova-docker and devstack:

$ git clone https://git.openstack.org/stackforge/nova-docker
/opt/stack/nova-docker

$ git clone https://git.openstack.org/openstack-dev/devstack
/opt/stack/devstack

3. The following step is needed until we can make use of configure nova_
hypervisor rootwrap:
$ git clone https://git.openstack.org/openstack/nova
/opt/stack/nova

4. Prepare Devstack for installation:
$ cd /opt/stack/nova-docker
$./contrib/devstack/prepare devstack.sh

5. Create the stack user and add it to sudo:
$ /opt/stack/devstack/tools/create-stack-user.sh

6. Install docker-py to communicate with docker through Python:
$ yum install python-pip
$ pip install docker-py

How to do it...

1. After the prerequisite steps are completed, run the following commands to install
Devstack:

$ cd /opt/stack/devstack
$./stack.sh

http://docs.openstack.org/developer/devstack/overview.html

Docker Use Cases

» The prepare devstack.sh driver makes the following entries in the localrc file
set the right environment to set Docker for the Nova driver:
export VIRT DRIVER=docker
export DEFAULT IMAGE NAME=cirros
export NON_ STANDARD REQS=1
export IMAGE URLS=" "

» After running the stackrc file, we can see the following changes with respect to
Nova and Glance:
o The /etc/nova/nova.conf file changes the compute driver:

[DEFAULT]
compute driver = novadocker.virt.docker.DockerDriver

o The /etc/nova/rootwrap.d/docker.filters file is updated with the
following content:
[Filters]

nova/virt/docker/driver.py: 'ln', '-sf',
'/var/run/netns/.*"'
In: CommandFilter, /bin/ln, root

o In/etc/glance/glance-api.conf, adds docker in the container/
image format:

[DEFAULT]
container formats = ami,ari,aki,bare,ovf,docker

There's more...

» Inlocalrc, we mentioned cirros as the default image, so once the setup is
completed, we can see that the Docker image for cirros is downloaded:

IMAGE ID CREATED VIRTUAL SIZE
Bd202478h999 7 weeks ago 7.694 MB

$ su - stack

-bash-4.3% cd /opt/stack/devstack/
-bash-4.3%

-bash-4

130

Chapter 5

From the preceding screenshot, we can see that the container format is Docker.
» Now you can create an instance using a cirros image using Horizon, or from the
command line, and look at the container started using the Docker command line.
» To import any image to Glance, you can do something like the following:
o Pull the required image from Docker Hub:
$ docker pull fedora

o Import the image (currently only admin can import the image):

$ source openrc
$ export OS USERNAME=admin

$ sudo docker save fedora | glance image-create --is-
public=True --container-format=docker --disk-format=raw
--name fedora

te --is-public=True --container-format=docker --disk-format=raw --name fedora

| False
| Hone

faafdiod7 |

24aff29f1a792da

26T07:52: 53. 000009
Nena

» There is a lack of integration with Cinder and Neutron, but things are catching
up quickly.

» While installing, if you get the AttributeError: 'module' object has no
attribute 'PY2' error, then run the following commands to fix it:
$ pip uninstall six

$ pip install --upgrade six

Docker Use Cases

>

132

The documentation on OpenStack website at https://wiki.openstack.org/
wiki/Docker.

Docker is also one of the resource types for OpenStack Heat. Learn more about
itathttp://docs.openstack.org/developer/heat/template guide/
contrib.html#dockerinc-resource

There is an interesting project in OpenStack called Kolla, which focuses on
deploying OpenStack services through Docker containers. Find more about it
athttps://github.com/stackforge/kolla/.

https://wiki.openstack.org/wiki/Docker
https://wiki.openstack.org/wiki/Docker
http://docs.openstack.org/developer/heat/template_guide/contrib.html#dockerinc-resource
http://docs.openstack.org/developer/heat/template_guide/contrib.html#dockerinc-resource
https://github.com/stackforge/kolla/

Docker APls and
Language Bindings

In this chapter, we will cover the following recipes:

» Configuring the Docker daemon remote API

» Performing image operations using remote APIs

» Performing container operations using remote APls
» Exploring Docker remote API client libraries

» Securing the Docker daemon remote API

Introduction

In the previous chapters, we learned different commands to manage images, containers,
and so on. Though we run all the commands through the command line, the communication
between the Docker client (CLI) and the Docker daemon happens through APIs, which are
called Docker daemon remote APIs.

Docker also provides APIs to communicate with Docker Hub and Docker registry, which the
Docker client uses as well. In addition to these APIs, we have Docker bindings for different
programming languages. So, if you want to build a nice GUI for Docker images, container
management, and so on, understanding the APIs mentioned earlier would be a good
starting point.

In this chapter, we look into the Docker daemon remote APl and use the curl command
(http://curl.haxx.se/docs/manpage.html) to communicate with the endpoints of
different APIs, which will look something like the following command:

$ curl -X <REQUEST> -H <HEADER> <OPTION> <ENDPOINT>

http://curl.haxx.se/docs/manpage.html

Docker APIs and Language Bindings

The preceding request will return with a return code and an output corresponding to the
endpoint and request we chose. GET, PUT, and DELETE are the different kinds of requests,
and GET is the default request if nothing is specified. Each APl endpoint has its own
interpretation for the return code.

Configuring the Docker daemon remote API

As we know, Docker has a client-server architecture. When we install Docker, a user
space program and a daemon get started from the same binary. The daemon binds to
unix://var/run/docker. sock by default on the same host. This will not allow us to
access the daemon remotely. To allow remote access, we need to start Docker such that
it allows remote access, which can done by changing the -H flag appropriately.

Getting ready

Depending on the Linux distribution you are running, figure out the Docker daemon
configuration file you need to change. For Fedora, /Red Hat distributions, it would be
/etc/sysconfig/docker and for Ubuntu/Debian distributions , it would most likely
be /etc/default/docker.

How to do it...

1. On Fedora 20 systems, add the -H tcp://0.0.0.0:2375 option in the
configuration file (/etc/sysconfig/docker), as follows:

OPTIONS=--selinux-enabled -H tcp://0.0.0.0:2375

2. Restart the Docker service. On Fedora, run the following command:

$ sudo systemctl restart docker
3. Connect to the Docker host from the remote client:

$ docker -H <Docker Host>:2375 info

Chapter 6

% docker -H dockerhost:2375 info

Containers: 13

Images: 122

Storage Driver: devicemapper

Pool Name: docker-253:1-659501-pool

Pool Blocksize: 65.54 kB

Backing Filesystem: extfs

Data file: /dev/loop0

Metadata file: /dev/loopl

Data Space Used: 2.714 GB

Data Space Total: 107.4 GB

Data Space Available: 21.51 GB

Metadata Space Used: 6.84 MB

Metadata Space Total: 2.147 GB

Metadata Space Available: 2.141 GB

Udev Sync Supported: true

Data loop file: /var/lib/docker/devicemapper/devicemapper/data
Metadata loop file: /var/lib/docker/devicemapper/devicemapper/metadata
Library Version: 1.02.93 (2015-01-30)

Execution Driver: native-0.2

Kernel Version: 3.19.3-200.fc21.x86_64

Operating System: Fedora 21 (Twenty One)

CPUs: 24

Total Memory: 62.84 GiB

Name: dockerhost.example.com

ID: 7EKD:G7ZK:LJBK:FEXF:O0ODF7:X7NG:JZWB: YRYJ]:WHZE:P3SK: C4GV: ZDMD
Username: nkhare

Registry: [https://index.docker.io/v1l/]

Make sure the firewall allows access to port 2375 on the system where the Docker daemon
is installed.

With the preceding command, we allowed the Docker daemon to listen on all network
interfaces through port 2375, using TCP.

» With the communication that we mentioned earlier between the client and Docker,
the host is insecure. Later in this chapter, we'll see how to enable TLS between them.

» The Docker CLI looks for environment variables; if it is being set then the CLI uses
that endpoint to connect, for example, if we connect set as follows:

$ export DOCKER_HOST:tcp://dockerhost.example.com:2375
Then, the future docker commands in that session connect to remote Docker Host by
default and run this:

$ docker info

Docker APIs and Language Bindings

See also

» The documentation on the Docker website https://docs.docker.com/
reference/api/docker remote api/

Performing image operations using

remote APIs

After enabling the Docker daemon remote API, we can do all image-related operations through
a client. To get a better understanding of the APIs, let's use curl to connect to the remote
daemon and do some image-related operations.

Getting ready

Configure the Docker daemon and allow remote access, as explained in the previous recipe.

How to do it...

In this recipe, we'll look at a few image operations as follows:

1. To listimages, use the following API:
GET /images/json
Here is an example of the preceding syntax:

$ curl http://dockerhost.example.com:2375/images/json

136

https://docs.docker.com/reference/api/docker_remote_api/
https://docs.docker.com/reference/api/docker_remote_api/

Chapter 6

$ curl http://dockerhost.example.com:2375/images/json | python -m json.tool
% Total % Received % Xferd Average Speed Time Time Time Current
Dload Upload Total Spent Left Speed
100 558 100 558 [¢] [¢] 801 D --i--i-- mmleeles mele-ies 800
[

"Created": 1429681477,
"Id": "56f320bd6adc37661b0e8c41lebblee759267410e38dac3cfOb3f8d4c7ad414e9",
"Labels": {},
"ParentId": "d478lbedc6fe4890abbe353f3cca5¢31d9ch3dde7c30blcdb0998al625Ff0d20",
"RepoDigests": [],
"RepoTags": [

"docker.io/mysql:latest"

1,
"Size": 0,
"VirtualSize": 282904008

"Created": 1429679734,
"Id": "93beB8052dfb86e325563e4f9b8283e4cfaf2a8703569fc6d1l8c33edade3196Fa",
"Labels": {},
"ParentId": "48ecf305d2cf7046c1f5f8fcbcd4994403173441d4a7f125b1bb0ceead9de?31",
"RepoDigests": [1],
"RepoTags": [
"docker.io/fedora:latest"
1,
"Size": 241316031,
"VirtualSize": 241316031

2. To create an image, use the following API:

POST /images/create
Here are a few examples:

o Getthe Fedora image from Docker Hub:

$ curl -X POST
http://dockerhost.example.com:2375/images/
create?fromImage=fedora

o Getthe WordPress image with the latest tag:

$ curl -X POST
http://dockerhost.example.com:2375/images/create? fromImage=
wordpress&tag=latest

o Create an image from the tar file, which is hosted on the accessible
web server:

$ curl -X POST
http://dockerhost.example.com:2375/images/
create?fromSrc=http://localhost/image.tar

Docker APIs and Language Bindings

3. To build an image, use the following API:
POST /commit

Here are a few examples:

o Build an image from the container (container id = 704a7c¢71£774)

$ curl -X POST
http://dockerhost.example.com:2375/
commit?container=704a7c¢71£77d

o Build an image from the Docker file:

$ curl -X POST -H "Content-type:application/tar" --data-
binary '@/tmp/Dockerfile.tar.gz’'
http://dockerhost.example.com:2375/build?t=apache

As the API expects the content as a tar file, we need to put the Docker file inside a
tar and call the APL.

4. To delete an image, use the following API:
DELETE /images/<name>
Here is an example of the preceding syntax:

$ curl -X DELETE
http://dockerhost.example.com:2375/images/wordpress:3.9.1

In all the cases mentioned earlier, the APIs will connect to the Docker daemon and perform
the requested operations.

There's more...

We have not covered all the options of the APIs discussed earlier and Docker provides APIs for
other image-related operations. Visit the APl documentation for more details.

See also

» Each API endpoint can have different inputs to control the operations. For more
details, visit the documentation on the Docker website https://docs.docker.
com/reference/api/docker remote api v1.18/#22-images

138

https://docs.docker.com/reference/api/docker_remote_api_v1.18/#22-images
https://docs.docker.com/reference/api/docker_remote_api_v1.18/#22-images

Chapter 6

Performing container operations using

remote APIs

In a similar way to how we performed image operations using APIs, we can also do all
container-related operations using APIs.

Getting ready

Configure the Docker daemon and allow remote access, as explained in the earlier recipe.

How to do it...

In this recipe, we'll look at a few container operations:

1. To list containers, use the following API:

GET /containers/json
Here are a few examples:

o Get all the running containers:
$ curl -X GET
http://shadowfax.example.com:2375/containers/json

o Get all the running containers, including the stopped ones

$ curl -X GET http://shadowfax.example.com:2375/containers/
json?all=True
2. To create a new container, use the following API:

POST /containers/create
Here are a few examples

o Create a container from the fedora image:

$ curl -X POST -H "Content-type:application/json" -d
l{llImagelI: Ilfedoralll n"Cmd" [Illsll] }l
http://dockerhost.example.com:2375/containers/create

o Create a container from the fedora image and name it £21:

$ curl -X POST -H "Content-type:application/json" -d
l{llImagelI: "fedora", "Cmd": [Illsll] }l
http://dockerhost.example.com:2375/containers/
create?name=£f21

Docker APIs and Language Bindings
3.

To start a container, use the following API:

POST /containers/<id>/start

For example, start a container with the 591ab8ac2650 ID:

$ curl -X POST -H "Content-type:application/json" -d '{"Dns":
["4.2.2.1"] }'
http://dockerhost.example.com:2375/containers/591ab8ac2650/sta
rt

Note that while starting the stopped container, we also passed the DNS option, which
will change the DNS configuration of the container.

To inspect a container, use the following API:

GET /containers/<id>/json
For example, inspect a container with the 591ab8ac2650 ID:

$ curl -X GET
http://dockerhost.example.com:2375/containers/591ab8ac2650/json

To get a list of processes running inside a container, use the following API:

GET /containers/<id>/top
For example, get the processes running in the container with the 591ab8ac2650 ID:

$ curl -X GET
http://dockerhost.example.com:2375/containers/591ab8ac2650/top
To stop a container, use the following API:

POST /containers/<id>/stop

For example, stop a container with the 591ab8ac2650 ID:

$ curl -X POST
http://dockerhost.example.com:2375/containers/591ab8ac2650/sto

p

We have not covered all the options of the APIs discussed earlier and Docker provides APIs for
other container-related operations. Visit the APl documentation for more details.

>

140

The documentation on the Docker website at https://docs.docker.com/
reference/api/docker remote api v1.18/#21-containers

https://docs.docker.com/reference/api/docker_remote_api_v1.18/#21-containers
https://docs.docker.com/reference/api/docker_remote_api_v1.18/#21-containers

Chapter 6

Exploring Docker remote API client libraries

In the last few recipes, we explored the APIs provided by Docker to connect and perform
operations to the remote Docker daemon. The Docker community has added bindings

for different programming languages to access those APIs. Some of them are listed at
https://docs.docker.com/reference/api/remote api client libraries/.

Note that Docker Maintainers do not maintain these libraries. Let's explore Python bindings
with a few examples and see how it uses the Docker remote API.

Getting ready

» Install docker-py on Fedora:

$ sudo yum install python-docker-py

Alternatively, use pip to install the package:

$ sudo pip install docker-py

» Import the module:

$ python

>>> import docker

How to do it...

1. Create the client, using the following steps:

1.

Connect through the Unix Socket:

>>> client =
docker.Client (base url='unix://var/run/docker.sock’,
version='1.18', timeout=10)

Connect over HTTP:

>>> client =
docker.Client (base url='http://dockerhost.example.com:2375"',
version='1.18"', timeout=10)

Here, base url is the endpoint to connect, version is the API version the client
will use, and timeout is the timeout value in seconds.

2. Search for an image using the following code:

>>> client.search ("fedora")

https://docs.docker.com/reference/api/remote_api_client_libraries/

Docker APIs and Language Bindings

3. Pull an image using the following code:

>>> client.pull ("fedora", tag="latest")

4. Start a container using the following code:

>>> client.create container("fedora", command="ls",
hostname=None, user=None, detach=False, stdin open=False,
tty=False, mem limit=0, ports=None, environment=None,
dns=None, volumes=None,

volumes_from=None,network disabled=False, name=None,
entrypoint=None, cpu_shares=None,

working dir=None,memswap limit=0)

In all the preceding cases, the Docker Python module will send RESTful requests

to the endpoint using the API provided by Docker. Look at the methods such as
search, pull, and start in the following code of docker-py available at
https://github.com/docker/docker-py/blob/master/docker/client.py.

There's more...

You can explore different user interfaces written for Docker. Some of them are as follows:

» Shipyard (http://shipyard-project.com/)—written in Python

» DockerUl (https://github.com/crosbymichael/dockerui)—writtenin
JavaScript using AngularJS

Securing the Docker daemon remote API

Earlier in this chapter, we saw how to configure the Docker daemon to accept remote
connections. However, with the approach we followed, anyone can connect to our
Docker daemon. We can secure our connection with Transport Layer Security
(http://en.wikipedia.org/wiki/Transport Layer Security).

We can configure TLS either by using the existing Certificate Authority (CA) or by
creating our own. For simplicity, we will create our own, which is not recommended for
production. For this example, we assume that the host running the Docker daemon is
dockerhost .example.com.

Getting ready

Make sure you have the openss1 library installed.

142

https://github.com/docker/docker-py/blob/master/docker/client.py
http://shipyard-project.com/
https://github.com/crosbymichael/dockerui
http://en.wikipedia.org/wiki/Transport_Layer_Security

Chapter 6

How to do it...

1. Create a directory on your host to put our CA and other related files:
$ mkdirc-p /etc/docker
$ ed /etc/docker

2. Create the CA private and public keys:
$ openssl genrsa -aes256 -out ca-key.pem 2048

$ openssl req -new -x509 -days 365 -key ca-key.pem -sha256 -
out ca.pem

[root@dockerhost dockerl# openssl genrsa -aes256 -out ca-key.pem 2048
Generating RSA private key, 2048 bit long modulus

e is 65537 (0x10001)

Enter pass phrase for ca-key.pem:

Verifying - Enter pass phrase for ca-key.pem:

[root@dockerhost docker]# openssl req -new -x509 -days 365 -key ca-key.pem -sha256 -out c
.pem

Enter pass phrase for ca-key.pem:
139972925695856: error: 28069065: 1ib(40) : UI_set_result:result too small:ui_lib.c:869:You mu
t type in 4 to 1023 characters

Enter pass phrase for ca-key.pem:

You are about to be asked to enter information that will be incorporated

into your certificate request.

What you are about to enter is what is called a Distinguished Name or a DN.

There are quite a few fields but you can leave some blank

For some fields there will be a default value,

If you enter '.', the field will be left blank.

Country Name (2 letter code) [XX]:IN

State or Province Name (full name) []:Karnataka

Locality Name (eg, city) [Default City]:Bangalore

Organization Name (eg, company) [Default Company Ltd]:

Organizational Unit Name (eg, section) []:

Common Name (eg, your name or your server's hostname) []:dockerhost.example.com
Email Address []:nkhare(@example.com

3. Now, let's create the server key and certificate signing request. Make sure that
Common Name matches the Docker daemon system's hosthame. In our case, it is
dockerhost .example.com.

$ openssl genrsa -out server-key.pem 2048
$ openssl req -subj "/CN=dockerhost.example.com" -new -key

server-key.pem -out server.csr

[root@dockerhost docker]# openssl genrsa -out server-key.pem 2048
Generating RSA private key, 2048 bit long modulus

e is 65537 (0x10001)
[root@dockerhost docker]# openssl req -subj "/CN=dockerhost.example.com" -new -key server
-key.pem -out server.csr

Docker APIs and Language Bindings

4. To allow connections from 127.0.0.1 and a specific host, for example, 10.70.1.67,
create an extensions configuration file and sign the public key with our CA:

$ echo subjectAltName = IP:10.70.1.67,IP:127.0.0.1 > extfile.cnf

$ openssl x509 -req -days 365 -in server.csr -CA ca.pem -CAkey
ca-key.pem -CAcreateserial -out server-cert.pem -extfile
extfile.cnf

[root@dockerhost dockerl# echo subjectAltName = IP:10.70.1.67,IP:127.0.0.1 > extfile.cnf
[root@dockerhost dockerl# openssl x509 -req -days 365 -in server.csr -CA ca.pem -CAkey ca-key.pe
m -CAcreateserial -out server-cert.pem -extfile extfile.cnf

Signature ok

subject=/CN=dockerhost.example.com
Getting CA Private Key
Enter pass phrase for ca-key.pem:

5. For client authentication, create a client key and certificate signing request:
$ openssl genrsa -out key.pem 2048

$ openssl req -subj '/CN=client' -new -key key.pem -out client.csr

[root@dockerhost docker]# openssl genrsa -out key.pem 2048
Generating RSA private key, 2048 bit long modulus

e i)
[root@dockerhost dockerl# openssl req -subj '/CN=client' -new -key key.pem -out client.csr

6. To make the key suitable for client authentication, create an extensions configuration
file and sign the public key:

$ echo extendedKeyUsage = clientAuth > extfile client.cnf

$ openssl x509 -req -days 365 -in client.csr -CA ca.pem -CAkey
ca-key.pem -CAcreateserial -out cert.pem -extfile client.cnf

[root@dockerhost docker]# echo extendedKeyUsage = clientAuth > extfile.cnf

[root@dockerhost docker]l# openssl x509 -req -days 365 -in client.csr -CA ca.pem -CAkey ca-key.pem -CAcreateserial -of
cert.pem -extfile extfile.cnf

Signature ok

subject=/CN=client

Getting CA Private Key

Enter pass phrase for ca-key.pam:

7. After generating cert .pem and server-cert.pem, we can safely remove both the
certificate signing requests:

$ rm -rf client.csr server.csr
8. To set tight security and protect keys from accidental damage, let's change the
permissions:

$ chmod -v 0600 ca-key.pem key.pem server-key.pem ca.pem server-
cert.pem cert.pem

10.

11.

Chapter 6

Stop the daemon if it is running on dockerhost . example. com. Then, start the
Docker daemon manually from /etc/docker:

$ pwd
/etc/docker

$ docker -d --tlsverify --tlscacert=ca.pem --
tlscert=server-cert.pem --tlskey=server-key.pem -
H=0.0.0.0:2376

From another terminal, go to /etc/docker. Run the following command to connect
to the Docker daemon:

$ cd /etc/docker

$ docker --tlsverify --tlscacert=ca.pem --tlscert=cert.pem --
tlskey=key.pem -H=127.0.0.1:2376 version

You will see that a TLS connection is established and you can run the commands over
it. You can also put the CA public key and the client's TLS certificate and key in the
.docker folder in the home directory of the user and use the DOCKER HOST and
DOCKER TLS VERIFY environment variables to make a secure connection by default.

[root@dockerhost docker]# pwd

/etc/docker

[root@dockerhost dockerl# cp {ca,cert,key}.pem ~/.docker
[root@dockerhost docker]# export DOCKER_HOST=tcp://127.0.0.1:2376
[root@dockerhost dockerl# export DOCKER_TLS_VERIFY=1

[root@dockerhost docker]# docker images

TAG IMAGE ID CREATED VIRTUAL SIZE
latest 8c2e06607696 10 days ago 2.43 MB
buildroot-2014.02 8c2e06607696 10 days ago 2.43 MB

To connect from the remote host we mentioned while signing the server key with
our CA, we will need to copy the CA public key and the client's TLS certificate and
key to the remote machine and then connect to the Docker host as shown in the
preceding screenshot.

We setup the TLS connection between the Docker daemon and the client for a secure

communication.

Docker APIs and Language Bindings

There's more...

>

146

To set up the Docker daemon to start with the TLS configuration by default, we will
need to update the Docker configuration file. For example, on Fedora, you update
the OPTIONS parameter as follows in /etc/sysconfig/docker:

OPTIONS='--selinux-enabled -H tcp://0.0.0.0:2376 --tlsverify
--tlscacert=/etc/docker/ca.pem --tlscert=/etc/docker/server-
cert.pem --tlskey=/etc/docker/server-key.pem'

If you recall, in Chapter 1, Introduction and Installation, we saw how we can set
up the Docker host using the Docker Machine (http://docs.docker.com/
machine/) and as part of this setup, the TLS setup happens between the client
and the host running the Docker daemon. After configuring the Docker host with
the Docker Machine, check .docker/machine for the user on the client system.

http://docs.docker.com/machine/
http://docs.docker.com/machine/

Docker Performance

In this chapter, we will cover the following recipes:

» Benchmarking CPU performance

» Benchmarking disk performance

» Benchmarking network performance

» Getting container resource usage using the stats feature

» Setting up performance monitoring

Introduction

In Chapter 3, Working with Docker Images, we saw, how Dockerfiles can be used to create
images consisting of different services/software and later in Chapter 4, Network and Data
Management for Containers, we saw, how one Docker container can talk to the outside
world with respect to data and network. In Chapter 5, Docker Use Cases, we looked into the
different use cases of Docker, and in Chapter 6, Docker APIs and Language Bindings, we
looked at how to use remote APIs to connect to a remote Docker host.

Ease of use is all good, but before going into production, performance is one of the key
aspects that is considered. In this chapter, we'll see the performance impacting features of
Docker and what approach we can follow to benchmark different subsystems. While doing
performance evaluation, we need to compare Docker performance against the following:

» Bare metal

» Virtual machine

» Docker running inside a virtual machine

Docker Performance

In the chapter, we will look at the approach you can follow to do performance evaluation
rather than performance numbers collected from runs to do comparison. However, I'll point
out performance comparisons done by different companies, which you can refer to.

Let's first look at some of the Docker performance impacting features:

>

148

Volumes: While putting down any enterprise class workload, you would like to tune
the underlying storage accordingly. You should not use the primary/root filesystem
used by containers to store data. Docker provides the facility to attach/mount
external storage through volumes. As we have seen in Chapter 4, Network and Data
Management for Containers, there are two types of volumes, which are as follows:

o Volumes that are mounted through host machines using the - -volume
option

o Volumes that are mounted through another container using the
--volumes-from option

Storage drivers: We looked at different storage drivers in Chapter 1, Installation
and Introduction, which are vfs, aufs, btrfs, devicemapper, and overlayFS. Support
for ZFS has been merged recently as well. You can check the currently supported
storage drivers and their priority of selection if nothing is chosen as the Docker
starttime at https://github.com/docker/docker/blob/master/daemon/
graphdriver/driver.go.

If you are running Fedora, CentOS, or RHEL, then the device mapper will be the
default storage driver. You can find some device mapper specific tuning at
https://github.com/docker/docker/tree/master/daemon/
graphdriver/devmapper.

You can change the default storage driver with the -s option to the Docker daemon.
You can update the distribution-specific configuration/systems file to make changes
across service restart. For Fedora/RHEL/CentOS, you will have the update OPTIONS
fieldin /etc/sysconfig/docker. Something like the following to use the

btrfs backend:

OPTIONS=-s btrfs

https://github.com/docker/docker/blob/master/daemon/graphdriver/driver.go
https://github.com/docker/docker/blob/master/daemon/graphdriver/driver.go
https://github.com/docker/docker/tree/master/daemon/graphdriver/devmapper
https://github.com/docker/docker/tree/master/daemon/graphdriver/devmapper

Chapter 7

The following graph shows you how much time it takes to start and stop 1,000
containers with different configurations of storage driver:

Container Create/Destroy Times

/<\

overlayfs direct-lvm btrfs

A
AR R S O G S ST T g g

.

of running hitpd containers

loop4vm

Time (sec)
—loop-lvm —Iloop-lvm+velume direct-lvm direct-lvm +volume
— btrfs btrfs+volume — overlayfs overlayfs+volume

http://developerblog.redhat.com/2014/09/30/overview-storage-scalability-docker/
As you can see, overlayFS performs better than other storage drivers.

» -—net=host: As we know, by default, Docker creates a bridge and associates IPs from it
to the containers. Using - -net=host exposes host networking stack to the container
by skipping the creation of a network namespace for the container. From this, it is
clear that this option always gives better performance compared to the bridged one.

This has some limitations, such as not being able to have two containers or host apps
listening on the same port.

» Cgroups: Docker's default execution driver, 1ibcontainer, exposes different
Cgroups knobs, which can be used to fine tune container performance. Some
of them are as follows:

o CPU shares: With this, we can give proportional weight to the containers and
accordingly the resource will be shared. Consider the following example:

$ docker run -it -c 100 fedora bash

o CPuUsets: This allows you to create CPU masks, using which execution of
threads inside a container on host CPUs is controlled. For example, the
following code will run threads inside a container on the Oth and 3rd core:

$ docker run -it --cpuset=0,3 fedora bash

http://developerblog.redhat.com/2014/09/30/overview-storage-scalability-docker/

Docker Performance

o Memory limits: We can set memory limits to a container. For example, the
following command will limit the memory usage to 512 MB for the container:

$ docker run -it -m 512M fedora bash

Sysctl and ulimit settings: In a few cases, you might have to change some of the
sysclt values depending on the use case to get optimal performance, such as
changing the number of open files. With Docker 1.6 (https://docs.docker.com/
vl.6/release-notes/) and above we can change the ulimit settings with the
following command:

$ docker run -it --ulimit data=8192 fedora bash

The preceding command will change the settings for just that given container, it
is a per container tuning variable. We can also set some of these settings through
the systemd configuration file of Docker daemon, which will be applicable to all
containers by default. For example, looking at the systemd configuration file for
Docker on Fedora, you will see something like the following in the service section:

LimitNOFILE=1048576 # Open file descriptor setting
LimitNPROC=1048576 # Number of processes settings

LimitCORE=infinity # Core size settings

You can update this as per your need.

You can learn about Docker performance by studying the work done by others. Over the last
year, some Docker performance-related studies have been published by a few companies:

>

150

From Red Hat:
o Performance Analysis of Docker on Red Hat Enterprise Linux:

http://developerblog.redhat.com/2014/08/19/performance-
analysis-docker-red-hat-enterprise-linux-7/

https://github.com/jeremyeder/docker-performance

o Comprehensive Overview of Storage Scalability in Docker:

http://developerblog.redhat.com/2014/09/30/overview-
storage-scalability-docker/

o Beyond Microbenchmarks—breakthrough container performance with
Tesla efficiency:

http://developerblog.redhat.com/2014/10/21/beyond-
microbenchmarks-breakthrough-container-performance-with-
tesla-efficiency/

https://docs.docker.com/v1.6/release-notes/
https://docs.docker.com/v1.6/release-notes/
http://developerblog.redhat.com/2014/08/19/performance-analysis-docker-red-hat-enterprise-linux-7/
http://developerblog.redhat.com/2014/08/19/performance-analysis-docker-red-hat-enterprise-linux-7/
http://developerblog.redhat.com/2014/09/30/overview-storage-scalability-docker/
http://developerblog.redhat.com/2014/09/30/overview-storage-scalability-docker/
http://developerblog.redhat.com/2014/10/21/beyond-microbenchmarks-breakthrough-container-performance-with-tesla-efficiency/
http://developerblog.redhat.com/2014/10/21/beyond-microbenchmarks-breakthrough-container-performance-with-tesla-efficiency/
http://developerblog.redhat.com/2014/10/21/beyond-microbenchmarks-breakthrough-container-performance-with-tesla-efficiency/

Chapter 7

o Containerizing Databases with Red Hat Enterprise Linux:

http://rhelblog.redhat.com/2014/10/29/containerizing-
databases-with-red-hat-enterprise-linux/

» From IBM
o An Updated Performance Comparison of Virtual Machines and Linux
Containers:

http://domino.research.ibm.com/library/cyberdig.nsf/pape
rs/0929052195DD819C85257D2300681E7B/$File/rc25482 . pdf

https://github.com/thewnf/kvm-docker-comparison

» From VMware
o Docker Containers Performance in VMware vSphere

http://blogs.vmware.com/performance/2014/10/docker-
containers-performance-vmware-vsphere.html

To do the benchmarking, we need to run similar workload on different environments (bare
metal/VM/Docker) and then collect the results with the help of different performance stats.
To simplify things, we can write common benchmark scripts which can be used to run on
different environments. We can also create Dockerfiles to spin off containers with workload
generation scripts. For example, in the Performance Analysis of Docker on Red Hat Enterprise
Linux article, which is listed earlier (https://github.com/jeremyeder/docker-
performance/blob/master/Dockerfiles/Dockerfile), the author has used a
Dockerfile to create a CentOS image and used the container environment variable to select
Docker and non-Docker environment for benchmark script run-sysbench. sh.

Similarly, Dockerfiles and related scripts are published by IBM for their study available at
https://github.com/thewmf/kvm-docker-comparison.

We will be using some of the Docker files and scripts mentioned earlier in the recipes of
this chapter.

Benchmarking CPU performance

We can use benchmarks such as Linpack (http://www.netlib.org/linpack/)and
sysbench (https://github.com/nuodb/sysbench)to benchmark CPU performance. For
this recipe, we'll use sysbench. We'll see how to run the benchmark on bare metal and inside
the container. Similar steps can be performed in other environments, as mentioned earlier.

http://rhelblog.redhat.com/2014/10/29/containerizing-databases-with-red-hat-enterprise-linux/
http://rhelblog.redhat.com/2014/10/29/containerizing-databases-with-red-hat-enterprise-linux/
http://domino.research.ibm.com/library/cyberdig.nsf/papers/0929052195DD819C85257D2300681E7B/$File/rc25482.pdf
http://domino.research.ibm.com/library/cyberdig.nsf/papers/0929052195DD819C85257D2300681E7B/$File/rc25482.pdf
http://blogs.vmware.com/performance/2014/10/docker-containers-performance-vmware-vsphere.html
http://blogs.vmware.com/performance/2014/10/docker-containers-performance-vmware-vsphere.html
https://github.com/jeremyeder/docker-performance/blob/master/Dockerfiles/Dockerfile
https://github.com/jeremyeder/docker-performance/blob/master/Dockerfiles/Dockerfile

Docker Performance

Getting ready

We will use the CentOS 7 container to run the benchmark inside the container. Ideally, we
should have a system with CentOS 7 installed to get benchmark results on bare metal. For the
container test, let's build the image from the GitHub repository that we referred to earlier:

$ git clone https://github.com/jeremyeder/docker-performance.git
$ cd docker-performance/Dockerfiles/
$ docker build -t c7perf --rm=true - < Dockerfile

$ docker images

REPOSITORY TAG IMAGE ID CREATED

VIRTUAL SIZE

c7perf latest 59al10d£f39a82 About a minute ago
678.3 MB

How to do it...

Inside the same GitHub repository, we have a script to run sysbench, docker-performance/
bench/sysbench/run-sysbench. sh. It has some configurations, which you can modify
according to your needs.

1. Asthe root user, create the /results directory on the host:
$ mkdir -p /results

Now, run the benchmark after setting the container environment variable to
something other than Docker, which we used while building the c7perf image
on the host machine, run the following commands:

$ cd docker-performance/bench/sysbench
$ export container=no

$ sh ./run-sysbench.sh cpu testl

By default, the results are collected in /results. Make sure you have write access
to it or change the OUTDIR parameter in the benchmark script.

2. To run the benchmark inside the container, we need to first start the container and
then run the benchmark script:

$ mkdir /results container
$ docker run -it -v /results container:/results c7perf bash

$ docker-performance/bench/sysbench/run-sysbench.sh cpu testl

As we mounted the host directory, /results_container, insidethe /results
container, the result will be collected on the host.

152

Chapter 7

3. While running the preceding test on Fedora/RHEL/CentOS, where SELinux is
enabled, you will get a Permission denied error. To fix it, relabel the host directory
while mounting it inside the container as follows:

$ docker run -it -v /results container:/results:z c7perf bash

Alternatively, for the time being, put SELinux in permissive mode:

$ setenforce 0
Then, after the test, put it back in permissive mode:

$ setenforce 1

Refer to Chapter 9, Docker Security, for more details
s about SELinux.

The benchmark script internally calls sysbench's CPU benchmark for the given input. CPU
is benchmarked by using the 64-bit integer manipulation using Euklid algorithms for prime
number computation. The result for each run gets collected in the corresponding results
directory, which can be used for comparison.

There's more...

Almost no difference is reported in bare metal and Docker CPU performance.

See also

» Look at the CPU benchmark results published in IBM and VMware using Linpack in
the links referenced earlier in this chapter.

Benchmarking disk performance

There are tools such as lozone (http://www.iozone.org/), smallfile (https://github.
com/bengland2/smallfile), and Flexible 10 (https://github.com/axboe/fio)
available to benchmark disk performance. For this recipe, we will use FIO. For that, we need to
write a job file, which mimics the workload you want to run. Using this job file, we can simulate
the workload on the target. For this recipe, let's take the FIO example from the benchmark
results, which IBM has published (https://github.com/thewmf/kvm-docker-
comparison/tree/master/fio).

https://github.com/bengland2/smallfile
https://github.com/bengland2/smallfile
https://github.com/thewmf/kvm-docker-comparison/tree/master/fio
https://github.com/thewmf/kvm-docker-comparison/tree/master/fio

Docker Performance

Getting ready

In the bare metal / VM / Docker container, install FIO and mount the disk containing a
filesystem for each test under /ferrari or anything which is mentioned in the FIO job file. On
bare metal, you can mount natively and on VM it can be mounted using the virtual disk driver
or we can do device pass through. On Docker, we can attach the filesystem from the host
machine using Docker volumes.

Prepare the workload file. We can pick https://github.com/thewmf/kvm-docker-
comparison/blob/master/fio/mixed.fio:

[globall

iocengine=1libaio

direct=1

size=16g

group_ reporting

thread
filename=/ferrari/fio-test-file

[mixed-random-rw-32x8]
stonewall
rw=randrw
rwmixread=70
bs=4K
iodepth=32
numjobs=8
runtime=60

Using the preceding job file, we can do random direct /O on /ferrari/fio-test-file
with 4K block size using the 1ibaio driver on a 16 GB file. The I/0 depth is 32 and

the number of parallel jobs is 8. It is a mix workload, which does 70 percent read and

30 percent write.

How to do it...

1. For the bare metal and VM tests, you can just run the FIO job file and collect
the result:

$ fio mixed.fio

2. Forthe Docker test, you can prepare a Docker file as follows:

FROM ubuntu

MAINTAINER nkhare@example.com
RUN apt-get update

RUN apt-get -gg install -y fio

https://github.com/thewmf/kvm-docker-comparison/blob/master/fio/mixed.fio
https://github.com/thewmf/kvm-docker-comparison/blob/master/fio/mixed.fio

Chapter 7

ADD mixed.fio /
VOLUME ["/ferrari"]
ENTRYPOINT ["fio"]
3. Now, create an image using the following command:
$ docker build -t docker fio perf .

4. Start the container as follows to run the benchmark and collect the results:

$ docker run --rm -v /ferrari:/ferrari docker fio perf
mixed.fio

5. While running the preceding test on Fedora/RHEL/CentOS, where SELinux is enabled,
you will get the Permission denied error. To fix it, re-label the host directory while
mounting it inside the container as follows:

$ docker run --rm -v /ferrari:/ferrari:z docker fio perf
mixed.fio

FIO will run the workload given in the job file and spit out the results.

There's more...

Once the results are collected, you can do the result comparison. You can even try out
different kinds of I/0 patterns using the job file and get the desired result.

See also

» Look at the disk benchmark results published in IBM and VMware using FIO in the
links referenced earlier in this chapter

Benchmarking network performance

Network is one of the key aspects to consider while deploying the applications in the container
environment. To do performance comparison with bare metal, VM and containers, we have to
consider different scenarios as follows:

» Bare metal to bare metal

» VMtoVM

» Docker container to container with the default networking mode (bridge)

» Docker container to container with host net (- -net=host)

» Docker container running inside VM with the external world

Docker Performance

In any of the preceding cases, we can pick up two endpoints to do the benchmarking. We can
use tools such as nuttcp (http://www.nuttcp.net/)and netperf (http://netperf.
org/netperf/) to measure the network bandwidth and request/response, respectively.

Getting ready

Make sure both the endpoints can reach each other and have the necessary packages/
software installed. On Fedora 21, you can install nut tcp with the following command:

$ yum install -y nuttcp

And, get netpert from its website.

How to do it...

To measure the network bandwidth using nut tcp, perform the following steps:

1. Startthe nuttcp server on one endpoint:
$ nuttcp -S

2. Measure the transmit throughput (client to server) from the client with the
following command:

$ nuttcp -t <SERVER IP>

3. Measure the receiver throughput on the client (server to client) with the following
command:

$ nuttcp -r <SERVER IP>
To run the request/response benchmark using netperf, perform the following steps:
5. Start netserver on one endpoint:

$ netserver

6. Connect to the server from the other endpoint and run the request/response test:

o ForTCP:
$ netperf -H 172.17.0.6 -t TCP_RR

o For UDP:
$ netperf -H 172.17.0.6 -t UDP_RR

In both the cases mentioned earlier, one endpoint becomes the client and sends the requests
to the server on the other endpoint.

156

http://netperf.org/netperf/
http://netperf.org/netperf/

Chapter 7

There's more...

We can collect the benchmark results for different scenarios and compare them. netperf
can also be used for throughput tests.

See also

» Look at the network benchmark results published by IBM and VMware in the links
referenced earlier in this chapter

Getting container resource usage using the

stats feature

With the release of version 1.5, Docker added a feature to get container resource usage from
in-built commands.

Getting ready

A Docker host with version 1.5 or later installed, which can be accessed via the Docker client.
Also, start a few containers to get stats.

How to do it...

1. Run the following command to get stats from one or more containers:

$ docker stats [CONTAINERS]

For example, if we have two containers with the names some-mysqgl and
backstabbing turing, then run the following command to get the stats:

$ docker stats some-mysql backstabbing turing

CPU % MEM USAGE/ !
0.00% 4.191 MiB/6 GiB 01%
232.1 MiB/62.84 GiB 0.36%

The Docker daemon fetches the resource information from the Cgroups and serves it through
the APIs.

Docker Performance

See also

» Refer to the release notes of Docker 1.5 at https://docs.docker.com/v1.5/
release-notes/

Setting up performance monitoring

We have tools such as SNMP, Nagios, and so on to monitor bare metal and VM performance.
Similarly, there are a few tools/plugins available to monitor container performance such as
cAdvisor (https://github.com/google/cadvisor)and sFlow (http://blog.sflow.
com/2014/06/docker-performance-monitoring.html). In this recipe, let's see how
we can configure cAdvisor.

Getting ready

Setting up cAdvisor.

» The easiest way to run cAdvisor is to run its Docker container, which can be done with
the following command:

sudo docker run \
--volume=/:/rootfs:ro \
--volume=/var/run:/var/run:rw \
--volume=/sys:/sys:ro \
--volume=/var/lib/docker/:/var/lib/docker:ro \
--publish=8080:8080 \
--detach=true \
- -name=cadvisor \

google/cadvisor:latest

» If you want to run cAdvisor outside Docker, then follow the instructions given on
the cAdvisor home page at https://github.com/google/cadvisor/blob/
master/docs/running.md#standalone

How to do it...

After the container starts, point your browser to http://localhost :8080. You will first
get the graphs for CPU, memory usage and other information for the host machine. Then, by
clicking on the Docker Containers link, you will get the URLs for the containers running on the
machine under the Subcontainers section. If you click on any one of them, you will see the
resource usage information for the corresponding container.

158

https://docs.docker.com/v1.5/release-notes/
https://docs.docker.com/v1.5/release-notes/
http://blog.sflow.com/2014/06/docker-performance-monitoring.html
http://blog.sflow.com/2014/06/docker-performance-monitoring.html
https://github.com/google/cadvisor/blob/master/docs/running.md#standalone
https://github.com/google/cadvisor/blob/master/docs/running.md#standalone

Chapter 7

The following is the screenshot of one such container:

Total Usage

016

01z

0.08

Cores

0.04

6:38:20 PM 6:38:40 PM 6:38.50 PM 6:39:00 PM 6:39:10 PM §:39:20 PM
W Total

Usage per Core

Cores
=)
=
@

% oA ;
00n EIESSOSE A e e PRIAORCO e

6:38:30 PM 6:38:40 PM 6:38:50 PM 6:39:00 PM 6:39:10 PM 6:39:20 PM

Wcore0 McCorel W cCore2 [Cores

With the docker run command, we have mounted few volumes from host machines in read-
only mode. cAdvisor will read the relevant information from those like the Cgroup details for
containers and show them graphically.

There's more...

cAdvisor supports exporting the performance matrices to influxdb (http://influxdb.
com/). Heapster (https://github.com/GoogleCloudPlatform/heapster) is another
project from Google, which allows cluster-wide (Kubernetes) monitoring using cAdvisor.

See also

» You can look at the matrices used by cAdvisor from Cgroups in the documentation on
the Docker website https://docs.docker.com/articles/runmetrics/

http://influxdb.com/
http://influxdb.com/
https://docs.docker.com/articles/runmetrics/

Docker Orchestration
and Hosting Platforms

In this chapter, we will cover the following recipes:

» Running applications with Docker Compose

» Setting up Cluster with Docker Swarm

» Setting up CoreOS for Docker orchestration

» Setting up a Project Atomic host

» Doing atomic update/rollback with Project Atomic
» Adding more storage for Docker in Project Atomic
» Setting up Cockpit for Project Atomic

» Setting up a Kubernetes cluster

» Scaling up and down in a Kubernetes cluster

» Setting up WordPress with a Kubernetes cluster

Introduction

Running Docker on a single host may be good for the development environment, but the real
value comes when we span multiple hosts. However, this is not an easy task. You have to
orchestrate these containers. So, in this chapter, we'll cover some of the orchestration tools
and hosting platforms.

Docker Orchestration and Hosting Platforms
Docker Inc. announced two such tools:

Docker Compose (https://docs.docker.com/compose) to create apps consisting of
multiple containers and Docker Swarm (https://docs.docker.com/swarm/) to cluster
multiple Docker hosts. Docker Compose was previously called Fig (http://www.fig.sh/).

CoreOS (https://coreos.com/) created etcd (https://github.com/coreos/etcd)
for consensus and service discovery, fleet (https://coreos.com/using-coreos/
clustering) to deploy containers in a cluster, and flannel (https://github.com/
coreos/flannel) for overlay networking.

Google started Kubernetes (http://kubernetes.io/) for Docker orchestration.
Kubernetes provides mechanisms for application deployment, scheduling, updating,
maintenance, and scaling.

Red Hat launched a container-specific operating system called Project Atomic (http://www.
projectatomic.io/), which can leverage the orchestration capabilities of Kubernetes.

Even Microsoft announced a specialized operating system for Docker (http://azure.
microsoft.com/blog/2015/04/08/microsoft-unveils-new-container-
technologies-for-the-next-generation-cloud/).

Apache Mesos (http://mesos.apache.org/), which provides resource management and
scheduling across entire datacenter and cloud environments, also added support for Docker
(http://mesos.apache.org/documentation/latest/docker-containerizer/).

VMware also launched the container-specific host VMware Photon (http://vmware.
github.io/photon/).

This is definitely a very interesting space, but the policy management tools of many
orchestration engines do not make the lives of developers and operators easy. They have to
learn different tools and formats when they move from one platform to another. It would be
great if we could have a standard way to build and launch composite, multicontainer apps.
The Project Atomic community seems to be working on one such platform-neutral specification
called Nulecule (https://github.com/projectatomic/nulecule/). A good description
about Nulecule is available at http://www.projectatomic.io/blog/2015/05/
announcing-the-nulecule-specification-for-composite-applications/:

"Nulecule defines a pattern and model for packaging complex multi-container
applications, referencing all their dependencies, including orchestration metadata, in
a single container image for building, deploying, monitoring, and active management.
Just create a container with a Nulecule file and the app will ‘just work'. In the Nulecule
spec, you define orchestration providers, container locations and configuration
parameters in a graph, and the Atomic App implementation will piece them together
for you with the help of Providers. The Nulecule specification supports aggregation of
multiple composite applications, and it's also container and orchestration agnostic,
enabling the use of any container and orchestration engine."

162

https://coreos.com/using-coreos/clustering
https://coreos.com/using-coreos/clustering
https://github.com/coreos/flannel
https://github.com/coreos/flannel
http://www.projectatomic.io/
http://www.projectatomic.io/
http://azure.microsoft.com/blog/2015/04/08/microsoft-unveils-new-container-technologies-for-the-next-generation-cloud/
http://azure.microsoft.com/blog/2015/04/08/microsoft-unveils-new-container-technologies-for-the-next-generation-cloud/
http://azure.microsoft.com/blog/2015/04/08/microsoft-unveils-new-container-technologies-for-the-next-generation-cloud/
http://mesos.apache.org/
http://mesos.apache.org/documentation/latest/docker-containerizer/
http://vmware.github.io/photon/
http://vmware.github.io/photon/
https://github.com/projectatomic/nulecule/
http://www.projectatomic.io/blog/2015/05/announcing-the-nulecule-specification-for-composite-applications/
http://www.projectatomic.io/blog/2015/05/announcing-the-nulecule-specification-for-composite-applications/

Chapter 8

AtomicApp is a reference implementation (https://github.com/projectatomic/
atomicapp/) of the Nulecule specification. It can be used to bootstrap container applications
and to install and run them. AtomicApp currently has a limited number of providers (Docker,
Kubernetes, OpenShift), but support for others will be added soon.

On a related note, the CentOS community is building a Cl environment, which will take
advantage of Nulecule and AtomicApp. For further information, visit http://wiki.centos.
org/ContainerPipeline

All of the preceding tools and platforms need separate chapters for themselves. In this
chapter, we'll explore Compose, Swarm, Core0S, Project Atomic, and Kubernetes briefly.

Running applications with Docker Compose

Docker Compose (http://docs.docker.com/compose/) is the native Docker tool to
run the interdependent containers that make up an application. We define a multicontainer
application in a single file and feed it to Docker Compose, which sets up the application. At
the time of writing, Compose is still not production-ready. In this recipe, we'll once again use
WordPress as a sample application to run.

Getting ready

Make sure you have Docker Version 1.3 or later installed on the system. To install Docker
Compose, run the following command:

$ sudo pip install docker-compose

How to do it...

1. Create a directory for the application, and within it create docker-compose.yml to
define the app:

$ cd wordpress_compose/
$ cat docker-compose.yml
wordpress:
image: wordpress
links:
- db:mysql

ports:
- 8080:80

db:
image: mariadb
environment:
MYSQL_ROOT_PASSWORD: example

2. We have taken the preceding example from the official WordPress Docker repo on
Docker Hub (https://registry.hub.docker.com/ /wordpress/).

https://github.com/projectatomic/atomicapp/
https://github.com/projectatomic/atomicapp/
http://wiki.centos.org/ContainerPipeline
http://wiki.centos.org/ContainerPipeline

Docker Orchestration and Hosting Platforms

3. Within the app directory, run the following command to build the app:

$ docker-compose up

4. Once the build is complete, access the WordPress installation page from
http://localhost:8080 or http://<host-ip>:8080.

Docker Compose downloads both the mariadb wordpress images, if not available locally
from the official Docker registry. First, it starts the db container from the mariadb image;
then it starts the wordpress container. Next, it links with the db container and exports the
port to the host machine.

There's more...

We can even build images from the Dockerfile during the compose and then use it for the app.
For example, to build the wordpress image, we can get the corresponding Dockerfile and
other supporting file from within the application's Compose directory and update the docker-
compose .yml file in a similar manner as follows:

$ cat docker-compose.yml

- db:mysql
ports:
- 8080:80

db:
image: mariadb
environment:
MYSQL_ROOT_PASSWORD: example

We can start, stop, rebuild, and get the status of the app. Visit its documentation on the
Docker website.

» The Docker Compose YAML file reference at http://docs.docker.com/
compose/yml/

» The Docker Compose command-line reference at http://docs.docker.com/
compose/cli/

» The Docker Compose GitHub repository at https://github.com/docker/
compose

http://docs.docker.com/compose/yml/
http://docs.docker.com/compose/yml/
http://docs.docker.com/compose/cli/
http://docs.docker.com/compose/cli/
https://github.com/docker/compose
https://github.com/docker/compose

Chapter 8

Setting up cluster with Docker Swarm

Docker Swarm (http://docs.docker.com/swarm/) is native clustering to Docker. It
groups multiple Docker hosts into a single pool in which one can launch containers. In this
recipe, we'll use Docker Machine (http://docs.docker.com/machine/) to set up a
Swarm cluster. At the time of writing, Swarm is still not production-ready. If you recall, we used
Docker Machine to set up a Docker host on Google Compute Engine in Chapter 1, Introduction
and Installation. To keep things simple, here we'll use VirtualBox as the backend for Docker
Machine to configure hosts.

Getting ready

1.

Install VirtualBox on your system (https://www.virtualbox.org/). Instructions
to configure VirtualBox are outside the scope of this book.

Download and set up Docker Machine. In Fedora x86_64, run the following
commands:

$ wget
https://github.com/docker/machine/releases/download/v0.2.0/doc
ker-machine linux-amd64

$ sudo mv docker-machine linux-amdé4 /usr/local/bin/docker-
machine

$ chmod a+x /usr/local/bin/docker-machine

How to do it...

1.

Using the Swarm discovery service, we first need to create a Swarm token to identify
our cluster uniquely. Other than the default hosted discovery service, Swarm supports
different types of discovery services such as etcd, consul, and zookeeper. For more
details, please visit https://docs.docker.com/swarm/discovery/. To create
a token using the default hosted discovery service, we'll first set up the Docker host
using Docker Machine on a VM and then get the token:

$ docker-machine create -d virtualbox local
To access the Docker we just created from your local Docker client, run the following
command:

$ eval "$ (docker-machine env local)™"

To get the token, run the following command:
$ docker run swarm create

7c3a21b42708cde81d99884116d68fal

Docker Orchestration and Hosting Platforms

4. Using the token created in the preceding step, set up Swarm master:

$ docker-machine create -d virtualbox --swarm --swarm-
master --swarm-discovery
token://7c3a21b42708cde81d99884116d68fal swarm-master

5. Similarly, let's create two Swarm nodes:

$ docker-machine create -d virtualbox --swarm --swarm-
discovery token://7c3a21b42708cde81d99884116d68fal swarm-node-
1

$ docker-machine create -d virtualbox --swarm --swarm-
discovery token://7c3a21b42708cde81d99884116d68fal swarm-node-
2

6. Now, connect to Docker Swarm from your local Docker client:
$ eval "$(docker-machine env swarm-master)"

7. Swarm APIs are compatible with Docker client APIs. Let's run the docker info
command to see Swarm's current configuration/setup:

$ docker info

$ docker info
Containers: 4
Strategy: spread
Filters: affinity, health, constraint, port, dependency
Nodes: 3
swarm-master: 192.168.99.106:2376
L Containers: 2
L Reserved CPUs: 0 / 8
L Reserved Memory: © B / 1.025 GiB
swarm-node-1: 192.168.99.108;:2376
L containers: 1
L Reserved CPUs: 0 / 8
L Reserved Memory: 0 B / 1.025 GiB
swarm-node-2: 192.168.99.109:2376
L containers: 1
L Reserved CPUs: 0 / 8
L Reserved Memory: @ B / 1.025 GiB

$ [

As you can see, we have three nodes in the cluster: one master and two nodes.

Using the unique token we got from the hosted discovery service, we registered the master
and nodes in a cluster.

166

Chapter 8

There's more...

>

In the preceding docker info output, we also scheduled policy (strategy) and
filters. More information on these can be found at https://docs.docker.com/
swarm/scheduler/strategy/ and https://docs.docker.com/swarm/
scheduler/filter/. These define where the container will run.

There is active development happening to integrate Docker Swarm and Docker
Compose so that we point and compose the app to the Swarm cluster. The app will
then start on the cluster. Visit https://github.com/docker/compose/blob/
master/SWARM.md

See also

>

>

The Swarm documentation on the Docker website at https://docs.docker.com/
swarm/

Swarm's GitHub repository at https://github.com/docker/swarm

Setting up CoreOS for Docker orchestration

CoreOS (https://coreos.com/) is a Linux distribution that has been rearchitected to
provide the features needed to run modern infrastructure stacks. It is Apache 2.0 Licensed.
It has a product called CoreOS Managed Linux (https://coreos.com/products/
managed-1inux/) for which the Core0S team provides commercial support.

Essentially, CoreOS provides platforms to host a complete applications stack. We can set up
CoreOS on different cloud providers, bare metal, and in the VM environment. Let's look at the
building blocks of CoreOS:

>

>

>

>

etcd

Container runtime
Systemd

Fleet

Let's discuss each in detail:

>

etcd: From the GitHub page of etcd (https://github.com/coreos/
etcd/#etcd). etcd is a highly available key-value store for shared configuration
and service discovery. It is inspired by Apache ZooKeeper and doozer with a focus
on being:

o Simple: Curl-able user-facing API (HTTP plus JSON)
o Secure: Optional SSL client certificate authentication

https://docs.docker.com/swarm/scheduler/strategy/
https://docs.docker.com/swarm/scheduler/strategy/
https://docs.docker.com/swarm/scheduler/filter/
https://docs.docker.com/swarm/scheduler/filter/
https://github.com/docker/compose/blob/master/SWARM.md
https://github.com/docker/compose/blob/master/SWARM.md
https://docs.docker.com/swarm/
https://docs.docker.com/swarm/
https://coreos.com/products/managed-linux/
https://coreos.com/products/managed-linux/
https://github.com/coreos/etcd/#etcd
https://github.com/coreos/etcd/#etcd

Docker Orchestration and Hosting Platforms

168

o Fast: Benchmark of 1,000s of writes per instance
o Reliable: Proper distribution using Raft

It is written in Go and uses the Raft consensus algorithm (https://
raftconsensus.github.io/)to manage a highly available replicated
log. etcd can be used independent of CoreOS. We can:

o Set up a single or multinode cluster. More information on this can be
found at https://github.com/coreos/etcd/blob/master/
Documentation/clustering.md.

o Access using CURL and different libraries, found at https://github.
com/coreos/etcd/blob/master/Documentation/libraries-and-
tools.md.

In CoreQS, etcd is meant for the coordination of clusters. It provides a mechanism to
store configurations and information about services in a consistent way.

Container runtime: CoreOS supports Docker as a container runtime environment.
In December 2014, CoreOS announced a new container runtime Rocket (https://
coreos.com/blog/rocket/). Let's restrict our discussion to Docker, which is
currently installed on all CoreOS machines.

systemd: systemd is an init system used to start, stop, and manage processes. In
CoreO0S, it is used to:

o Launch Docker containers

o Register services launched by containers to etcd

Systemd manages unit files. A sample unit file looks like the following:

[Unit]

Description=Docker Application Container Engine
Documentation=http://docs.docker.com
After=network.target docker.socket
Requires=docker.socket

[Service]

Type=notify
EnvironmentFile=-/etc/sysconfig/docker
EnvironmentFile=-/etc/sysconfig/docker-storage
ExecStart=/usr/bin/docker -d -H £d:// $OPTIONS
$DOCKER_STORAGE_ OPTIONS

LimitNOFILE=1048576

LimitNPROC=1048576

[Install]
WantedBy=multi-user.target

https://raftconsensus.github.io/
https://raftconsensus.github.io/
https://github.com/coreos/etcd/blob/master/Documentation/clustering.md
https://github.com/coreos/etcd/blob/master/Documentation/clustering.md
https://github.com/coreos/etcd/blob/master/Documentation/libraries-and-tools.md
https://github.com/coreos/etcd/blob/master/Documentation/libraries-and-tools.md
https://github.com/coreos/etcd/blob/master/Documentation/libraries-and-tools.md
https://coreos.com/blog/rocket/
https://coreos.com/blog/rocket/

Chapter 8

This unit file starts the Docker daemon with the command mentioned in ExecStart
on Fedora 21. The Docker daemon will start after the network target and docker
socket services. docker socket is a prerequisite for the Docker daemon to start.
Systemd targets are ways to group processes so that they can start at the same time.
multi-user is one of the targets with which the preceding unit file is registered.

For more details, you can look at the upstream documentation of Systemd at
http://www.freedesktop.org/wiki/Software/systemd/.

Fleet: Fleet (https://coreos.com/using-coreos/clustering/) is the cluster
manager that controls systemd at the cluster level. systemd unit files are combined
with some Fleet-specific properties to achieve the goal. From the Fleet documentation
(https://github.com/coreos/fleet/blob/master/Documentation/
architecture.md):

"Every system in the fleet cluster runs a single £1eetd daemon.
Each daemon encapsulates two roles: the engine and the agent.
An engine primarily makes scheduling decisions while an agent
executes units. Both the engine and agent use the reconciliation
model, periodically generating a snapshot of 'current state' and
'desired state' and doing the necessary work to mutate the former
towards the latter."

etcd is the sole datastore in a £1eet cluster. All persistent and ephemeral data is
stored in etcd; unit files, cluster presence, unit state, and so on. etcd is also used
for all internal communication between fleet engines and agents.

Now we know of all the building blocks of CoreO0S. Let's try out CoreOS on our local system/
laptop. To keep things simple, we will use Vagrant to set up the environment.

Getting ready

1.

Install VirtualBox on the system (https://www.virtualbox.org/)and Vagrant
(https://www.vagrantup.com/). The instructions to configure both of these
things are outside the scope of this book.

Clone the coreos-vagrant repository:

$ git clone https://github.com/coreos/coreos-vagrant.git

$ cd coreos-vagrant

Copy the sample file user-data.sample to user-data and set up the token to
bootstrap the cluster:

$ cp user-data.sample user-data

http://www.freedesktop.org/wiki/Software/systemd/
https://coreos.com/using-coreos/clustering/
https://github.com/coreos/fleet/blob/master/Documentation/architecture.md
https://github.com/coreos/fleet/blob/master/Documentation/architecture.md

Docker Orchestration and Hosting Platforms

4. When we configure the CoreOS cluster with more than one node, we need a token to
bootstrap the cluster to select the initial etcd leader. This service is provided free by
the CoreOS team. We just need to open https://discovery.etcd.io/newin
the browser to get the token and update it within the user-data file as follows:

$ head user-data
#cloud-config

coreos:
etcd:

generate a new token for each unique cluster from https://discovery.etcd.io/new
WARNING: replace each time you 'vagrant destroy'
discovery: https://discovery.etcd.io/4dab643744074e33d2dce9d262982ced
addr: $public_ipv4:4001
peer-addr: $public_ipv4:7001
etcd2:

5. Copy config.rb.sample to config.rb and make changes to the following line:

$num instances=1
It should now look like this:
$num instances=3

This will ask Vagrant to set up three node clusters. By default, Vagrant is configured to get
the VM images from the alpha release. We can change it to beta or stable by updating the
$update channel parameter in Vagrantfile. For this recipe, | chose stable.

How to do it...

1. Run the following command to set up the cluster:

$ vagrant up

Now, check the status, using the command shown in the following screenshot:

$ vagrant status
Current machine states:

core-01 running (virtualbox)
core-02 running (virtualbox)
core-03 running (virtualbox)

2. Login to one of the VMs using SSH, look at the status of services, and list the
machines in the cluster:

$ vagrant ssh core-01
$ systemctl status etcd fleet

$ fleetctl list-machines

170

Chapter 8

core@core=-01 fleetctl list-machines
IP METADATA
172.17.8.102 -

172.17.8.101 -
172.17.8.103 -

3. Create a service unit file called myapp . service with the following content:
[Unit]
Description=MyApp
After=docker.service
Requires=docker.service

[Service]

TimeoutStartSec=0
ExecStartPre=-/usr/bin/docker kill busyboxl
ExecStartPre=-/usr/bin/docker rm busyboxl
ExecStartPre=/usr/bin/docker pull busybox

ExecStart=/usr/bin/docker run --name busyboxl busybox /bin/sh -c
"while true; do echo Hello World; sleep 1; done"

ExecStop=/usr/bin/docker stop busyboxl
4. Let's now submit the service for scheduling and start the service:

$ fleetctl submit myapp.service
$ fleetctl start myapp.service

$ fleetctl list-units

core@core-01 fleetctl submit myapp.service
core@core-01 fleetctl start myapp.service
Unit myapp.service launched on 0d39cd8d.../172.17.8.102

core@core-01 fleetctl list-units
UNIT MACHINE ACTIVE SUB
myapp.service 0d39cd8d.../172.17.8.102 active running

As we can see, our service has started on one of the nodes in the cluster.

Vagrant uses the cloud configuration file (user-data) to boot the VMs. As they have the
same token to bootstrap the cluster, they select the leader and start operating. Then, with
fleetctl, which is the fleet cluster management tool, we submit the unit file for scheduling,
which starts on one of the nodes.

Docker Orchestration and Hosting Platforms

There's more...

» Using the cloud configuration file in this recipe, we can start etcd and fleet on
all the VMs. We can choose to run etcd just on selected nodes and then configure
worker nodes running £leet to connect to etcd servers. This can be done by
setting the cloud configuration file accordingly. For more information, please visit
https://coreos.com/docs/cluster-management/setup/cluster-
architectures/.

» With £1eet, we can configure services for high availability. For more information,
take a look at https://coreos.com/docs/launching-containers/
launching/fleet-unit-files/.

» Though your service is running on the host, you will not be able to reach it from
the outside world. You will need to add some kind of router and wildcard DNS
configuration to reach your service from the outside world.

» The CoreOS documentation for more details at https://coreos.com/docs/

» The visualization of RAFT consensus algorithm at http://
thesecretlivesofdata.com/raft

» How to configure the cloud config file at https://coreos.com/docs/cluster-
management/setup/cloudinit-cloud-config/ and https://coreos.com/
validate/

» Documentation on systemd at https://coreos.com/docs/launching-
containers/launching/getting-started-with-systemd/

» How to launch containers with fleet at https://coreos.com/docs/launching-
containers/launching/launching-containers-fleet/

Setting up a Project Atomic host

Project Atomic facilitates application-centric IT architecture by providing an end-to-end solution
to deploy containerized applications quickly and reliably, with atomic update and rollback for
the application and host alike.

This is achieved by running applications in containers on a Project Atomic host, which is a
lightweight operating system specially designed to run containers. The hosts can be based on
Fedora, CentOS, or Red Hat Enterprise Linux.

Next, we will elaborate on the building blocks of the Project Atomic host.

172

https://coreos.com/docs/cluster-management/setup/cluster-architectures/
https://coreos.com/docs/cluster-management/setup/cluster-architectures/
https://coreos.com/docs/launching-containers/launching/fleet-unit-files/
https://coreos.com/docs/launching-containers/launching/fleet-unit-files/
http://thesecretlivesofdata.com/raft
http://thesecretlivesofdata.com/raft
https://coreos.com/docs/cluster-management/setup/cloudinit-cloud-config/
https://coreos.com/docs/cluster-management/setup/cloudinit-cloud-config/
https://coreos.com/validate/
https://coreos.com/validate/
https://coreos.com/docs/launching-containers/launching/getting-started-with-systemd/
https://coreos.com/docs/launching-containers/launching/getting-started-with-systemd/
https://coreos.com/docs/launching-containers/launching/launching-containers-fleet/
https://coreos.com/docs/launching-containers/launching/launching-containers-fleet/

Chapter 8

0STree and rpm-0OSTree: OSTree (https://wiki.gnome.org/action/show/
Projects/0STree) is a tool to manage bootable, immutable, and versioned
filesystem trees. Using this, we can build client-server architecture in which the server
hosts an OSTree repository and the client subscribed to it can incrementally replicate
the content.

rom-OSTree is a system to decompose RPMs on the server side into the OSTree
repository to which the client can subscribe and perform updates. With each update,
a new root is created, which is used for the next reboot. During updates, /etc is
rebased and /var is untouched.

Container runtime: As of now Project Atomic only supports Docker as container
runtime.

systemd: As we saw in earlier recipes, systemd is a new init system. It also helps to
set up SELinux policies to containers for complete multitenant security and to control
Cgroups policies, which we looked in at Chapter 1, Introduction and Installation.

Project Atomic uses Kubernetes (http://kubernetes.io/) for application
deployment over clusters of container hosts. Project Atomic can be installed on bare
metal, cloud providers, VMs, and so on. In this recipe, let's see how we can install it
on a VM using virt-manager on Fedora.

Getting ready

1.

Download the image:

$ wget

http://download. fedoraproject.org/pub/fedora/linux/releases/te
st/22 Beta/Cloud/x86_ 64/Images/Fedora-Cloud-Atomic-22 Beta-
20150415.x86_ 64.raw.xz

| have downloaded the beta image for Fedora 22 Cloud image For Containers. You
should look for the latest cloud image For Containers at https://getfedora.
org/en/cloud/download/.

Uncompress this image by using the following command:
$ xz -d Fedora-Cloud-Atomic-22 Beta-20150415.x86 64.raw.xz

https://wiki.gnome.org/action/show/Projects/OSTree
https://wiki.gnome.org/action/show/Projects/OSTree
http://kubernetes.io/
https://getfedora.org/en/cloud/download/
https://getfedora.org/en/cloud/download/

Docker Orchestration and Hosting Platforms

How to do it...

1. We downloaded the cloud image that does not have any password set for the default
user fedora. While booting the VM, we have to provide a cloud configuration file
through which we can customize the VM. To do this, we need to create two files,
meta-data and user-data, as follows:

$ cat meta-data
instance-id: iid-localoOl

local-hostname: atomichost

$ cat user-data
#cloud-config

password: atomic
ssh pwauth: True

chpasswd: { expire: False }

ssh authorized keys:

- ssh-rsa AAAAB3NzaClyC.........

In the preceding code, we need to provide the complete SSH public key. We then
need to create an ISO image consisting of these files, which we will use to boot to the
VM. As we are using a cloud image, our setting will be applied to the VM during the
boot process. This means the hostname will be set to atomichost, the password
will be set to atomic, and so on. To create the ISO, run the following command:

$ genisoimage -output init.iso -volid cidata -joliet -rock
user-data meta-data

2. Start virt-manager.

3. Select New Virtual Machine and then import the existing disk image. Enter the
image path of the Project Atomic image we downloaded earlier. Select OS type as
Linux and Version as Fedora 20/Fedora 21 (or later), and click on Forward. Next,
assign CPU and Memory and click on Forward. Then, give a name to the VM and
select Customize configuration before install. Finally, click on Finish and review
the details.

Chapter 8

4. Next, click on Add Hardware, and after selecting Storage, attach the ISO (init.iso)
file we created to the VM and select Begin Installation:

Qy Begin Installatio

Overview h
Processor
Memory
Boot Options
Disk 1

MIC :25:81:61§
Input

Display Defaul
Console
Channel gemu
Video Default
Controller USH

AEYYECEDE IO

Storage
Network

Input

Graphics

Sound

Serial

Parallel
Console
Channel

USB Host Device
PCl Host Device
Video
Watchdog
Filesystem
Smartcard

USE Redirection
TPM

RNG

Panic Notifier

) Create a disk image on the computer's hard drive
| 80 - + oB
21.2 GB available in the default location

[Allocate entire disk now

© Select managed or other existing storage

I Browse... ‘ lftmpfatomicfinit,iso
Bus type: IDE v
Device type: '@' CDROM device ‘

» Advanced options

| Cancel | | Finish |

| Add Hardwars L |

Once booted, you can see that its hostname is correctly set and you will be able to log in
through the password given in the cloud init file. The default user is fedora and password
is atomic as set in the user-data file.

In this recipe, we took a Project Atomic Fedora cloud image and booted it using
virt-manager after supplying the cloud init file.

Docker Orchestration and Hosting Platforms

There's more...

>

[fedora@atomichost ~]1$ 1s -1 /
total 18

Trwxrwxrwx.
drwxr-xr-x.
drwxr-xr-x.
drwxr-xr-x.
LrwXrwxrwx.
LrwXrwxrwx.
Trwxrwxrwx.

TrwXrwxrwx.
dr-xr-xr-x.
Trwxrwxrwx.
drwxr-xr-x.
Trwxrwxrwx.
Trwxrwxrwx.
dr-xr-xr-x. root root [¢]
drwxr-xr-x. root root 103
LrwXrwxrwx. root root 11
drwxr-xr-x. root root 4096
drwxr-xr-x. root root 4096

>

After logging in, if you do file listing at /, you will see that most of the traditional
directories are linked to /var because it is preserved across upgrades.

root root 7
root root 1024
root root 3220
root root 4096
root root
root root
root root
root root
root root
root root
root root
root root
root root
root root
root root 8
root root 7

~ N
NN

home ->
lib ->
1ib64 ->
media ->
mnt ->
opt ->
ostree ->

(]
N

root ->

N
N

shin ->
srv ->

1
7
1
8
1
1
1
1
1
1
1
3
1
5
1
1

N

tmp ->

QWWWOWWOWOUWWWWWWWooWWw

%)

After logging in, you can run the Docker command as usual:

$sudo docker run -it fedora bash

>

176

The virtual manager documentation at https://virt-manager.org/
documentation/

More information on package systems, image systems, and RPM-OSTree at
https://github.com/projectatomic/rpm-ostree/blob/master/doc/
background.md

The quick-start guide on the Project Atomic website at http://www.
projectatomic.io/docs/quickstart/

The resources on cloud images at https://www.technovelty.org//
linux/running-cloud-images-locally.html and http://cloudinit.
readthedocs.org/en/latest/

How to set up Kubernetes with an Atomic host at http://www.projectatomic.
io/blog/2014/11/testing-kubernetes-with-an-atomic-host/ and
https://github.com/cgwalters/vagrant-atomic-cluster

https://virt-manager.org/documentation/
https://virt-manager.org/documentation/
https://github.com/projectatomic/rpm-ostree/blob/master/doc/background.md
https://github.com/projectatomic/rpm-ostree/blob/master/doc/background.md
http://www.projectatomic.io/docs/quickstart/
http://www.projectatomic.io/docs/quickstart/
https://www.technovelty.org//linux/running-cloud-images-locally.html
https://www.technovelty.org//linux/running-cloud-images-locally.html
http://cloudinit.readthedocs.org/en/latest/
http://cloudinit.readthedocs.org/en/latest/
http://www.projectatomic.io/blog/2014/11/testing-kubernetes-with-an-atomic-host/
http://www.projectatomic.io/blog/2014/11/testing-kubernetes-with-an-atomic-host/
https://github.com/cgwalters/vagrant-atomic-cluster

Chapter 8

Doing atomic update/rollback with Project

Atomic

To get to the latest version or to roll back to the older version of Project Atomic, we use the
atomic host command, which internally calls rpm-ostree.

Getting ready

Boot and log in to the Atomic host.

How to do it...

1. Just after the boot, run the following command:

$ atomic host status

You will see details about one deployment that is in use now.

[fedora@atomichest ~]% sude atomic host status I

TIMESTAMP (UTC) VERSTON D 0SNAME REFSPEC
* 2015-04-15 12:50:37 22,39 aBdB656489 fedora-atomic fedora-atomic: fedora-atomic/f22/x86_64/docker-hos|

To upgrade, run the following command:

[fedora@atomichost ~]% sudo atomic host upgrade
Updating from: fedora-atomic:fedora-atomic/f22/x86_64/docker-host

830 metadata, 4974 content objects fetched:; 227165 KiB transferred in 342 seconds
Copying /etc changes: 25 modified, 0 removed, 52 added
Transaction complete; bootconfig swap: yes deployment count change: 1
Changed:
NetworkManager-1:1.0.2-1.fc |
NetworkManager-1ibnm-1:1.0.2-1.fc22.x86_64

2. This changes and/or adds new packages. After the upgrade, we will need to reboot
the system to use the new update. Let's reboot and see the outcome:

[fedora@atomichest ~]% atomic hest status
TIMESTAMP (UTC) VERSION ID OSNAME REFSPEC

* 2015-05-14 12:47:39 22.68 666454d859 fedora-atomic fedora-atomic : fedora-atomic/f22/x86_64/docker-host

12:50:37 22.39 aBdB656489 fedora-atomic fedora-atomic: fedora-atomic/f22/x86_64/docker-host

As we can see, the system is now booted with the new update. The *, which is at the
beginning of the first line, specifies the active build.

Docker Orchestration and Hosting Platforms

3. To roll back, run the following command:

$ sudo atomic host rollback

We will have to reboot again if we want to use older bits.

For updates, the Atomic host connects to the remote repository hosting the newer build, which
is downloaded and used from the next reboot onwards until the user upgrades or rolls back. In
the case rollback older build available on the system used after the reboot.

» The documentation Project Atomic website, which can be found at http://www.
projectatomic.io/docs/os-updates/

Adding more storage for Docker in Project

Atomic

The Atomic host is a minimal distribution and, as such, is distributed on a 6 GB image to
keep the footprint small. This is very less amount of storage to build and store lots of Docker
images, so it is recommended to attach external storage for those operations.

By default, Docker uses /var/1lib/docker as the default directory where all Docker-related
files, including images, are stored. In Project Atomic, we use direct LVM volumes via the
devicemapper backend to store Docker images and metadata in /dev/atomicos/docker-
data and /dev/atomicos/docker-meta respectively.

So, to add more storage, Project Atomic provides a helper script called docker-storage-
helper to add an external disk into the existing LVM thin pool. Let's look at the current
available storage to Docker with the docker info command:

178

http://www.projectatomic.io/docs/os-updates/
http://www.projectatomic.io/docs/os-updates/

Chapter 8

[fedora@atomichost ~]% sudo docker info
Containers: 3
Images: 17
Storage Driver: devicemapper

Pool Name: atomicos-docker--pool

Pool Blocksize: 65.54 kB

Backing Filesystem: xfs

Data file:

Metadata file:

Data Space Used: 934.7 MB

Data Space Total: 2.961 GB

Data Space Available: 2.027 GB

Metadata Space Used: 1.118 MB

Metadata Space Total: 8.389 MB

Metadata Space Available: 7.27 MB

Udev Sync Supported: true

Library Version: 1.02.93 (2015-01-30)
Execution Driver: native-0.2
Kernel Version: 4.0.0-0.rc5.git4.1.fc22.x86_64
Operating System: Fedora 22 (Twenty Two)
CPUs: 1
Total Memory: 993.5 MiB
Name: atomichost.localdomain
ID: NBAB:UJOQ:BEXJ:JSGN:TINL:RG4J:A6QM:WFVE:RNZF :WR4M:HYYY :FBML
[fedora@atomichost ~1$%

As we can see, the total data space is 2.96 GB and the total metadata space is 8.38 MB.

Getting ready

Stop the VM, if it is running.

Add an additional disk of the size you want to the Project Atomic VM. | have
added 8 GB.

3. Boot the VM.
4. Check whether the newly attached disk is visible to the VM or not.

Docker Orchestration and Hosting Platforms

How to do it...

1. Check if the additional disk is available to the Atomic host VM:

[fedora@atomichost ~]% sudo fdisk -1

Disk [NI 3589934592 bytes, 16777216 sectors
Units: sectors of 1 * 512 = 512 hytes

Sector size (logical/physical): 512 bytes / 512 bytes
I/0 size (minimum/optimal): 512 bytes / 512 bytes

Disk /dev/sda: 366 KiB, 374784 bytes, 732 sectors
Units: sectors of 1 * 512 = 512 bhytes

Sector size (logical/physical): 512 bytes / 512 bytes
I/0 size (minimum/optimal): 512 bytes / 512 bytes

Disk /dev/vda: 6 GiB, 6442450944 bytes, 12582912 sectors
Units: sectors of 1 * 512 = 512 bhytes

Sector size (logical/physical): 512 bytes / 512 bytes
I/0 size (minimum/optimal): 512 bytes / 512 bytes
Disklabel type: dos

Disk identifier: 0x3fa9dab4

Boot Start End Sectors Size Id Type
2048 616447 614400 300M 83 Linux
616448 12582911 11966464 5.7G 8e Linux LVM

Disk /dev/mapper/atomicos-root: 3 GiB, 3145728000 bytes, 6144000 sectors
Units: sectors of 1 * 512 = 512 bhytes

Sector size (logical/physical): 512 bytes / 512 bytes

I/0 size (minimum/optimal): 512 bytes / 512 bytes

As we can see, the newly created 8 GB disk is available to the VM.

2. Asthe newly attached disk is /dev/sdb, create a file called /etc/sysconfig/
docker-storage-setup with the following content:
DEVS="/dev/sdb"
[fedora@atomichost ~]$ cat /etc/sysconfig/docker-storage-setup
DEVS="/dev/sdb"

3. Runthe docker-storage-setup command to add /dev/sdb to the existing
volume:

$ sudo docker-storage-setup

180

Units: sectors of 1 * 512 = 512 bytes
Sector size (logical/physical): 512 bytes / 512 bytes
I/0 size (minimum/optimal): 512 bytes / 512 bytes

>>> Script header accepted.

>>> Created a new DOS disklabel with disk identifier 0x7b3061la.
Created a new partition 1 of type 'Linux LVM' and of size 8 GiB.
J/dev/sdbh2:

New situation:

Boot Start End Sectors Size Id Type
2048 16777215 16775168 8G 8e Linux LVM

The partition table has been altered.

Calling ioctl() to re-read partition table.
Syncing disks.

Physical volume "/dev/sdbl" successfully created

Volume group "atomicos" successfully extended
NOCHANGE: partition 2 is size 11966464. it cannot be grown

Physical volume "/dev/vda2" changed

1 physical volume(s) resized / 0 physical volume(s) not resized

Rounding size to boundary between physical extents: 16.00 MiB

Size of logical volume atomicos/docker-pool_tmeta changed from 8.00 MiB (2 e
xtents) to 16.00 MiB (4 extents).

Logical volume docker-pool_tmeta successfully resized

Size of logical volume atomicos/docker-pool_tdata changed from 2.76 GiB (706
extents) to 10.59 GiB (2711 extents).

Logical volume docker-pool successfully resized
[fedora@atomichost ~]$%

Now, let's look at the current available storage to Docker once again with the
docker info command:

[fedora@atomichost ~]1$ sudo docker info
Containers: 3

Images: 17
Storage Driver: devicemapper

Pool Name: atomicos-docker--pool

Pool Blocksize: 65.54 kB

Backing Filesystem: xfs

Data file:

Metacdata file:

Data Space Used: 934.7 MB

Data Space Total: 11.37 GB

Data Space Available: 10.44 GB

Metadata Space Used: 1.151 MB

Metadata Space Total: 16.78 MB
Metadata Space Available: 15.63 MB
Udev Sync Supported: true

Library Version: 1.02.93 (2015-01-30)
Execution Driver: native-0.2

Kernel Version: 4.0.0-0.rc5.git4.1.fc22.xB6_64
Operating System: Fedora 22 (Twenty Two)
CPUs: 1

Total Memory: 993.5 MiB

Name: atomichost.localdomain

ID: NBAB:UJOQ:BEXJ:JSGN:TINL :RG4J:A6QM:WFVE:RNZF :WR4M:HYYY :FBML

As we can see, both the total data space and metadata space have increased.

Chapter 8

Docker Orchestration and Hosting Platforms

The procedure is the same as extending any other LVM volume. We create a physical volume
on the added disk, add that physical volume to the volume group, and then extend the LVM
volumes. Since we are directly accessing the thin pool within Docker, we won't need to create
or extend a filesystem or mount the LVM volumes.

There's more...

» In addition to the DEVS option, you can also add the VG option to the /etc/
sysconfig/docker-storage-setup file to use a different volume group.

» You can add more than one disk with the DEVS option.

» If a disk that is already part of the Volume Group has been mentioned with the DEVS
option, then the docker-storage-setup script will exit, as the existing device has
a partition and physical volume already created.

» The docker-storage-setup script reserves 0.1 percent of the size for meta-
data. This is why we saw an increase in the Metadata Space as well.

See also

» The documentation on the Project Atomic website at http://www.
projectatomic.io/docs/docker-storage-recommendation/

» Supported filesystems with Project Atomic at http://www.projectatomic.io/
docs/filesystems/

Setting up Cockpit for Project Atomic

Cockpit (http://cockpit-project.org/)is a server manager that makes it easy to
administer your GNU/Linux servers via a web browser. It can be used to manage the Project
Atomic host as well. More than one host can be managed through one Cockpit instance.
Cockpit does not come by default with the latest Project Atomic, and you will need to start it as
a Super Privileged Container (SPC). SPCs are specially built containers that run with security
turned off (- -privileged); they turn off one or more of the namespaces or "volume mounts
in" parts of the host OS into the container. For more details on SPC, refer to https://
developerblog.redhat.com/2014/11/06/introducing-a-super-privileged-
container-concept/ and https://www.youtube.com/watch?v=eJIeGnHtIYg.

Because Cockpit runs as an SPC, it can access the resources needed to manage the Atomic
host within the container.

182

http://www.projectatomic.io/docs/docker-storage-recommendation/
http://www.projectatomic.io/docs/docker-storage-recommendation/
http://www.projectatomic.io/docs/filesystems/
http://www.projectatomic.io/docs/filesystems/
http://cockpit-project.org/
https://developerblog.redhat.com/2014/11/06/introducing-a-super-privileged-container-concept/
https://developerblog.redhat.com/2014/11/06/introducing-a-super-privileged-container-concept/
https://developerblog.redhat.com/2014/11/06/introducing-a-super-privileged-container-concept/

Getting ready

Set up the Project Atomic host and log in to it.

How to do it...

1. Run the following command to start the Cockpit container:

Chapter 8

[fedora@atomichost ~]1$ sudo atomic run stefwalter/cockpit-ws

[fedora@atomichost ~]1$ sudo atomic run stefwalter/cockpit-ws
Pulling repository stefwalter/cockpit-ws
69c85cB4ab44: Pulling dependent layers

. Download
. Download
. Download
. Download
. Download
. Download
. Download
. Download
. Download
. Download
. Download
. Download
. Download
. Download

. Downloaded newer image for stefwalter/cockpit-ws:latest
/usr/bin/docker run -d --privileged --pid=host -v /:/host stefwalter/cockpit-ws /co

complete
complete
complete
complete
complete
complete
complete
complete
complete
complete
complete
complete
complete
complete

ntainer/atomic-run --local-ssh

975533a3c02335b3a7bablcB8d512f8d59c55153538cec70b53af5685d7b0b5c5

2. Open the browser (http://<VM IP>:9090)and log in with the default user/
password fedora/atomic. Once logged in, you can select the current host to

manage. You will see a screen as shown here:

Docker Orchestration and Hosting Platforms

Here, we used the atomic command instead of the docker command to start the container.
Let's look at the Cockpit Dockerfile (https://github.com/fedora-cloud/Fedora-
Dockerfiles/blob/master/cockpit-ws/Dockerfile)to see why we did that. In the
Dockerfile you will see some instructions:

LABEL INSTALL /usr/bin/docker run -ti --rm --privileged -v /:/host
IMAGE /container/atomic-install

LABEL UNINSTALL /usr/bin/docker run -ti --rm --privileged -v
/:/host IMAGE /cockpit/atomic-uninstall

LABEL RUN /usr/bin/docker run -d --privileged --pid=host -v
/:/host IMAGE /container/atomic-run --local-ssh

If you recall from Chapter 2, Working with Docker Containers and Chapter 3, Working with
Docker Images, we could assign metadata to images and containers using labels. INSTALL,
UNINSTALL, and RUN are labels here. The atomic command is a command specific to
Project Atomic, which reads those labels and performs operations. As the container is running
as an SPC, it does not need port forwarding from host to container. For more details on the
atomic command, please visit https://developerblog.redhat.com/2015/04/21/
introducing-the-atomic-command/.

You can perform almost all administrator tasks from the GUI for the given system. You can
manage Docker images/containers through this. You can perform operations such as:

» Pulling an image
» Starting/stopping the containers

You can also add other machines to the same Cockpit instance so that you manage them
from one central location.

» The Cockpit documentation at http://files.cockpit-project.org/guide/

184

https://github.com/fedora-cloud/Fedora-Dockerfiles/blob/master/cockpit-ws/Dockerfile
https://github.com/fedora-cloud/Fedora-Dockerfiles/blob/master/cockpit-ws/Dockerfile
https://developerblog.redhat.com/2015/04/21/introducing-the-atomic-command/
https://developerblog.redhat.com/2015/04/21/introducing-the-atomic-command/

Chapter 8

Setting up a Kubernetes cluster

Kubernetes is an open source container orchestration tool across multiple nodes in the
cluster. Currently, it only supports Docker. It was started by Google, and now developers from
other companies are contributing to it. It provides mechanisms for application deployment,
scheduling, updating, maintenance, and scaling. Kubernetes' auto-placement, auto-restart,
auto-replication features make sure that the desired state of the application is maintained,
which is defined by the user. Users define applications through YAML or JSON files, which
we'll see later in the recipe. These YAML and JSON files also contain the API Version (the
apiVersion field) to identify the schema. The following is the architectural diagram

of Kubernetes:

Kubect] (user commands)

Y
Pod Pod Pod
Suthonzaton

authonscation

APls | chdvisor I-h | contaires I”_‘ | cantaines
T T]
T T
| REST
“";:::_;3 (pods, services,
. fop. controliens)

AN

Wakchabie
Scheduler replication controler Stoeage

mplemented via elcd)

Masior components Hede.

Colocatesd, of sprend ACToss machings.
as dictated by cluster size. Hubal

E.
docker
L4
|
> Pod L Pod Fod

visor r"_‘ | containes r'l_‘ wee | containes
T I
T

o
T
T

https://raw.githubusercontent.com/GoogleCloudPlatform/
kubernetes/master/docs/architecture.png

https://raw.githubusercontent.com/GoogleCloudPlatform/ kubernetes/master/docs/architecture.png
https://raw.githubusercontent.com/GoogleCloudPlatform/ kubernetes/master/docs/architecture.png

Docker Orchestration and Hosting Platforms

Let's look at some of the key components and concepts of Kubernetes.

>

186

Pods: A pod, which consists of one or more containers, is the deployment unit

of Kubernetes. Each container in a pod shares different namespaces with other
containers in the same pod. For example, each container in a pod shares the same
network namespace, which means they can all communicate through localhost.

Node/Minion: A node, which was previously known as a minion, is a worker node
in the Kubernetes cluster and is managed through master. Pods are deployed on a
node, which has the necessary services to run them:

o docker, to run containers
o kubelet, to interact with master
o proxy (kube-proxy), which connects the service to the corresponding pod

Master: Master hosts cluster-level control services such as the following:

o APl server: This has RESTful APIs to interact with master and nodes. This is
the only component that talks to the etcd instance.

o Scheduler: This schedules jobs in clusters, such as creating pods on nodes.

o Replication controller: This ensures that the user-specified number of pod
replicas is running at any given time. To manage replicas with replication
controller, we have to define a configuration file with the replica count
for a pod.

Master also communicates with etcd, which is a distributed key-value pair. etcd is
used to store the configuration information, which is used by both master and nodes.
The watch functionality of etcd is used to notify the changes in the cluster. etcd can
be hosted on master or on a different set of systems.

Services: In Kubernetes, each pod gets its own IP address, and pods are created

and destroyed every now and then based on the replication controller configuration.
So, we cannot rely on a pod's IP address to cater an app. To overcome this problem,
Kubernetes defines an abstraction, which defines a logical set of pods and policies to
access them. This abstraction is called a service. Labels are used to define the logical
set, which a service manages.

Labels: Labels are key-value pairs that can be attached to objects like, using which
we select a subset of objects. For example, a service can select all pods with the
label mysqgl.

Volumes: A volume is a directory that is accessible to the containers in a pod. It is
similar to Docker volumes but not the same. Different types of volumes are supported
in Kubernetes, some of which are EmptyDir (ephemeral), HostDir, GCEPersistentDisk,
and NFS. Active development is happening to support more types of volumes.

More details can be found at https://github.com/GoogleCloudPlatform/
kubernetes/blob/master/docs/volumes.md.

https://github.com/GoogleCloudPlatform/kubernetes/blob/master/docs/volumes.md
https://github.com/GoogleCloudPlatform/kubernetes/blob/master/docs/volumes.md

Chapter 8

Kubernetes can be installed on VMs, physical machines, and the cloud. For the complete
matrix, take a look at https://github.com/GoogleCloudPlatform/kubernetes/
tree/master/docs/getting-started-guides. In this recipe, we'll see how to install
it on VMs, using Vagrant with VirtualBox provider. This recipe and the following recipes on
Kubernetes, were tried on v0.17.0 of Kubernetes.

Getting ready

1. Install latest Vagrant >= 1.6.2 from http://www.vagrantup.com/downloads.
html.

2. Install the latest VirtualBox from https://www.virtualbox.org/wiki/
Downloads. Detailed instructions on how to set this up are outside the scope
of this book.

How to do it...

1. Run the following command to set up Kubernetes on Vagrant VMs:
$ export KUBERNETES PROVIDER=vagrant
$ export VAGRANT DEFAULT PROVIDER=virtualbox
$ curl -sS https://get.k8s.io | bash

The bash script downloaded from the curl command, first downloads the latest Kubernetes
release and then runs the . /kubernetes/cluster/kube-up.sh bash script to set up
the Kubernetes environment. As we have specified Vagrant as KUBERNETES PROVIDER, the
script first downloads the Vagrant images and then, using Salt (http://saltstack.com/),
configures one master and one node (minion) VM. Initial setup takes a few minutes to run.

Vagrant creates a credential file in ~/ . kubernetes _vagrant_auth for authentication.

There's more...

Similarto . /cluster/kube-up. sh, there are other helper scripts to perform different
operations from the host machine itself. Make sure you are in the kubernetes directory,
which was created with the preceding installation, while running the following commands:
» Get the list of nodes:
$./cluster/kubectl.sh get nodes

» Get the list of pods:
$./cluster/kubectl.sh get pods

https://github.com/GoogleCloudPlatform/kubernetes/tree/master/docs/getting-started-guides
https://github.com/GoogleCloudPlatform/kubernetes/tree/master/docs/getting-started-guides
http://www.vagrantup.com/downloads.html
http://www.vagrantup.com/downloads.html
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads

Docker Orchestration and Hosting Platforms

» Get the list of services:

$./cluster/kubectl.sh get services

» Get the list of replication controllers:

$./cluster/kubectl.sh get replicationControllers

» Destroy the vagrant cluster:
$./cluster/kube-down.sh

» Then bring back the vagrant cluster:
$./cluster/kube-up.sh

You will see some pods, services, and replicationControllers listed, as Kubernetes
creates them for internal use.

» Setting up the Vagrant environment at https://github.com/
GoogleCloudPlatform/kubernetes/blob/master/docs/getting-
started-guides/vagrant .md

» The Kubernetes user guide at https://github.com/GoogleCloudPlatform/
kubernetes/blob/master/docs/user-guide.md

» Kubernetes API conventions at https://github.com/GoogleCloudPlatform/
kubernetes/blob/master/docs/api-conventions.md

Scaling up and down in a Kubernetes cluste

|||

In the previous section, we mentioned that the replication controller ensures that the user-
specified number of pod replicas is running at any given time. To manage replicas with the
replication controller, we have to define a configuration file with the replica count for a pod.
This configuration can be changed at runtime.

Getting ready

Make sure the Kubernetes setup is running as described in the preceding recipe and that you
are in the kubernetes directory, which was created with the preceding installation.

188

https://github.com/GoogleCloudPlatform/kubernetes/blob/master/docs/getting-started-guides/vagrant.md
https://github.com/GoogleCloudPlatform/kubernetes/blob/master/docs/getting-started-guides/vagrant.md
https://github.com/GoogleCloudPlatform/kubernetes/blob/master/docs/getting-started-guides/vagrant.md
https://github.com/GoogleCloudPlatform/kubernetes/blob/master/docs/user-guide.md
https://github.com/GoogleCloudPlatform/kubernetes/blob/master/docs/user-guide.md
https://github.com/GoogleCloudPlatform/kubernetes/blob/master/docs/api-conventions.md
https://github.com/GoogleCloudPlatform/kubernetes/blob/master/docs/api-conventions.md

Chapter 8

How to do it...

1. Start the nginx container with a replica count of 3:

$./cluster/kubectl.sh run-container my-nginx --image=nginx
--replicas=3 --port=80

CONTROLLER ~ CONTAINER(S) IMAGE(S) SELECTOR REPLICAS
my - nginx my - nginx nginx run-container=my-nginx e

[nkhare@shadowfax kubernetes]s ./cluster/kubectl.sh run-container my-nginx --image=nginx --replicas=3 --port=80 I

This will start three replicas of the nginx container. List the pods to get the status:

$./cluster/kubectl.sh get pods

2. Get the replication controller configuration:

$./cluster/kubectl.sh get replicationControllers

[nkhare@shadowfax kubernetes]$./cluster/kubectl.sh get replicationController
CONTROLLER ~ CONTAINER(S)) SELECTOR REPLICAS
kube-dns ger.ioy [& 12.0.9 k8s-app=kube-dns 1

ger.io/google_containers/skydr 15-03-11-001
my -nginx V 3 nginx run-container=my-nginx 3

As you can see, we have a my-nginx controller, which has a replica count of 3. There
is a replication controller for kube -dns, which we will explore in next recipe.

3. Request the replication controller service to scale down to replica of 1 and update
the replication controller:
$./cluster/kubectl.sh resize rc my-nginx -replicas=1

$./cluster/kubectl.sh get rc

[nkhare@shadowfax kubernetes]$./cluster/kubectl.sh resize rc my-nginx --replicas=1
resized
hare@shadowfax kubernetes]s
0L

CONTAINER(S) IMA) SELECTOR REPLICAS
gcr g cd: k8s-app=kube-dns 1

my -nginx y 1 nginx run-container=my-nginx 1

4. Get the list of pods to verify; you should see only one pod for nginx:
$./cluster/kubectl.sh get pods

Docker Orchestration and Hosting Platforms

We request the replication controller service running on master to update the replicas for a
pod, which updates the configuration and requests nodes/minions to act accordingly to honor
the resizing.

There's more...

Get the services:
$./cluster/kubectl.sh get services

[nkharefshadowfax kubernetes]s ./cluster/kubectl.sh get services
NAME LABELS SELECTOR IP(S)
kube-dns kBs-app=kube-dns kubernetes.io/cluster-service=true, name=kube-dns kBs-app=kube-dns 10.247.0.10

kubernetes component=apiserver,providerskubernetes
kubarnetes-ro component=apiserver,provider=skubernetes

As you can see, we don't have any service defined for our nginx containers started earlier.
This means that though we have a container running, we cannot access them from outside
because the corresponding service is not defined.

» Setting up the Vagrant environment at https://github.com/
GoogleCloudPlatform/kubernetes/blob/master/docs/getting-
started-guides/vagrant .md

» The Kubernetes user guide at https://github.com/GoogleCloudPlatform/
kubernetes/blob/master/docs/user-guide.md

Setting up WordPress with a Kubernetes

cluster

In this recipe, we will use the WordPress example given in the Kubernetes GitHub (https://
github.com/GoogleCloudPlatform/kubernetes/tree/master/examples/mysqgl-
wordpress-pd). The given example requires some changes, as we'll be running it on the
Vagrant environment instead of the default Google Compute engine. Also, instead of using
the helper functions (for example, <kubernetes>/cluster/kubectl.sh), we'll log in to
master and use the kubect1 binary.

190

https://github.com/GoogleCloudPlatform/kubernetes/blob/master/docs/getting-started-guides/vagrant.md
https://github.com/GoogleCloudPlatform/kubernetes/blob/master/docs/getting-started-guides/vagrant.md
https://github.com/GoogleCloudPlatform/kubernetes/blob/master/docs/getting-started-guides/vagrant.md
https://github.com/GoogleCloudPlatform/kubernetes/blob/master/docs/user-guide.md
https://github.com/GoogleCloudPlatform/kubernetes/blob/master/docs/user-guide.md
https://github.com/GoogleCloudPlatform/kubernetes/tree/master/examples/mysql-wordpress-pd
https://github.com/GoogleCloudPlatform/kubernetes/tree/master/examples/mysql-wordpress-pd
https://github.com/GoogleCloudPlatform/kubernetes/tree/master/examples/mysql-wordpress-pd

Chapter 8

Getting ready

>

>

Make sure the Kubernetes cluster has been set up as described in the
previous recipe.

In the kubernetes directory that was downloaded during the setup, you
will find an examples directory that contains many examples. Let's go to the
mysql-wordpress-pd directory:

$ cd kubernetes/examples/mysql-wordpress-pd

$ 1ls *.yaml

mysql-service.yaml mysql.yaml wordpress-service.yaml wordpress.
yaml

These .yaml files describe pods and services for mysgl and wordpress
respectively.

In the pods files (mysqgl . yaml and wordpress.yaml), you will find the section on
volumes and the corresponding volumeMount file. The original example assumes
that you have access to Google Compute Engine and that you have the corresponding
storage setup. For simplicity, we will not set up that and instead use ephemeral
storage with the EmptyDir volume option. For reference, our mysqgl . yaml will

look like the following:

name: m
umeMount

name m
- hame: [
#

Make the similar change to wordpress.yaml.

Docker Orchestration and Hosting Platforms

How to do it...

1. With SSH, log in to the master node and look at the running pods:

$ vagrant ssh master

$ kubectl get pods

The kube-dns-7eqgp5 pod consists of three containers: etcd, kube2sky, and
skydns, which are used to configure an internal DNS server for service name to IP
resolution. We'll see it in action later in this recipe.

The Vagrantfile used in this example is created so that the kubernetes directory
that we created earlier is shared under /vagrant on VM, which means that the
changes we made to the host system will be visible here as well.

2. From the master node, create the mysqgl pod and check the running pods:

$ kubectl create -f /vagrant/examples/mysql-wordpress-
pd/mysql.yaml

$ kubectl get pods

As we can see, a new pod with the mysgl name has been created and it is running
on host 10.245.1.3, which is our node (minion).

192

Chapter 8

3. Now let's create the service for mysgl and look at all the services:

$ kubectl create -f /vagrant/examples/mysql-wordpress-pd/mysql-
service.yaml

$ kubectl get services

As we can see, a service named mysgl has been created. Each service has a Virtual
IP. Other than the kubernetes services, we see a service named kube -dns, which
is used as the service name for the kube-dns pod we saw earlier.

4. Similar to mysql, let's create a pod for wordpress:

$ kubectl create -f /vagrant/examples/mysql-wordpress-
pd/wordpress.yaml

With this command, there are a few things happening in the background:

o The wordpress image gets downloaded from the official Docker registry
and the container runs.

o By default, whenever a pod starts, information about all the existing services
is exported as environment variables. For example, if we log in to the
wordpress pod and look for MYSQL-specific environment variables, we will
see something like the following:

[vagrantikubernetes-minion-1 ~]% sudo docker exec -it 523cbe7525f2 bash
root@wordpress:/var/www/html# env | grep MYSQL
MYSQL_PORT_3306_TCP_PORT=3306
MYSQL_PORT_3306_TCP=tcp://10.247.139.102:3306
MYSQL_PORT_3306_TCP_PROTO=tcp

MYSQL_PORT_3306_TCP_ADDR=10.247.139.102
MYSQL_SERVICE_PORT=3306
MYSQL_PORT=tcp://10.247.139.102:3306
MYSQL_SERVICE_H0ST=10.247.139.102
root@wordpress: /var/www/html# [|

o When the WordPress container starts, it runs the /entrypoint . sh script,
which looks for the environment variables mentioned earlier to start the
service. https://github.com/docker-library/wordpress/blob/
master/docker-entrypoint.sh.

o With the kube-dns service, PHP scripts of wordpress are able to the
reserve lookup to proceed forward.

https://github.com/docker-library/wordpress/blob/master/docker-entrypoint.sh
https://github.com/docker-library/wordpress/blob/master/docker-entrypoint.sh

Docker Orchestration and Hosting Platforms

5.

After starting the pod, the last step here is to set up the wordpress service.
In the default example, you will see an entry like the following in the service file
(/vagrant /examples/mysql-wordpress-pd/mysql-service.yaml):

createExternallLoadBalancer: true

This has been written to keep in mind that this example will run on the Google
Compute Engine. So it is not valid here. In place of that, we will need to make an
entry like the following;:

publicIPs:
- 10.245.1.3

We have replaced the load-balancer entry with the public IP of the node, which in our
case is the IP address of the node (minion). So, the wordpress file would look like
the following;:

-master ~1$ cat /vagrant/exampl

To start the wordpress service, run the following command from the master node:

$ kubectl create -f /vagrant/examples/mysql-wordpress-
pd/wordpress-service.yaml

We can see here that our service is also available through the node (minion) IP.

To verify if everything works fine, we can install the links package on master by
which we can browse a URL through the command line and connect to the public
IP we mentioned:

$ sudo yum install links -y

$ links 10.245.1.3

With this, you should see the wordpress installation page.

Chapter 8

In this recipe, we first created a mysqgl pod and service. Later, we connected it to a
wordpress pod, and to access it, we created a wordpress service. Each YAML file has a
kind key that defines the type of object it is. For example, in pod files, the kind is set to pod
and in service files, it is set to service.

There's more...

>

In this example setup, we have only one Node (minion). If you log in to it, you will see
all the running containers:

$ vagrant ssh minion-1
$ sudo docker ps

In this example, we have not configured replication controllers. We can extend this
example by creating them.

See also

>

Setting up the Vagrant environment at https://github.com/
GoogleCloudPlatform/kubernetes/blob/master/docs/getting-
started-guides/vagrant .md

The Kubernetes User Guide at https://github.com/GoogleCloudPlatform/
kubernetes/blob/master/docs/user-guide.md

The documentation on kube-dns at https://github.com/
GoogleCloudPlatform/kubernetes/tree/master/cluster/addons/dns

https://github.com/GoogleCloudPlatform/kubernetes/blob/master/docs/getting-started-guides/vagrant.md
https://github.com/GoogleCloudPlatform/kubernetes/blob/master/docs/getting-started-guides/vagrant.md
https://github.com/GoogleCloudPlatform/kubernetes/blob/master/docs/getting-started-guides/vagrant.md
https://github.com/GoogleCloudPlatform/kubernetes/blob/master/docs/user-guide.md
https://github.com/GoogleCloudPlatform/kubernetes/blob/master/docs/user-guide.md
https://github.com/GoogleCloudPlatform/kubernetes/tree/master/cluster/addons/dns
https://github.com/GoogleCloudPlatform/kubernetes/tree/master/cluster/addons/dns

Docker Security

In this chapter, we will cover the following recipes:

» Setting Mandatory Access Control (MAC) with SELinux
» Allowing writes to volume mounted from the host with SELinux ON
» Removing capabilities to breakdown the power of a root user inside the container

» Sharing namespaces between the host and the container

Introduction

Docker containers are not actually Sandbox applications, which means they are not
recommended to run random applications on the system as root with Docker. You should
always treat a container running a service/process as a service/process running on the host
system and put all the security measures inside the container you put on the host system.

We saw in Chapter 1, Introduction and Installation, how Docker uses namespaces for
isolation. The six namespaces that Docker uses are Process, Network, Mount, Hosthame,
Shared Memory, and User. Not everything in Linux is namespaced, for example, SELinux,
Cgroups, Devices (/dev/mem, /dev/sd*), and Kernel Modules. Filesystems under /sys,
/proc/sys, /proc/sysrg-trigger, /proc/irqg, /proc/bus are also not namespaced
but they are mounted as read only by default with the libcontainer execution driver.

Docker Security

To make Docker a secure environment, a lot of work has been done in the recent past and
more work is underway.

>

198

As Docker images are the basic building blocks, it is very important that we choose
the right base image to start with. Docker has the concept of official images, which
are maintained by either Docker, the vendor or someone else. If you recall from
Chapter 2, Working with Docker Containers, we can search images on Docker Hub
using the following syntax:

$ docker search <image name>

For example, consider the following command :

$ docker search fedora

We will see a column OFFICIAL, and if the images are official, you will see [0K]
against that image in that column. There is an experimental feature added in Docker
1.3 (http://blog.docker.com/2014/10/docker-1-3-signed-images-
process-injection-security-options-mac-shared-directories/),
which does Digital Signal Verification of official images after pulling the image. If the
image has been tampered with, the user will be notified, but it will not prevent the
user from running it. At present, this feature works only with official images. More
details about official images can be found at https://github.com/docker-
library/official-images. The image signing and verification feature is not
ready, so as of now, don't completely rely on it.

In Chapter 6, Docker APIs and Language Bindings, we saw how we can secure Docker
remote API, when Docker daemon access is configured over TCP.

We can also consider turning off the default intercontainer communication over
the network with --icc=false on the Docker host. Though containers can still
communicate through links, which overrides the default DROP policy of iptables,
they get set with the --icc=false option.

We can also set Cgroups resource restrictions through, which we can prevent Denial
of Service (DoS) attacks through system resource constraints.

Docker takes advantage of the special device, Cgroups that allows us to specify which
device nodes can be used within the container. It blocks the processes from creating
and using device nodes that could be used to attack the host.

Any device node precreated on the image cannot be used to talk to kernel because
images are mounted with the nodev option.

http://blog.docker.com/2014/10/docker-1-3-signed-images-process-injection-security-options-mac-shared-directories/
http://blog.docker.com/2014/10/docker-1-3-signed-images-process-injection-security-options-mac-shared-directories/
https://github.com/docker-library/official-images
https://github.com/docker-library/official-images

Chapter 9

The following are some guidelines (may not be complete), which one can follow to have a
secure Docker environment:

>

Run services as nonroot and treat the root in the container, as well as outside the
container, as root.

Use images from trusted parties to run the container; avoid using the - insecure-
registry=[] option.

Don't run the random container from the Docker registry or anywhere else. Red

Hat carries patches to add and block registries to give more control to enterprises
(http://rhelblog.redhat.com/2015/04/15/understanding-the-
changes-to-docker-search-and-docker-pull-in-red-hat-enterprise-
linux-7-1/).

Have your host kernel up to date.

Avoid using - -privileged whenever possible and drop container privileges as soon
as possible.

Configure Mandatory Access Control (MAC) through SELinux or AppArmor.
Collect logs for auditing.
Do regular auditing.

Run containers on hosts, which are specially designed to run containers only.
Consider using Project Atomic, CoreQS, or similar solutions.

Mount the devices with the - -device option rather than using the - -privileged
option to use devices inside the container.

Prohibit SUID and SGID inside the container.

Recently, Docker and the Center for Internet Security (http://www.cisecurity.
org/) released a best practices guide for Docker security, which covers most of the
preceding guidelines and more guidelines at https://blog.docker.com/2015/05/
understanding-docker-security-and-best-practices/.

To set the context for some of the recipes in this chapter, let's try an experiment on the default
installation on Fedora 21 with Docker installed.

1.

Disable SELinux using the following command:

$ sudo setenforce 0

Create a user and add it to the default Docker group so that the user can run Docker
commands without sudo:

$ sudo useradd dockertest
$ sudo passwd dockertest
$ sudo groupadd docker

$ sudo gpasswd -a dockertest docker

http://rhelblog.redhat.com/2015/04/15/understanding-the-changes-to-docker-search-and-docker-pull-in-red-hat-enterprise-linux-7-1/
http://rhelblog.redhat.com/2015/04/15/understanding-the-changes-to-docker-search-and-docker-pull-in-red-hat-enterprise-linux-7-1/
http://rhelblog.redhat.com/2015/04/15/understanding-the-changes-to-docker-search-and-docker-pull-in-red-hat-enterprise-linux-7-1/
http://www.cisecurity.org/
http://www.cisecurity.org/
https://blog.docker.com/2015/05/understanding-docker-security-and-best-practices/
https://blog.docker.com/2015/05/understanding-docker-security-and-best-practices/

Docker Security

3. Login using the user we created earlier, start a container as follows:
$ su - dockertest

$ docker run -it -v /:/host fedora bash
4. From the container chroot to /host and run the shutdown command:

$ chroot /host
$ shutdown

[root@dockerhost ~]# su - dockertest

[dockertest@dockerhost ~]$ docker run -it -v /:/host fedora bash
bash-4.3# chroot /host

sh-4,3# shutdown

Shutdown scheduled for Sat 2015-05-02 05:45:29 EDT, use 'shutdown -c' to c

Broadcast message from root@dockerhost.exmaple.com (Sat 2015-05-02 05:44:2
9 EDT):

The system is going down for power-off at Sat 2015-05-02 05:45:29 EDT!

As we can see, a user in the Docker group can shut down the host system. Docker currently
does not have authorization control, so if you can communicate to the Docker socket, you are
allowed to run any Docker command. It is similarto /etc/sudoers.

USERNAME ALL=(ALL) NOPASSWD: ALL

This is really not good. Let's see how we can guard against this and more in the rest of
the chapter.

Setting Mandatory Access Control (MAC)

with SELinux

It is recommended that you set up some form of MAC on the Docker host either through
SELinux or AppArmor, depending on the Linux distribution. In this recipe, we'll see how to set
up SELinux on a Fedora/RHEL/CentOS installed system. Let's first look at what SELinux is:

» SELinux is a labeling system

» Every process has a label

» Every file, directory, and system object has a label

» Policy rules control access between labeled processes and labeled objects

» The kernel enforces the rules

200

Chapter 9

With Docker containers, we use two types of SELinux enforcement:

>

Type enforcement: This is used to protect the host system from container processes.
Each container process is labeled svirt 1xc net_ t and each container file is
labeled svirt sandbox file t.The svirt lxc net t typeis allowed to
manage any content labeled with svirt sandbox_ file t.Container processes
can only access/write container files.

Multi Category Security enforcement: By setting type enforcement, all container
processes will run with the svirt 1lxc net t label and all content will be labeled
with svirt sandbox file t.However, only with these settings, we are not
protecting one container from another because their labels are the same.

We use Multi Category Security (MCS) enforcement to protect one container from
another, which is based on Multi Level Security (MLS). When a container is launched,
the Docker daemon picks a random MCS label, for example, s0:c41,c717 and
saves it with the container metadata. When any container process starts, the Docker
daemon tells the kernel to apply the correct MCS label. As the MCS label is saved in
the metadata, if the container restarts, it gets the same MCS label.

Getting ready

A Fedora/RHEL/CentOS host with the latest version of Docker installed, which can be
accessed through a Docker client.

How to do it...

Fedora/RHEL/CentOS gets installed by default with SELinux in enforcing mode and the
Docker daemon is set to start with SELinux. To check whether these conditions are being met,
perform the following steps.

1. Run the following command to make sure SELinux is enabled:

$ getenforce

If the preceding command returns enforcing, then it's all good, else we need to
change it by updating SELinux configuration file (/etc/selinux/config)and
rebooting the system.

Docker should be running with the - -selinux-enabled option. You can check the
OPTIONS section in the Docker daemon configuration (/etc/sysconfig/docker)
file. Also, cross-check whether the Docker service has started with the SELinux option:

$ systemctl status docker

The preceding command assumes that you are not starting Docker in daemon
mode manually.

201

Docker Security

Let's start a container (without the privileged option) after mounting a host directory as
volume and try to create a file in that:

[root@dockerhost ~]# su - dockertest
[dockertest@dockerhost ~1$% mkdir ~/dirl

[dockertest@dockerhost ~]$ docker run -it -v ~/dirl:/dirl fedora bash
bash-4.3# touch /dirl/filel
touch: cannot touch '/dirl/filel': Permission denied

As expected, we see Permission denied because a container process with the svirt
1xc_net_t label cannot create files on the host's filesystem. If we look at the SELinux logs
(/var/log/audit.log) on the host, we will see messages similar to the following:

The s0:¢c157, c350 label is the MCS label on the container.

SELinux sets both Type and Multi Category Security enforcement when the right options are
set for SELinux and Docker. The Linux kernel enforces these enforcements.

» If SELinux is in enforcing mode and the Docker daemon is configured to use SELinux,
then we will not be able to shut down the host from the container, like we did earlier
in this chapter:

[dockertest@dockerhost ~1$ getenforce

Enforcing

[dockertest@dockerhost ~]$ docker run -it -v /:/host fedora bash
bash-4.3# chroot /host

sh-4.3# shutdown

Failed to talk to shutdownd, proceeding with immediate shutdown: Permission denied
Failed to open /dev/initctl: Permission denied

Failed to talk to init daemon.

» As we know, by default, all the containers will run with the svirt 1xc net_ t label,
but we can also adjust SELinux labels for custom requirements. Visit the Adjusting
SELinux labels section of http://opensource.com/business/15/3/docker-
security-tuning.

» Setting up MLS with Docker containers is also possible. Visit the Multi Level
Security mode section of http://opensource.com/business/15/3/docker-
security-tuning.

202

http://opensource.com/business/15/3/docker-security-tuning
http://opensource.com/business/15/3/docker-security-tuning
http://opensource.com/business/15/3/docker-security-tuning
http://opensource.com/business/15/3/docker-security-tuning

Chapter 9

See also

» The SELinux Coloring Book; visit https://people.redhat.com/duffy/
selinux/selinux-coloring-book A4-Stapled.pdf

Allowing writes to volume mounted from the

host with SELinux ON

As we saw in the earlier recipe, when SELinux is configured, a nonprivileged container cannot
access files on the volume created after mounting the directory from the host system.
However, sometimes it is needed to allow access to host files from the container. In this
recipe, we'll see how to allow access in such cases.

Getting ready

A Fedora/RHEL/CentOS host with the latest version of Docker installed, which can be
accessed through a Docker client. Also, SELinux is set to enforcing mode and the Docker
daemon is configured to use SELinux.

How to do it...

1. Mount the volume with the z or z option as follows:

$ docker run -it -v /tmp/:/tmp/host:z docker.io/fedora bash
$ docker run -it -v /tmp/:/tmp/host:Z docker.io/fedora bash

[dockertest@dockerhost ~]% mkdir ~/dirl

[dockertest@dockerhost ~1% docker run -it -v ~/dirl:/dirl:z fedora bash
bash-4.3# touch /dirl/file

bash-4.3# []

While mounting the volume, Docker will relabel to the volume to allow access. From the man
page of Docker run.

The z option tells Docker that the volume content will be shared between containers.

Docker will label the content with a shared content label. The shared volume labels allow all
containers to read/write content. The z option tells Docker to label the content with a private
unshared label. Private volumes can only be used by the current container.

203

https://people.redhat.com/duffy/selinux/selinux-coloring-book_A4-Stapled.pdf
https://people.redhat.com/duffy/selinux/selinux-coloring-book_A4-Stapled.pdf

Docker Security

» The Volume mounts section at http://opensource.com/business/14/9/
security-for-docker

Removing capabilities to breakdown the

power of a root user inside a container

In simple terms, with capabilities, we can breakdown the power of a root user. From the man
page for capabilities:

For the purpose of performing permission checks, traditional UNIX implementations
distinguish two categories of processes: privileged processes (whose effective

user ID is O, referred to as superuser or root), and unprivileged processes (whose
effective UID is nonzero). Privileged processes bypass all kernel permission checks,
while unprivileged processes are subject to full permission checking based on the
process's credentials (usually: effective UID, effective GID, and supplementary
group list).

Starting with kernel 2.2, Linux divides the privileges traditionally associated with
superuser into distinct units, known as capabilities, which can be independently
enabled and disabled. Capabilities are a per-thread attribute.

Some example capabilities are:

» CAP_SYSLOG: This modifies kernel printk behavior
» CAP NET ADMIN: This configures the network
» CAP_SYS ADMIN: This helps you to catch all the capabilities

There are only 32 slots available for capabilities in the kernel. There is one capability,
CAP_SYS ADMIN, that catches all capabilities; this is used whenever in doubt.

In version 1.2, Docker added some features to add or remove the capabilities for a container.
It uses the chown, dac_override, fowner, kill, setgid, setuid, setpcap, net _bind
service, net raw, sys_chroot, mknod, setfcap, and audit_ write capabilities by
default and removes the following capabilities for a container by default.

» CAP_ SETPCAP: This modifies the process capabilities

» CAP_SYS MODULE: This inserts/removes the kernel modules

» CAP_SYS RAWIO: This modifies the kernel memory

» CAP_SYS_ PACCT: This configures process accounting

» CAP_SYS NICE: This modifies the priority of processes

http://opensource.com/business/14/9/security-for-docker
http://opensource.com/business/14/9/security-for-docker

Chapter 9

>

>

CAP SYS RESOURCE: This overrides the resource limits
CAP SYS TIME: This modifies the system clock

CAP SYS TTY CONFIG: This configures tty devices

CAP AUDIT WRITE: This writes the audit log

CAP AUDIT CONTROL: This configures the audit subsystem
CAP MAC OVERRIDE: This ignores the kernel MAC policy
CAP MAC ADMIN: This configures MAC configuration

CAP SYSLOG: This modifies kernel printk behavior

CAP NET ADMIN: This configures the network

CAP SYS ADMIN: This helps you catch all the containers

We need to be very careful what capabilities we remove, as applications can break if they
don't have enough capabilities to run. To add and remove the capabilities for the container,
you can use the --cap-add and - -cap-drop options respectively.

Getting ready

A host with the latest version of Docker installed, which can be accessed through a
Docker client.

How to do it...

1.

To drop capabilities, run a command similar to the following:

$ docker run --cap-drop <CAPABILITY> <image> <command>

To remove the setuid and setgid capabilities from the container so that it cannot
run binaries, which have these bits set, run the following command:

$ docker run -it --cap-drop setuid --cap-drop setgid fedora

bash

Similarly, to add capabilities, run a command similar to the following:

$ docker run --cap-add <CAPABILITY> <image> <command>

To add all the capabilities and just drop sys-admin, run the following command:

$ docker run -it --cap-add all --cap-drop sys-admin fedora
bash

205

Docker Security

Before starting the container, Docker sets up the capabilities for the root user inside the
container, which affects the command execution for the container process.

There's more...

Let's revisit the example we saw at the beginning of this chapter, through which we saw the
host system shut down through a container. Let SELinux be disabled on the host system;
however, while starting the container, drop the sys_choot capability:

$ docker run -it --cap-drop sys chroot -v /:/host fedora bash

$ shutdown

[root@dockerhost ~]# setenforce 0

[root@dockerhost ~]# su - dockertest

[dockertest@dockerhost ~]$ docker run -it --cap-drop sys_chroot -v /:/host
fedora bash

bash-4.3# shutdown

Failed to talk to shutdownd, proceeding with immediate shutdown: No such fi

le or directory
Failed to talk to init daemon.

» Dan Walsh's articles on opensource.com at http://opensource.com/
business/14/9/security-for-docker.

» The Docker 1.2 release notes at http://blog.docker.com/2014/08/
announcing-docker-1-2-0/.

» There are efforts on to selectively disable system calls from container processes to
provide tighter security. Visit the Seccomp section of http://opensource.com/
business/15/3/docker-security-future

» Similar to custom namespaces and capabilities with version 1.6, Docker supports the
- -cgroup-parent flag to pass specific Cgroup to run containers. https://docs.
docker.com/vl.6/release-notes/.

Sharing namespaces between the host and

the container

As we know, while starting the container, by default, Docker creates six different
namespaces—Process, Network, Mount, Hostname, Shared Memory, and User for a container.
In some cases, we might want to share a namespace between two or more containers. For
example, in Kubernetes, all containers in a pod share the same network namespace.

206

http://opensource.com/business/14/9/security-for-docker
http://opensource.com/business/14/9/security-for-docker
http://blog.docker.com/2014/08/announcing-docker-1-2-0/
http://blog.docker.com/2014/08/announcing-docker-1-2-0/
http://opensource.com/business/15/3/docker-security-future
http://opensource.com/business/15/3/docker-security-future
https://docs.docker.com/v1.6/release-notes/
https://docs.docker.com/v1.6/release-notes/

Chapter 9

In some cases, we would want to share the namespaces of the host system with the
containers. For example, we share the same network namespace between the host and the
container to get near line speed inside the container. In this recipe, we will see how to share
namespaces between the host and the container.

Getting ready

A host with the latest version of Docker installed, which can be accessed through a
Docker client.

How to do it...

1. To share the host network namespace with the container, run the following command:

$ docker run -it --net=host fedora bash

If you see the network details inside the container, run the following command:
$ ip a

You will see a result same as the host.

2. To share the host network, PID, and IPC namespaces with the container, run the
following command:

$ docker run -it --net=host --pid=host --ipc=host fedora bash

Docker does not create separate namespaces for containers when such arguments are
passed to the container.

There's more...

For hosts that are built to run just containers, such as Project Atomic (http://www.
projectatomic.io/), which we saw in Chapter 8, Docker Orchestration and Hosting
Platforms, doesn't have debugging tools such as tcpdump and sysstat on the host system.
So we have created containers with those tools and have access to host resources. In such
cases, sharing namespaces between the host and the container becomes handy. You can
read more about it at the following links:

» http://developerblog.redhat.com/2014/11/06/introducing-a-super-
privileged-container-concept/

» http://developerblog.redhat.com/2015/03/11/introducing-the-
rhel-container-for-rhel-atomic-host/

207

http://www.projectatomic.io/
http://www.projectatomic.io/
http://developerblog.redhat.com/2014/11/06/introducing-a-super-privileged-container-concept/
http://developerblog.redhat.com/2014/11/06/introducing-a-super-privileged-container-concept/
http://developerblog.redhat.com/2015/03/11/introducing-the-rhel-container-for-rhel-atomic-host/
http://developerblog.redhat.com/2015/03/11/introducing-the-rhel-container-for-rhel-atomic-host/

Docker Security

See also

» Dan Walsh's documentation on Docker Security at http://opensource.com/
business/15/3/docker-security-tuning

208

http://opensource.com/business/15/3/docker-security-tuning
http://opensource.com/business/15/3/docker-security-tuning

10

Getting Help and
Tips and Tricks

In this chapter, we will see the following recipes:

Starting Docker in debug mode

Building a Docker binary from the source

Building images without using cached layers

Building your own bridge for container communication
Changing the default execution driver of Docker
Selecting the logging driver for containers

Getting real-time Docker events for containers

Introduction

We'll become more curious as we learn more about Docker. Mailing lists and IRC channels
are the best places to get help, learn, and share knowledge about Docker. Docker has a few
IRC channels on the free node, such as #docker and #docker-dev, to discuss Docker in
general and dev-related stuff respectively. Similarly, Docker has two mailing lists:

>

The Docker user list available at https://groups.google.com/
forum/#! forum/docker-user

The Docker dev list available at https://groups.google.com/
forum/#! forum/docker-dev

While working on Docker, if you find any bugs, you can report them on GitHub at
https://github.com/docker/docker/issues.

209

https://groups.google.com/forum/#!forum/docker-user
https://groups.google.com/forum/#!forum/docker-user
https://groups.google.com/forum/#!forum/docker-dev
https://groups.google.com/forum/#!forum/docker-dev
https://github.com/docker/docker/issues

Getting Help and Tips and Tricks

Similarly, if you have fixed a bug, you can send the pull request, which will get reviewed and
then get merged to the code base.

Docker also has a forum and a YouTube channel, which are great learning resources and can
be found at https://forums.docker.com/ and https://www.youtube.com/user/
dockerrun respectively.

There are many Docker meet up groups around the world, where you meet like-minded
individuals and learn by sharing experiences at
https://www.docker.com/community/meetups/.

In this chapter, I'll also put down a few tips and tricks, which will help you to work better
with Docker.

Starting Docker in debug mode

We can start Docker in debug mode to debug logs.

Getting ready

Install Docker on the system.

How to do it...

1. Start the Docker daemon with the debug option -D. To start from the command line,
you can run the following command:

$ docker -4 -D

2. You can also add the --debug/-D option in the Docker configuration file to start in
debug mode.

The preceding command would start the Docker in the daemon mode. You will see lots of
useful messages as you start the daemon, such as loading up existing images, settings for
firewalls (iptables), and so on. If you start a container, you will see messages like the following:
[info] POST /vl1l.l15/containers/create

[99430521] +job create()

210

https://forums.docker.com/
https://www.youtube.com/user/dockerrun
https://www.youtube.com/user/dockerrun
https://www.docker.com/community/meetups/

Chapter 10

Building a Docker binary from the source

Sometimes it becomes necessary to build a Docker binary from the source for testing a patch.
It is very easy to build the Docker binary from the source.

Getting ready

1. Download the Docker source code using git:
$ git clone https://github.com/docker/docker.git

2. Install make on Fedora:

$ yum install -y make

3. Make sure Docker is running on the host on which you are building the code and
you can access it through the Docker client, as the build we are discussing here
happens inside a container.

How to do it...

1. Go inside the cloned directory:
$ cd docker

2. Run the make command:

$ sudo make

This will create a container and compile the code inside that from the master branch. Once
finished, it will spit out the binary inside bundles/<version>/binary

» Similar to the source code, you can build the documentation as well:

$ sudo make docs

» You can also run tests with the following command:

$ sudo make test

Getting Help and Tips and Tricks

See also

» Look at the documentation on the Docker website
https://docs.docker.com/contributing/devenvironment/

By default, when we build an image, Docker will try to use the cached layers so that it takes
less time to build. However, at times it is necessary to build from scratch. For example, you
will need to force a system update such as yum -y update. Let's see how we can do that
in this recipe.

Getting ready

Get a Dockerfile to build the image.

How to do it...

1. While building the image, pass the - -no-cache option as follows:

$ docker build -t test --no-cache - < Dockerfile

The - -no-cache option will discard any cached layer and build one Dockerfile by following
the instructions.

There's more...

Sometimes, we also want to discard the cache after only a few instructions. In such cases, we
can add any arbitrary command which doesn't affect the image, such as creation or setting up
an environment variable.

Building your own bridge for container

communication

As we know, when the Docker daemon starts, it creates a bridge called docker0 and all the
containers would get the IP from it. Sometimes we might want to customize those settings.
Let's see how we can do that in this recipe.

https://docs.docker.com/contributing/devenvironment/

Chapter 10

Getting ready

| am assuming you already have a Docker set up. On the Docker host, stop the Docker
daemon. On Fedora, use the following command:

$ systemctl stop docker

How to do it...

1. To remove the default docker0 bridge, use the following command:
$ sudo ip link set dev docker0 down

$ sudo brctl delbr docker0

2. To create the custom bridge, use the following command:
$ sudo brctl addbr br0
$ sudo ip addr add 192.168.2.1/24 dev br0
$ sudo ip link set dev bridge0 up

3. Update the Docker configuration file to start with the bridge we created earlier. On
Fedora, you can update the configuration file as follows:

$ sed -i '/"OPTIONS/ s/$/ --bridge br0/' /etc/sysconfig/docker

4. To start the Docker daemon, use the following command:

$ systemctl start docker

The preceding steps will create a new bridge and it will assign the IP from 192.168.2.0 subnet
to the containers.

There's more...

You can even add an interface to the bridge.

See also

» The documentation on the Docker website at
https://docs.docker.com/articles/networking/

https://docs.docker.com/articles/networking/

Getting Help and Tips and Tricks

Changing the default execution driver of

Docker

As we know, libcontainer is the default execution driver. There is legacy support for LXC
userspace tools (https://linuxcontainers.org/). Keep in mind that LXC is not the
primary development environment.

Getting ready

Install Docker on the system.

How to do it...

1. Start the Docker daemon with the -e 1xc option, as follows:

$ docker -4 -e lxc

You can also add this option in the configuration file of Docker, depending on the distribution.

Docker uses LXC tools to access kernel features, such as Namespaces and Cgroups to run
containers.

» The documentation on the Docker website https://docs.docker.com/
reference/commandline/cli/#docker-exec-driver-option

Selecting the logging driver for containers

With the release of Docker 1.6, a new feature has been added to select the logging driver
while starting the Docker daemon. Currently, three types of logging drivers are supported:

» none
» json-file (default)

» syslog

Getting ready

Install Docker 1.6 or above on the system.

214

https://linuxcontainers.org/
https://docs.docker.com/reference/commandline/cli/#docker-exec-driver-option
https://docs.docker.com/reference/commandline/cli/#docker-exec-driver-option

Chapter 10

How to do it...

1. Start the Docker daemon with the required logging driver as follows:

$ docker -d --log-driver=none

$ docker -d --log-driver=syslog
You can also add this option in the configuration file of Docker, depending on the distribution.

The docker logs command will just support the default logging driver JSON file.

Depending on the log driver configuration, Docker daemon selects the corresponding logging
driver.

There's more...

There is work in progress to add journald as one of the logging drivers. It will be available
from Docker 1.7 at http://www.projectatomic.io/blog/2015/04/1logging-
docker-container-output-to-journald/.

See also

» The documentation on the Docker website http://docs.docker.com/
reference/run/#logging-drivers-log-driver

Getting real-time Docker events for

containers

As we will be running many containers in production, it will helpful if we can watch the
real-time container events for monitoring and debugging purposes. Docker containers can
report events, such as create, destroy, die, export, kill, oom, pause, restart, start, stop, and
unpause. In this recipe, we will see how to enable event logging and then use filters to select
specific event types, images or containers.

Getting ready

Make sure the Docker daemon is running on the host and you can connect through the
Docker client.

http://www.projectatomic.io/blog/2015/04/logging-docker-container-output-to-journald/
http://www.projectatomic.io/blog/2015/04/logging-docker-container-output-to-journald/
http://docs.docker.com/reference/run/#logging-drivers-log-driver
http://docs.docker.com/reference/run/#logging-drivers-log-driver

Getting Help and Tips and Tricks

How to do it...

1. Start the Docker events logging with the following command:

$ docker events

2. From the other terminal, do some container/image-related operation and you will see
a result similar to the following screenshot on the first terminal:

[root@gprfc080 ~]# docker events
2015-05-16T02:42:25.000000000-04:00 20430d85¢5e8fefc2b71acdc20124490dc f4fh3a9e5b765498db89e24¢318a13: (from d
ocker.io/fedora:latest) create

2015-05-16T02:42:25.000000000-04:00 20430d85c5e8fefc2b71acdc20124490dc f4fh3a9e5b765498db89e24e318al3: (from d

ocker.io/fedora:latest) start

2015-05-16T02:42:25.000000000-04:00 20430d85c5e8fefc2b71acdc20124490dc f4fb3a9e5b765498db89e24e318a13: (from d
ocker.io/fedora:latest) die

After the events collection started, | created a container to just echo something. As you can
see from the preceding screenshot, a container got created, started, and died.

With Docker events, Docker starts listing different events.

There's more...

» You can use the --since or - -until option with Docker events to narrow down
results for a selected timestamp:

--since="" Show all events created since timestamp

--until="" Stream events until this timestamp
Consider the following example:
$ docker events --since '2015-01-01"

» With filters, we can further narrow down the events log based on the event, container,
and image as follows:

o Tolist only the start event, use the following command:

$ docker events --filter 'event=start'’

o To list events only from image CentOS, use the following command:

$ docker events --filter 'image=docker.io/centos:centos7'

Chapter 10
o To list events from the specific container, use the following command:

docker events --filter

'container=b3619441cb444b87b4d79a8c3061l6ca70da4b5aa8fdc5d8a4
8d23a2082052174"

See also

» The documentation on the Docker website https://docs.docker.com/
reference/commandline/cli/#events

https://docs.docker.com/reference/commandline/cli/#events
https://docs.docker.com/reference/commandline/cli/#events

A

account
creating, with Docker Hub 45, 46
Amazon
URL 120
Apache 13
Apache image
building 60-62
Apache Mesos
URL 162
application deployment
in virtualized environment 3
with containers 3
applications
running, with Docker Compose 163, 164
AtomicApp
about 163
URL 163
atomic command
reference link 184
atomic update/rollback
performing, with Project Atomic 177, 178
automated builds
reference link 79
with Bitbucket 76-78
with GitHub 76-78

base image
creating, Debootstrap used 81
creating, supermin used 79, 80
Bitbucket
automated builds 76-78

Index

breakthrough container performance, Tesla
efficiency
URL 150

C

cAdvisor
URL 158
Calio
URL 87
capabilities
CAP_AUDIT_CONTROL 205
CAP_AUDIT_WRITE 205
CAP_MAC_ADMIN 205
CAP_MAC_OVERRIDE 205
CAP_NET_ADMIN 204, 205
CAP_SETPCAP 204
CAP_SYS_ADMIN 204, 205
CAP_SYSLOG 204, 205
CAP_SYS_MODULE 204
CAP_SYS_PACCT 204
CAP_SYS_RAWIO 204
CAP_SYS_RESOURCE 205
CAP_SYS_TIME 205
CAP_SYS_TTY_CONFIG 205
Certificate Authority (CA) 142
cgroups
about 7, 149
CPUsets 149
CPU shares 149
memory limits 150
cgroups, features
accounting 7
control 7
prioritization 7
resource limiting 7

219

cgroups, subsystems
blkio 7
Cpu 7
Cpuacct 7
Cpuset 7
Devices 7
Freezer 7
Memory 7
cloud config file
URL, for configuring 172
cloud images
references 173, 176
cluster
setting up, with Docker Swarm 165, 166
Cockpit
setting up, for Project Atomic 182-184
URL 182
code
testing, with Docker 108, 109
Comprehensive Overview, of Storage
Scalability in Docker
URL 150
concepts, Kubernetes
labels 186
master 186
node/minion 186
pods 186
services 186
volumes 186
Containerizing Databases, Red Hat Enterprise
Linux
URL 151
container operations
performing, remote APIs used 139, 140
ContainerPipeline
URL 163
container runtime 168,173
containers
about 13
accessing, from outside 88, 89
data, managing in 90-93
deleting 31, 32
filtering 40, 41
Firefox, accessing from 63-66
host device, accessing inside 36
image, creating from 46-48
IPv6 addresses, assigning to 103, 104

220

labeling 40, 41
linking 94, 95
listing 28

logs, viewing of 29
new process, injecting to running
container 37, 38
privileged access, obtaining inside 34, 35
references 96, 140
restart policy, setting on 33
resource usage, obtaining with stats
feature 157
running 11, 12
starting 25-27, 85-87
stopping 30
Continuous Delivery (CD) 108
Continuous Integration (CI) 108
Core0S
setting up, for Docker orchestration 167-171
URL 162
CoreOS Cluster Architectures
reference link 172
Core0S Managed Linux
URL 167
CPU performance
benchmarking 151-153
curl command
reference link 133
custom bridge
building, from container
communication 212, 213

D

Dan Walsh documentation
URL 208
data
managing, in containers 90-93
data volume containers
about 90
references 94
data volumes 90
Debian 13
Debootstrap
references 82
used, for creating base image 81
default execution driver, Docker
changing 214

Denial of Service (DoS) attacks 198
dependencies

visualizing, between layers 82
device mapper specific tuning

reference link 148
DevStack

URL 129
disk performance

benchmarking 153, 154
Docker

code, testing with 108, 109

configuring as hypervisor driver, for

OpenStack 129-131

installing 10, 11

starting, in debug mode 210

URL 14

URL, for documentation 18, 22

URL, for forum 210

URL, for installation document 10, 11

URL, for issues 209

URL, for logs command 30

URL, for meet up groups 210

URL, for ps command 29

URL, for pull command 23

URL, for rm command 33

URL, for run command 27, 34

URL, for runtime metrics 8

URL, for stop command 31

URL, for YouTube channel 210

use cases 107, 108
Docker 1.2

URL, for release environment 35
Docker 1.3

URL, for release environment 27
Docker 1.5

reference link, for release notes 105
Docker 1.6

URL 23
Docker administration

nonroot user, adding for 14
Docker binary

building, from source 211
docker build

references 60, 63, 66, 72
Docker command line

help, finding with 18

docker commit
reference link 48
Docker Compose
applications, running with 163, 164
references 162, 163
Docker Compose command-line reference
URL 164
Docker Compose YAML file
URL 164
Docker Containerizer
URL 162
Docker Containers Performance, VMware
vSphere
URL 151
Docker daemon remote API
configuring 134, 135
securing 142-145
Docker dev list
URL 209
docker export
reference link 53
Dockerfile
format 57
used, for building image 54-57
dockerfiles-fedora-registry
reference link 72
docker history
reference link 51
Docker host
setting up, with Docker Machine 15-17
Docker host setup, with Docker Machine
reference link 146
Docker Hub
about 13
account, creating with 45, 46
references 20, 72, 76
docker import
reference link 54
Docker, in Project Atomic
storage, adding for 178-182
Docker installation
requisites, verifying for 9, 10
Docker Machine
Docker host, setting up with 15-17
references 15, 165
Docker native client, for Windows
URL 14

21

Docker, on Google Compute engine
URL, for guide 18
Docker orchestration
Core0S, setting up for 167-171
Docker package, on RHEL 7
reference link 22
Docker Plugin
URL 110
Docker public registry
reference link 21
docker push
reference link 50
docker-py
reference link 142
docker-registry, GitHub page
URL 73
Docker Remote API
reference link 136
Docker remote API client libraries
exploring 141, 142
docker rmi
reference link 52
docker save
reference link 53
Docker security
about 198
capabilities to breakdown power of root user,
removing 204-206
guidelines 199
Mandatory Access Control (MAC), setting with
SELinux 200-202
namespaces, sharing between host and
container 206, 207
URL 199
volume, allowing write access 203
Docker Swarm
about 165
cluster, setting up with 165, 166
references 162, 165, 167
DockerUl
reference link 142
Docker user list
URL 209
dockviz
reference link 82
Drone
Cl/CD, performing with 117, 118

222

references 119
URL 117

emacs 13

F

Fedora-Dockerfiles GitHub repo
URL 60
Fig
URL 162
filesystems, Project Atomic
reference link 182
Firefox
accessing, from container 63-66
Flannel
about 98
URL 87
used, for networking of multihost
container 98-103
Flannel GitHub, operations theory
reference link 103
Flannel, setting on Fedora
reference link, for documentation 103
Flask
URL 108
flavors
about 75
common 75
dev 75
elliptics 75
ges 75
glance 75
glance-swift 75
local 75
prod 75
s3 75
swift 75
test 75
Fleet
about 169
reference link 169
Flexible 10
URL 153

G

GitHub
automated builds 76-78
Google Compute Engine (GCE)
about 15
URL 15

H

Heapster
URL 159
help
finding, with Docker command line 18
Heroku
URL 120
host device
accessing, inside container 36

image operations
performing, remote APIs used 136-138
reference link 138

images
about 13
building, Dockerfiles used 54-57
building, without using cached layers 212
creating, from container 46-48
deleting 51
exporting 53
history, viewing 50, 51
importing 54
listing 20-24
publishing, to registry 48-50
pulling 11,12, 22,23
searching 20-22

image systems
reference link 176

index 13

influxdb
URL 159

installing
Docker 10, 11

instructions types, Dockerfile
CMD 58
COPY 59
ENTRYPOINT 58

ENV 59
EXPOSE 59
FROM 57
LABEL 58
MAINTAINER 58
ONBUILD 60
RUN 58
USER 59
VOLUME 59
WORKDIR 60
Inter Process Communication (ipc) 6
lozone
URL 153
ipc namespace 6
IPv6 addresses
assigning, to containers 103, 104

K

Kolla
URL 132
kube-dns
reference link 195
Kubernetes
references 87, 120, 162, 173
Kubernetes APl conventions
URL 188
Kubernetes cluster
scrolling down 188-190
scrolling up 188-190
setting up 185-187
WordPress, setting up with 190-194
Kubernetes GitHub
URL 190
Kubernetes setup, with Atomic host
reference link 176

L

labels 186
LAMP application

developing, by linking containers 96, 97
layers

dependencies, visualizing between 82
libnetwork

reference link 87
Linpack

URL 151

223

logging driver, for containers
selecting 214, 215
logs
viewing, of containers 29
low-level information, container
returning 38, 39
LXC userspace tools
URL 214

Mandatory Access Control (MAC)
about 199
setting, with SELinux 200-202
master, cluster-level control services
APl server 186
replication controller 186
scheduler 186
minion 186
mnt namespace 6
Multi Category Security enforcement 201
Multi Level Security (MLS) 201
multinode cluster
reference link 168
mysql container
creating 95, 96
MySQL images, pulling from Docker registry
references 97

namespaces
about 4
ipc 6
mnt 6
net 5,6
pid 4
sharing, between host and container 207
user 6
uts 6
net namespace 5, 6
netperf
URL 156
networking
reference link 87
networking documentation, Docker
reference link 90

22

networking, of multihost container
performing, with Flannel 98-103
network performance
benchmarking 155, 156
new process
injecting, to running container 37, 38
node 186
nonroot user
adding, for Docker administration 14
nsenter
reference link 37
Nulecule
about 162
URL 162
nuttcp
URL 156

0

OpenShift

URL 120

URL, for creating account 112
OpenShift Origin

Paas, setting up for 120
OpenShift v3

URL 120
OpenStack

Docker, configuring as hypervisor

driver 129-131

URL 132
operating system, for Docker

reference link 162
Orchestration tools

URL 15
OSTree

about 173

URL 173

P

PaaS

about 108

setting up, with OpenShift Origin 120
package systems

reference link 176
Performance Analysis of Docker, on Red Hat

Enterprise Linux
URL 150

performance impacting features, Docker

-net=host 149
Cgroups 149
storage drivers 148
sysctl and ulimit settings 150
volumes 148
performance monitoring
setting up 158, 159
pid namespace 4
Platform-as-a-Service. See PaaS
pods 186
port
exposing, while starting container 35
private index/registry
settingup 72-75
privileged access
obtaining, inside container 34, 35
Project Atomic
atomic update/rollback, performing
with 177, 178
Cockpit, setting up for 182-184
URL 162
Project Atomic host
setting up 172-176
Project Atomic website
references 176, 178, 182

Raft consensus algorithm
URL 168
real-time Docker events
obtaining, for containers 215, 216
Red Hat OpenShift
Cl/CD, performing with 111-116
registry
image, publishing to 48-50
remote APIs
used, for performing container
operations 139, 140
used, for performing image
operations 136-138
repository 13
restart policy
setting, on container 33

RFC 1918
URL 84
Rocket
reference link 168

S

Salt
URL 187
SELinux
about 200
used, for setting Mandatory Access
Control (MAC) 200-202
SELinux enforcement

Multi Category Security enforcement 201

type enforcement 201
services 186
sFlow

URL 158
Shippable

about 111

Cl/CD, performing with 111-116

references 111, 114, 117
Shipyard

reference link 142
Socketplane

URL 87

Software Defined Networking (SDN) 98

stats feature
used, for obtaining container resource
usage 157
storage

adding for Docker, in Project Atomic 178-182

supermin
references 80
used, for creating base image 79, 80
Super Privileged Container (SPC)
about 182
reference link 182
supervisord
references 67, 68
sysbhench
URL 151
systemd
about 168, 173
references 34, 72, 169, 172

225

T

tools, Docker Inc.
about 162
Core0S 162
Docker Compose 162
traditional application deployment 2
Transport Layer Security
URL 142
type enforcement 201

U

Union filesystem 8

use cases, Docker
collaboration and distribution 107
Continuous Integration (Cl) 108
quick prototyping of ideas 107

user namespace 6

uts namespace 6

'}

Vagrant
URL 169
Vagrant environment
URL, for setup 188, 195
VirtualBox
URL 165
Virtual Extensible LAN (VXLAN) 98
virtual manager documentation
URL 176
visualization, of RAFT consensus algorithm
URL 172

226

VMware Photon
URL 162
volumes
about 186
reference link 186
write access, allowing 203

w

Weave
URL 87
web browser, Docker Hub
URL, for creating account 45
WordPress
setting up, with Kubernetes cluster 190-194
WordPress Docker repo, Docker Hub
URL 163
WordPress image
building 67-70
WordPress images, pulling from Docker
registry
references 97

Y

yml file, instructions
after_success 111
before_install 111
build_image 111
language 111
script 111

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Introduction and Installation
	Introduction
	Verifying the requirements for Docker installation
	Installing Docker
	Pulling an image and running a container
	Adding a nonroot user to administer Docker
	Setting up the Docker host with Docker Machine
	Finding help with the Docker command line

	Chapter 2: Working with the Docker Containers
	Introduction
	Listing/searching for an image
	Pulling an image
	Listing images
	Starting a container
	Listing containers
	Looking at the logs of containers
	Stopping a container
	Deleting a container
	Setting the restart policy on a container
	Getting privileged access inside a container
	Exposing a port while starting a container
	Accessing the host device inside the container
	Injecting a new process to a running container
	Returning low-level information about a container
	Labeling and filtering containers

	Chapter 3: Working with
Docker Images
	Introduction
	Creating an account with Docker Hub
	Creating an image from the container
	Publishing an image to the registry
	Looking at the history of an image
	Deleting an image
	Exporting an image
	Importing an image
	Building images using Dockerfiles
	Building an Apache image – a Dockerfile example
	Accessing Firefox from a container – a Dockerfile example
	Building a WordPress image – a Dockerfile example
	Setting up a private index/registry
	Automated builds – with GitHub and Bitbucket
	Creating the base image – using supermin
	Creating the base image – using Debootstrap
	Visualizing dependencies between layers

	Chapter 4: Network and Data Management for Containers
	Introduction
	Accessing containers from outside
	Managing data in containers
	Linking two or more containers
	Developing a LAMP application by linking containers
	Networking of multihost container with Flannel
	Assigning IPv6 addresses to containers

	Chapter 5: Docker Use Cases
	Introduction
	Testing with Docker
	Doing CI/CD with Shippable and Red Hat OpenShift
	Doing CI/CD with Drone
	Setting up PaaS with OpenShift Origin
	Building and deploying an app on OpenShift v3 from the source code
	Configuring Docker as a hypervisor driver for OpenStack

	Chapter 6: Docker APIs and Language Bindings
	Introduction
	Configuring the Docker daemon remote API
	Performing image operations using remote APIs
	Performing container operations using remote APIs
	Exploring Docker remote API client libraries
	Securing the Docker daemon remote API

	Chapter 7: Docker Performance
	Introduction
	Benchmarking CPU performance
	Benchmarking disk performance
	Benchmarking network performance
	Getting container resource usage using the stats feature
	Setting up performance monitoring

	Chapter 8: Docker Orchestration and Hosting Platform
	Introduction
	Running applications with Docker Compose
	Setting up cluster with Docker Swarm
	Setting up CoreOS for Docker orchestration
	Setting up a Project Atomic host
	Doing atomic update/rollback with Project Atomic
	Adding more storage for Docker in Project Atomic
	Setting up Cockpit for Project Atomic
	Setting up a Kubernetes cluster
	Scaling up and down in a Kubernetes cluster
	Setting up WordPress with a Kubernetes cluster

	Chapter 9: Docker Security
	Introduction
	Setting Mandatory Access Control (MAC) with SELinux
	Allowing writes to volume mounted from the host with SELinux ON
	Removing capabilities to breakdown the power of a root user inside a container
	Sharing namespaces between the host and the container

	Chapter 10: Getting Help and
Tips and Tricks
	Introduction
	Starting Docker in debug mode
	Building a Docker binary from the source
	Building images without using cached layers
	Building your own bridge for container communication
	Changing the default execution driver of Docker
	Selecting the logging driver for containers
	Getting real-time Docker events for containers

	Index

