

Docker Cookbook

80 hands-on recipes to efficiently work with the Docker 1.6
environment on Linux

Neependra Khare

BIRMINGHAM - MUMBAI

Docker Cookbook

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the publisher,
except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its dealers
and distributors will be held liable for any damages caused or alleged to be caused directly or
indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies
and products mentioned in this book by the appropriate use of capitals. However, Packt
Publishing cannot guarantee the accuracy of this information.

First published: June 2015

Production reference: 1080615

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78398-486-2

www.packtpub.com

Credits

Author
Neependra Khare

Reviewers
Scott Collier

Julien Duponchelle

Allan Espinosa

Vishnu Gopal

Acquisition Editor
Kevin Colaco

Content Development Editor
Rohit Kumar Singh

Technical Editor
Vivek Arora

Copy Editors
Puja Lalwani

Laxmi Subramanian

Project Coordinator
Mary Alex

Proofreaders
Stephen Copestake

Safis Editing

Indexer
Tejal Soni

Graphics
Abhinash Sahu

Production Coordinator
Aparna Bhagat

Cover Work
Aparna Bhagat

About the Author

Neependra Khare is currently working as a principal performance engineer in Red Hat's
system design and engineering team. He has more than 11 years of IT experience. Earlier,
he worked as a system administrator, support engineer, and filesystem developer. He loves
teaching. He has conducted a few corporate training sessions and taught full semester
courses. He is also a co-organizer of the Docker Meetup Group, in Bangalore, India.

He lives with his wife and two-year-old daughter in Bangalore, India. His Twitter handle is
@neependra and his personal website is http://neependra.net/. He has also created
a website for the book, which you can visit at http://dockercookbook.github.io/.

I would like to thank my parents who fought all odds and made me the
person I am today. My wife, Kanika, has been the first and best support for
this book. She took care of our daughter, Navya, when I was away writing
this book.

It has been a bigger piece than expected, as new features in Docker and the
ecosystems around it were evolving very fast. I have learned a lot during the
process and the Docker community (blogs, IRC, mailing list, and meet ups)
has been of great help.

I am thankful to all the reviewers of the book, who gave their valuable time
to go through the content, pointed out my mistakes, and provided me with
great suggestions.

I would also like to thank my current employer who gave me some time
to work on this book and my coworker Jeremy Eder (@jeremyeder) from
whom I learned a lot.

About the Reviewers

Scott Collier is a senior principal system engineer in the systems design and engineering
team at Red Hat. He is currently focused on product integration for anything that has to do
with containers. He is a Red Hat Certified Architect (RHCA) with over 18 years of experience
in IT.

He was also a technical reviewer on The Docker Book.

I would like to say thanks to Neependra for giving me the opportunity to
collaborate on this book. It was a pleasure! I'd also like to thank my wife,
Laura, for giving me the weekends to do this review.

Julien Duponchelle is a French engineer. He is a graduate of Epitech. During his work
experience, he contributed to several open source projects and focused on tools, which
make the work of IT teams easier.

After he directed the educational area at ETNA, a French IT school, he has accompanied
several start-ups as a lead backend engineer and participated in many significant and
successful fund raising events (Plizy and Youboox).

I would like to warmly thank, Maëlig, my girlfriend, for her benevolence and
great patience at the time when I was working on this book or on open
source projects in general, over so many evenings.

Allan Espinosa is an active open source contributor to various distributed system tools
such as Docker and Chef. He maintains several Docker images for popular open source
software that were popular before the official release from the upstream open source
groups themselves.

He completed his master's of science in computer science from the University of Chicago.
There, he worked on scaling data-intensive applications across supercomputing centers
in the United States.

I would like to thank my wife, Kana, for the continuous support that allowed
me to spend significant time with this review project.

Vishnu Gopal has a degree in Human-Computer Interaction from University
College London, and was a part of the team that built SlideShare, which was then
acquired by LinkedIn. He has picked up a variety of skills in his career, from having
worked as a software engineer to architecting products that have served millions of
users a day. He blogs at http://vishnugopal.com and still likes to be known by
his GitHub profile at http://github.com/vishnugopal.

I would like to thank my wife, Uma, for her smiles and constant distractions
that keep me sane.

www.PacktPub.com

Support files, eBooks, discount offers, and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters and receive exclusive discounts and offers on Packt books
and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can search, access, and read Packt's entire library of books.

Why Subscribe?
ff Fully searchable across every book published by Packt

ff Copy and paste, print, and bookmark content

ff On demand and accessible via a web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

i

Table of Contents
Preface	 v
Chapter 1: Introduction and Installation	 1

Introduction	 1
Verifying the requirements for Docker installation	 9
Installing Docker	 10
Pulling an image and running a container	 11
Adding a nonroot user to administer Docker	 14
Setting up the Docker host with Docker Machine	 15
Finding help with the Docker command line	 18

Chapter 2: Working with Docker Containers	 19
Introduction	 20
Listing/searching for an image	 20
Pulling an image	 22
Listing images	 24
Starting a container	 25
Listing containers	 28
Looking at the logs of containers	 29
Stopping a container	 30
Deleting a container	 31
Setting the restart policy on a container	 33
Getting privileged access inside a container	 34
Exposing a port while starting a container	 35
Accessing the host device inside the container	 36
Injecting a new process to a running container	 37
Returning low-level information about a container	 38
Labeling and filtering containers	 40

ii

Table of Contents

Chapter 3: Working with Docker Images	 43
Introduction	 44
Creating an account with Docker Hub	 45
Creating an image from the container	 46
Publishing an image to the registry	 48
Looking at the history of an image	 50
Deleting an image	 51
Exporting an image	 53
Importing an image	 54
Building images using Dockerfiles	 54
Building an Apache image – a Dockerfile example	 60
Accessing Firefox from a container – a Dockerfile example	 63
Building a WordPress image – a Dockerfile example	 67
Setting up a private index/registry	 72
Automated builds – with GitHub and Bitbucket	 76
Creating the base image – using supermin	 79
Creating the base image – using Debootstrap	 81
Visualizing dependencies between layers	 82

Chapter 4: Network and Data Management for Containers	 83
Introduction	 83
Accessing containers from outside	 88
Managing data in containers	 90
Linking two or more containers	 94
Developing a LAMP application by linking containers	 96
Networking of multihost containers with Flannel	 98
Assigning IPv6 addresses to containers	 103

Chapter 5: Docker Use Cases	 107
Introduction	 107
Testing with Docker	 108
Doing CI/CD with Shippable and Red Hat OpenShift	 111
Doing CI/CD with Drone	 117
Setting up PaaS with OpenShift Origin	 120
Building and deploying an app on OpenShift v3 from the source code	 124
Configuring Docker as a hypervisor driver for OpenStack	 128

Chapter 6: Docker APIs and Language Bindings	 133
Introduction	 133
Configuring the Docker daemon remote API	 134
Performing image operations using remote APIs	 136
Performing container operations using remote APIs	 139

iii

Table of Contents

Exploring Docker remote API client libraries	 141
Securing the Docker daemon remote API	 142

Chapter 7: Docker Performance	 147
Introduction	 147
Benchmarking CPU performance	 151
Benchmarking disk performance	 153
Benchmarking network performance	 155
Getting container resource usage using the stats feature	 157
Setting up performance monitoring	 158

Chapter 8: Docker Orchestration and Hosting Platforms	 161
Introduction	 161
Running applications with Docker Compose	 163
Setting up cluster with Docker Swarm	 165
Setting up CoreOS for Docker orchestration	 167
Setting up a Project Atomic host	 172
Doing atomic update/rollback with Project Atomic	 177
Adding more storage for Docker in Project Atomic	 178
Setting up Cockpit for Project Atomic	 182
Setting up a Kubernetes cluster	 185
Scaling up and down in a Kubernetes cluster	 188
Setting up WordPress with a Kubernetes cluster	 190

Chapter 9: Docker Security	 197
Introduction	 197
Setting Mandatory Access Control (MAC) with SELinux	 200
Allowing writes to volume mounted from the host with SELinux ON	 203
Removing capabilities to breakdown the power of a root user
inside a container	 204
Sharing namespaces between the host and the container	 206

Chapter 10: Getting Help and Tips and Tricks	 209
Introduction	 209
Starting Docker in debug mode	 210
Building a Docker binary from the source	 211
Building images without using cached layers	 212
Building your own bridge for container communication	 212
Changing the default execution driver of Docker	 214
Selecting the logging driver for containers	 214
Getting real-time Docker events for containers	 215

Index	 219

v

Preface
With DockerTM, containers are becoming mainstream and enterprises are ready to use them in
production. This book is specially designed to help you get up-to-speed with the latest Docker
version and give you the confidence to use it in production. This book also covers Docker use
cases, orchestration, clustering, hosting platforms, security, and performance, which will help
you understand the different aspects of production deployment.

Docker and its ecosystem are evolving at a very high pace, so it is very important to understand
the basics and build group up to adopt to new concepts and tools. With step-by-step
instructions to practical and applicable recipes, Docker Cookbook will not only help you with
the current version of Docker (1.6), but with the accompanying text it, will provide you with
conceptual information to cope up with the minor changes in the new versions of Docker.
To know more about the book, visit http://dockercookbook.github.io/.

DockerTM is a registered trademark of Docker, Inc.

What this book covers
Chapter 1, Introduction and Installation, compares containers with bare metal and virtual
machines. It helps you understand Linux kernel features, which enables containerization;
finally, we'll take a look at installation recipes.

Chapter 2, Working with Docker Containers, covers most of the container-related recipes such
as starting, stopping, and deleting containers. It also helps you to get low-level information
about containers.

Chapter 3, Working with Docker Images, explains image-related operations such as pulling,
pushing, exporting, importing, base image creation, and image creation using Dockerfiles.
We also set up a private registry.

Chapter 4, Network and Data Management for Containers, covers recipes to connect a
container with another container, in the external world. It also covers how we can share
external storage from other containers and the host system.

http://dockercookbook.github.io/

Preface

vi

Chapter 5, Docker Use Cases, explains most of the Docker use cases such as using Docker
for testing, CI/CD, setting up PaaS, and using it as a compute engine.

Chapter 6, Docker APIs and Language Bindings, covers Docker remote APIs and Python
language bindings as examples.

Chapter 7, Docker Performance, explains the performance approach one can follow
to compare the performance of containers with bare metal and VMs. It also covers
monitoring tools.

Chapter 8, Docker Orchestration and Hosting Platforms, provides an introduction to Docker
compose and Swarm. We look at CoreOS and Project Atomic as container-hosting platforms
and then Kubernetes for Docker Orchestration.

Chapter 9, Docker Security, explains general security guidelines, SELinux for mandatory
access controls, and other security features such as changing capabilities and sharing
namespaces.

Chapter 10, Getting Help and Tips and Tricks, provides tips and tricks and resources to get
help related to Docker administration and development.

What you need for this book
The recipes in this cookbook will definitely run on Fedora 21-installed physical machines
or VMs, as I used that configuration as the primary environment. As Docker can run on
many platforms and distributions, you should be able to run most of the recipes without any
problem. For a few recipes, you will also need Vagrant (https://www.vagrantup.com/)
and Oracle Virtual Box (https://www.virtualbox.org/).

Who this book is for
Docker Cookbook is for developers, system administrators, and DevOps engineers who want
to use Docker in his/her development, QA, or production environments.

It is expected that the reader has basic Linux/Unix skills such as installing packages, editing
files, managing services, and so on.

Any experience in virtualization technologies such as KVM, XEN, and VMware will help the
reader to relate with container technologies better, but it is not required.

https://www.vagrantup.com/
https://www.virtualbox.org/

Preface

vii

Sections
In this book, you will find several headings that appear frequently (Getting ready, How to do it,
How it works, There's more, and See also).

To give clear instructions on how to complete a recipe, we use these sections as follows:

Getting ready
This section tells you what to expect in the recipe, and describes how to set up any software or
any preliminary settings required for the recipe.

How to do it…
This section contains the steps required to follow the recipe.

How it works…
This section usually consists of a detailed explanation of what happened in the previous section.

There's more…
This section consists of additional information about the recipe in order to make the reader
more knowledgeable about the recipe.

See also
This section provides helpful links to other useful information for the recipe.

Conventions
In this book, you will find a number of text styles that distinguish between different kinds of
information. Here are some examples of these styles and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: "You can use
the --driver/-d option to create choosing one of many endpoints available for deployment."

Preface

viii

A block of code is set as follows:

[Unit]
Description=MyApp
After=docker.service
Requires=docker.service

[Service]
TimeoutStartSec=0
ExecStartPre=-/usr/bin/docker kill busybox1
ExecStartPre=-/usr/bin/docker rm busybox1
ExecStartPre=/usr/bin/docker pull busybox
ExecStart=/usr/bin/docker run --name busybox1 busybox /bin/sh -c
"while true; do echo Hello World; sleep 1; done"

When we wish to draw your attention to a particular part of a code block, the relevant lines or
items are set in bold:

[Service]
Type=notify
EnvironmentFile=-/etc/sysconfig/docker
EnvironmentFile=-/etc/sysconfig/docker-storage
ExecStart=/usr/bin/docker -d -H fd:// $OPTIONS
$DOCKER_STORAGE_OPTIONS
LimitNOFILE=1048576
LimitNPROC=1048576

[Install]
WantedBy=multi-user.target

Any command-line input or output is written as follows:

$ docker pull fedora

New terms and important words are shown in bold. Words that you see on the screen, for
example, in menus or dialog boxes, appear in the text like this: "Go to the project home page
and under the APIs & auth section, select APIs, and enable Google Compute Engine API."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Preface

ix

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this book—
what you liked or disliked. Reader feedback is important for us as it helps us develop titles
that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention the
book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you to
get the most from your purchase.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do happen.
If you find a mistake in one of our books—maybe a mistake in the text or the code—we would be
grateful if you could report this to us. By doing so, you can save other readers from frustration
and help us improve subsequent versions of this book. If you find any errata, please report
them by visiting http://www.packtpub.com/submit-errata, selecting your book,
clicking on the Errata Submission Form link, and entering the details of your errata. Once your
errata are verified, your submission will be accepted and the errata will be uploaded to our
website or added to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all media. At
Packt, we take the protection of our copyright and licenses very seriously. If you come across
any illegal copies of our works in any form on the Internet, please provide us with the location
address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors and our ability to bring you valuable content.

www.packtpub.com/authors
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

Preface

x

Questions
If you have a problem with any aspect of this book, you can contact us at questions@
packtpub.com, and we will do our best to address the problem.

1

1
Introduction and

Installation

In this chapter, we will cover the following recipes:

ff Verifying the requirements for Docker installation

ff Installing Docker

ff Pulling an image and running a container

ff Adding a nonroot user to administer Docker

ff Setting up the Docker host with Docker Machine

ff Finding help with the Docker command line

Introduction
At the very start of the IT revolution, most applications were deployed directly on physical
hardware, over the host OS. Because of that single user space, runtime was shared between
applications. The deployment was stable, hardware-centric, and had a long maintenance
cycle. It was mostly managed by an IT department and gave a lot less flexibility to developers.
In such cases, hardware resources were regularly underutilized.

Introduction and Installation

2

The following diagram depicts such a setup:

HARDWARE

OS & SHARED SERVICES

BINS/LIBS

APP A APP B APP C

TRADITIONAL

Traditional application deployment (https://rhsummit.files.wordpress.com/2014/04/
rhsummit2014-application-centric_packaging_with_docker_and_linux_containers-

20140412riek7.pdf)

To overcome the limitations set by traditional deployment, virtualization was invented. With
hypervisors such as KVM, XEN, ESX, Hyper-V, and so on, we emulated the hardware for virtual
machines (VMs) and deployed a guest OS on each virtual machine. VMs can have a different
OS than their host; that means we are responsible for managing the patches, security, and
performance of that VM. With virtualization, applications are isolated at VM level and defined
by the life cycle of VMs. This gives better return on investment and higher flexibility at the
cost of increased complexity and redundancy. The following diagram depicts a typical
virtualized environment:

SERVER

HOST OS

HYPERVISOR

GUEST

OS

BINS/

LIBS

APP A APP A APP B

BINS/

LIBS

BINS/

LIBS

GUEST

OS

GUEST

OS

INFRASTRUCTURE AS A SERVICE (IAAS)

Application deployment in a virtualized environment (https://rhsummit.files.wordpress.com/2014/04/
rhsummit2014-application-centric_packaging_with_docker_and_linux_containers-

20140412riek7.pdf)

https://rhsummit.files.wordpress.com/2014/04/rhsummit2014-application-centric_packaging_with_docker_and_linux_containers-20140412riek7.pdf
https://rhsummit.files.wordpress.com/2014/04/rhsummit2014-application-centric_packaging_with_docker_and_linux_containers-20140412riek7.pdf
https://rhsummit.files.wordpress.com/2014/04/rhsummit2014-application-centric_packaging_with_docker_and_linux_containers-20140412riek7.pdf
https://rhsummit.files.wordpress.com/2014/04/rhsummit2014-application-centric_packaging_with_docker_and_linux_containers-20140412riek7.pdf
https://rhsummit.files.wordpress.com/2014/04/rhsummit2014-application-centric_packaging_with_docker_and_linux_containers-20140412riek7.pdf
https://rhsummit.files.wordpress.com/2014/04/rhsummit2014-application-centric_packaging_with_docker_and_linux_containers-20140412riek7.pdf

Chapter 1

3

After virtualization, we are now moving towards more application-centric IT. We have removed
the hypervisor layer to reduce hardware emulation and complexity. The applications are
packaged with their runtime environment and are deployed using containers. OpenVZ, Solaris
Zones, and LXC are a few examples of container technology. Containers are less flexible
compared to VMs; for example, we cannot run Microsoft Windows on a Linux OS. Containers
are also considered less secure than VMs, because with containers, everything runs on the
host OS. If a container gets compromised, then it might be possible to get full access to
the host OS. It can be a bit too complex to set up, manage, and automate. These are a few
reasons why we have not seen the mass adoption of containers in the last few years, even
though we had the technology.

HARDWARE, VIRT, CLOUD

HOST OS, SHARED SERVICES

HYPERVISOR

Application-Centric IT & PaaS

BINS/

LIBS

BINS/

LIBS

BINS/

LIBS

BINS/

LIBS

BINS/

LIBS

A
P

P
A

A
P

P
B

A
P

P
C

A
P

P
D

A
P

P
A

Application deployment with containers (https://rhsummit.files.wordpress.com/2014/04/
rhsummit2014-application-centric_packaging_with_docker_and_linux_containers-

20140412riek7.pdf)

With Docker, containers suddenly became first-class citizens. All big corporations such as
Google, Microsoft, Red Hat, IBM, and others are now working to make containers mainstream.

Docker was started as an internal project by Solomon Hykes, who is the current CTO of
Docker, Inc., at dotCloud. It was released as open source in March 2013 under the Apache
2.0 license. With dotCloud's platform as a service experience, the founders and engineers of
Docker were aware of the challenges of running containers. So with Docker, they developed
a standard way to manage containers.

https://rhsummit.files.wordpress.com/2014/04/rhsummit2014-application-centric_packaging_with_docker_and_linux_containers-20140412riek7.pdf
https://rhsummit.files.wordpress.com/2014/04/rhsummit2014-application-centric_packaging_with_docker_and_linux_containers-20140412riek7.pdf
https://rhsummit.files.wordpress.com/2014/04/rhsummit2014-application-centric_packaging_with_docker_and_linux_containers-20140412riek7.pdf

Introduction and Installation

4

Docker uses Linux's underlying kernel features which enable containerization. The following
diagram depicts the execution drivers and kernel features used by Docker. We'll talk about
execution drivers later. Let's look at some of the major kernel features that Docker uses:

libcontainer

libvirt lxc
systemd-

nspawn

Docker

Linux

cgroups namespaces netlink

selinux netfilter

capabilities
apparmor

The execution drivers and kernel features used by Docker (http://blog.docker.com/wp-content/
uploads/2014/03/docker-execdriver-diagram.png)

Namespaces
Namespaces are the building blocks of a container. There are different types of namespaces
and each one of them isolates applications from each other. They are created using the clone
system call. One can also attach to existing namespaces. Some of the namespaces used by
Docker have been explained in the following sections.

The pid namespace
The pid namespace allows each container to have its own process numbering. Each pid
forms its own process hierarchy. A parent namespace can see the children namespaces
and affect them, but a child can neither see the parent namespace nor affect it.

If there are two levels of hierarchy, then at the top level, we would see a process running
inside the child namespace with a different PID. So, a process running in a child namespace
would have two PIDs: one in the child namespace and the other in the parent namespace.
For example, if we run a program on the container (container.sh), then we can see the
corresponding program on the host as well.

http://blog.docker.com/wp-content/uploads/2014/03/docker-execdriver-diagram.png
http://blog.docker.com/wp-content/uploads/2014/03/docker-execdriver-diagram.png

Chapter 1

5

On the container:

On the host:

The net namespace
With the pid namespace, we can run the same program multiple times in different isolated
environments; for example, we can run different instances of Apache on different containers.
But without the net namespace, we would not be able to listen on port 80 on each one of
them. The net namespace allows us to have different network interfaces on each container,
which solves the problem I mentioned earlier. Loopback interfaces would be different in each
container as well.

To enable networking in containers, we can create pairs of special interfaces in two different
net namespaces and allow them to talk to each other. One end of the special interface
resides inside the container and the other in the host system. Generally, the interface inside
the container is named eth0, and in the host system, it is given a random name such as
vethcf1a. These special interfaces are then linked through a bridge (docker0) on the host
to enable communication between containers and route packets.

Inside the container, you would see something like the following:

Introduction and Installation

6

And in the host, it would look like the following:

Also, each net namespace has its own routing table and firewall rules.

The ipc namespace
Inter Process Communication (ipc) provides semaphores, message queues, and shared
memory segments. It is not widely used these days but some programs still depend on it.

If the ipc resource created by one container is consumed by another container, then the
application running on the first container could fail. With the ipc namespace, processes
running in one namespace cannot access resources from another namespace.

The mnt namespace
With just a chroot, one can inspect the relative paths of the system from a chrooted
directory/namespace. The mnt namespace takes the idea of a chroot to the next level.
With the mnt namespace, a container can have its own set of mounted filesystems and
root directories. Processes in one mnt namespace cannot see the mounted filesystems
of another mnt namespace.

The uts namespace
With the uts namespace, we can have different hostnames for each container.

The user namespace
With user namespace support, we can have users who have a nonzero ID on the host but
can have a zero ID inside the container. This is because the user namespace allows per
namespace mappings of users and groups IDs.

There are ways to share namespaces between the host and container and container and
container. We'll see how to do that in subsequent chapters.

Chapter 1

7

Cgroups
Control Groups (cgroups) provide resource limitations and accounting for containers. From
the Linux Kernel documentation:

Control Groups provide a mechanism for aggregating/partitioning sets of tasks,
and all their future children, into hierarchical groups with specialized behaviour.

In simple terms, they can be compared to the ulimit shell command or the setrlimit
system call. Instead of setting the resource limit to a single process, cgroups allow the limiting
of resources to a group of processes.

Control groups are split into different subsystems, such as CPU, CPU sets, memory block
I/O, and so on. Each subsystem can be used independently or can be grouped with others.
The features that cgroups provide are:

ff Resource limiting: For example, one cgroup can be bound to specific CPUs, so all
processes in that group would run off given CPUs only

ff Prioritization: Some groups may get a larger share of CPUs

ff Accounting: You can measure the resource usage of different subsystems for billing

ff Control: Freezing and restarting groups

Some of the subsystems that can be managed by cgroups are as follows:

ff blkio: It sets I/O access to and from block devices such as disk, SSD, and so on

ff Cpu: It limits access to CPU

ff Cpuacct: It generates CPU resource utilization

ff Cpuset: It assigns the CPUs on a multicore system to tasks in a cgroup

ff Devices: It devises access to a set of tasks in a cgroup

ff Freezer: It suspends or resumes tasks in a cgroup

ff Memory: It sets limits on memory use by tasks in a cgroup

There are multiple ways to control work with cgroups. Two of the most popular ones are
accessing the cgroup virtual filesystem manually and accessing it with the libcgroup library.
To use libcgroup in fedora, run the following command to install the required packages:

$ sudo yum install libcgroup libcgroup-tools

Introduction and Installation

8

Once installed, you can get the list of subsystems and their mount point in the pseudo
filesystem with the following command:

$ lssubsys -M

Although we haven't looked at the actual commands yet, let's assume that we are running a
few containers and want to get the cgroup entries for a container. To get those, we first need
to get the container ID and then use the lscgroup command to get the cgroup entries of a
container, which we can get from the following command:

For more details, visit https://docs.docker.com/articles/
runmetrics/.

The Union filesystem
The Union filesystem allows the files and directories of separate filesystems, known as layers,
to be transparently overlaid to create a new virtual filesystem. While starting a container,
Docker overlays all the layers attached to an image and creates a read-only filesystem.
On top of that, Docker creates a read/write layer which is used by the container's runtime
environment. Look at the Pulling an image and running a container recipe of this chapter for
more details. Docker can use several Union filesystem variants, including AUFS, Btrfs, vfs,
and DeviceMapper.

Docker can work with different execution drivers, such as libcontainer, lxc, and libvirt
to manage containers. The default execution driver is libcontainer, which comes with
Docker out of the box. It can manipulate namespaces, control groups, capabilities, and
so on for Docker.

https://docs.docker.com/articles/runmetrics/
https://docs.docker.com/articles/runmetrics/

Chapter 1

9

Verifying the requirements for Docker
installation

Docker is supported on many Linux platforms, such as RHEL, Ubuntu, Fedora, CentOS,
Debian, Arch Linux, and so on. It is also supported on many cloud platforms, such as Amazon
EC2, Rackspace Cloud, and Google Compute Engine. With the help of a virtual environment,
Boot2Docker, it can also run on OS X and Microsoft Windows. A while back, Microsoft
announced that it would add native support to Docker on its next Microsoft Windows release.

In this recipe, let's verify the requirements for Docker installation. We will check on the system
with Fedora 21 installation, though the same steps should work on Ubuntu as well.

Getting ready
Log in as root on the system with Fedora 21 installed.

How to do it…
Perform the following steps:

1.	 Docker is not supported on 32-bit architecture. To check the architecture on your
system, run the following command:
$ uname -i

x86_64

2.	 Docker is supported on kernel 3.8 or later. It has been back ported on some of
the kernel 2.6, such as RHEL 6.5 and above. To check the kernel version, run the
following command:
$ uname -r

3.18.7-200.fc21.x86_64

3.	 Running kernel should support an appropriate storage backend. Some of these are
VFS, DeviceMapper, AUFS, Btrfs, and OverlayFS.

Mostly, the default storage backend or driver is devicemapper, which uses the
device-mapper thin provisioning module to implement layers. It should be installed by
default on the majority of Linux platforms. To check for device-mapper, you can run
the following command:
$ grep device-mapper /proc/devices

253 device-mapper

In most distributions, AUFS would require a modified kernel.

Introduction and Installation

10

4.	 Support for cgroups and namespaces are in kernel for sometime and should be
enabled by default. To check for their presence, you can look at the corresponding
configuration file of the kernel you are running. For example, on Fedora, I can do
something like the following:
$ grep -i namespaces /boot/config-3.18.7-200.fc21.x86_64

CONFIG_NAMESPACES=y

$ grep -i cgroups /boot/config-3.18.7-200.fc21.x86_64

CONFIG_CGROUPS=y

How it works…
With the preceding commands, we verified the requirements for Docker installation.

See also
ff Installation document on the Docker website at https://docs.docker.com/

installation/

Installing Docker
As there are many distributions which support Docker, we'll just look at the installation steps
on Fedora 21 in this recipe. For others, you can refer to the installation instructions mentioned
in the See also section of this recipe. Using Docker Machine, we can set up Docker hosts on
local systems, on cloud providers, and other environments very easily. We'll cover that in a
different recipe.

Getting ready
Check for the prerequisites mentioned in the previous recipe.

How to do it…
1.	 Install Docker using yum:

$ yum -y install docker

How it works...
The preceding command will install Docker and all the packages required by it.

https://docs.docker.com/installation/
https://docs.docker.com/installation/

Chapter 1

11

There's more…
The default Docker daemon configuration file is located at /etc/sysconfig/docker, which
is used while starting the daemon. Here are some basic operations:

ff To start the service:
$ systemctl start docker

ff To verify the installation:
$ docker info

ff To update the package:
$ yum -y update docker

ff To enable the service start at boot time:
$ systemctl enable docker

ff To stop the service:
$ systemctl stop docker

See also
ff The installation document is on the Docker website at https://docs.docker.

com/installation/

Pulling an image and running a container
I am borrowing this recipe from the next chapter to introduce some concepts. Don't worry
if you don't find all the explanation in this recipe. We'll cover all the topics in detail later in
this chapter or in the next few chapters. For now, let's pull an image and run it. We'll also get
familiar with Docker architecture and its components in this recipe.

Getting ready
Get access to a system with Docker installed.

How to do it…
1.	 To pull an image, run the following command:

$ docker pull fedora

https://docs.docker.com/installation/
https://docs.docker.com/installation/

Introduction and Installation

12

2.	 List the existing images by using the following command:
$ docker images

3.	 Create a container using the pulled image and list the containers as:

How it works…
Docker has client-server architecture. Its binary consists of the Docker client and server
daemon, and it can reside in the same host. The client can communicate via sockets or the
RESTful API to either a local or remote Docker daemon. The Docker daemon builds, runs,
and distributes containers. As shown in the following diagram, the Docker client sends the
command to the Docker daemon running on the host machine. The Docker daemon also
connects to either the public or local index to get the images requested by the client:

Docker Daemon

Container 1

Container 2

Container 3

Container ...

Host

Docker Index

Docker Client

docker pull

docker run

docker ...

Docker client-server architecture (https://docs.docker.com/introduction/understanding-docker/)

So in our case, the Docker client sends a request to the daemon running on the local system,
which then connects to the public Docker Index and downloads the image. Once downloaded,
we can run it.

https://docs.docker.com/introduction/understanding-docker/

Chapter 1

13

There's more…
Let's explore some keywords we encountered earlier in this recipe:

ff Images: Docker images are read-only templates and they give us containers during
runtime. There is the notion of a base image and layers on top of it. For example,
we can have a base image of Fedora or Ubuntu and then we can install packages or
make modifications over the base image to create a new layer. The base image and
new layer can be treated as a new image. For example, in following figure, Debian is
the base image and emacs and Apache are the two layers added on top of it. They
are highly portable and can be shared easily:

references

parent

image

Docker Image layers (http://docs.docker.com/terms/images/
docker-filesystems-multilayer.png)

Layers are transparently laid on top of the base image to create a single coherent
filesystem.

ff Registries: A registry holds Docker images. It can be public or private from where you
can download or upload images. The public Docker registry is called Docker Hub,
which we will cover later.

ff Index: An index manages user accounts, permissions, search, tagging, and all that
nice stuff that's in the public web interface of the Docker registry.

ff Containers: Containers are running images that are created by combining the
base image and the layers on top of it. They contain everything needed to run an
application. As shown in preceding diagram, a temporary layer is also added while
starting the container, which would get discarded if not committed after the container
is stopped and deleted. If committed, then it would create another layer.

ff Repository: Different versions of an image can be managed by multiple tags, which
are saved with different GUID. A repository is a collection of images tracked by GUIDs.

http://docs.docker.com/terms/images/ docker-filesystems-multilayer.png
http://docs.docker.com/terms/images/ docker-filesystems-multilayer.png

Introduction and Installation

14

See also
ff The documentation on the Docker website at http://docs.docker.com/

introduction/understanding-docker/

ff With Docker 1.6, the Docker community and Microsoft Windows released a Docker
native client for Windows http://azure.microsoft.com/blog/2015/04/16/
docker-client-for-windows-is-now-available

Adding a nonroot user to administer Docker
For ease of use, we can allow a nonroot user to administer Docker by adding them to a
Docker group.

Getting ready
1.	 Create the Docker group if it is not there already:

$ sudo group add docker

2.	 Create the user to whom you want to give permission to administer Docker:
$ useradd dockertest

How to do it…
Run the following command to allow the newly created user to administer Docker:

$ sudo gpasswd -a dockertest docker

How it works…
The preceding command will add a user to the Docker group. The added user will thus be
able to perform all Docker operations. This can be the security risk. Visit Chapter 9, Docker
Security for more details.

http://docs.docker.com/introduction/understanding-docker/
http://docs.docker.com/introduction/understanding-docker/
http://azure.microsoft.com/blog/2015/04/16/docker-client-for-windows-is-now-available
http://azure.microsoft.com/blog/2015/04/16/docker-client-for-windows-is-now-available

Chapter 1

15

Setting up the Docker host with Docker
Machine

Earlier this year, Docker released Orchestration tools (https://blog.docker.
com/2015/02/orchestrating-docker-with-machine-swarm-and-compose/)
and Machine, Swarm, and Compose deploy containers seamlessly. In this recipe, we'll cover
Docker Machine and look at the others in later chapters. Using the Docker Machine tool
(https://github.com/docker/machine/), you can set up Docker hosts locally on cloud
with one command. It is currently in beta mode and not recommended for production use. It
supports environments such as VirtualBox, OpenStack, Google, Digital Ocean, and others. For
a complete list, you can visit https://github.com/docker/machine/tree/master/
drivers. Let's use this tool and set up a host in Google Cloud.

We will be using Docker Machine just for this recipe. Recipes mentioned
in this or other chapters may or may not work on the host set up by
Docker Machine.

Getting ready
Docker Machine does not appear with the default installation. You need to download it from
its GitHub releases link (https://github.com/docker/machine/releases). Please
check the latest version and distribution before downloading. As a root user, download the
binary and make it executable:

$ curl -L
https://github.com/docker/machine/releases/download/v0.2.0/docker-
machine_linux-amd64 > /usr/local/bin/docker-machine

$ chmod a+x /usr/local/bin/docker-machine

If you don't have an account on Google Compute Engine (GCE), then you can sign up for a
free trial (https://cloud.google.com/compute/docs/signup) to try this recipe. I am
assuming that you have a project on GCE and have the Google Cloud SDK installed on the
system on which you downloaded Docker Machine binary. If not, then you can follow these steps:

1.	 Set up the Google Cloud SDK on your local system:
$ curl https://sdk.cloud.google.com | bash

2.	 Create a project on GCE (https://console.developers.google.com/
project) and get its project ID. Please note that the project name and its ID
are different.

3.	 Go to the project home page and under the APIs & auth section, select APIs, and
enable Google Compute Engine API.

https://blog.docker.com/2015/02/orchestrating-docker-with-machine-swarm-and-compose/
https://blog.docker.com/2015/02/orchestrating-docker-with-machine-swarm-and-compose/
https://github.com/docker/machine/tree/master/drivers
https://github.com/docker/machine/tree/master/drivers
https://console.developers.google.com/project
https://console.developers.google.com/project

Introduction and Installation

16

How to do it…
1.	 Assign the project ID we collected to a variable, GCE_PROJECT:

$ export GCE_PROJECT="<Your Project ID>"

2.	 Run the following command and enter the code which is provided on the popped up
web browser:
$ docker-machine create -d google --google-
project=$GCE_PROJECT --google-machine-type=n1-standard-2 --
google-disk-size=50 cookbook

INFO[0000] Opening auth URL in browser.

.......

......

INFO[0015] Saving token in
/home/nkhare/.docker/machine/machines/cookbook/gce_token

INFO[0015] Creating host...

INFO[0015] Generating SSH Key

INFO[0015] Creating instance.

INFO[0016] Creating firewall rule.

INFO[0020] Waiting for Instance...

INFO[0066] Waiting for SSH...

INFO[0066] Uploading SSH Key

INFO[0067] Waiting for SSH Key

INFO[0224] "cookbook" has been created and is now the active
machine.

INFO[0224] To point your Docker client at it, run this in your
shell: eval "$(docker-machine_linux-amd64 env cookbook)"

3.	 List the existing hosts managed by Docker Machine:
$./docker-machine_linux-amd64 ls

You can manage multiple hosts with Docker Machine. The * indicates the active one.

Chapter 1

17

4.	 To display the commands to set up the environment for the Docker client:
$./docker-machine_linux-amd64 env cookbook

So, if you point the Docker client with the preceding environment variables, we would
connect to the Docker daemon running on the GCE.

5.	 And to point the Docker client to use our newly created machine, run the
following command:
$ eval "$(./docker-machine_linux-amd64 env cookbook)"

From now on, all the Docker commands will run on the machine we provisioned on GCE, until
the preceding environment variables are set.

How it works…
Docker Machine connects to the cloud provider and sets up a Linux VM with Docker Engine.
It creates a .docker/machine/ directory under the current user's home directory to save
the configuration.

There's more…
Docker Machine provides management commands, such as create, start, stop,
restart, kill, remove, ssh, and others to manage machines. For detailed options,
look for the help option of Docker Machine:

$ docker-machine -h

You can use the --driver/-d option to create choosing one of the many endpoints
available for deployment. For example, to set up the environment with VirtualBox, run the
following command:

$ docker-machine create --driver virtualbox dev

Here, dev is the machine name. By default, the latest deployed machine becomes primary.

Introduction and Installation

18

See also
ff Documentation on the Docker website at https://docs.docker.com/machine/

ff Guide to setting up Docker on Google Compute Engine at https://docs.docker.
com/installation/google/

Finding help with the Docker command line
Docker commands are well documented and can be referred to whenever needed. Lots of
documentation is available online as well, but it might differ from the documentation for the
Docker version you are running.

Getting ready
Install Docker on your system.

How to do it…
1.	 On a Linux-based system, you can use the man command to find help as follows:

$ man docker

2.	 Subcommand-specific help can also be found with any of the following commands:
$ man docker ps

$ man docker-ps

How it works…
The man command uses the man pages installed by the Docker package to show help.

See also
ff Documentation on the Docker website at http://docs.docker.com/

reference/commandline/cli/

https://docs.docker.com/machine/
https://docs.docker.com/installation/google/
https://docs.docker.com/installation/google/
http://docs.docker.com/reference/commandline/cli/
http://docs.docker.com/reference/commandline/cli/

19

2
Working with

Docker Containers

In this chapter, we will cover the following recipes:

ff Listing/searching for an image

ff Pulling an image

ff Listing images

ff Starting a container

ff Listing containers

ff Stopping a container

ff Looking at the logs of containers

ff Deleting a container

ff Setting the restart policy on a container

ff Getting privileged access inside a container

ff Exposing a port while starting a container

ff Accessing the host device inside the container

ff Injecting a new process to a running container

ff Returning low-level information about a container

ff Labeling and filtering containers

Working with Docker Containers

20

Introduction
In the previous chapter, after installing Docker, we pulled an image and created a container
from it. Docker's primary objective is running containers. In this chapter, we'll see the different
operations we can do with containers such as starting, stopping, listing, deleting, and so
on. This will help us to use Docker for different use cases such as testing, CI/CD, setting up
PaaS, and so on, which we'll cover in later chapters. Before we start, let's verify the Docker
installation by running the following command:

$ docker version

This will give the Docker client and server version, as well as other details.

I am using Fedora 20/21 as my primary environment to run the recipes. They should also
work with the other environment.

Listing/searching for an image
We need an image to start the container. Let's see how we can search images on the
Docker registry. As we have seen in Chapter 1, Introduction and Installation, a registry holds
the Docker images and it can be both public and private. By default, the search will happen
on the default public registry, which is called Docker Hub and is located at https://hub.
docker.com/.

Getting ready
Make sure the Docker daemon is running on the host and you can connect through the
Docker client.

How to do it…
1.	 To search an image on a Docker registry, run the following command:

docker search TERM

https://hub.docker.com/
https://hub.docker.com/

Chapter 2

21

The following is an example to search a Fedora image:

$ docker search fedora | head -n5

The preceding screenshot lists the name, description, and number of stars awarded to the
image. It also points out whether the image is official and automated or not. STARS signifies
how many people liked the given image. The OFFICIAL column helps us identify whether the
image is built from a trusted source or not. The AUTOMATED column is a way to tell whether an
image is built automatically with push in GitHub or Bitbucket repositories. More details about
AUTOMATED can be found in the next chapter.

The convention for image name is <user>/<name>,
but it can be anything.

How it works…
Docker searches for images on the Docker public registry, which has a repository for images
at https://registry.hub.docker.com/.

We can configure our private index as well, which it can search for.

There's more…
ff To list the images that got more than 20 stars and are automated, run the following

command:
$ docker search -s 20 --automated fedora

In Chapter 3, Working with Docker Images, we will see how to set up automated
builds.

ff From Docker 1.3 onwards, the --insecure-registry option to Docker daemon
is provided, which allows us to search/pull/commit images from an insecure
registry. For more details, look at https://docs.docker.com/reference/
commandline/cli/#insecure-registries.

https://registry.hub.docker.com/
https://docs.docker.com/reference/commandline/cli/#insecure-registries
https://docs.docker.com/reference/commandline/cli/#insecure-registries

Working with Docker Containers

22

ff The Docker package on RHEL 7 and Fedora provides options to add and block the
registry with the --add-registry and --block-registry options respectively,
to have better control over the image search path. For more details, look at the
following links:

�� http://rhelblog.redhat.com/2015/04/15/understanding-
the-changes-to-docker-search-and-docker-pull-in-red-hat-
enterprise-linux-7-1/

�� https://github.com/docker/docker/pull/10411

See also
ff For help with the Docker search, run the following command:

$ docker search --help

ff The documentation on the Docker website https://docs.docker.com/
reference/commandline/cli/#search

Pulling an image
After searching the image, we can pull it to the system by running the Docker daemon. Let's
see how we can do that.

Getting ready
Make sure the Docker daemon is running on the host and you can connect through the
Docker client.

How to do it…
1.	 To pull an image on the Docker registry, run the following command:

docker pull NAME[:TAG]

The following is an example to pull the Fedora image:

$ docker pull fedora

http://rhelblog.redhat.com/2015/04/15/understanding-the-changes-to-docker-search-and-docker-pull-in-red-hat-enterprise-linux-7-1/
http://rhelblog.redhat.com/2015/04/15/understanding-the-changes-to-docker-search-and-docker-pull-in-red-hat-enterprise-linux-7-1/
http://rhelblog.redhat.com/2015/04/15/understanding-the-changes-to-docker-search-and-docker-pull-in-red-hat-enterprise-linux-7-1/
https://github.com/docker/docker/pull/10411
https://docs.docker.com/reference/commandline/cli/#search
https://docs.docker.com/reference/commandline/cli/#search

Chapter 2

23

How it works…
The pull command downloads all layers from the Docker registry, which are required to
create that image locally. We will see details about layers in the next chapter.

There's more…
ff Image tags group images of the same type. For example, CentOS can have images

with tags such as centos5, centos6, and so on. For example, to pull an image with
the specific tag, run the following command:
$ docker pull centos:centos7

ff By default, the image with latest tag gets pulled. To pull all images corresponding to
all tags, use the following command:
$ docker pull --all-tags centos

ff With Docker 1.6 (https://blog.docker.com/2015/04/docker-
release-1-6/), we can build and refer to images by a new content-addressable
identifier called a digest. It is a very useful feature when we want to work with
a specific image, rather than tags. To pull an image with a specific digest, we can
consider the following syntax:
$ docker pull <image>@sha256:<digest>

Here is an example of a command:
$ docker pull debian@sha256:cbbf2f9a99b47fc460d422812b6a5adff7dfee
951d8fa2e4a98caa0382cfbdbf

Digest is supported only with the Docker registry v2.

ff Once an image gets pulled, it resides on local cache (storage), so subsequent
pulls will be very fast. This feature plays a very important role in building Docker
layered images.

See also
ff Look at the help option of Docker pull:

$ docker pull --help

ff The documentation on the Docker website https://docs.docker.com/
reference/commandline/cli/#pull

https://blog.docker.com/2015/04/docker-release-1-6/
https://blog.docker.com/2015/04/docker-release-1-6/
https://docs.docker.com/reference/commandline/cli/#pull
https://docs.docker.com/reference/commandline/cli/#pull

Working with Docker Containers

24

Listing images
We can list the images available on the system running the Docker daemon. These images
might have been pulled from the registry, imported through the docker command, or created
through Docker files.

Getting ready
Make sure the Docker daemon is running on the host and you can connect through the
Docker client.

How to do it…
1.	 Run the following command to list the images:

$ docker images

How it works…
The Docker client talks to the Docker server and gets the list of images at the server end.

There's more…
ff All the images with the same name but different tags get downloaded. The interesting

thing to note here is that they have the same name but different tags. Also, there are
two different tags for the same IMAGE ID, which is 2d24f826cb16.

ff You might see a different output for REPOSITORY, as shown in the following
screenshot, with the latest Docker packages.

This is because the image listing prints the Docker registry hostname as well. As shown in the
preceding screenshot, docker.io is the registry hostname.

Chapter 2

25

See also
ff Look at the help option of docker images:

$ docker images --help

ff The documentation on the Docker website https://docs.docker.com/
reference/commandline/cli/#images

Starting a container
Once we have images, we can use them to start the containers. In this recipe, we will start a
container with the fedora:latest image and see what all things happen behind the scene.

Getting ready
Make sure the Docker daemon is running on the host and you can connect through the
Docker client.

How to do it…
1.	 The syntax used to start a container is as follows:

docker run [OPTIONS] IMAGE[:TAG] [COMMAND] [ARG...]

Here is an example of a command:

$ docker run -i -t --name=f21 fedora /bin/bash

By default, Docker picks the image with the latest tag:

ff The -i option starts the container in the interactive mode

ff The -t option allocates a pseudo-tty and attaches it to the standard input

So, with the preceding command, we start a container from the fedora:latest image,
attach pseudo-tty, name it f21, and run the /bin/bash command. If the name is not
specified, then a random string will be assigned as the name.

Also, if the image is not available locally, then it will get downloaded from the registry first and
then run. Docker will run the search and pull commands before running the run command.

https://docs.docker.com/reference/commandline/cli/#images
https://docs.docker.com/reference/commandline/cli/#images

Working with Docker Containers

26

How it works…
Under the hood, Docker:

ff Will merge all the layers that make that image using UnionFS.

ff Allocates a unique ID to a container, which is referred to as Container ID.

ff Allocates a filesystem and mounts a read/write layer for the container. Any changes
on this layer will be temporary and will be discarded if they are not committed.

ff Allocates a network/bridge interface.

ff Assigns an IP address to the container.

ff Executes the process specified by the user.

Also, with the default Docker configuration, it creates a directory with the container's ID inside
/var/lib/docker/containers, which has the container's specific information such as
hostname, configuration details, logs, and /etc/hosts.

There's more…
ff To exit from the container, press Ctrl + D or type exit. It is similar to exiting from a

shell but this will stop the container.

ff The run command creates and starts the container. With Docker 1.3 or later, it is
possible to just create the container using the create command and run it later
using the start command, as shown in the following example:
$ ID=$(docker create -t -i fedora bash)

$ docker start -a -i $ID

ff The container can be started in the background and then we can attach to it
whenever needed. We need to use the -d option to start the container in the
background:
$ docker run -d -i -t fedora /bin/bash

0df95cc49e258b74be713c31d5a28b9d590906ed9d6e1a2dc756 72aa48f28c4f

The preceding command returns the container ID of the container to which we can
attach later, as follows:
$ ID='docker run -d -t -i fedora /bin/bash'

$ docker attach $ID

Chapter 2

27

In the preceding case, we chose /bin/bash to run inside the container. If we attach
to the container, we will get an interactive shell. We can run a noninteractive process
and run it in the background to make a daemonized container like this:

$ docker run -d fedora /bin/bash -c "while [1]; do echo
hello docker ; sleep 1; done"

ff To remove the container after it exits, start the container with the --rm option,
as follows:
$ docker run --rm fedora date

As soon as the date command exits, the container will be removed.

ff The --read-only option of the run command will mount the root filesystem in the
read-only mode:
$ docker run --read-only -d -i -t fedora /bin/bash

Remember that this option just makes sure that we cannot modify anything on the
root filesystem, but we are writing on volumes, which we'll cover later in the book.
This option is very useful when we don't want users to accidentally write content
inside the container, which gets lost if the container is not committed or copied out
on non-ephemeral storage such as volumes.

ff You can also set custom labels to containers, which can be used to group the
containers based on labels. Take a look at the Labeling and filtering containers
recipe in this chapter for more details.

A container can be referred in three ways: by name, by container ID
(0df95cc49e258b74be713c31d5a28b9d590906ed9d6e1a2dc75672
aa48f28c4f), and by short container ID (0df95cc49e25)

See also
ff Look at the help option of docker run:

$ docker run --help

ff The documentation on the Docker website https://docs.docker.com/
reference/commandline/cli/#run

ff The Docker 1.3 release announcement http://blog.docker.com/2014/10/
docker-1-3-signed-images-process-injection-security-options-
mac-shared-directories/

https://docs.docker.com/reference/commandline/cli/#run
https://docs.docker.com/reference/commandline/cli/#run
http://blog.docker.com/2014/10/docker-1-3-signed-images-process-injection-security-options-mac-shared-directories/
http://blog.docker.com/2014/10/docker-1-3-signed-images-process-injection-security-options-mac-shared-directories/
http://blog.docker.com/2014/10/docker-1-3-signed-images-process-injection-security-options-mac-shared-directories/

Working with Docker Containers

28

Listing containers
We can list both running and stopped containers.

Getting ready
Make sure the Docker daemon is running on the host and you can connect through the
Docker client. You will also need a few running and/or stopped containers.

How to do it…
1.	 To list the containers, run the following command:

docker ps [OPTIONS]

How it works…
The Docker daemon can look at the metadata associated with the containers and list them
down. By default, the command returns:

ff The container ID

ff The image from which it got created

ff The command that was run after starting the container

ff The details about when it got created

ff The current status

ff The ports that are exposed from the container

ff The name of the container

There's more…
ff To list both running and stopped containers, use the -a option as follows:

Chapter 2

29

ff To return just the container IDs of all the containers, use the -aq option as follows:

ff To show the last created container, including the non-running container, run the
following command:
$ docker ps -l

ff Using the --filter/-f option to ps we can list containers with specific labels. Look
at the Labeling and filtering containers recipe in this chapter for more details.

See also
Look at the man page of docker ps to see more options:

ff Look at the help option of docker ps:
$ docker ps --help

ff The documentation on the Docker website https://docs.docker.com/
reference/commandline/cli/#ps

Looking at the logs of containers
If the container emits logs or output on STDOUT/STDERR, then we can get them without
logging into the container.

Getting ready
Make sure the Docker daemon is running on the host and you can connect through the
Docker client. You will also need a running container, which emits logs/output on STDOUT.

How to do it…
1.	 To get logs from the container, run the following command:

docker logs [-f|--follow[=false]][-t|--timestamps[=false]]
CONTAINER

https://docs.docker.com/reference/commandline/cli/#ps
https://docs.docker.com/reference/commandline/cli/#ps

Working with Docker Containers

30

2.	 Let's take the example from the earlier section of running a daemonized container
and look at the logs:

$ docker run -d fedora /bin/bash -c "while [1]; do echo
hello docker ; sleep 1; done"

How it works…
Docker will look at the container's specific log file from /var/lib/docker/
containers/<Container ID> and show the result.

There's more…
With the -t option, we can get the timestamp with each log line and with -f we can get tailf
like behavior.

See also
ff Look at help option of docker logs:

$ docker logs --help

ff Documentation on the Docker website https://docs.docker.com/reference/
commandline/cli/#logs

Stopping a container
We can stop one or more containers at once. In this recipe, we will first start a container and
then stop it.

Getting ready
Make sure the Docker daemon is running on the host and you can connect through the
Docker client. You will also need one or more running containers.

https://docs.docker.com/reference/commandline/cli/#logs
https://docs.docker.com/reference/commandline/cli/#logs

Chapter 2

31

How to do it…
1.	 To stop the container, run the following command:

docker stop [-t|--time[=10]] CONTAINER [CONTAINER...]

2.	 If you already have a running container, then you can go ahead and stop it; if not, we
can create one and then stop it as follows:

$ ID='docker run -d -i fedora /bin/bash'

$ docker stop $ID

How it works…
This will save the state of the container and stop it. It can be started again, if needed.

There's more…
ff To stop a container after waiting for some time, use the --time/-t option.

ff To stop all the running containers run the following command:

$ docker stop 'docker ps -q'

See also
ff Look at help option of docker stop:

$ docker stop --help

ff The documentation on the Docker website https://docs.docker.com/
reference/commandline/cli/#stop

Deleting a container
We can delete a container permanently, but before that we have to stop the container or use
the force option. In this recipe, we'll start, stop, and delete a container.

Getting ready
Make sure the Docker daemon is running on the host and you can connect through
the Docker client. You will also need some containers in a stopped or running state to
delete them.

https://docs.docker.com/reference/commandline/cli/#stop
https://docs.docker.com/reference/commandline/cli/#stop

Working with Docker Containers

32

How to do it…
1.	 Use the following command:

$ docker rm [OPTIONS] CONTAINER [CONTAINER]

2.	 Let's first start a container, stop it, and then delete it using the following commands:

$ ID='docker run -d -i fedora /bin/bash '

$ docker stop $ID

$ docker rm $ID

As we can see from the preceding screenshot, the container did not show up, which just
entered the docker ps command after stopping it. We had to provide the -a option to list it.
After the container is stopped, we can delete it.

There's more…
ff To forcefully delete a container without an intermediate stop, use the -f option.

ff To delete all the containers, we first need to stop all the running containers and then
remove them. Be careful before running the commands as these will delete both the
running and the stopped containers:
$ docker stop 'docker ps -q'

$ docker rm 'docker ps -aq'

ff There are options to remove a specified link and volumes associated with the
container, which we will explore later.

How it works…
The Docker daemon will remove the read/write layer, which was created while starting the
container.

Chapter 2

33

See also
ff Look at the help option of docker rm

$ docker rm --help

ff The documentation on the Docker website https://docs.docker.com/
reference/commandline/cli/#rm

Setting the restart policy on a container
Before Docker 1.2, there used to be an option to restart the container. With the release of
Docker 1.2, it has been added with the run command with flags to specify the restart policy.
With this policy, we can configure containers to start at boot time. This option is also very
useful when a container dies accidentally.

Getting ready
Make sure the Docker daemon is running on the host and you can connect through the
Docker client.

How to do it…
You can set the restart policy using the following syntax:

$ docker run --restart=POLICY [OPTIONS] IMAGE[:TAG] [COMMAND]
[ARG...]

Here is an example of a command:

$ docker run --restart=always -d -i -t fedora /bin/bash

There are three restart policies to choose from:

ff no: This does not start the container if it dies

ff on-failure: This restarts the container if it fails with nonzero exit code

ff always: This always restarts the container without worrying about the return code

There's more…
You can also give an optional restart count with the on-failure policy as follows:

$ docker run --restart=on-failure:3 -d -i -t fedora /bin/bash

The preceding command will only restart the container three times, if any failure occurs.

https://docs.docker.com/reference/commandline/cli/#rm
https://docs.docker.com/reference/commandline/cli/#rm

Working with Docker Containers

34

See also
ff Look at the help option of docker run:

$ docker run --help

ff The documentation on the Docker website https://docs.docker.com/
reference/commandline/cli/#run.

ff If a restart does not suit your requirements, then use systemd (http://
freedesktop.org/wiki/Software/systemd/) for solutions to automatically
restart the container on failure. For more information, visit https://docs.
docker.com/articles/host_integration/.

Getting privileged access inside a container
Linux divides the privileges traditionally associated with superuser into distinct units,
known as capabilities (run man capabilities on a Linux-based system), which can be
independently enabled and disabled. For example, the net_bind_service capability allows
nonuser processes to bind the port below 1,024. By default, Docker starts containers with
limited capabilities. With privileged access inside the container, we give more capabilities to
perform operations normally done by root. For example, let's try to create a loopback device
while mounting a disk image.

Getting ready
Make sure the Docker daemon is running on the host and you can connect through the
Docker client.

How to do it…
1.	 To use the privileged mode, use the following command:

$ docker run --privileged [OPTIONS] IMAGE[:TAG] [COMMAND]
[ARG...]

https://docs.docker.com/reference/commandline/cli/#run
https://docs.docker.com/reference/commandline/cli/#run
http://freedesktop.org/wiki/Software/systemd/
http://freedesktop.org/wiki/Software/systemd/
https://docs.docker.com/articles/host_integration/
https://docs.docker.com/articles/host_integration/

Chapter 2

35

2.	 Now let's try the preceding example with the privileged access:

$ docker run --privileged -i -t fedora /bin/bash

How it works…
By providing almost all capabilities inside the container.

There's more…
This mode causes security risks as containers can get root-level access on the Docker host.
With Docker 1.2 or new, two new flags --cap-add and --cap-del have been added to
give fine-grained control inside a container. For example, to prevent any chown inside the
container, use the following command:

$ docker run --cap-drop=CHOWN [OPTIONS] IMAGE[:TAG] [COMMAND]
[ARG...]

Look at Chapter 9, Docker Security, for more details.

See also
ff Look at the help option of docker run:

$ docker run --help

ff The documentation on the Docker website https://docs.docker.com/
reference/commandline/cli/#run

ff The Docker 1.2 release announcement http://blog.docker.com/2014/08/
announcing-docker-1-2-0/

Exposing a port while starting a container
There are a number of ways by which ports on the container can be exposed. One of them is
through the run command, which we will cover in this chapter. The other ways are through the
Docker file and the --link command. We will explore them in the other chapters.

https://docs.docker.com/reference/commandline/cli/#run
https://docs.docker.com/reference/commandline/cli/#run
http://blog.docker.com/2014/08/announcing-docker-1-2-0/
http://blog.docker.com/2014/08/announcing-docker-1-2-0/

Working with Docker Containers

36

Getting ready
Make sure the Docker daemon is running on the host and you can connect through the
Docker client.

How to do it…
1.	 The syntax to expose a port is as follows:

$ docker run --expose=PORT [OPTIONS] IMAGE[:TAG] [COMMAND]
[ARG...]

For example, to expose port 22 while starting a container, run the following command:

$ docker run --expose=22 -i -t fedora /bin/bash

There's more…
There are multiple ways to expose the ports for a container. For now, we will see how we can
expose the port while starting the container. We'll look other options to expose the ports in
later chapters.

See also
ff Look at the help option of docker run:

$ docker run --help

ff Documentation on the Docker website https://docs.docker.com/reference/
commandline/cli/#run

Accessing the host device inside the
container

From Docker 1.2 onwards, we can give access of the host device to a container with the
--device option to the run command. Earlier, one has bind mount it with the -v option
and that had to be done with the --privileged option.

Getting ready
Make sure the Docker daemon is running on the host and you can connect through the
Docker client. You will also need a device to pass to the container.

https://docs.docker.com/reference/commandline/cli/#run
https://docs.docker.com/reference/commandline/cli/#run

Chapter 2

37

How to do it…
1.	 You can give access of a host device to the container using the following syntax:

$ docker run --device=<Host Device>:<Container Device
Mapping>:<Permissions> [OPTIONS] IMAGE[:TAG] [COMMAND]
[ARG...]

Here is an example of a command:

$ docker run --device=/dev/sdc:/dev/xvdc -i -t fedora /bin/bash

How it works…
The preceding command will access /dev/sdc inside the container.

See also
ff Look at the help option of docker run:

 $ docker run --help

ff The documentation on the Docker website https://docs.docker.com/
reference/commandline/cli/#run

Injecting a new process to a running
container

While doing development and debugging, we might want to look inside the already running
container. There are a few utilities, such as nsenter (https://github.com/jpetazzo/
nsenter), that allow us to enter into the namespace of the container to inspect it. With the
exec option, which was added in Docker 1.3, we can inject a new process inside a running
container.

Getting ready
Make sure the Docker daemon is running on the host and you can connect through the
Docker client. You might also need a running container to inject a process in.

https://docs.docker.com/reference/commandline/cli/#run
https://docs.docker.com/reference/commandline/cli/#run
https://github.com/jpetazzo/nsenter
https://github.com/jpetazzo/nsenter

Working with Docker Containers

38

How to do it…
1.	 You can inject a process inside a running container with the following command:

 $ docker exec [-d|--detach[=false]] [--help] [-i|--
interactive[=false]] [-t|--tty[=false]] CONTAINER COMMAND
[ARG...]

2.	 Let's start an nginx container and then inject bash into that:

$ ID='docker run -d nginx'

$ docker run -it $ID bash

How it works…
The exec command enters into the namespace of the container and starts the new process.

See also
ff Look at help option of Docker inspect:

 $ docker exec --help

ff The documentation on the Docker website https://docs.docker.com/
reference/commandline/cli/#exec

Returning low-level information about a
container

While doing the debugging, automation, and so on, we will need the container configuration
details. Docker provides the inspect command to get those easily.

Getting ready
Make sure the Docker daemon is running on the host and you can connect through the
Docker client.

https://docs.docker.com/reference/commandline/cli/#exec
https://docs.docker.com/reference/commandline/cli/#exec

Chapter 2

39

How to do it…
1.	 To inspect a container/image, run the following command:

$ docker inspect [-f|--format="" CONTAINER|IMAGE
[CONTAINER|IMAGE...]

2.	 We'll start a container and then inspect it:

$ ID='docker run -d -i fedora /bin/bash'

$ docker inspect $ID

[{

 "Args": [],

 "Config": {

 "AttachStderr": false,

 "AttachStdin": false,

 "AttachStdout": false,

 "Cmd": [

 "/bin/bash"

],

}]

How it works…
Docker will look into the metadata and configuration for the given image or container and
present it.

There's more…
With the -f | --format option we can use the Go (programming language) template to get
the specific information. The following command will give us an IP address of the container:

$ docker inspect --format='{{.NetworkSettings.IPAddress}}' $ID

172.17.0.2

Working with Docker Containers

40

See also
ff Look at the help option of docker inspect:

 $ docker inspect --help

ff The documentation on the Docker website https://docs.docker.com/
reference/commandline/cli/#inspect

Labeling and filtering containers
With Docker 1.6, a feature has been added to label containers and images, through which
we can attach arbitrary key-value metadata to them. You can think of them as environment
variables, which are not available to running applications inside containers but they are
available to programs (Docker CLI) that are managing images and containers. Labels attached
to images also get applied to containers started via them. We can also attach labels to
containers while starting them.

Docker also provides filters to containers, images, and events (https://docs.docker.
com/reference/commandline/cli/#filtering), which we can use in conjunction
with labels to narrow down our searches.

For this recipe, let's assume that we have an image with the label, distro=fedora21. In the
next chapter, we will see how to assign a label to an image.

As you can see from the preceding screenshot, if we use filters with the docker images
command, we only get an image where the corresponding label is found in the image's
metadata.

Getting ready
Make sure that the Docker daemon 1.6 and above is running on the host and you can connect
through the Docker client.

How to do it…
1.	 To start the container with the --label/-l option, run the following command:

$ docker run --label environment=dev f21 date

https://docs.docker.com/reference/commandline/cli/#inspect
https://docs.docker.com/reference/commandline/cli/#inspect
https://docs.docker.com/reference/commandline/cli/#filtering
https://docs.docker.com/reference/commandline/cli/#filtering

Chapter 2

41

2.	 Let's start a container without a label and start two others with the same label:

If we list all the containers without a label, we will see all the containers, but if we use label,
then we get only containers, which matches the label.

How it works…
Docker attaches label metadata to containers while starting them and matches the label
while listing them or other related operations.

There's more…
ff We can list all the labels attached to a container through the inspect command,

which we saw in an earlier recipe. As we can see, the inspect command returns
both the image and the container labels.

ff You can apply labels from a file (with the --from-file option) that has a list of
labels, separated by a new EOL.

ff These labels are different from the Kubernetes label, which we will see in Chapter 8,
Docker Orchestration and Hosting Platforms.

See also
ff The documentation on the Docker website https://docs.docker.com/

reference/builder/#label

ff http://rancher.com/docker-labels/

https://docs.docker.com/reference/builder/#label
https://docs.docker.com/reference/builder/#label
http://rancher.com/docker-labels/

43

Working with
Docker Images

In this chapter, we will cover the following recipes:

ff Creating an account with Docker Hub

ff Creating an image from the container

ff Publishing an image to the registry

ff Looking at the history of an image

ff Deleting an image

ff Exporting an image

ff Importing an image

ff Building images using Dockerfiles

ff Building an Apache image – a Dockerfile example

ff Accessing Firefox from a container – a Dockerfile example

ff Building a WordPress image – a Dockerfile example

ff Setting up a private index/registry

ff Automated Builds – with GitHub and Bitbucket

ff Creating the base image – using supermin

ff Creating the base image – using Debootstrap

ff Visualizing dependencies between layers

3

Working with Docker Images

44

Introduction
In this chapter, we will focus on operations relating to images. As we know, images are required
to run containers. You can either use existing images or create new custom images. You will
need to create custom images to suit your development and deployment environment. Once you
create an image, you can share it through the public or private registry. Before we explore more
about Docker images, let's look at the output of the docker info command:

The preceding command gives the current system-wide info as follows:

ff It has 21 containers and 21 images.
ff The current storage driver, devicemapper, and its related information, such as

thin pool name, data, metadata file, and so on. Other types of storage drivers are
aufs, btrfs, overlayfs, vfs, and so on. Devicemapper, btrfs, and overlayfs have native
support in the Linux kernel. AUFS support needs a patched kernel. We talked about
the Union filesystem in Chapter 1, Introduction and Installation.

ff To leverage the kernel features that enable containerization, the Docker daemon has
to talk to the Linux kernel. This is done through the execution driver. libconatiner
or native is one of that type. The others are libvirt, lxc, and so on, which we
saw in Chapter 1, Introduction and Installation.

ff The kernel version on the host operating system.
ff The user account that is registered on the registry mentioned in the next section to

pull/push images.

I am using Fedora 20/21 as my primary environment to run the recipes.
They should also work with other environments.

Chapter 3

45

Creating an account with Docker Hub
Docker Hub is like GitHub for images. It is a public registry on which you can host images both
public and private, share them and collaborate with others. It has integration with GitHub,
Bitbucket, and can trigger automated builds.

As of now, the creation of an account on Docker Hub is free. A repository can hold different
versions of an image. You can create any number of public repositories for your images. By
default, you will have one private repository, which will not be accessible to the public. You
can buy more private repositories. You can create an account either through a web browser
or from the command line.

Getting ready
To sign up from the command line, you will need to have Docker installed on your system.

How to do it…
1.	 To create an account through a web browser on Docker Hub, visit

https://hub.docker.com/account/signup/ and create an account:

https://hub.docker.com/account/signup/

Working with Docker Images

46

2.	 To create an account using the command line, run the following command and
submit the required details:
$ docker login

How it works…
The preceding steps will create a Docker Hub account for you. Once the account is created,
you'll get a confirmation mail, through which you need to confirm your identity.

See also
ff The documentation on the Docker website:

�� https://docs.docker.com/docker-hub

�� https://docs.docker.com/docker-hub/accounts/

Creating an image from the container
There are a couple of ways to create images, one is by manually committing layers and the
other way is through Dockerfiles. In this recipe, we'll see the former and look at Dockerfiles
later in the chapter.

As we start a new container, a read/write layer gets attached to it. This layer will get destroyed
if we do not save it. In this recipe, we will see how to save that layer and make a new image
from the running or stopped container using the docker commit command.

Getting ready
To get a Docker image, start a container with it.

How to do it…
1.	 To do the commit, run the following command:

docker commit -a|--author[=""] -m|--message[=""] CONTAINER
[REPOSITORY[:TAG]]

2.	 Let's start a container and create/modify some files using the install httpd
package:

https://docs.docker.com/docker-hub
https://docs.docker.com/docker-hub/accounts/

Chapter 3

47

3.	 Then, open a new terminal and create a new image by doing the commit:
$ docker commit -a "Neependra Khare" -m "Fedora with HTTPD
package" 0a15686588ef nkhare/fedora:httpd

As you can see, the new image is now being committed to the local repository with
nkhare/fedora as a name and httpd as a tag.

How it works…
In Chapter 1, Introduction and Installation, we saw that while starting a container, a read/
write filesystem layer will be created on top of the existing image layers from which the
container started, and with the installation of a package, some files would have been
added/modified in that layer. All of those changes are currently in the ephemeral read/write
filesystem layer, which is assigned to the container. If we stop and delete the container, then
all of the earlier mentioned modifications would be lost.

Using commit, we create a new layer with the changes that have occurred since the container
started, which get saved in the backend storage driver.

There's more…
ff To look for files, which are changed since the container started:

$ docker diff CONTAINER

In our case, we will see something like the following code:
$ docker diff 0a15686588ef

.....

C /var/log

A /var/log/httpd

C /var/log/lastlog

.....

Working with Docker Images

48

We can see a prefix before each entry of the output. The following is a list of
those prefixes:

�� A: This is for when a file/directory has been added

�� C: This is for when a file/directory has been modified

�� D: This is for when a file/directory has been deleted

ff By default, a container gets paused while doing the commit. You can change its
behavior by passing --pause=false to commit.

See also
ff Look at the help option of docker commit:

$ docker commit --help

ff The documentation on the Docker website https://docs.docker.com/
reference/commandline/cli/#commit

Publishing an image to the registry
Let's say you have created an image that suits the development environment in your
organization. You can either share it using tar ball, which we'll see later in this chapter, or
put in a central location from where the user can pull it. This central location can be either
a public or a private registry. In this recipe, we'll see how to push the image to the registry
using the docker push command. Later in this chapter, we'll cover how to set up the
private registry.

Getting ready
You will need a valid account on Docker Hub to push images/repositories.

A local registry must be set up if you are pushing images/repositories locally.

How to do it…
$ docker push NAME[:TAG]

By default, the preceding command will use the username and registry shown in the docker
info command to push the images. As shown in the preceding screenshot, the command will
use nkhare as the username and https://index.docker.io/v1/ as the registry.

https://docs.docker.com/reference/commandline/cli/#commit
https://docs.docker.com/reference/commandline/cli/#commit

Chapter 3

49

To push the image that we created in the previous section, run the following command:

$ docker push nkhare/fedora:httpd

Let's say you want to push the image to the local registry, which is hosted on a host called
local-registry. To do this, you first need to tag the image with the registry host's name or
IP address with the port number on which the registry is running and then push the images.

$ docker tag [-f|--force[=false] IMAGE
[REGISTRYHOST/][USERNAME/]NAME[:TAG]

$ docker push [REGISTRYHOST/][USERNAME/]NAME[:TAG]

For example, let's say our registry is configured on shadowfax.example.com, then to tag
the image use the following command:

$ docker tag nkhare/fedora:httpd
shadowfax.example.com:5000/nkhare/fedora:httpd

Then, to push the image, use the following command:

$ docker push shadowfax.example.com:5000/nkhare/fedora:httpd

How it works…
It will first list down all the intermediate layers that are required to make that specific image. It
will then check to see, out of those layers, how many are already present inside the registry. At
last, it will copy all the layers, which are not present in the registry with the metadata required
to build the image.

Working with Docker Images

50

There's more…
As we pushed our image to the public registry, we can log in to Docker Hub and look for
the image:

See also
ff Look at the help option of docker push:

$ docker push --help

ff The documentation on the Docker website https://docs.docker.com/
reference/commandline/cli/#push

Looking at the history of an image
It is handy to know how the image that we are using has been created. The docker history
command helps us find all the intermediate layers.

Getting ready
Pull or import any Docker image.

https://docs.docker.com/reference/commandline/cli/#push
https://docs.docker.com/reference/commandline/cli/#push

Chapter 3

51

How to do it…
1.	 To look at the history of the image, consider the following syntax:

$ docker history [OPTIONS] IMAGE

Here's an example using the preceding syntax:

$ docker history nkhare/fedora:httpd

How it works…
From the metadata of an image, Docker can know how an image is being created. With the
history command, it will look at the metadata recursively to get to the origin.

There's more…
Look at the commit message of a layer that got committed:

$ docker inspect --format='{{.Comment}}' nkhare/fedora:httpd

Fedora with HTTPD package

Currently, there is no direct way to look at the commit message for each layer using one single
command, but we can use the inspect command, which we saw earlier, for each layer.

See also
ff Look at the help option of docker history:

$ docker history --help

ff The documentation on the Docker website https://docs.docker.com/
reference/commandline/cli/#history

Deleting an image
To remove the image from the host, we can use the docker rmi command. However, this
does not remove images from the registry.

https://docs.docker.com/reference/commandline/cli/#history
https://docs.docker.com/reference/commandline/cli/#history

Working with Docker Images

52

Getting ready
Make sure one or more Docker images are locally available.

How to do it…
1.	 To remove the image, consider the following syntax:

$ docker rmi [OPTIONS] IMAGE [IMAGE...]

In our case, here's an example using the preceding syntax:

$ docker rmi nkhare/fedora:httpd

There's more…
If you want to remove all containers and images, then do following; however, be sure about
what you are doing, as this is very destructive:

ff To stop all containers, use the following command:
$ docker stop 'docker ps -q'

ff To delete all containers, use the following command:
$ docker rm 'docker ps -a -q'

ff To delete all images, use the following command:

$ docker rmi 'docker images -q'

See also
ff Look at the help option of docker rmi:

$ docker rmi --help

ff The documentation on the Docker website https://docs.docker.com/
reference/commandline/cli/#rmi

https://docs.docker.com/reference/commandline/cli/#rmi
https://docs.docker.com/reference/commandline/cli/#rmi

Chapter 3

53

Exporting an image
Let's say you have a customer who has very strict policies that do not allow them to use
images from the public domain. In such cases, you can share images through tarballs, which
later can be imported on another system. In this recipe, we will see how to do that using the
docker save command.

Getting ready
Pull or import one or more Docker images on the Docker host.

How to do it…
1.	 Use the following syntax to save the image in the tar file:

$ docker save [-o|--output=""] IMAGE [:TAG]

For example, to create a tar archive for Fedora, run the following command:
$ docker save --output=fedora.tar fedora

If the tag name is specified with the image name we want to export, such as
fedora:latest, then only the layers related to that tag will get exported.

There's more…
If --output or -o is not used, then the output will be streamed to STDOUT:

$ docker save fedora:latest > fedora-latest.tar

Similarly, the contents of the container's filesystem can be exported using the following
command:

$ docker export CONTAINER > containerXYZ.tar

See also
ff Look at the help option of docker save and docker export:

$ docker save -help

$ docker export --help

ff The documentation on the Docker website:

�� https://docs.docker.com/reference/commandline/cli/#save

�� https://docs.docker.com/reference/commandline/
cli/#export

https://docs.docker.com/reference/commandline/cli/#save
https://docs.docker.com/reference/commandline/cli/#export
https://docs.docker.com/reference/commandline/cli/#export

Working with Docker Images

54

Importing an image
To get a local copy of the image, we either need to pull it from the accessible registry or
import it from the already exported image, as we saw in the earlier recipe. Using the docker
import command, we import an exported image.

Getting ready
You need an accessible exported Docker image.

How to do it…
1.	 To import an image, we can use following syntax:

$ docker import URL|- [REPOSITORY[:TAG]]

Here's an example using the preceding syntax:
$ cat fedora-latest.tar | docker import - fedora:latest

Alternatively, you can consider the following example:

$ docker import http://example.com/example.tar example/image

The preceding example will first create an empty filesystem and then import the contents.

See also
ff Look at the help option of docker import:

$ docker import --help

ff The documentation on the Docker website https://docs.docker.com/
reference/commandline/cli/#import

Building images using Dockerfiles
Dockerfiles help us in automating image creation and getting precisely the same image
every time we want it. The Docker builder reads instructions from a text file (a Dockerfile) and
executes them one after the other in order. It can be compared as Vagrant files, which allows
you to configure VMs in a predictable manner.

https://docs.docker.com/reference/commandline/cli/#import
https://docs.docker.com/reference/commandline/cli/#import

Chapter 3

55

Getting ready
A Dockerfile with build instructions.

ff Create an empty directory:
$ mkdir sample_image

$ cd sample_image

ff Create a file named Dockerfile with the following content:

$ cat Dockerfile

Pick up the base image

FROM fedora

Add author name

MAINTAINER Neependra Khare

Add the command to run at the start of container

CMD date

How to do it…
1.	 Run the following command inside the directory, where we created Dockerfile to build

the image:
$ docker build .

Working with Docker Images

56

We did not specify any repository or tag name while building the image. We can give
those with the -t option as follows:

$ docker build -t fedora/test .

The preceding output is different from what we did earlier. However, here we are using a
cache after each instruction. Docker tries to save the intermediate images as we saw earlier
and tries to use them in subsequent builds to accelerate the build process. If you don't want
to cache the intermediate images, then add the --no-cache option with the build. Let's take
a look at the available images now:

How it works…
A context defines the files used to build the Docker image. In the preceding command,
we define the context to the build. The build is done by the Docker daemon and the entire
context is transferred to the daemon. This is why we see the Sending build context
to Docker daemon 2.048 kB message. If there is a file named .dockerignore in the
current working directory with the list of files and directories (new line separated), then those
files and directories will be ignored by the build context. More details about .dockerignore
can be found at https://docs.docker.com/reference/builder/#the-
dockerignore-file.

https://docs.docker.com/reference/builder/#the-dockerignore-file
https://docs.docker.com/reference/builder/#the-dockerignore-file

Chapter 3

57

After executing each instruction, Docker commits the intermediate image and runs a
container with it for the next instruction. After the next instruction has run, Docker will
again commit the container to create the intermediate image and remove the intermediate
container created in the previous step.

For example, in the preceding screenshot, eb9f10384509 is an intermediate image
and c5d4dd2b3db9 and ffb9303ab124 are the intermediate containers. After the last
instruction is executed, the final image will be created. In this case, the final image is
4778dd1f1a7a:

 The -a option can be specified with the docker images command to look for
intermediate layers:

$ docker images -a

There's more…
The format of the Dockerfile is:

INSTRUCTION arguments

Generally, instructions are given in uppercase, but they are not case sensitive. They are
evaluated in order. A # at the beginning is treated like a comment.

Let's take a look at the different types of instructions:

ff FROM: This must be the first instruction of any Dockerfile, which sets the base image
for subsequent instructions. By default, the latest tag is assumed to be:
FROM <image>

Alternatively, consider the following tag:
FROM <images>:<tag>

There can be more than one FROM instruction in one Dockerfile to create
multiple images.

Working with Docker Images

58

If only image names, such as Fedora and Ubuntu are given, then the images will be
downloaded from the default Docker registry (Docker Hub). If you want to use private
or third-party images, then you have to mention this as follows:
 [registry_hostname[:port]/][user_name/](repository_
name:version_tag)

Here is an example using the preceding syntax:

FROM registry-host:5000/nkhare/f20:httpd

ff MAINTAINER: This sets the author for the generated image, MAINTAINER <name>.

ff RUN: We can execute the RUN instruction in two ways—first, run in the shell (sh -c):
RUN <command> <param1> ... <pamamN>

Second, directly run an executable:

RUN ["executable", "param1",...,"paramN"]

As we know with Docker, we create an overlay—a layer on top of another layer—to
make the resulting image. Through each RUN instruction, we create and commit a
layer on top of the earlier committed layer. A container can be started from any of the
committed layers.

By default, Docker tries to cache the layers committed by different RUN instructions,
so that it can be used in subsequent builds. However, this behavior can be turned off
using --no-cache flag while building the image.

ff LABEL: Docker 1.6 added a new feature to the attached arbitrary key-value pair
to Docker images and containers. We covered part of this in the Labeling and
filtering containers recipe in Chapter 2, Working with Docker Containers. To give
a label to an image, we use the LABEL instruction in the Dockerfile as LABEL
distro=fedora21.

ff CMD: The CMD instruction provides a default executable while starting a container. If
the CMD instruction does not have an executable (parameter 2), then it will provide
arguments to ENTRYPOINT.
CMD ["executable", "param1",...,"paramN"]

CMD ["param1", ... , "paramN"]

CMD <command> <param1> ... <pamamN>

Only one CMD instruction is allowed in a Dockerfile. If more than one is specified, then
only the last one will be honored.

ff ENTRYPOINT: This helps us configure the container as an executable. Similar to CMD,
there can be at max one instruction for ENTRYPOINT; if more than one is specified,
then only the last one will be honored:
ENTRYPOINT ["executable", "param1",...,"paramN"]

ENTRYPOINT <command> <param1> ... <pamamN>

Chapter 3

59

Once the parameters are defined with the ENTRYPOINT instruction, they cannot be
overwritten at runtime. However, ENTRYPOINT can be used as CMD, if we want to use
different parameters to ENTRYPOINT.

ff EXPOSE: This exposes the network ports on the container on which it will listen
at runtime:
EXPOSE <port> [<port> ...]

We can also expose a port while starting the container. We covered this in the
Exposing a port while starting a container recipe in Chapter 2, Working with Docker
Containers.

ff ENV: This will set the environment variable <key> to <value>. It will be passed all
the future instructions and will persist when a container is run from the resulting
image:
ENV <key> <value>

ff ADD: This copies files from the source to the destination:
ADD <src> <dest>

The following one is for the path containing white spaces:
ADD ["<src>"... "<dest>"]

�� <src>: This must be the file or directory inside the build directory from
which we are building an image, which is also called the context of the build.
A source can be a remote URL as well.

�� <dest>: This must be the absolute path inside the container in which the
files/directories from the source will be copied.

ff COPY: This is similar to ADD.COPY <src> <dest>:
COPY ["<src>"... "<dest>"]

ff VOLUME: This instruction will create a mount point with the given name and flag it as
mounting the external volume using the following syntax:
VOLUME ["/data"]

Alternatively, you can use the following code:

VOLUME /data

ff USER: This sets the username for any of the following run instructions using the
following syntax:
USER <username>/<UID>

Working with Docker Images

60

ff WORKDIR: This sets the working directory for the RUN, CMD, and ENTRYPOINT
instructions that follow it. It can have multiple entries in the same Dockerfile. A
relative path can be given which will be relative to the earlier WORKDIR instruction
using the following syntax:
WORKDIR <PATH>

ff ONBUILD: This adds trigger instructions to the image that will be executed later, when
this image will be used as the base image of another image. This trigger will run as
part of the FROM instruction in downstream Dockerfile using the following syntax:

ONBUILD [INSTRUCTION]

See also
ff Look at the help option of docker build:

$ docker build -help

ff The documentation on the Docker website https://docs.docker.com/
reference/builder/

Building an Apache image – a Dockerfile
example

I am going to refer Dockerfiles from the Fedora-Dockerfiles GitHub repo (https://github.
com/fedora-cloud/Fedora-Dockerfiles) after forking it. If you are using Fedora, then
you can also install the fedora-dockerfiles package to get the sample Dockerfiles in /
usr/share/fedora-dockerfiles. In each of the subdirectories, you will put a Dockerfile,
the supporting files and a README file.

The Fedora-Dockerfiles GitHub repo would have the latest examples and I highly recommend
that you try out latest bits.

Getting ready
Clone the Fedora-Dockerfiles Git repo using the following command:

$ git clone https://github.com/nkhare/Fedora-Dockerfiles.git

Now, go to the apache subdirectory:

$ cd Fedora-Dockerfiles/apache/

$ cat Dockerfile

FROM fedora:20

https://docs.docker.com/reference/builder/
https://docs.docker.com/reference/builder/
https://github.com/fedora-cloud/Fedora-Dockerfiles
https://github.com/fedora-cloud/Fedora-Dockerfiles

Chapter 3

61

MAINTAINER "Scott Collier" <scollier@redhat.com>

RUN yum -y update && yum clean all

RUN yum -y install httpd && yum clean all

RUN echo "Apache" >> /var/www/html/index.html

EXPOSE 80

Simple startup script to avoid some issues observed with container
restart

ADD run-apache.sh /run-apache.sh

RUN chmod -v +x /run-apache.sh

CMD ["/run-apache.sh"]

The other supporting files are:

ff README.md: This is the README file

ff run-apache.sh: This is the script to run HTTPD in the foreground

ff LICENSE: This is the GPL license

How to do it…
With the following build command, we can build a new image:

$ docker build -t fedora/apache .

Sending build context to Docker daemon 23.55 kB

Sending build context to Docker daemon

Step 0 : FROM fedora:20

 ---> 6cece30db4f9

Step 1 : MAINTAINER "Scott Collier" <scollier@redhat.com>

 ---> Running in 2048200e6338

 ---> ae8e3c258061

Removing intermediate container 2048200e6338

Step 2 : RUN yum -y update && yum clean all

 ---> Running in df8bc8ee3117

.... Installing/Update packages ...

Cleaning up everything

Working with Docker Images

62

 ---> 5a6d449e59f6

Removing intermediate container df8bc8ee3117

Step 3 : RUN yum -y install httpd && yum clean all

 ---> Running in 24449e520f18

.... Installing HTTPD ...

Cleaning up everything

 ---> ae1625544ef6

Removing intermediate container 24449e520f18

Step 4 : RUN echo "Apache" >> /var/www/html/index.html

 ---> Running in a35cbcd8d97a

 ---> 251eea31b3ce

Removing intermediate container a35cbcd8d97a

Step 5 : EXPOSE 80

 ---> Running in 734e54f4bf58

 ---> 19503ae2a8cf

Removing intermediate container 734e54f4bf58

Step 6 : ADD run-apache.sh /run-apache.sh

 ---> de35d746f43b

Removing intermediate container 3eec9a46da64

Step 7 : RUN chmod -v +x /run-apache.sh

 ---> Running in 3664efba393f

mode of '/run-apache.sh' changed from 0644 (rw-r--r--) to 0755 (rwxr-
xr-x)

 ---> 1cb729521c3f

Removing intermediate container 3664efba393f

Step 8 : CMD /run-apache.sh

 ---> Running in cd5e7534e815

 ---> 5f8041b6002c

Removing intermediate container cd5e7534e815

Successfully built 5f8041b6002c

How it works…
The build process takes a base image, installs the required HTTPD package and creates an
HTML page. Then, it exposes port 80 to serve the web page and sets instructions to start
Apache at the start of the container.

Chapter 3

63

There's more…
Let's run the container from the created image, get its IP address, and access the web page
from it:

See also
ff Look at the help option of docker build:

$ docker build --help

ff The documentation on the Docker website https://docs.docker.com/
reference/builder/

Accessing Firefox from a container – a
Dockerfile example

We can do something more interesting through a Dockerfile, such as creating a container that
just runs Firefox. This kind of use case can help run multiple browsers of different versions on
the same machine, which can be very helpful in doing multibrowser testing.

Getting ready
Clone the Fedora-Dockerfiles Git repo using the following command:

$ git clone https://github.com/nkhare/Fedora-Dockerfiles.git

Then, go to the firefox subdirectory.

$ cd Fedora-Dockerfiles/firefox

$ cat Dockerfile

FROM fedora

MAINTAINER scollier <emailscottcollier@gmail.com>

Install the appropriate software

RUN yum -y update && yum clean all

RUN yum -y install x11vnc \

https://docs.docker.com/reference/builder/
https://docs.docker.com/reference/builder/

Working with Docker Images

64

firefox xorg-x11-server-Xvfb \

xorg-x11-twm tigervnc-server \

xterm xorg-x11-font \

xulrunner-26.0-2.fc20.x86_64 \

dejavu-sans-fonts \

dejavu-serif-fonts \

xdotool && yum clean all

Add the xstartup file into the image

ADD ./xstartup /

RUN mkdir /.vnc

RUN x11vnc -storepasswd 123456 /.vnc/passwd

RUN \cp -f ./xstartup /.vnc/.

RUN chmod -v +x /.vnc/xstartup

RUN sed -i '/\/etc\/X11\/xinit\/xinitrc-common/a [-x
/usr/bin/firefox] && /usr/bin/firefox &' /etc/X11/xinit/xinitrc

EXPOSE 5901

CMD ["vncserver", "-fg"]

ENTRYPOINT ["vncserver", "-fg"]

Supporting files:

ff README.md: This is a README file

ff LICENSE: This is the GPL license

ff xstartup: This is the script to set up the X11 environment

How to do it…
Run the following command to build the image:

$ docker build -t fedora/firefox .

Sending build context to Docker daemon 24.58 kB

Sending build context to Docker daemon

Step 0 : FROM fedora

 ---> 834629358fe2

Step 1 : MAINTAINER scollier <emailscottcollier@gmail.com>

Chapter 3

65

 ---> Running in ae0fd3c2cb2e

 ---> 7ffc6c9af827

Removing intermediate container ae0fd3c2cb2e

Step 2 : RUN yum -y update && yum clean all

 ---> Running in 1c67b8772718

..... Installing/Update packages ...

 ---> 075d6ceef3d0

Removing intermediate container 1c67b8772718

Step 3 : RUN yum -y install x11vnc firefox xorg-x11-server-Xvfb xorg-
x11-twm tigervnc-server xterm xorg-x11-font xulrunner-26.0-
2.fc20.x86_64 dejavu-sans-fonts dejavu-serif-fonts xdotool && yum
clean all

..... Installing required packages packages ...

Cleaning up everything

 ---> 986be48760a6

Removing intermediate container c338a1ad6caf

Step 4 : ADD ./xstartup /

 ---> 24fa081dcea5

Removing intermediate container fe98d86ba67f

Step 5 : RUN mkdir /.vnc

 ---> Running in fdb8fe7e697a

 ---> 18f266ace765

Removing intermediate container fdb8fe7e697a

Step 6 : RUN x11vnc -storepasswd 123456 /.vnc/passwd

 ---> Running in c5b7cdba157f

stored passwd in file: /.vnc/passwd

 ---> e4fcf9b17aa9

Removing intermediate container c5b7cdba157f

Step 7 : RUN \cp -f ./xstartup /.vnc/.

 ---> Running in 21d0dc4edb4e

 ---> 4c53914323cb

Removing intermediate container 21d0dc4edb4e

Step 8 : RUN chmod -v +x /.vnc/xstartup

 ---> Running in 38f18f07c996

mode of '/.vnc/xstartup' changed from 0644 (rw-r--r--) to 0755 (rwxr-
xr-x)

 ---> caa278024354

Working with Docker Images

66

Removing intermediate container 38f18f07c996

Step 9 : RUN sed -i '/\/etc\/X11\/xinit\/xinitrc-common/a [-x /usr/bin/
firefox] && /usr/bin/firefox &' /etc/X11/xinit/xinitrc

 ---> Running in 233e99cab02c

 ---> 421e944ac8b7

Removing intermediate container 233e99cab02c

Step 10 : EXPOSE 5901

 ---> Running in 530cd361cb3c

 ---> 5de01995c156

Removing intermediate container 530cd361cb3c

Step 11 : CMD vncserver -fg

 ---> Running in db89498ae8ce

 ---> 899be39b7feb

Removing intermediate container db89498ae8ce

Successfully built 899be39b7feb

How it works…
We start with the base Fedora image, install X Windows System, Firefox, a VNC server, and other
packages. We then set up the VNC server to start X Windows System, which will start Firefox.

There's more...
ff To start the container, run the following command:

$ docker run -it -p 5901:5901 fedora/firefox

And give 123456 as the password.

ff While running the container, we mapped the 5901 port of the host to 5901 port of
the container. In order to connect to the VNC server inside the container, just run the
following command from another terminal:

$ vncviewer localhost:1

Alternatively, from another machine in the network, replace localhost with the
Docker host's IP address or FQDN.

See also
ff Look at the help option of docker build:

$ docker build --help

Chapter 3

67

ff The documentation on the Docker website https://docs.docker.com/
reference/builder/

Building a WordPress image – a Dockerfile
example

So far we have seen the example of running just one service inside a container. If we want to
run an application, which requires us to run one or more services simultaneously, then, either
we will need to run them on the same container or run them on different containers and link
them together. WordPress is one such example that requires a database and web service.

Docker only likes one process per container running in the foreground. Thus, in order to make
Docker happy, we have a controlling process that manages the database and web services.
The controlling process, in this case, is supervisord (http://supervisord.org/). This is a
trick we are using to make Docker happy.

Again, we will use a Dockerfile from the Fedora-Dockerfiles repository.

Getting ready
Clone the Fedora-Dockerfiles Git repo using the following command:

$ git clone https://github.com/nkhare/Fedora-Dockerfiles.git

Then, go to the wordpress_single_container subdirectory:

$ cd Fedora-Dockerfiles/systemd/wordpress_single_container

$ cat Dockerfile

FROM fedora

MAINTAINER scollier <scollier@redhat.com>

RUN yum -y update && yum clean all

RUN yum -y install httpd php php-mysql php-gd pwgen supervisor bash-
completion openssh-server psmisc tar && yum clean all

ADD ./start.sh /start.sh

ADD ./foreground.sh /etc/apache2/foreground.sh

ADD ./supervisord.conf /etc/supervisord.conf

RUN echo %sudo ALL=NOPASSWD: ALL >> /etc/sudoers

ADD http://wordpress.org/latest.tar.gz /wordpress.tar.gz

RUN tar xvzf /wordpress.tar.gz

RUN mv /wordpress/* /var/www/html/.

RUN chown -R apache:apache /var/www/

https://docs.docker.com/reference/builder/
https://docs.docker.com/reference/builder/
http://supervisord.org/

Working with Docker Images

68

RUN chmod 755 /start.sh

RUN chmod 755 /etc/apache2/foreground.sh

RUN mkdir /var/run/sshd

EXPOSE 80

EXPOSE 22

CMD ["/bin/bash", "/start.sh"]

The supporting files used in the preceding code are explained as follows:

ff foreground.sh: This is a script to run HTTPS in the foreground.

ff LICENSE, LICENSE.txt, and UNLICENSE.txt: These files contain the license
information.

ff README.md: This is a README file.

ff supervisord.conf: This is a resulting container which will have to run SSHD,
MySQL, and HTTPD at the same time. In this particular case, the supervisor is used to
manage them. It is a configuration file of the supervisor. More information about this
can be found at http://supervisord.org/.

ff start.sh: This is a script to set up MySQL, HTTPD, and to start the supervisor
daemon.

How to do it…
$ docker build -t fedora/wordpress .

Sending build context to Docker daemon 41.98 kB

Sending build context to Docker daemon

Step 0 : FROM fedora

 ---> 834629358fe2

Step 1 : MAINTAINER scollier <scollier@redhat.com>

 ---> Using cache

 ---> f21eaf47c9fc

Step 2 : RUN yum -y update && yum clean all

 ---> Using cache

 ---> a8f497a6e57c

Step 3 : RUN yum -y install httpd php php-mysql php-gd pwgen supervisor
bash-completion openssh-server psmisc tar && yum clean all

 ---> Running in 303234ebf1e1

.... updating/installing packages

Cleaning up everything

 ---> cc19a5f5c4aa

http://supervisord.org/

Chapter 3

69

Removing intermediate container 303234ebf1e1

Step 4 : ADD ./start.sh /start.sh

 ---> 3f911077da44

Removing intermediate container c2bd643236ef

Step 5 : ADD ./foreground.sh /etc/apache2/foreground.sh

 ---> 3799902a60c5

Removing intermediate container c99b8e910009

Step 6 : ADD ./supervisord.conf /etc/supervisord.conf

 ---> f232433b8925

Removing intermediate container 0584b945f6f7

Step 7 : RUN echo %sudo ALL=NOPASSWD: ALL >> /etc/sudoers

 ---> Running in 581db01d7350

 ---> ec686e945dfd

Removing intermediate container 581db01d7350

Step 8 : ADD http://wordpress.org/latest.tar.gz /wordpress.tar.gz

Downloading [==>] 6.186
MB/6.186 MB

 ---> e4e902c389a4

Removing intermediate container 6bfecfbe798d

Step 9 : RUN tar xvzf /wordpress.tar.gz

 ---> Running in cd772500a776

.......... untarring wordpress

---> d2c5176228e5

Removing intermediate container cd772500a776

Step 10 : RUN mv /wordpress/* /var/www/html/.

 ---> Running in 7b19abeb509c

 ---> 09400817c55f

Removing intermediate container 7b19abeb509c

Step 11 : RUN chown -R apache:apache /var/www/

 ---> Running in f6b9b6d83b5c

 ---> b35a901735d9

Removing intermediate container f6b9b6d83b5c

Step 12 : RUN chmod 755 /start.sh

 ---> Running in 81718f8d52fa

 ---> 87470a002e12

Removing intermediate container 81718f8d52fa

Working with Docker Images

70

Step 13 : RUN chmod 755 /etc/apache2/foreground.sh

 ---> Running in 040c09148e1c

 ---> 1c76f1511685

Removing intermediate container 040c09148e1c

Step 14 : RUN mkdir /var/run/sshd

 ---> Running in 77177a33aee0

 ---> f339dd1f3e6b

Removing intermediate container 77177a33aee0

Step 15 : EXPOSE 80

 ---> Running in f27c0b96d17f

 ---> 6078f0d7b70b

Removing intermediate container f27c0b96d17f

Step 16 : EXPOSE 22

 ---> Running in eb7c7d90b860

 ---> 38f36e5c7cab

Removing intermediate container eb7c7d90b860

Step 17 : CMD /bin/bash /start.sh

 ---> Running in 5635fe4783da

 ---> c1a327532355

Removing intermediate container 5635fe4783da

Successfully built c1a327532355

How it works…
As with the other recipes, we start with the base image, install the required packages,
and copy the supporting files. We will then set up sudo, download, and untar WordPress
inside the HTTPD document root. After this, we expose the ports and run the start.sh scripts,
which sets up MySQL, WordPress, HTTPS permissions and gives control to supervisord.
In the supervisord.conf, you will see entries, such as the following services that
supervisord manages:

[program:mysqld]

command=/usr/bin/mysqld_safe

[program:httpd]

command=/etc/apache2/foreground.sh

stopsignal=6

[program:sshd]

command=/usr/sbin/sshd -D

Chapter 3

71

stdout_logfile=/var/log/supervisor/%(program_name)s.log

stderr_logfile=/var/log/supervisor/%(program_name)s.log

autorestart=true

There's more…
ff Start the container, get its IP address and open it through a web browser. You should

see the Welcome screen, as shown in the following screenshot, after doing the
language selection:

Working with Docker Images

72

ff It is now possible to run systemd inside the container, which is a more preferred way.
Systemd can manage more than one service .You can look at the example of systemd
at https://github.com/fedora-cloud/Fedora-Dockerfiles/tree/
master/systemd.

See also
ff Look at the help option of docker build:

$ docker build --help

ff The documentation on the Docker website https://docs.docker.com/
reference/builder/

Setting up a private index/registry
As we saw earlier, the public Docker registry is the available Docker Hub (https://
registry.hub.docker.com/) through which users can push/pull images. We can also
host a private registry either on a local environment or on the cloud. There are a few ways
to set up the local registry:

ff Use the Docker registry from Docker Hub

ff Build an image from Dockerfile and run a registry container:
https://github.com/fedora-cloud/Fedora-Dockerfiles/tree/master/
registry

ff Configure the distribution-specific package such as Fedora, which provides the
docker-registry package that you can install and configure.

The easiest way to set it up is through the registry container itself.

Getting ready
Make sure the Docker daemon is running on the host and you can connect through the
Docker client.

How to do it…
1.	 To run the registry on the container, run the following command:

$ docker run -p 5000:5000 registry

2.	 To test the newly created registry, perform the following steps:

https://github.com/fedora-cloud/Fedora-Dockerfiles/tree/master/systemd
https://github.com/fedora-cloud/Fedora-Dockerfiles/tree/master/systemd
https://docs.docker.com/reference/builder/
https://docs.docker.com/reference/builder/
https://registry.hub.docker.com/
https://registry.hub.docker.com/
https://github.com/fedora-cloud/Fedora-Dockerfiles/tree/master/registry
https://github.com/fedora-cloud/Fedora-Dockerfiles/tree/master/registry

Chapter 3

73

1.	 Start a container and its ID by using the following command:
	 $ ID='docker run -d -i fedora /bin/bash'

2.	 If needed, attach to the newly created container and make some changes.
Then, commit those changes to the local repository:

	 $ docker commit $ID fedora-20

3.	 To push the image to the local registry, we need to tag the image with the hostname
or IP address of the registry host. Let's say our registry host is registry-host;
then, to tag it, use the following command:
$ docker tag fedora-20 registry-host:5000/nkhare/f20

4.	 As we have not configured HTTPS correctly while starting the registry, we will get
an error such as the ping attempt failed with error: Get https://
dockerhost:5000/v1/_ping, which is expected. For our example to work, we
need to add the --insecure-registry registry-host:5000 option to the
daemon. If you have started the Docker daemon manually, then we have to run the
command as follows to allow insecure registry:
$ docker -d --insecure-registry registry-host:5000

5.	 To push the image, use the following command:
$ docker push registry-host:5000/nkhare/f20

6.	 To pull the image from the local registry, run the following command:
$ docker pull registry-host:5000/nkhare/f20

How it works…
The preceding command to pull the image will download the official registry image from
Docker Hub and run it on port 5000. The -p option publishes the container port to the host
system's port. We will look at the details about port publishing in the next chapter.

The registry can also be configured on any existing servers using the docker-registry app. The
steps to do this are available at the docker-registry GitHub page:

https://github.com/docker/docker-registry

There's more…
Let's look at Dockerfile of docker-registry to understand how the registry image is being
created and how to set different configuration options:

VERSION 0.1

DOCKER-VERSION 0.7.3

Working with Docker Images

74

AUTHOR: Sam Alba <sam@docker.com>

DESCRIPTION: Image with docker-registry project and dependencies

TO_BUILD: docker build -rm -t registry .

TO_RUN: docker run -p 5000:5000 registry

Latest Ubuntu LTS

FROM ubuntu:14.04

Update

RUN apt-get update \

Install pip

 && apt-get install -y \

 swig \

 python-pip \

Install deps for backports.lzma (python2 requires it)

 python-dev \

 python-mysqldb \

 python-rsa \

 libssl-dev \

 liblzma-dev \

 libevent1-dev \

 && rm -rf /var/lib/apt/lists/*

COPY . /docker-registry

COPY ./config/boto.cfg /etc/boto.cfg

Install core

RUN pip install /docker-registry/depends/docker-registry-core

Install registry

RUN pip install file:///docker-registry#egg=docker-
registry[bugsnag,newrelic,cors]

RUN patch \

 $(python -c 'import boto; import os; print
os.path.dirname(boto.__file__)')/connection.py \

Chapter 3

75

 < /docker-registry/contrib/boto_header_patch.diff

ENV DOCKER_REGISTRY_CONFIG /docker-registry/config/config_sample.yml

ENV SETTINGS_FLAVOR dev

EXPOSE 5000

CMD ["docker-registry"]

With the preceding Dockerfile, we will:

ff Take Ubuntu's base image install/update packages

ff Copy the docker-registry source code inside the image

ff Use the pip install docker-registry

ff Set up the configuration file to use while running the registry using the environment
variable

ff Set up the flavor to use while running the registry using the environment variable

ff Expose port 5000

ff Run the registry executable

Flavors in the configuration file (/docker-registry/config/config_sample.yml)
provide different ways to configure the registry. With the preceding Dockerfile, we will set the
dev flavor using the environment variables. The different types of flavors are:

ff common: This is used by all the other flavors as base settings

ff local: This stores data on the local filesystem

ff s3: This stores data in an AWS S3 bucket

ff dev: This is the basic configuration using the local flavors

ff test: This is used by unit tests

ff prod: This is the production configuration (basically a synonym for the S3 flavor)

ff gcs: This stores data in Google cloud storage

ff swift: This stores data in OpenStack Swift

ff glance: This stores data in OpenStack Glance, with a fallback to the local storage

ff glance-swift: This stores data in OpenStack Glance, with a fallback to Swift

ff elliptics: This stores data in Elliptics key-value storage

For each of preceding flavors, different configuration options such as loglevel, authentication,
and so on are available. The documentation for all of the options are available on the GitHub
page of docker-registry, which I mentioned earlier.

Working with Docker Images

76

See also
ff The documentation on GitHub https://github.com/docker/docker-registry

Automated builds – with GitHub and
Bitbucket

We have seen earlier how to push the Docker images to Docker Hub. Docker Hub allows us
to create automated images from a GitHub/Bitbucket repository using its build clusters. The
GitHub/Bitbucket repository should contain the Dockerfile and the content required to copy/
add inside the image. Let's look at a GitHub example in the upcoming sections.

Getting ready
You will need an account on Docker Hub and GitHub. You will also need a GitHub repository
with a corresponding Dockerfile at the top level.

How to do it…
1.	 Log in to Docker Hub (https://hub.docker.com/) and click on the green

plus sign. Add the Repository icon on the top right-hand side corner and click on
Automated Build. Select GitHub as a source to use for automated build. Then,
select the Public and Private (recommended) option to connect to GitHub. Provide
the GitHub username/password when prompted. Select the GitHub repository to
perform automated build.

https://github.com/docker/docker-registry
https://hub.docker.com/

Chapter 3

77

2.	 After selecting the GitHub repository, it will ask you to pick its branch to use for
automated build. It will also ask for a tag name to use after the image it automatically
built. By default, the latest tag name will be used. Then, click on the Save and
trigger build button to start the automated build process. That's it!! Your build is now
submitted. You can click on the build status to check the status of the build.

How it works…
When we select a GitHub repository for automated build, GitHub enables the Docker service
for that repository. You can look at the Settings section of the GitHub repository for more
configuration. Whenever we make any changes to this GitHub repository, such as commits, an
automated build gets triggered using the Dockerfile that resides in the GitHub repository.

Working with Docker Images

78

There's more…
You can get the details such as the Dockerfile, build details tags, and other information, by
going to the Your Repositories section. It also has the details of how to pull your image:

The images that get created using the automated build process cannot be pushed through the
docker push command.

You can change the settings in the Webhooks & Services section of the repository on GitHub
to unregister the Docker service. This will stop doing the automated builds.

Chapter 3

79

See also
ff The steps for setting up automated build with Bitbucket are almost identical. The

hook for automated build gets configured under the Hooks section of Bitbucket
repository's Settings section.

ff The documentation on the Docker website https://docs.docker.com/docker-
hub/builds/

Creating the base image – using supermin
Earlier in this chapter, we used the FROM instruction to pick the base image to start with. The
image we create can become the base image to containerize another application and so on.
From the very beginning to this chain, we will have a base image from the underlying Linux
distribution that we want to use such as Fedora, Ubuntu, CentOS, and so on.

To build such a base image, we will need to have a distribution-specific base system installed
into a directory, which can then be imported as an image to Docker. With chroot utility, we
can fake a directory as the root filesystem and then put all the necessary files inside it before
importing it as a Docker image. Supermin and Debootstrap are the kind of tools that can help
us make the preceding process easier.

Supermin is a tool to build supermin appliances. These are tiny appliances, which get fully
instantiated on the fly. Earlier this program was called febootstrap.

Getting ready
Install supermin on the system where you want to build the base image. You can install
supermin on Fedora with the following command:

$ yum install supermin

How to do it…
1.	 Using the prepare mode install bash, coreutils, and the related dependencies

inside a directory.
$ supermin --prepare -o OUTPUTDIR PACKAGE [PACKAGE ...]

Here's an example using the preceding syntax:

$ supermin --prepare bash coreutils -o f21_base

2.	 Now, with the build mode, create a chrooted environment for the base image:
$ supermin --build -o OUTPUTDIR -f chroot|ext2 INPUT [INPUT ...]

https://docs.docker.com/docker-hub/builds/
https://docs.docker.com/docker-hub/builds/

Working with Docker Images

80

Here's an example using the preceding syntax :

$ supermin --build --format chroot f21_base -o f21_image

3.	 If we do ls on the output directory, we will see a directory tree similar to any Linux
root filesystem:
$ ls f21_image/

bin boot dev etc home lib lib64 media mnt opt proc root
run sbin srv sys tmp usr var

4.	 Now we can export the directory as a Docker image with the following command:
$ tar -C f21_image/ -c . | docker import - nkhare/f21_base

d6db8b798dee30ad9c84480ef7497222f063936a398ecf639e60599eed7f6560

5.	 Now, look at the docker images output. You should have a new image with
nkhare/f21_base as the name.

How it works…
Supermins has two modes, prepare and build. With the prepare mode, it just puts all the
requested packages with their dependencies inside a directory without copying the host OS
specific files.

With the build mode, the previously created supermin appliance from the prepare mode
gets converted into a full blown bootable appliance with all the necessary files. This step
will copy the required files/binaries from the host machine to the appliance directory, so the
packages must be installed on the host machines that you want to use in the appliance.

The build mode has two output formats, chroot, and ext2. With the chroot format, the directory
tree gets written into the directory, and with the ext2 format, a disk image gets created. We
exported the directory created through the chroot format to create the Docker image.

There's more…
Supermin is not specific to Fedora and should work on any Linux distribution.

See also
ff Look at the man page of supermin for more information using the following command:

$ man supermin

ff The online documentation http://people.redhat.com/~rjones/supermin/

ff The GitHub repository https://github.com/libguestfs/supermin

http://people.redhat.com/~rjones/supermin/
https://github.com/libguestfs/supermin

Chapter 3

81

Creating the base image – using Debootstrap
Debootstrap is a tool to install a Debian-based system into a directory of an already installed
system.

Getting ready
Install debootstrap on the Debian-based system using the following command:

$ apt-get install debootstrap

How to do it…
The following command can be used to create the base image using Debootstrap:

$ debootstrap [OPTION...] SUITE TARGET [MIRROR [SCRIPT]]

SUITE refers to the release code name and MIRROR is the respective repository. If you
wanted to create the base image of Ubuntu 14.04.1 LTS (Trusty Tahr), then do the following:

1.	 Create a directory on which you want to install the OS. Debootstrap also creates the
chroot environment to install a package, as we saw earlier with supermin.
$ mkdir trusty_chroot

2.	 Now, using debootstrap, install Trusty Tahr inside the directory we created earlier:
$ debootstrap trusty ./trusty_chroot
http://in.archive.ubuntu.com/ubuntu/

3.	 You will see the directory tree similar to any Linux root filesystem, inside the directory
in which Trusty Tahr is installed.
$ ls ./trusty_chroot

bin boot dev etc home lib lib64 media mnt opt proc
root run sbin srv sys tmp usr var

4.	 Now we can export the directory as a Docker image with the following command:
$ tar -C trusty_chroot/ -c . | docker import -
nkhare/trusty_base

5.	 Now, look at the docker images output. You should have a new image with
nkhare/trusty_base as the name.

Working with Docker Images

82

See also
ff The Debootstrap wiki page https://wiki.debian.org/Debootstrap.

ff There are a few other ways to create base images. You can find links to them at
https://docs.docker.com/articles/baseimages/.

Visualizing dependencies between layers
As the number of images grows, it becomes difficult to find relation between them. There are a
few utilities for which you can find the relation between images.

Getting ready
One or more Docker images on the host running the Docker daemon.

How to do it…
1.	 Run the following command to get a tree-like view of the images:

$ docker images -t

How it works…
The dependencies between layers will be fetched from the metadata of the Docker images.

There's more…
From --viz to docker images, we can see dependencies graphically; to do this, you will
need to have the graphviz package installed:

$ docker images --viz | dot -Tpng -o /tmp/docker.png

$ display /tmp/docker.png

As it states in the warning that appears when running the preceding commands, the -t and
--viz options might get deprecated soon.

See also
ff The following project tries to visualize Docker data as well by using raw JSON output

from Docker https://github.com/justone/dockviz

https://wiki.debian.org/Debootstrap
https://docs.docker.com/articles/baseimages/
https://github.com/justone/dockviz

83

4
Network and Data

Management for
Containers

In this chapter, we will cover the following recipes:

ff Accessing containers from outside

ff Managing data in containers

ff Linking two or more containers

ff Developing a LAMP application by linking containers

ff Networking of multihost container with Flannel

ff Assigning IPv6 addresses to containers

Introduction
Until now, we have worked with a single container and accessed it locally. But as we move to
more real world use cases, we will need to access the container from the outside world, share
external storage within the container, communicate with containers running on other hosts,
and so on. In this chapter, we'll see how to fulfill some of those requirements. Let's start by
understanding Docker's default networking setup and then go to advanced use cases.

Network and Data Management for Containers

84

When the Docker daemon starts, it creates a virtual Ethernet bridge with the name docker0.
For example, we will see the following with the ip addr command on the system that runs
the Docker daemon:

As we can see, docker0 has the IP address 172.17.42.1/16. Docker randomly
chooses an address and subnet from a private range defined in RFC 1918
(https://tools.ietf.org/html/rfc1918). Using this bridged interface,
containers can communicate with each other and with the host system.

By default, every time Docker starts a container, it creates a pair of virtual interfaces,
one end of which is attached to the host system and other end to the created container.
Let's start a container and see what happens:

The end that is attached to the eth0 interface of the container gets the 172.17.0.1/16 IP
address. We also see the following entry for the other end of the interface on the host system:

Now, let's create a few more containers and look at the docker0 bridge with the brctl
command, which manages Ethernet bridges:

https://tools.ietf.org/html/rfc1918

Chapter 4

85

Every veth* binds to the docker0 bridge, which creates a virtual subnet shared between the
host and every Docker container. Apart from setting up the docker0 bridge, Docker creates
IPtables NAT rules, such that all containers can talk to the external world by default but not
the other way around. Let's look at the NAT rules on the Docker host:

If we try to connect to the external world from a container, we will have to go through the
Docker bridge that was created by default:

Later in this chapter, we will see how the external world can connect to a container.

When starting a container, we have a few modes to select its networking:

ff --net=bridge: This is the default mode that we just saw. So, the preceding
command that we used to start the container can be written as follows:
$ docker run -i -t --net=bridge centos /bin/bash

Network and Data Management for Containers

86

ff --net=host: With this option, Docker does not create a network namespace for the
container; instead, the container will network stack with the host. So, we can start the
container with this option as follows:
 $ docker run -i -t --net=host centos bash

We can then run the ip addr command within the container as seen here:

We can see all the network devices attached to the host. An example of using such
a configuration is to run the nginx reverse proxy within a container to serve the web
applications running on the host.

ff --net=container:NAME_or_ID: With this option, Docker does not create a new
network namespace while starting the container but shares it from another container.
Let's start the first container and look for its IP address:
$ docker run -i -t --name=centos centos bash

Chapter 4

87

Now start another as follows:
$ docker run -i -t --net=container:centos ubuntu bash

As we can see, both containers contain the same IP address.

Containers in a Kubernetes (http://kubernetes.io/) Pod use this trick to
connect with each other. We will revisit this in Chapter 8, Docker Orchestration and
Hosting Platforms.

ff --net=none: With this option, Docker creates the network namespace inside the
container but does not configure networking.

For more information about the different networking we discussed in the
preceding section, visit https://docs.docker.com/articles/
networking/#how-docker-networks-a-container.

From Docker 1.2 onwards, it is also possible to change /etc/host, /etc/hostname, and
/etc/resolv.conf on a running container. However, note that these are just used to run a
container. If it restarts, we will have to make the changes again.

So far, we have looked at networking on a single host, but in the real world, we would like to
connect multiple hosts and have a container from one host to talk to a container from another
host. Flannel (https://github.com/coreos/flannel), Weave (https://github.
com/weaveworks/weave), Calio (http://www.projectcalico.org/getting-
started/docker/), and Socketplane (http://socketplane.io/) are some solutions
that offer this functionality. Later in this chapter, we will see how to configure Flannel to
multihost networking. Socketplane joined Docker Inc in March '15.

Community and Docker are building a Container Network Model (CNM) with libnetwork
(https://github.com/docker/libnetwork), which provides a native Go
implementation to connect containers. More information on this development can be found at
http://blog.docker.com/2015/04/docker-networking-takes-a-step-in-the-
right-direction-2/.

http://kubernetes.io/
https://docs.docker.com/articles/networking/#how-docker-networks-a-container
https://docs.docker.com/articles/networking/#how-docker-networks-a-container
https://github.com/coreos/flannel
https://github.com/weaveworks/weave
https://github.com/weaveworks/weave
http://www.projectcalico.org/getting-started/docker/
http://www.projectcalico.org/getting-started/docker/
http://socketplane.io/
https://github.com/docker/libnetwork
http://blog.docker.com/2015/04/docker-networking-takes-a-step-in-the-right-direction-2/
http://blog.docker.com/2015/04/docker-networking-takes-a-step-in-the-right-direction-2/

Network and Data Management for Containers

88

Accessing containers from outside
Once the container is up, we would like to access it from outside. If you have started the
container with the --net=host option, then it can be accessed through the Docker host IP.
With --net=none, you can attach the network interface from the public end or through other
complex settings. Let's see what happens in by default—where packets are forwarded from the
host network interface to the container.

Getting ready
Make sure the Docker daemon is running on the host and you can connect through the
Docker client.

How to do it…
1.	 Let's start a container with the -P option:

$ docker run --expose 80 -i -d -P --name f20 fedora /bin/bash

This automatically maps any network port of the container to a random high port of
the Docker host between 49000 to 49900.

In the PORTS section, we see 0.0.0.0:49159->80/tcp, which is of the following
form:
<Host Interface>:<Host Port> -> <Container
Interface>/<protocol>

So, in case any request comes on port 49159 from any interface on the Docker host,
the request will be forwarded to port 80 of the centos1 container.

We can also map a specific port of the container to the specific port of the host using
the -p option:

$ docker run -i -d -p 5000:22 --name centos2 centos /bin/bash

In this case, all requests coming on port 5000 from any interface on the Docker host will be
forwarded to port 22 of the centos2 container.

Chapter 4

89

How it works…
With the default configuration, Docker sets up the firewall rule to forward the connection from
the host to the container and enables IP forwarding on the Docker host:

As we can see from the preceding example, a DNAT rule has been set up to forward all traffic
on port 5000 of the host to port 22 of the container.

There's more…
By default, with the -p option, Docker will forward all the requests coming to any interface to
the host. To bind to a specific interface, we can specify something like the following:

$ docker run -i -d -p 192.168.1.10:5000:22 --name f20 fedora /bin/bash

In this case, only requests coming to port 5000 on the interface that has the IP
192.168.1.10 on the Docker host will be forwarded to port 22 of the f20 container. To map
port 22 of the container to the dynamic port of the host, we can run following command:

$ docker run -i -d -p 192.168.1.10::22 --name f20 fedora /bin/bash

We can bind multiple ports on containers to ports on hosts as follows:

$ docker run -d -i -p 5000:22 -p 8080:80 --name f20 fedora /bin/bash

We can look up the public-facing port that is mapped to the container's port as follows:

$ docker port f20 80

0.0.0.0:8080

To look at all the network settings of a container, we can run the following command:

$ docker inspect -f "{{ .NetworkSettings }}" f20

Network and Data Management for Containers

90

See also
ff Networking documentation on the Docker website at https://docs.docker.com/

articles/networking/.

Managing data in containers
Any uncommitted data or changes in containers get lost as soon as containers are deleted. For
example, if you have configured the Docker registry in a container and pushed some images,
as soon as the registry container is deleted, all of those images will get lost if you have not
committed them. Even if you commit, it is not the best practice. We should try to keep containers
as light as possible. The following are two primary ways to manage data with Docker:

ff Data volumes: From the Docker documentation (https://docs.docker.com/
userguide/dockervolumes/), a data volume is a specially-designated directory
within one or more containers that bypasses the Union filesystem to provide several
useful features for persistent or shared data:

�� Volumes are initialized when a container is created. If the container's base
image contains data at the specified mount point, that data is copied into
the new volume.

�� Data volumes can be shared and reused between containers.

�� Changes to a data volume are made directly.

�� Changes to a data volume will not be included when you update an image.

�� Volumes persist until no containers use them.

ff Data volume containers: As a volume persists until no container uses it, we can use
the volume to share persistent data between containers. So, we can create a named
volume container and mount the data to another container.

Getting ready
Make sure that the Docker daemon is running on the host and you can connect through the
Docker client.

How to do it...
1.	 Add a data volume. With the -v option with the docker run command, we add a

data volume to the container:
$ docker run -t -d -P -v /data --name f20 fedora /bin/bash

https://docs.docker.com/articles/networking/
https://docs.docker.com/articles/networking/
https://docs.docker.com/userguide/dockervolumes/
https://docs.docker.com/userguide/dockervolumes/

Chapter 4

91

We can have multiple data volumes within a container, which can be created by
adding -v multiple times:
$ docker run -t -d -P -v /data -v /logs --name f20 fedora
/bin/bash

The VOLUME instruction can be used in a Dockerfile to add data
volume as well by adding something similar to VOLUME ["/data"].

We can use the inspect command to look at the data volume details of a container:
$ docker inspect -f "{{ .Config.Volumes }}" f20

$ docker inspect -f "{{ .Volumes }}" f20

If the target directory is not there within the container, it will be created.

2.	 Next, we mount a host directory as a data volume. We can also map a host directory
to a data volume with the -v option:
$ docker run -i -t -v
/source_on_host:/destination_on_container fedora /bin/bash

Consider the following example:
$ docker run -i -t -v /srv:/mnt/code fedora /bin/bash

This can be very useful in cases such as testing code in different environments,
collecting logs in central locations, and so on. We can also map the host directory in
read-only mode as follows:
$ docker run -i -t -v /srv:/mnt/code:ro fedora /bin/bash

We can also mount the entire root filesystem of the host within the container with the
following command:
$ docker run -i -t -v /:/host:ro fedora /bin/bash

Network and Data Management for Containers

92

If the directory on the host (/srv) does not exist, then it will be created, given
that you have permission to create one. Also, on the Docker host where SELinux
is enabled and if the Docker daemon is configured to use SELinux (docker -d
--selinux-enabled), you will see the permission denied error if you try to
access files on mounted volumes until you relabel them. To relabel them, use either
of the following commands:
$ docker run -i -t -v /srv:/mnt/code:z fedora /bin/bash

$ docker run -i -t -v /srv:/mnt/code:Z fedora /bin/bash

Please visit Chapter 9, Docker Security, for more detail.

3.	 Now, create a data volume container. While sharing the host directory to a container
through volume, we are binding the container to a given host, which is not good. Also,
the storage in this case is not controlled by Docker. So, in cases when we want data
to be persisted even if we update the containers, we can get help from data volume
containers. Data volume containers are used to create a volume and nothing else;
they do not even run. As the created volume is attached to a container (not running),
it cannot be deleted. For example, here's a named data container:

$ docker run -d -v /data --name data fedora echo "data volume
container"

This will just create a volume that will be mapped to a directory managed by Docker.
Now, other containers can mount the volume from the data container using the
--volumes-from option as follows:
$ docker run -d -i -t --volumes-from data --name client1
fedora /bin/bash

We can mount a volume from the data volume container to multiple containers:
$ docker run -d -i -t --volumes-from data --name client2
fedora /bin/bash

We can also use --volumes-from multiple times to get the data volumes from
multiple containers. We can also create a chain by mounting volumes from the
container that mounts from some other container.

Chapter 4

93

How it works…
In case of data volume, when the host directory is not shared, Docker creates a directory
within /var/lib/docker/ and then shares it with other containers.

There's more…
ff Volumes are deleted with -v flag to docker rm, only if no other container is using it.

If some other container is using the volume, then the container will be removed (with
docker rm) but the volume will not be removed.

ff In the previous chapter, we saw how to configure the Docker registry, which by
default starts with the dev flavor. In this registry, uploaded images were saved in
the /tmp/registry folder within the container we started. We can mount a
directory from the host at /tmp/registry within the registry container, so whenever
we upload an image, it will be saved on the host that is running the Docker registry.
So, to start the container, we run following command:

$ docker run -v /srv:/tmp/registry -p 5000:5000 registry

To push an image, we run the following command:
$ docker push registry-host:5000/nkhare/f20

After the image is successfully pushed, we can look at the content of the directory
that we mounted within the Docker registry. In our case, we should see a directory
structure as follows:
/srv/
├── images
│ ├──
3f2fed40e4b0941403cd928b6b94e0fd236dfc54656c00e456747093d10157ac
│ │ ├── ancestry
│ │ ├── _checksum
│ │ ├── json
│ │ └── layer
│ ├──
511136ea3c5a64f264b78b5433614aec563103b4d4702f3ba7d4d2698e22c158
│ │ ├── ancestry
│ │ ├── _checksum
│ │ ├── json
│ │ └── layer
│ ├──
53263a18c28e1e54a8d7666cb835e9fa6a4b7b17385d46a7afe55bc5a7c1994c

Network and Data Management for Containers

94

│ │ ├── ancestry
│ │ ├── _checksum
│ │ ├── json
│ │ └── layer
│ └──
fd241224e9cf32f33a7332346a4f2ea39c4d5087b76392c1ac5490bf2ec55b68
│ ├── ancestry
│ ├── _checksum
│ ├── json
│ └── layer
├── repositories
│ └── nkhare
│ └── f20
│ ├── _index_images
│ ├── json
│ ├── tag_latest
│ └── taglatest_json

See also
ff The documentation on the Docker website at https://docs.docker.com/

userguide/dockervolumes/

ff http://container42.com/2013/12/16/persistent-volumes-with-
docker-container-as-volume-pattern/

ff http://container42.com/2014/11/03/docker-indepth-volumes/

Linking two or more containers
With containerization, we would like to create our stack by running services on different
containers and then linking them together. In the previous chapter, we created a WordPress
container by putting both a web server and database in the same container. However, we
can also put them in different containers and link them together. Container linking creates a
parent-child relationship between them, in which the parent can see selected information of
its children. Linking relies on the naming of containers.

Getting ready
Make sure the Docker daemon is running on the host and you can connect through the
Docker client.

https://docs.docker.com/userguide/dockervolumes/
https://docs.docker.com/userguide/dockervolumes/
http://container42.com/2013/12/16/persistent-volumes-with-docker-container-as-volume-pattern/
http://container42.com/2013/12/16/persistent-volumes-with-docker-container-as-volume-pattern/
http://container42.com/2014/11/03/docker-indepth-volumes/

Chapter 4

95

How to do it…
1.	 Create a named container called centos_server:

$ docker run -d -i -t --name centos_server centos /bin/bash

2.	 Now, let's start another container with the name client and link it with the
centos_server container using the --link option, which takes the
name:alias argument. Then look at the /etc/hosts file:
$ docker run -i -t --link centos_server:server --name client
fedora /bin/bash

How it works…
In the preceding example, we linked the centos_server container to the client container
with an alias server. By linking the two containers, an entry of the first container, which is
centos_server in this case, is added to the /etc/hosts file in the client container. Also,
an environment variable called SERVER_NAME is set within the client to refer to the server.

There's more…
Now, let's create a mysql container:

$ docker run --name mysql -e MYSQL_ROOT_PASSWORD=mysecretpassword -d
mysql

Network and Data Management for Containers

96

Then, let's link it from a client and check the environment variables:

$ docker run -i -t --link mysql:mysql-server --name client fedora
/bin/bash

Also, let's look at the docker ps output:

If you look closely, we did not specify the -P or -p options to map ports between two containers
while starting the client container. Depending on the ports exposed by a container, Docker
creates an internal secure tunnel in the containers that links to it. And, to do that, Docker sets
environment variables within the linker container. In the preceding case, mysql is the linked
container and client is the linker container. As the mysql container exposes port 3306, we see
corresponding environment variables (MYSQL_SERVER_*) within the client container.

As linking depends on the name of the container, if you want to reuse
a name, you must delete the old container.

See also
ff Documentation on the Docker website at https://docs.docker.com/

userguide/dockerlinks/

Developing a LAMP application by linking
containers

Let's extend the previous recipe by creating a LAMP application (WordPress) by linking the
containers.

https://docs.docker.com/userguide/dockerlinks/
https://docs.docker.com/userguide/dockerlinks/

Chapter 4

97

Getting ready
To pull MySQL and WordPress images from the Docker registry:

ff For MySQL:

�� For image, visit https://registry.hub.docker.com/_/mysql/

�� For Dockerfile, visit https://github.com/docker-library/docker-
mysql

ff For WordPress:

�� For image, visit https://registry.hub.docker.com/_/wordpress/

�� For Dockerfile, visit https://github.com/docker-library/
wordpress

How to do it…
1.	 First, start a mysql container:

$ docker run --name mysql -e
MYSQL_ROOT_PASSWORD=mysecretpassword -d mysql

2.	 Then, start the wordpress container and link it with the mysql container:

$ docker run -d --name wordpress --link mysql:mysql -p 8080:80
wordpress

We have the Docker host's 8080 port to container 80 port, so we can connect WordPress by
accessing the 8080 port on the Docker host with the http://<DockerHost>:8080 URL.

How it works…
A link is created between the wordpress and mysql containers. Whenever the wordpress
container gets a DB request, it passes it on to the mysql container and gets the results. Look
at the preceding recipe for more details.

https://registry.hub.docker.com/_/mysql/
https://github.com/docker-library/docker-mysql
https://github.com/docker-library/docker-mysql
https://registry.hub.docker.com/_/wordpress/
https://github.com/docker-library/wordpress
https://github.com/docker-library/wordpress

Network and Data Management for Containers

98

Networking of multihost containers
with Flannel

In this recipe, we'll use Flannel (https://github.com/coreos/flannel) to set up
multihost container networking. Flannel is a generic overlay network that can be used
as an alternative to Software Defined Networking (SDN). It is an IP-based solution that
uses Virtual Extensible LAN (VXLAN), in which unique IP addresses are assigned to each
container on a unique subnet given to the host that is running that container. So, in this
kind of a solution, a different subnet and communication occurs within each host in the
cluster, using the overlay network. Flannel uses the etcd service (https://github.com/
coreos/etcd) for the key-value store.

Getting ready
For this recipe, we will require three VMs or physical machines with Fedora 21 installed.

How to do it…
1.	 Let's call one machine/VM master and other two minion1 and minion2. According

to your system's IP addresses, update the /etc/hosts file as follows:

2.	 Install etcd, Flannel, and Docker on all the systems we set up:
$ yum install -y etcd flannel docker

3.	 Modify the value of the ETCD_LISTEN_CLIENT_URLS to http://master.
example.com:4001 in the /etc/etcd/etcd.conf file as follows:
ETCD_LISTEN_CLIENT_URLS="http://master.example.com:4001"

4.	 In the master, start the etcd service and check its status:
$ systemctl start etcd

$ systemctl enable etcd

$ systemctl status etcd

5.	 In the master, create a file called flannel-config.json with the following content:
{
"Network": "10.0.0.0/16",
"SubnetLen": 24,

https://github.com/coreos/flannel
https://github.com/coreos/etcd
https://github.com/coreos/etcd

Chapter 4

99

"Backend": {
"Type": "vxlan",
"VNI": 1
 }
}

6.	 Upload the preceding configuration file to etcd using config as the key:
$ curl -L
http://master.example.com:4001/v2/keys/coreos.com/network/conf
ig -XPUT --data-urlencode value@flannel-config.json

7.	 In master, update FLANNEL_OPTIONS in the /etc/sysconfig/flanneld file to
reflect the interface of the system. Also, update FLANNEL_ETCD to use hostname
instead of the 127.0.0.1:4001 address.

8.	 To enable and start the flanneld service in master:
$ systemctl enable flanneld

$ systemctl start flanneld

$ systemctl status flanneld

Network and Data Management for Containers

100

9.	 From the minion systems, check the connectivity to master for etcd:
[root@minion1 ~]# curl -L
http://master.example.com:4001/v2/keys/coreos.com/network/conf
ig

10.	 Update the /etc/sysconfig/flanneld file in both minions to point to the etcd
server running in master and update FLANNEL_OPTIONS to reflect the interface of
the minion host:

11.	 To enable and start the flanneld service in both the minions:
$ systemctl enable flanneld

$ systemctl start flanneld

$ systemctl status flanneld

12.	 In any of the hosts in the cluster, run the following command:
$ curl -L
http://master.example.com:4001/v2/keys/coreos.com/network/subn
ets | python -mjson.tool

Chapter 4

101

This tells us the number of hosts in the network and the subnets associated (look at
the key for each node) with them. We can associate the subnet with the MAC address
on the hosts. On each host, the /run/flannel/docker and /run/flannel/
subnet.env files are populated with subnet information. For instance, in minion2,
you would see something like the following:

13.	 To restart the Docker daemon in all the hosts:
$ systemctl restart docker

Network and Data Management for Containers

102

Then, look at the IP address of the docker0 and flannel.1 interfaces. In
minion2, it looks like the following:

We can see that the docker0 interface got the IP from the same subnet as the
flannel.1 interface, which is used to route all traffic.

14.	 We are all set to spawn two containers in any of the hosts and they should be able to
communicate. Let's create one container in minion1 and get its IP address:

15.	 Now create another container in minion2 and ping the container running in
minion1 as follows:

Chapter 4

103

How it works…
With Flannel, we first configure the overlay with the 10.0.0.0/16 network. Then, each host
picks up a random /24 network; for instance, in our case, minion2 gets the 10.0.62.0/24
subnet and so on. Once configured, a container in the host gets the IP address from that
chosen subnet. Flannel encapsulates the packets and sends it to remote hosts using UDP.

Also, during installation, Flannel copies a configuration file (flannel.conf) within
/usr/lib/systemd/system/docker.service.d/, which Docker uses to configure itself.

See also
ff The diagram from Flannel GitHub to help you understand the theory of operations at

https://github.com/coreos/flannel/blob/master/packet-01.png

ff The documentation on the CoreOS website at https://coreos.com/blog/
introducing-rudder/

ff Scott Collier's blog post about setting Flannel on Fedora at http://www.
colliernotes.com/2015/01/flannel-and-docker-on-fedora-getting.
html

Assigning IPv6 addresses to containers
By default, Docker assigns IPv4 addresses to containers. With Docker 1.5, a feature has been
added to support IPv6 addresses.

Getting ready
Make sure the Docker daemon (version 1.5 and above) is running on the host and you can
connect through the Docker client.

How to do it…
1.	 To start the Docker daemon with the --ipv6 option, we can add this option in the

daemon's configuration file (/etc/sysconfig/docker on Fedora) as follows:
OPTIONS='--selinux-enabled --ipv6'

Alternatively, if we start Docker in daemon mode, then we can start it as follows:
$ docker -d --ipv6

https://github.com/coreos/flannel/blob/master/packet-01.png
https://coreos.com/blog/introducing-rudder/
https://coreos.com/blog/introducing-rudder/
http://www.colliernotes.com/2015/01/flannel-and-docker-on-fedora-getting.html
http://www.colliernotes.com/2015/01/flannel-and-docker-on-fedora-getting.html
http://www.colliernotes.com/2015/01/flannel-and-docker-on-fedora-getting.html

Network and Data Management for Containers

104

By running either of these commands, Docker will set up the docker0 bridge with
the IPv6 local link address fe80::1.

2.	 Let's start the container and look for the IP addresses assigned to it:

As we can see, both the IPv4 and local link IPv6 addresses are available to the container. To
ping on the IPv6 address of a container from the host machine, run the following command:

$ ping6 -I docker0 fe80::42:acff:fe11:3

To ping the docker0 bridge from the container, run the following command:

[root@c7562c38bd0f /]# ping6 -I eth0 fe80::1

How it works…
Docker configures the docker0 bridge to assign IPv6 addresses to containers, which enables
us to use the IPv6 address of containers.

There's more…
By default, containers will get the link-local address. To assign them a globally routable
address, you can pass the IPv6 subnet pick address with --fixed-cidr-v6 as follows:

$ docker -d --ipv6 --fixed-cidr-v6="2001:db8:1::/64"

Chapter 4

105

From here, we can see that the globally routable address (GlobalIPv6Address) is now
being set.

See also
ff The Docker 1.5 release notes at https://blog.docker.com/2015/02/docker-

1-5-ipv6-support-read-only-containers-stats-named-dockerfiles-
and-more/.

ff The documentation on the Docker website at http://docs.docker.com/v1.5/
articles/networking/#ipv6.

ff You might need to delete the exiting docker0 bridge on the host before setting the
IPv6 option. To understand how to do so, visit http://docs.docker.com/v1.5/
articles/networking/#customizing-docker0.

https://blog.docker.com/2015/02/docker-1-5-ipv6-support-read-only-containers-stats-named-dockerfiles-and-more/
https://blog.docker.com/2015/02/docker-1-5-ipv6-support-read-only-containers-stats-named-dockerfiles-and-more/
https://blog.docker.com/2015/02/docker-1-5-ipv6-support-read-only-containers-stats-named-dockerfiles-and-more/
http://docs.docker.com/v1.5/articles/networking/#ipv6
http://docs.docker.com/v1.5/articles/networking/#ipv6
http://docs.docker.com/v1.5/articles/networking/#customizing-docker0
http://docs.docker.com/v1.5/articles/networking/#customizing-docker0

107

5
Docker Use Cases

In this chapter, we will cover the following recipes:

ff Testing with Docker

ff Doing CI/CD with Shippable and Red Hat OpenShift

ff Doing CI/CD with Drone

ff Setting up PaaS with OpenShift Origin

ff Building and deploying an app on OpenShift v3 from the source code

ff Configuring Docker as a hypervisor driver for Openstack

Introduction
Now we know how to work with containers and images. In the last chapter, we also saw how
to link containers and share data between the host and other containers. We also saw how
containers from one host can communicate with other containers from other hosts.

Now let's look at different use cases of Docker. Let's list a few of them here:

ff Quick prototyping of ideas: This is one of my favorite use cases. Once we have an
idea, it is very easy to prototype it with Docker. All we have to do is set up containers
to provide all the backend services we need and connect them together. For example,
to set up a LAMP application, get the web and DB servers and link them, as we saw in
the previous chapter.

ff Collaboration and distribution: GitHub is one of the best examples of collaborating
and distributing the code. Similarly, Docker provides features such as Dockerfile,
registry, and import/export to share and collaborate with others. We have covered
all this in earlier chapters.

Docker Use Cases

108

ff Continuous Integration (CI): The following definition on Martin Fowler's website
(http://www.martinfowler.com/articles/continuousIntegration.
html) covers it all:

"Continuous Integration is a software development practice where
members of a team integrate their work frequently, usually each
person integrates at least daily - leading to multiple integrations per
day. Each integration is verified by an automated build (including
test) to detect integration errors as quickly as possible. Many teams
find that this approach leads to significantly reduced integration
problems and allows a team to develop cohesive software more
rapidly. This article is a quick overview of Continuous Integration
summarizing the technique and its current usage."

Using recipes from other chapters, we can build an environment for CI using Docker. You can
create your own CI environment or get services from companies such as Shippable and Drone.
We'll see how Shippable and Drone can be used for CI work later in this chapter. Shippable
is not a hosted solution but Drone is, which can give you better control. I thought it would be
helpful if I talk about both of them here:

ff Continuous Delivery (CD): The next step after CI is Continuous Delivery, through
which we can deploy our code rapidly and reliably to our customers, the cloud and
other environments without any manual work. In this chapter, we'll see how we can
automatically deploy an app on Red Hat OpenShift through Shippable CI.

ff Platform-as-a-Service (PaaS): Docker can be used to build your own PaaS. It can be
deployed using tools/platforms such as OpenShift, CoreOS, Atomic, Tsuru, and so on.
Later in this chapter, we'll see how to set up PaaS using OpenShift Origin (https://
www.openshift.com/products/origin).

Testing with Docker
While doing the development or QA, it will be helpful if we can check our code against
different environments. For example, we may wish to check our Python code between
different versions of Python or on different distributions such as Fedora, Ubuntu, CentOS,
and so on. For this recipe, we will pick up sample code from Flask's GitHub repository, which
is a microframework for Python (http://flask.pocoo.org/). I chose this to keep things
simple, and it is easier to use for other recipes as well.

For this recipe, we will create images to have one container with Python 2.7 and other with
Python 3.3. We'll then use a sample Python test code to run against each container.

http://www.martinfowler.com/articles/continuousIntegration.html
http://www.martinfowler.com/articles/continuousIntegration.html
https://www.openshift.com/products/origin
https://www.openshift.com/products/origin

Chapter 5

109

Getting ready
ff As we are going to use example code from Flask's GitHub repository, let's clone it:

$ git clone https://github.com/mitsuhiko/flask

ff Create a Dockerfile_2.7 file as follows and then build an image from it:
$ cat /tmp/ Dockerfile_2.7

FROM python:2.7

RUN pip install flask

RUN pip install pytest

WORKDIR /test

CMD ["/usr/local/bin/py.test"]

ff To build the python2.7test image, run the following command:
$ docker build -t python2.7test - < /tmp/Dockerfile_2.7

ff Similarly, create a Dockerfile with python:3.3 as the base image and build the
python3.3test image:
$ cat /tmp/Dockerfile_3.3

FROM python:3.3

RUN pip install flask

RUN pip install pytest

WORKDIR /test

CMD ["/usr/local/bin/py.test"]

ff To build the image, run the following command:
$ docker build -t python3.3test - < /tmp/Dockerfile_3.3

Make sure both the images are created.

How to do it…
Now, using Docker's volume feature, we will mount the external directory that contains the
source code and test cases. To test with Python 2.7, do the following:

1.	 Go to the directory that contains the Flask examples:
$ cd /tmp/flask/examples/

Docker Use Cases

110

2.	 Start a container with the python2.7 test image and mount blueprintexample
under /test:
$ docker run -d -v `pwd`/blueprintexample:/test python2.7test

3.	 Similarly, to test with Python 3.3, run the following command:
 $ docker run -d -v `pwd`/blueprintexample:/test python3.3test

4.	 While running the preceding test on Fedora/RHEL/CentOS where SELinux is enabled,
you will get a Permission denied error. To fix it, relabel the host directory while
mounting it within the container as follows:

$ docker run -d -v `pwd`/blueprintexample:/test:z
python2.7test

For more details on SELinux, please look at Chapter 9,
Docker Security.

How it works…
As you can see from the Dockerfile, before running CMD, which runs the py.test binary,
we change our working directory to /test. And while starting the container, we mount our
source code to /test. So, as soon as the container starts, it will run the py.test binary
and run tests.

There's more…
ff In this recipe, we have seen how to test our code with different versions of Python.

Similarly, you can pick up different base images from Fedora, CentOS, Ubuntu and
test them on different Linux distributions.

ff If you use Jenkins in your environment, then you can use its Docker plugin to
dynamically provision a slave, run a build, and tear it down on the Docker host. More
details about this can be found at https://wiki.jenkins-ci.org/display/
JENKINS/Docker+Plugin.

https://wiki.jenkins-ci.org/display/JENKINS/Docker+Plugin
https://wiki.jenkins-ci.org/display/JENKINS/Docker+Plugin

Chapter 5

111

Doing CI/CD with Shippable and Red Hat
OpenShift

In the preceding recipe, we saw an example of how Docker can be used for testing in a local
Dev and QA environment. Let's look at an end-to-end example to see how Docker is now used
in the CI/CD environment. In this recipe, we'll see how we can use Shippable (http://www.
shippable.com/) to perform CI/CD and deploy it on Red Hat's OpenShift environment
(https://openshift.redhat.com).

Shippable is a SaaS platform that lets you easily add Continuous Integration/Deployment to
your GitHub and Bitbucket(Git) repositories, which is completely built on Docker. Shippable
uses build minions, which are Docker-based containers, to run workloads. Shippable supports
many languages such as Ruby, Python, Node.js, Java, Scala, PHP, Go, and Clojure. The default
build minions are of Ubuntu 12.04 LTS and Ubuntu 14.04. They have also added support to
use custom images from Docker Hub as minions. Shippable CI needs information about the
project and build instructions in a yml file called shippable.yml, which you have to provide
in your source code repo. The yml file contains the following instructions:

ff build_image: This is a Docker image to use to build

ff language: This will show the programming language

�� versions: You can specify different versions of the language to get tested
in a single build instruction.

ff before_install: These are the instructions before running the build

ff script: This is a binary/script to run the test

ff after_success: These are instructions after the build succeeds; this is used
to perform deployment on PaaS such as Heroku, Amazon Elastic Beanstalk, AWS
OpsWorks, Google App Engine, Red Hat OpenShift, and others.

Red Hat's OpenShift is a PaaS platform to host your application. Currently, it uses non-
Docker based container technology to host the application, but the next version of OpenShift
(https://github.com/openshift/origin) is being built on Kubernetes and Docker.
This tells us the pace at which Docker is being adopted in the enterprise world. We'll see how
to set up OpenShift v3 later in this chapter.

For this recipe, we will use the same example code we used in the previous recipe, to first test
on Shippable and then deploy it on OpenShift.

Getting ready
1.	 Create an account on Shippable (https://www.shippable.com/).

2.	 Fork the flask example from https://github.com/openshift/flask-
example.

http://www.shippable.com/
http://www.shippable.com/
https://github.com/openshift/flask-example
https://github.com/openshift/flask-example

Docker Use Cases

112

3.	 Create an app on OpenShift for the forked repository with the following steps:

1.	 Create an account (https://www.openshift.com/app/account/new)
on OpenShift and log in.

2.	 Select Python 2.7 Cartridge for the application.

3.	 Update the Public URL section you want. In the Source Code section, provide
the URL of our forked repo. For this example, I have put down blueprint
and https://github.com/nkhare/flask-example respectively:

4.	 Click on Create Application to create the new app. Once created, you should
be able to access the Public URL we mentioned in the previous step.

Once the app is created, OpenShift provides a way to manage/update the source
code for this app in the Making code changes section. As we want to deploy the
app using Shippable, we don't have to follow those instructions.

4.	 Clone the forked repository on the local system:
$ git clone git@github.com:nkhare/flask-example.git

5.	 Let's use the same blueprint example that we used earlier. To do so, follow these
instructions:

1.	 Clone the flask repository:
$ git clone https://github.com/mitsuhiko/flask.git

2.	 Copy the blueprint example:
$ cp -Rv flask/examples/blueprintexample/* flask-example/
wsgi/

https://www.openshift.com/app/account/new

Chapter 5

113

6.	 Update the flask-example/wsgi/application file to import the app module
from the blueprintexample module. So, the last line in the flask-example/
wsgi/application file looks like the following:
from blueprintexample import app as application

7.	 Add the requirements.txt file with the following contents at the top level of the
flask-example repository:
flask
pytest

8.	 Add the shippable.yml file with following content:
language: python

python:
 - 2.6
 - 2.7

install:
 - pip install -r requirements.txt

Make folders for the reports
before_script:
 - mkdir -p shippable/testresults
 - mkdir -p shippable/codecoverage

script:
 - py.test

archive: true

9.	 Commit the code and push it in your forked repository.

Docker Use Cases

114

How to do it…
1.	 Log in to Shippable.

2.	 After logging in, click on SYNC ACCOUNT to get your forked repository listed, if it
has not already been listed. Find and enable the repo that you want to build and
run tests. For this example, I chose flask-example from my GitHub repos. After
enabling it, you should see something like the following:

3.	 Click on the play button and select branch to build. For this recipe, I chose master:

If the build is successful, then you will see the success icon.

Next time you do a commit in your repository, a build on Shippable will be triggered and
the code will be tested. Now, to perform Continuous Deployment on OpenShift, let's follow
the instructions provided on the Shippable website (http://docs.shippable.com/
deployment/openshift/):

1.	 Get the deployment key from your Shippable dashboard (located on the right-hand
side, below Repos):

http://docs.shippable.com/deployment/openshift/
http://docs.shippable.com/deployment/openshift/

Chapter 5

115

2.	 Copy it under the (https://openshift.redhat.com/app/console/settings)
Settings | Public Keys section on OpenShift as follows:

3.	 Get the Source Code repository link from the OpenShift application page, which will
be used as OPNESHIFT_REPO in the next step:

4.	 After the deployment key is installed, update the shippable.yml file as follows:
env:
 global:
 - OPENSHIFT_REPO=ssh://545ea4964382ec337f000009@blueprint-
neependra.rhcloud.com/~/git/blueprint.git

language: python

python:
 - 2.6
 - 2.7

https://openshift.redhat.com/app/console/settings

Docker Use Cases

116

install:
 - pip install -r requirements.txt

Make folders for the reports
before_script:
 - mkdir -p shippable/testresults
 - mkdir -p shippable/codecoverage
 - git remote -v | grep ^openshift || git remote add openshift
$OPENSHIFT_REPO
 - cd wsgi

script:
 - py.test

after_success:
 - git push -f openshift $BRANCH:master

archive: true

OPENSHIFT_REPO should reflect the app you have deployed using OpenShift. It will
be different from what is shown in this example.

5.	 Now commit these changes and push it to GitHub. You will see a build on Shippable
triggered and a new app deployed on OpenShift.

6.	 Visit your app's homepage, and you should see its updated contents.

How it works…
At every build instruction, Shippable spins off new containers depending on the image and
language type specified in the shippable.yml file and runs the build to perform testing. In
our case, Shippable will spin off two containers, one for Python 2.6 and the other for Python 2.7.
Shippable adds a webhook to your GitHub repository as follows when you register it with them:

So every time a change is committed to GitHub, a build on Shippable gets triggered and after
the success, it is deployed on OpenShift.

Chapter 5

117

See also
ff Detailed documentation is available on the Shippable website at http://docs.

shippable.com/

Doing CI/CD with Drone
As mentioned on the Drone website (https://drone.io/), Drone is a hosted Continuous
Integration service. It enables you to conveniently set up projects to automatically build,
test, and deploy as you make changes to your code. They provide an open source version of
their platform, which you can host in your environment or on cloud. As of now, they support
languages such as C/C++, Dart, Go, Haskell, Groovy, Java, Node.js, PHP, Python, Ruby, and
Scala. Using Drone, you can deploy your application on platforms such as Heroku, Dotcloud,
Google App Engine, and S3. You can also SSH (rsync) your code to a remote server for
deployment.

For this recipe, let's use the same example that we used in the earlier recipes.

Getting ready
1.	 Log in to Drone (https://drone.io/).

2.	 Click on New Project and set up repository. In our case, we'll pick the same
repository from GitHub that we used in the previous recipe (https://github.com/
nkhare/flask-example):

3.	 Once selected, it will ask you to select the programming language for the selected
repository. I selected Python in this case.

4.	 It will then prompt you to set up the build script. For this recipe, we'll put the following
and save it:

pip install -r requirements.txt --use-mirrors

cd wsgi

py.test

http://docs.shippable.com/
http://docs.shippable.com/
https://github.com/nkhare/flask-example
https://github.com/nkhare/flask-example

Docker Use Cases

118

How to do it…
1.	 Trigger a manual build by clicking on Build Now, as shown in the following

screenshot:

How it works…
The build process starts a new container, clones the source code repository, and runs the
commands that we specified in the Commands section (running the test cases) within it.

Chapter 5

119

There's more…
ff Once the build is complete, you can look at the console output.

ff Drone also adds a webhook in GitHub; so the next time you commit changes in the
repository, a build will be triggered.

ff Drone also supports Continuous Deployment to different cloud environments, as
we have seen in the earlier recipe. To set that up, go to the Settings tab, select
Deployment, and then select Add New Deployment. Select your cloud provider
and set it up:

See also
ff The Drone documentation at http://docs.drone.io/

ff The steps to configure a self-hosted Drone environment, which is in the alpha stage
as of now, at https://github.com/drone/drone

Docker Use Cases

120

Setting up PaaS with OpenShift Origin
Platform-as-a-Service is a type of cloud service where the consumer controls the software
deployments and configuration settings for applications (mostly web), and the provider
provides servers, networks, and other services to manage those deployments. The provider
can be external (a public provider) or internal (an IT department in an organization). There are
many PaaS providers, such as Amazon (http://aws.amazon.com/), Heroku (https://
www.heroku.com/), OpenShift (https://www.openshift.com/), and so on. In the
recent past, containers seem to have become the natural choice for applications to get
deployed to.

Earlier in this chapter, we looked at how we can build a CI/CD solution using Shippable and
OpenShift, where we deployed our app to OpenShift PaaS. We deployed our app on Openshift
Online, which is the Public Cloud Service. At the time of writing this book, the OpenShift
Public Cloud Service uses non-Docker container technology to deploy apps to the Public
Cloud Service. The OpenShift team has been working on OpenShift v3 (https://github.
com/openshift/origin), which is a PaaS that leverages technologies such as Docker and
Kubernetes (http://kubernetes.io) among others, providing a complete ecosystem to
service your cloud-enabled apps. They plan to move this to the Public Cloud Service later this
year. As we have talked about Kubernetes in Chapter 8, Docker Orchestration and Hosting
Platforms, it is highly recommended to read that chapter first before continuing with this
recipe. I am going to borrow some of the concepts from that chapter.

OpenShift API

Server

Build

Controller

Deployment

Controller

Kubernetes API

Server

Kube Controller

Scheduler

Replication

Controller

OpenShift CLI Tool

Etcd

Server

Kube Proxy

Registry Pod

Registry

Container

Web

Container
DB Container

Web Pod DB Pod

Kubelet Docker

OpenShift Master

Kubernetes Master

OpenShift Node

OpenShift All-In-One

https://blog.openshift.com/openshift-v3-deep-dive-docker-kubernetes/

https://www.heroku.com/
https://www.heroku.com/
https://github.com/openshift/origin
https://github.com/openshift/origin
https://blog.openshift.com/openshift-v3-deep-dive-docker-kubernetes/

Chapter 5

121

Kubernetes provides container cluster management with features such as scheduling pods
and service discovery, but it does not have the concept of complete application, as well as the
capabilities to build and deploy Docker images from the source code. OpenShift v3 extends
the base Kubernetes model and fills those gaps. If we fast-forward and look at Chapter 8,
Docker Orchestration and Hosting Platforms, for the Kubernetes section, you will notice that
to deploy an app, we need to define Pods, Services, and Replication-Controllers. OpenShift v3
tries to abstract all that information and let you define one configuration file that takes care of
all the internal wiring. Furthermore, OpenShift v3 provides other features such as automated
deployment through source code push, the centralized administration and management of an
application, authentication, team and project isolation, and resource tracking and limiting, all
of which are required for enterprise deployment.

In this recipe, we will set up all-in-one OpenShift v3 Origin on a VM and start a pod. In the
next recipe, we will see how to build and deploy an app through source code using the
Source-to-image (STI) build feature. As there is active development happening on OpenShift
v3 Origin, I have selected a tag from the source code and used that code-base in this recipe
and the next one. In the newer version, the command-line options may change. With this
information in hand, you should be able to adapt to the latest release. The latest example can
be found at https://github.com/openshift/origin/tree/master/examples/
hello-openshift.

Getting ready
Set up Vagrant (https://www.vagrantup.com/) and install the VirtualBox provider
(https://www.virtualbox.org/). The instructions on how to set these up are outside
the scope of this book.

1.	 Clone the OpenShift Origin repository:
$ git clone https://github.com/openshift/origin.git

2.	 Check out the v0.4.3 tag:
$ cd origin

$ git checkout tags/v0.4.3

3.	 Start the VM:
$ vagrant up --provider=virtualbox

4.	 Log in to the container:
$ vagrant ssh

https://github.com/openshift/origin/tree/master/examples/hello-openshift
https://github.com/openshift/origin/tree/master/examples/hello-openshift

Docker Use Cases

122

How to do it…
1.	 Build the OpenShift binary:

$ cd /data/src/github.com/openshift/origin

$ make clean build

2.	 Go to the hello-openshift examples:
$ cd /data/src/github.com/openshift/origin/examples/hello-
openshift

3.	 Start all the OpenShift services in one daemon:
$ mkdir logs

$ sudo
/data/src/github.com/openshift/origin/_output/local/go/bin/ope
nshift start --public-master=localhost &> logs/openshift.log &

4.	 OpenShift services are secured by TLS. Our client will need to accept the server
certificates and present its own client certificate. Those are generated as part of
Openshift start in the current working directory.
$ export
OPENSHIFTCONFIG=`pwd`/openshift.local.certificates/admin/.kube
config

$ export
CURL_CA_BUNDLE=`pwd`/openshift.local.certificates/ca/cert.crt

$ sudo chmod a+rwX "$OPENSHIFTCONFIG"

5.	 Create the pod from the hello-pod.json definition:
$ osc create -f hello-pod.json

Chapter 5

123

6.	 Connect to the pod:
$ curl localhost:6061

How it works…
When OpenShift starts, all Kubernetes services start as well. Then, we connect to the
OpenShift master through CLI and request it to start a pod. That request is then forwarded
to Kubernetes, which starts the pod. In the pod configuration file, we mentioned to map port
6061 of the host machine with port 8080 of the pod. So, when we queried the host on port
6061, we got a reply from the pod.

There's more…
If you run the docker ps command, you will see the corresponding containers running.

See also
ff The Learn More section on https://github.com/openshift/origin

ff The OpenShift 3 beta 3 Video tutorial at https://blog.openshift.com/
openshift-3-beta-3-training-commons-briefing-12/

ff The latest OpenShift training at https://github.com/openshift/training

ff The OpenShift v3 documentation at http://docs.openshift.org/latest/
welcome/index.html

https://blog.openshift.com/openshift-3-beta-3-training-commons-briefing-12/
https://blog.openshift.com/openshift-3-beta-3-training-commons-briefing-12/
http://docs.openshift.org/latest/welcome/index.html
http://docs.openshift.org/latest/welcome/index.html

Docker Use Cases

124

Building and deploying an app on OpenShift
v3 from the source code

OpenShift v3 provides the build process to build an image from source code. The following are
the build strategies that one can follow to build images:

ff Docker build: In this, users will supply to the Docker context (Dockerfiles and support
files), which can be used to build images. OpenShift just triggers the docker build
command to create the image.

ff Source-to-image (STI) build: In this, the developer defines the source code repository
and the builder image, which defines the environment used to create the app. STI
then uses the given source code and builder image to create a new image for the
app. More details about STI can be found at https://github.com/openshift/
source-to-image.

ff Custom build: This is similar to the Docker build strategy, but users might customize
the builder image that will be used for build execution.

In this recipe, we are going to look at the STI build process. We are going to look at sample-
app from the OpenShift v3 Origin repo (https://github.com/openshift/origin/
tree/v0.4.3/examples/sample-app). The corresponding STI build file is located at
https://github.com/openshift/origin/blob/v0.4.3/examples/sample-app/
application-template-stibuild.json.

In the BuildConfig section, we can see that the source is pointing to a GitHub repo
(git://github.com/openshift/ruby-hello-world.git) and the image under the
strategy section is pointing to the openshift/ruby-20-centos7 image. So, we will use
the openshift/ruby-20-centos7 image and build a new image using the source from
the GitHub repo. The new image, after the build is pushed to the local or third-party Docker
registry, depending on the settings. The BuildConfig section also defines triggers on when
to trigger a new build, for instance, when the build image changes.

In the same STI build file (application-template-stibuild.json), you will find
multiple DeploymentConfig sections, one of each pod. A DeploymentConfig section
has information such as exported ports, replicas, the environment variables for the pod, and
other info. In simple terms, you can think of DeploymentConfig as an extended replication
controller of Kubernetes. It also has triggers to trigger new deployment. Each time a new
deployment is created, the latestVersion field of DeploymentConfig is incremented. A
deploymentCause is also added to DeploymentConfig describing the change that led to
the latest deployment.

ImageRepository, which was recently renamed as ImageStream, is a stream of related
images. BuildConfig and DeploymentConfig watch ImageStream to look for image
changes and react accordingly, based on their respective triggers.

https://github.com/openshift/source-to-image
https://github.com/openshift/source-to-image
https://github.com/openshift/origin/tree/v0.4.3/examples/sample-app
https://github.com/openshift/origin/tree/v0.4.3/examples/sample-app
https://github.com/openshift/origin/blob/v0.4.3/examples/sample-app/application-template-stibuild.json
https://github.com/openshift/origin/blob/v0.4.3/examples/sample-app/application-template-stibuild.json

Chapter 5

125

The other sections that you will find in the STI build file are services for pods (database and
frontend), a route for the frontend service through which the app can be accessed, and a
template. A template describes a set of resources intended to be used together that can be
customized and processed to produce a configuration. Each template can define a list of
parameters that can be modified for consumption by containers.

Similar to STI build, there are examples of Docker and custom build in the same sample-app
example folder. I am assuming you have the earlier recipe, so we will continue from there.

Getting ready
You should have completed the earlier recipe, Setting up PaaS with OpenShift Origin.

Your current working directory should be /data/src/github.com/openshift/origin /
examples/hello-openshift inside the VM, started by Vagrant.

How to do it…
1.	 Deploy a private Docker registry to host images created by the STI build process:

$ sudo openshift ex registry --create --
credentials=./openshift.local.certificates/openshift-
registry/.kubeconfig

2.	 Confirm the registry has started (this can take a few minutes):
$ osc describe service docker-registry

3.	 Create a new project in OpenShift. This creates a namespace test to contain the
builds and an app that we will generate later:
$ openshift ex new-project test --display-name="OpenShift 3
Sample" --description="This is an example project to
demonstrate OpenShift v3" --admin=test-admin

4.	 Log in with the test-admin user and switch to the test project, which will be used
by every command from now on:
$ osc login -u test-admin -p pass

$ osc project test

Docker Use Cases

126

5.	 Submit the application template for processing (generating shared parameters
requested in the template) and then request the creation of the processed template:
$ osc process -f application-template-stibuild.json | osc
create -f -

6.	 This will not trigger the build. To start the build of your application, run the following
command:
$ osc start-build ruby-sample-build

7.	 Monitor the build and wait for the status to go to complete (this can take a few
minutes):
$ osc get builds

8.	 Get the list of services:
$ osc get services

How it works…
In the BuildConfig (ruby-sample-build) section, we specified our source as the ruby-
hello-world Git repo (git://github.com/openshift/ruby-hello-world.git)
and our image as openshift/ruby-20-centos7. So the build process takes that image,
and with STI builder, a new image called origin-ruby-sample is created after building our
source on openshift/ruby-20-centos7. The new image is then pushed to the Docker
registry we created earlier.

With DeploymentConfig, frontend and backend pods are also deployed and linked to
corresponding services.

There's more…
ff The preceding frontend service can be accessed through the service IP and

corresponding port, but it will not be accessible from the outside world. To make
it accessible, we give our app an FQDN; for instance, in the following example, it is
defined as www.example.com:

Chapter 5

127

OpenShift v3 provides an HAProxy router, which can map over FQDN to the
corresponding pod. For more information, please visit http://docs.openshift.
org/latest/architecture/core_objects/routing.html. You will also
require an entry in the external DNS to resolve the FQDN provided here.

ff OpenShift v3 Origin is also a management GUI. To look at our deployed app on the
GUI, bind the username test-admin to the view role in the default namespace so
you can observe the progress in the web console:
$ openshift ex policy add-role-to-user view test-admin

Then, through the browser, connect to https://<host>:8443/console and log
in through the test-admin user by giving any password. As Vagrant forwards the
traffic of port 8443 on the host machine to the VM, you should be able to connect
through the host on which VM is running. Then select OpenShift 3 Sample as the
project and explore:

ff In the multiple node setup, your pods can be scheduled on different systems.
OpenShift v3 connects pods though the overlay network pod running on one node
can access another. It is called openshift-sdn. For more details, please visit
https://github.com/openshift/openshift-sdn.

http://docs.openshift.org/latest/architecture/core_objects/routing.html
http://docs.openshift.org/latest/architecture/core_objects/routing.html

Docker Use Cases

128

See also
ff The Learn More section at https://github.com/openshift/origin

ff The OpenShift 3 beta 3 video tutorial at https://blog.openshift.com/
openshift-3-beta-3-training-commons-briefing-12/

ff The latest OpenShift training at https://github.com/openshift/training

ff The OpenShift v3 documentation at http://docs.openshift.org/latest/
welcome/index.html

Configuring Docker as a hypervisor driver for
OpenStack

I am assuming that the reader has some exposure to OpenStack for this recipe, as covering
it is outside the scope of this book. For more information on OpenStack and its components,
please visit http://www.openstack.org/software/.

In OpenStack, Nova supports different hypervisors for computation, such as KVM, XEN,
VMware, HyperV, and others. We can provision VMs using these drivers. Using Ironic
(https://wiki.openstack.org/wiki/Ironic), you can provision bare metal as well.
Nova added support for containers provisioning using Docker in the Havana (https://www.
openstack.org/software/havana/) release, but currently, it lives out of the mainline for
faster dev cycle. There are plans to merge it in the mainline in the future. Under the hood, it
looks like this:

nova.conf:

compute_driver=docker.DockerDriver

Container A

Container B

docker-registry

(container)

Nova

Virt API

Docker virt

driver

(hypervisor)

Glance

Docker
HTTP

API

https://wiki.openstack.org/wiki/File:Docker-under-the-hood.png

https://blog.openshift.com/openshift-3-beta-3-training-commons-briefing-12/
https://blog.openshift.com/openshift-3-beta-3-training-commons-briefing-12/
http://docs.openshift.org/latest/welcome/index.html
http://docs.openshift.org/latest/welcome/index.html
https://www.openstack.org/software/havana/
https://www.openstack.org/software/havana/
https://wiki.openstack.org/wiki/File:Docker-under-the-hood.png

Chapter 5

129

DevStack (http://docs.openstack.org/developer/devstack/overview.html)
is a collection of scripts to quickly create an OpenStack development environment. It is not
a general-purpose installer, but it is a very easy way to get started with OpenStack. In this
recipe, we'll configure DevStack's environment with Docker as Nova driver on Fedora21.

Getting ready
1.	 Install Docker on the system.

2.	 Clone nova-docker and devstack:
$ git clone https://git.openstack.org/stackforge/nova-docker
/opt/stack/nova-docker

$ git clone https://git.openstack.org/openstack-dev/devstack
/opt/stack/devstack

3.	 The following step is needed until we can make use of configure_nova_
hypervisor_rootwrap:
$ git clone https://git.openstack.org/openstack/nova
/opt/stack/nova

4.	 Prepare Devstack for installation:
$ cd /opt/stack/nova-docker

$./contrib/devstack/prepare_devstack.sh

5.	 Create the stack user and add it to sudo:
$ /opt/stack/devstack/tools/create-stack-user.sh

6.	 Install docker-py to communicate with docker through Python:
$ yum install python-pip

$ pip install docker-py

How to do it…
1.	 After the prerequisite steps are completed, run the following commands to install

Devstack:
$ cd /opt/stack/devstack

$./stack.sh

http://docs.openstack.org/developer/devstack/overview.html

Docker Use Cases

130

How it works...
ff The prepare_devstack.sh driver makes the following entries in the localrc file

set the right environment to set Docker for the Nova driver:
export VIRT_DRIVER=docker
export DEFAULT_IMAGE_NAME=cirros
export NON_STANDARD_REQS=1
export IMAGE_URLS=" "

ff After running the stackrc file, we can see the following changes with respect to
Nova and Glance:

�� The /etc/nova/nova.conf file changes the compute driver:
 [DEFAULT]
 compute_driver = novadocker.virt.docker.DockerDriver

�� The /etc/nova/rootwrap.d/docker.filters file is updated with the
following content:
[Filters]
nova/virt/docker/driver.py: 'ln', '-sf',
'/var/run/netns/.*'
ln: CommandFilter, /bin/ln, root

�� In /etc/glance/glance-api.conf, adds docker in the container/
image format:
[DEFAULT]
container_formats = ami,ari,aki,bare,ovf,docker

There's more…
ff In localrc, we mentioned cirros as the default image, so once the setup is

completed, we can see that the Docker image for cirros is downloaded:

This is being imported to Glance automatically:

Chapter 5

131

From the preceding screenshot, we can see that the container format is Docker.

ff Now you can create an instance using a cirros image using Horizon, or from the
command line, and look at the container started using the Docker command line.

ff To import any image to Glance, you can do something like the following:

�� Pull the required image from Docker Hub:
$ docker pull fedora

�� Import the image (currently only admin can import the image):

$ source openrc

$ export OS_USERNAME=admin

$ sudo docker save fedora | glance image-create --is-
public=True --container-format=docker --disk-format=raw
--name fedora

ff There is a lack of integration with Cinder and Neutron, but things are catching
up quickly.

ff While installing, if you get the AttributeError: 'module' object has no
attribute 'PY2' error, then run the following commands to fix it:
$ pip uninstall six

$ pip install --upgrade six

Docker Use Cases

132

See also
ff The documentation on OpenStack website at https://wiki.openstack.org/

wiki/Docker.

ff Docker is also one of the resource types for OpenStack Heat. Learn more about
it at http://docs.openstack.org/developer/heat/template_guide/
contrib.html#dockerinc-resource.

ff There is an interesting project in OpenStack called Kolla, which focuses on
deploying OpenStack services through Docker containers. Find more about it
at https://github.com/stackforge/kolla/.

https://wiki.openstack.org/wiki/Docker
https://wiki.openstack.org/wiki/Docker
http://docs.openstack.org/developer/heat/template_guide/contrib.html#dockerinc-resource
http://docs.openstack.org/developer/heat/template_guide/contrib.html#dockerinc-resource
https://github.com/stackforge/kolla/

133

6
Docker APIs and

Language Bindings

In this chapter, we will cover the following recipes:

ff Configuring the Docker daemon remote API

ff Performing image operations using remote APIs

ff Performing container operations using remote APIs

ff Exploring Docker remote API client libraries

ff Securing the Docker daemon remote API

Introduction
In the previous chapters, we learned different commands to manage images, containers,
and so on. Though we run all the commands through the command line, the communication
between the Docker client (CLI) and the Docker daemon happens through APIs, which are
called Docker daemon remote APIs.

Docker also provides APIs to communicate with Docker Hub and Docker registry, which the
Docker client uses as well. In addition to these APIs, we have Docker bindings for different
programming languages. So, if you want to build a nice GUI for Docker images, container
management, and so on, understanding the APIs mentioned earlier would be a good
starting point.

In this chapter, we look into the Docker daemon remote API and use the curl command
(http://curl.haxx.se/docs/manpage.html) to communicate with the endpoints of
different APIs, which will look something like the following command:

$ curl -X <REQUEST> -H <HEADER> <OPTION> <ENDPOINT>

http://curl.haxx.se/docs/manpage.html

Docker APIs and Language Bindings

134

The preceding request will return with a return code and an output corresponding to the
endpoint and request we chose. GET, PUT, and DELETE are the different kinds of requests,
and GET is the default request if nothing is specified. Each API endpoint has its own
interpretation for the return code.

Configuring the Docker daemon remote API
As we know, Docker has a client-server architecture. When we install Docker, a user
space program and a daemon get started from the same binary. The daemon binds to
unix://var/run/docker.sock by default on the same host. This will not allow us to
access the daemon remotely. To allow remote access, we need to start Docker such that
it allows remote access, which can done by changing the -H flag appropriately.

Getting ready
Depending on the Linux distribution you are running, figure out the Docker daemon
configuration file you need to change. For Fedora, /Red Hat distributions, it would be
/etc/sysconfig/docker and for Ubuntu/Debian distributions , it would most likely
be /etc/default/docker.

How to do it…
1.	 On Fedora 20 systems, add the -H tcp://0.0.0.0:2375 option in the

configuration file (/etc/sysconfig/docker), as follows:
OPTIONS=--selinux-enabled -H tcp://0.0.0.0:2375

2.	 Restart the Docker service. On Fedora, run the following command:
$ sudo systemctl restart docker

3.	 Connect to the Docker host from the remote client:

$ docker -H <Docker Host>:2375 info

Chapter 6

135

Make sure the firewall allows access to port 2375 on the system where the Docker daemon
is installed.

How it works…
With the preceding command, we allowed the Docker daemon to listen on all network
interfaces through port 2375, using TCP.

There's more…
ff With the communication that we mentioned earlier between the client and Docker,

the host is insecure. Later in this chapter, we'll see how to enable TLS between them.

ff The Docker CLI looks for environment variables; if it is being set then the CLI uses
that endpoint to connect, for example, if we connect set as follows:
$ export DOCKER_HOST=tcp://dockerhost.example.com:2375

Then, the future docker commands in that session connect to remote Docker Host by
default and run this:
$ docker info

Docker APIs and Language Bindings

136

See also
ff The documentation on the Docker website https://docs.docker.com/

reference/api/docker_remote_api/

Performing image operations using
remote APIs

After enabling the Docker daemon remote API, we can do all image-related operations through
a client. To get a better understanding of the APIs, let's use curl to connect to the remote
daemon and do some image-related operations.

Getting ready
Configure the Docker daemon and allow remote access, as explained in the previous recipe.

How to do it…
In this recipe, we'll look at a few image operations as follows:

1.	 To list images, use the following API:
GET /images/json

Here is an example of the preceding syntax:

$ curl http://dockerhost.example.com:2375/images/json

https://docs.docker.com/reference/api/docker_remote_api/
https://docs.docker.com/reference/api/docker_remote_api/

Chapter 6

137

2.	 To create an image, use the following API:
POST /images/create

Here are a few examples:

�� Get the Fedora image from Docker Hub:
	 $ curl -X POST
	 http://dockerhost.example.com:2375/images/
	 create?fromImage=fedora

�� Get the WordPress image with the latest tag:
	 $ curl -X POST
	 http://dockerhost.example.com:2375/images/create?fromImage=
	 wordpress&tag=latest

�� Create an image from the tar file, which is hosted on the accessible
web server:

	 $ curl -X POST
	 http://dockerhost.example.com:2375/images/
	 create?fromSrc=http://localhost/image.tar

Docker APIs and Language Bindings

138

3.	 To build an image, use the following API:
POST /commit

Here are a few examples:

�� Build an image from the container (container id = 704a7c71f77d)
	 $ curl -X POST
	 http://dockerhost.example.com:2375/
	 commit?container=704a7c71f77d

�� Build an image from the Docker file:

	 $ curl -X POST -H "Content-type:application/tar" --data-
	 binary '@/tmp/Dockerfile.tar.gz'
	 http://dockerhost.example.com:2375/build?t=apache

As the API expects the content as a tar file, we need to put the Docker file inside a
tar and call the API.

4.	 To delete an image, use the following API:

DELETE /images/<name>

Here is an example of the preceding syntax:

$ curl -X DELETE
http://dockerhost.example.com:2375/images/wordpress:3.9.1

How it works…
In all the cases mentioned earlier, the APIs will connect to the Docker daemon and perform
the requested operations.

There's more…
We have not covered all the options of the APIs discussed earlier and Docker provides APIs for
other image-related operations. Visit the API documentation for more details.

See also
ff Each API endpoint can have different inputs to control the operations. For more

details, visit the documentation on the Docker website https://docs.docker.
com/reference/api/docker_remote_api_v1.18/#22-images.

https://docs.docker.com/reference/api/docker_remote_api_v1.18/#22-images
https://docs.docker.com/reference/api/docker_remote_api_v1.18/#22-images

Chapter 6

139

Performing container operations using
remote APIs

In a similar way to how we performed image operations using APIs, we can also do all
container-related operations using APIs.

Getting ready
Configure the Docker daemon and allow remote access, as explained in the earlier recipe.

How to do it…
In this recipe, we'll look at a few container operations:

1.	 To list containers, use the following API:
GET /containers/json

Here are a few examples:

�� Get all the running containers:
	 $ curl -X GET
	 http://shadowfax.example.com:2375/containers/json

�� Get all the running containers, including the stopped ones

	 $ curl -X GET http://shadowfax.example.com:2375/containers/
	 json?all=True

2.	 To create a new container, use the following API:
POST /containers/create

Here are a few examples

�� Create a container from the fedora image:
	 $ curl -X POST -H "Content-type:application/json" -d
	 '{"Image": "fedora", "Cmd": ["ls"] }'
	 http://dockerhost.example.com:2375/containers/create

�� Create a container from the fedora image and name it f21:

	 $ curl -X POST -H "Content-type:application/json" -d
	 '{"Image": "fedora", "Cmd": ["ls"] }'
	 http://dockerhost.example.com:2375/containers/
	 create?name=f21

Docker APIs and Language Bindings

140

3.	 To start a container, use the following API:
POST /containers/<id>/start

For example, start a container with the 591ab8ac2650 ID:
$ curl -X POST -H "Content-type:application/json" -d '{"Dns":
["4.2.2.1"] }'
http://dockerhost.example.com:2375/containers/591ab8ac2650/sta
rt

Note that while starting the stopped container, we also passed the DNS option, which
will change the DNS configuration of the container.

4.	 To inspect a container, use the following API:
GET /containers/<id>/json

For example, inspect a container with the 591ab8ac2650 ID:

$ curl -X GET
http://dockerhost.example.com:2375/containers/591ab8ac2650/json

5.	 To get a list of processes running inside a container, use the following API:
GET /containers/<id>/top

For example, get the processes running in the container with the 591ab8ac2650 ID:

$ curl -X GET
http://dockerhost.example.com:2375/containers/591ab8ac2650/top

6.	 To stop a container, use the following API:

POST /containers/<id>/stop

For example, stop a container with the 591ab8ac2650 ID:
$ curl -X POST
http://dockerhost.example.com:2375/containers/591ab8ac2650/sto
p

How it works…
We have not covered all the options of the APIs discussed earlier and Docker provides APIs for
other container-related operations. Visit the API documentation for more details.

See also
ff The documentation on the Docker website at https://docs.docker.com/

reference/api/docker_remote_api_v1.18/#21-containers

https://docs.docker.com/reference/api/docker_remote_api_v1.18/#21-containers
https://docs.docker.com/reference/api/docker_remote_api_v1.18/#21-containers

Chapter 6

141

Exploring Docker remote API client libraries
In the last few recipes, we explored the APIs provided by Docker to connect and perform
operations to the remote Docker daemon. The Docker community has added bindings
for different programming languages to access those APIs. Some of them are listed at
https://docs.docker.com/reference/api/remote_api_client_libraries/.

Note that Docker Maintainers do not maintain these libraries. Let's explore Python bindings
with a few examples and see how it uses the Docker remote API.

Getting ready
ff Install docker-py on Fedora:

$ sudo yum install python-docker-py

Alternatively, use pip to install the package:

$ sudo pip install docker-py

ff Import the module:
$ python

>>> import docker

How to do it…
1.	 Create the client, using the following steps:

1.	 Connect through the Unix Socket:
	 >>> client =
	 docker.Client(base_url='unix://var/run/docker.sock',
	 version='1.18', timeout=10)

2.	 Connect over HTTP:
	 >>> client =
	 docker.Client(base_url='http://dockerhost.example.com:2375',
	 version='1.18', timeout=10)

Here, base_url is the endpoint to connect, version is the API version the client
will use, and timeout is the timeout value in seconds.

2.	 Search for an image using the following code:
>>> client.search ("fedora")

https://docs.docker.com/reference/api/remote_api_client_libraries/

Docker APIs and Language Bindings

142

3.	 Pull an image using the following code:
>>> client.pull("fedora", tag="latest")

4.	 Start a container using the following code:
>>> client.create_container("fedora", command="ls",
hostname=None, user=None, detach=False, stdin_open=False,
tty=False, mem_limit=0, ports=None, environment=None,
dns=None, volumes=None,
volumes_from=None,network_disabled=False, name=None,
entrypoint=None, cpu_shares=None,
working_dir=None,memswap_limit=0)

How it works…
In all the preceding cases, the Docker Python module will send RESTful requests
to the endpoint using the API provided by Docker. Look at the methods such as
search, pull, and start in the following code of docker-py available at
https://github.com/docker/docker-py/blob/master/docker/client.py.

There's more…
You can explore different user interfaces written for Docker. Some of them are as follows:

ff Shipyard (http://shipyard-project.com/)—written in Python

ff DockerUI (https://github.com/crosbymichael/dockerui)—written in
JavaScript using AngularJS

Securing the Docker daemon remote API
Earlier in this chapter, we saw how to configure the Docker daemon to accept remote
connections. However, with the approach we followed, anyone can connect to our
Docker daemon. We can secure our connection with Transport Layer Security
(http://en.wikipedia.org/wiki/Transport_Layer_Security).

We can configure TLS either by using the existing Certificate Authority (CA) or by
creating our own. For simplicity, we will create our own, which is not recommended for
production. For this example, we assume that the host running the Docker daemon is
dockerhost.example.com.

Getting ready
Make sure you have the openssl library installed.

https://github.com/docker/docker-py/blob/master/docker/client.py
http://shipyard-project.com/
https://github.com/crosbymichael/dockerui
http://en.wikipedia.org/wiki/Transport_Layer_Security

Chapter 6

143

How to do it...
1.	 Create a directory on your host to put our CA and other related files:

$ mkdirc-p /etc/docker

$ cd /etc/docker

2.	 Create the CA private and public keys:
$ openssl genrsa -aes256 -out ca-key.pem 2048

$ openssl req -new -x509 -days 365 -key ca-key.pem -sha256 -
out ca.pem

3.	 Now, let's create the server key and certificate signing request. Make sure that
Common Name matches the Docker daemon system's hostname. In our case, it is
dockerhost.example.com.
$ openssl genrsa -out server-key.pem 2048

$ openssl req -subj "/CN=dockerhost.example.com" -new -key
server-key.pem -out server.csr

Docker APIs and Language Bindings

144

4.	 To allow connections from 127.0.0.1 and a specific host, for example, 10.70.1.67,
create an extensions configuration file and sign the public key with our CA:
$ echo subjectAltName = IP:10.70.1.67,IP:127.0.0.1 > extfile.cnf

$ openssl x509 -req -days 365 -in server.csr -CA ca.pem -CAkey
ca-key.pem -CAcreateserial -out server-cert.pem -extfile
extfile.cnf

5.	 For client authentication, create a client key and certificate signing request:
$ openssl genrsa -out key.pem 2048

$ openssl req -subj '/CN=client' -new -key key.pem -out client.csr

6.	 To make the key suitable for client authentication, create an extensions configuration
file and sign the public key:
$ echo extendedKeyUsage = clientAuth > extfile_client.cnf

$ openssl x509 -req -days 365 -in client.csr -CA ca.pem -CAkey
ca-key.pem -CAcreateserial -out cert.pem -extfile_client.cnf

7.	 After generating cert.pem and server-cert.pem, we can safely remove both the
certificate signing requests:
$ rm -rf client.csr server.csr

8.	 To set tight security and protect keys from accidental damage, let's change the
permissions:
$ chmod -v 0600 ca-key.pem key.pem server-key.pem ca.pem server-
cert.pem cert.pem

Chapter 6

145

9.	 Stop the daemon if it is running on dockerhost.example.com. Then, start the
Docker daemon manually from /etc/docker:
 $ pwd

 /etc/docker

 $ docker -d --tlsverify --tlscacert=ca.pem --
tlscert=server-cert.pem --tlskey=server-key.pem -
H=0.0.0.0:2376

10.	 From another terminal, go to /etc/docker. Run the following command to connect
to the Docker daemon:
$ cd /etc/docker

$ docker --tlsverify --tlscacert=ca.pem --tlscert=cert.pem --
tlskey=key.pem -H=127.0.0.1:2376 version

You will see that a TLS connection is established and you can run the commands over
it. You can also put the CA public key and the client's TLS certificate and key in the
.docker folder in the home directory of the user and use the DOCKER_HOST and
DOCKER_TLS_VERIFY environment variables to make a secure connection by default.

11.	 To connect from the remote host we mentioned while signing the server key with
our CA, we will need to copy the CA public key and the client's TLS certificate and
key to the remote machine and then connect to the Docker host as shown in the
preceding screenshot.

How it works…
We setup the TLS connection between the Docker daemon and the client for a secure
communication.

Docker APIs and Language Bindings

146

There's more…
ff To set up the Docker daemon to start with the TLS configuration by default, we will

need to update the Docker configuration file. For example, on Fedora, you update
the OPTIONS parameter as follows in /etc/sysconfig/docker:
OPTIONS='--selinux-enabled -H tcp://0.0.0.0:2376 --tlsverify
--tlscacert=/etc/docker/ca.pem --tlscert=/etc/docker/server-
cert.pem --tlskey=/etc/docker/server-key.pem'

ff If you recall, in Chapter 1, Introduction and Installation, we saw how we can set
up the Docker host using the Docker Machine (http://docs.docker.com/
machine/) and as part of this setup, the TLS setup happens between the client
and the host running the Docker daemon. After configuring the Docker host with
the Docker Machine, check .docker/machine for the user on the client system.

http://docs.docker.com/machine/
http://docs.docker.com/machine/

147

7
Docker Performance

In this chapter, we will cover the following recipes:

ff Benchmarking CPU performance

ff Benchmarking disk performance

ff Benchmarking network performance

ff Getting container resource usage using the stats feature

ff Setting up performance monitoring

Introduction
In Chapter 3, Working with Docker Images, we saw, how Dockerfiles can be used to create
images consisting of different services/software and later in Chapter 4, Network and Data
Management for Containers, we saw, how one Docker container can talk to the outside
world with respect to data and network. In Chapter 5, Docker Use Cases, we looked into the
different use cases of Docker, and in Chapter 6, Docker APIs and Language Bindings, we
looked at how to use remote APIs to connect to a remote Docker host.

Ease of use is all good, but before going into production, performance is one of the key
aspects that is considered. In this chapter, we'll see the performance impacting features of
Docker and what approach we can follow to benchmark different subsystems. While doing
performance evaluation, we need to compare Docker performance against the following:

ff Bare metal

ff Virtual machine

ff Docker running inside a virtual machine

Docker Performance

148

In the chapter, we will look at the approach you can follow to do performance evaluation
rather than performance numbers collected from runs to do comparison. However, I'll point
out performance comparisons done by different companies, which you can refer to.

Let's first look at some of the Docker performance impacting features:

ff Volumes: While putting down any enterprise class workload, you would like to tune
the underlying storage accordingly. You should not use the primary/root filesystem
used by containers to store data. Docker provides the facility to attach/mount
external storage through volumes. As we have seen in Chapter 4, Network and Data
Management for Containers, there are two types of volumes, which are as follows:

�� Volumes that are mounted through host machines using the --volume
option

�� Volumes that are mounted through another container using the
--volumes-from option

ff Storage drivers: We looked at different storage drivers in Chapter 1, Installation
and Introduction, which are vfs, aufs, btrfs, devicemapper, and overlayFS. Support
for ZFS has been merged recently as well. You can check the currently supported
storage drivers and their priority of selection if nothing is chosen as the Docker
start time at https://github.com/docker/docker/blob/master/daemon/
graphdriver/driver.go.

If you are running Fedora, CentOS, or RHEL, then the device mapper will be the
default storage driver. You can find some device mapper specific tuning at
https://github.com/docker/docker/tree/master/daemon/
graphdriver/devmapper.

You can change the default storage driver with the -s option to the Docker daemon.
You can update the distribution-specific configuration/systems file to make changes
across service restart. For Fedora/RHEL/CentOS, you will have the update OPTIONS
field in /etc/sysconfig/docker. Something like the following to use the
btrfs backend:
OPTIONS=-s btrfs

https://github.com/docker/docker/blob/master/daemon/graphdriver/driver.go
https://github.com/docker/docker/blob/master/daemon/graphdriver/driver.go
https://github.com/docker/docker/tree/master/daemon/graphdriver/devmapper
https://github.com/docker/docker/tree/master/daemon/graphdriver/devmapper

Chapter 7

149

The following graph shows you how much time it takes to start and stop 1,000
containers with different configurations of storage driver:

http://developerblog.redhat.com/2014/09/30/overview-storage-scalability-docker/

As you can see, overlayFS performs better than other storage drivers.

ff --net=host: As we know, by default, Docker creates a bridge and associates IPs from it
to the containers. Using --net=host exposes host networking stack to the container
by skipping the creation of a network namespace for the container. From this, it is
clear that this option always gives better performance compared to the bridged one.

This has some limitations, such as not being able to have two containers or host apps
listening on the same port.

ff Cgroups: Docker's default execution driver, libcontainer, exposes different
Cgroups knobs, which can be used to fine tune container performance. Some
of them are as follows:

�� CPU shares: With this, we can give proportional weight to the containers and
accordingly the resource will be shared. Consider the following example:
$ docker run -it -c 100 fedora bash

�� CPUsets: This allows you to create CPU masks, using which execution of
threads inside a container on host CPUs is controlled. For example, the
following code will run threads inside a container on the 0th and 3rd core:
$ docker run -it --cpuset=0,3 fedora bash

http://developerblog.redhat.com/2014/09/30/overview-storage-scalability-docker/

Docker Performance

150

�� Memory limits: We can set memory limits to a container. For example, the
following command will limit the memory usage to 512 MB for the container:

$ docker run -it -m 512M fedora bash

ff Sysctl and ulimit settings: In a few cases, you might have to change some of the
sysclt values depending on the use case to get optimal performance, such as
changing the number of open files. With Docker 1.6 (https://docs.docker.com/
v1.6/release-notes/) and above we can change the ulimit settings with the
following command:
$ docker run -it --ulimit data=8192 fedora bash

The preceding command will change the settings for just that given container, it
is a per container tuning variable. We can also set some of these settings through
the systemd configuration file of Docker daemon, which will be applicable to all
containers by default. For example, looking at the systemd configuration file for
Docker on Fedora, you will see something like the following in the service section:
LimitNOFILE=1048576 # Open file descriptor setting

LimitNPROC=1048576 # Number of processes settings

LimitCORE=infinity # Core size settings

You can update this as per your need.

You can learn about Docker performance by studying the work done by others. Over the last
year, some Docker performance-related studies have been published by a few companies:

ff From Red Hat:

�� Performance Analysis of Docker on Red Hat Enterprise Linux:
http://developerblog.redhat.com/2014/08/19/performance-
analysis-docker-red-hat-enterprise-linux-7/

https://github.com/jeremyeder/docker-performance

�� Comprehensive Overview of Storage Scalability in Docker:
http://developerblog.redhat.com/2014/09/30/overview-
storage-scalability-docker/

�� Beyond Microbenchmarks—breakthrough container performance with
Tesla efficiency:
http://developerblog.redhat.com/2014/10/21/beyond-
microbenchmarks-breakthrough-container-performance-with-
tesla-efficiency/

https://docs.docker.com/v1.6/release-notes/
https://docs.docker.com/v1.6/release-notes/
http://developerblog.redhat.com/2014/08/19/performance-analysis-docker-red-hat-enterprise-linux-7/
http://developerblog.redhat.com/2014/08/19/performance-analysis-docker-red-hat-enterprise-linux-7/
http://developerblog.redhat.com/2014/09/30/overview-storage-scalability-docker/
http://developerblog.redhat.com/2014/09/30/overview-storage-scalability-docker/
http://developerblog.redhat.com/2014/10/21/beyond-microbenchmarks-breakthrough-container-performance-with-tesla-efficiency/
http://developerblog.redhat.com/2014/10/21/beyond-microbenchmarks-breakthrough-container-performance-with-tesla-efficiency/
http://developerblog.redhat.com/2014/10/21/beyond-microbenchmarks-breakthrough-container-performance-with-tesla-efficiency/

Chapter 7

151

�� Containerizing Databases with Red Hat Enterprise Linux:
http://rhelblog.redhat.com/2014/10/29/containerizing-
databases-with-red-hat-enterprise-linux/

ff From IBM

�� An Updated Performance Comparison of Virtual Machines and Linux
Containers:
http://domino.research.ibm.com/library/cyberdig.nsf/pape
rs/0929052195DD819C85257D2300681E7B/$File/rc25482.pdf

https://github.com/thewmf/kvm-docker-comparison

ff From VMware

�� Docker Containers Performance in VMware vSphere
http://blogs.vmware.com/performance/2014/10/docker-
containers-performance-vmware-vsphere.html

To do the benchmarking, we need to run similar workload on different environments (bare
metal/VM/Docker) and then collect the results with the help of different performance stats.
To simplify things, we can write common benchmark scripts which can be used to run on
different environments. We can also create Dockerfiles to spin off containers with workload
generation scripts. For example, in the Performance Analysis of Docker on Red Hat Enterprise
Linux article, which is listed earlier (https://github.com/jeremyeder/docker-
performance/blob/master/Dockerfiles/Dockerfile), the author has used a
Dockerfile to create a CentOS image and used the container environment variable to select
Docker and non-Docker environment for benchmark script run-sysbench.sh.

Similarly, Dockerfiles and related scripts are published by IBM for their study available at
https://github.com/thewmf/kvm-docker-comparison.

We will be using some of the Docker files and scripts mentioned earlier in the recipes of
this chapter.

Benchmarking CPU performance
We can use benchmarks such as Linpack (http://www.netlib.org/linpack/) and
sysbench (https://github.com/nuodb/sysbench) to benchmark CPU performance. For
this recipe, we'll use sysbench. We'll see how to run the benchmark on bare metal and inside
the container. Similar steps can be performed in other environments, as mentioned earlier.

http://rhelblog.redhat.com/2014/10/29/containerizing-databases-with-red-hat-enterprise-linux/
http://rhelblog.redhat.com/2014/10/29/containerizing-databases-with-red-hat-enterprise-linux/
http://domino.research.ibm.com/library/cyberdig.nsf/papers/0929052195DD819C85257D2300681E7B/$File/rc25482.pdf
http://domino.research.ibm.com/library/cyberdig.nsf/papers/0929052195DD819C85257D2300681E7B/$File/rc25482.pdf
http://blogs.vmware.com/performance/2014/10/docker-containers-performance-vmware-vsphere.html
http://blogs.vmware.com/performance/2014/10/docker-containers-performance-vmware-vsphere.html
https://github.com/jeremyeder/docker-performance/blob/master/Dockerfiles/Dockerfile
https://github.com/jeremyeder/docker-performance/blob/master/Dockerfiles/Dockerfile

Docker Performance

152

Getting ready
We will use the CentOS 7 container to run the benchmark inside the container. Ideally, we
should have a system with CentOS 7 installed to get benchmark results on bare metal. For the
container test, let's build the image from the GitHub repository that we referred to earlier:

$ git clone https://github.com/jeremyeder/docker-performance.git

$ cd docker-performance/Dockerfiles/

$ docker build -t c7perf --rm=true - < Dockerfile

$ docker images

REPOSITORY TAG IMAGE ID CREATED
VIRTUAL SIZE

c7perf latest 59a10df39a82 About a minute ago
678.3 MB

How to do it…
Inside the same GitHub repository, we have a script to run sysbench, docker-performance/
bench/sysbench/run-sysbench.sh. It has some configurations, which you can modify
according to your needs.

1.	 As the root user, create the /results directory on the host:
$ mkdir -p /results

Now, run the benchmark after setting the container environment variable to
something other than Docker, which we used while building the c7perf image
on the host machine, run the following commands:
$ cd docker-performance/bench/sysbench

$ export container=no

$ sh ./run-sysbench.sh cpu test1

By default, the results are collected in /results. Make sure you have write access
to it or change the OUTDIR parameter in the benchmark script.

2.	 To run the benchmark inside the container, we need to first start the container and
then run the benchmark script:
$ mkdir /results_container

$ docker run -it -v /results_container:/results c7perf bash

$ docker-performance/bench/sysbench/run-sysbench.sh cpu test1

As we mounted the host directory, /results_container, inside the /results
container, the result will be collected on the host.

Chapter 7

153

3.	 While running the preceding test on Fedora/RHEL/CentOS, where SELinux is
enabled, you will get a Permission denied error. To fix it, relabel the host directory
while mounting it inside the container as follows:
$ docker run -it -v /results_container:/results:z c7perf bash

Alternatively, for the time being, put SELinux in permissive mode:
$ setenforce 0

Then, after the test, put it back in permissive mode:

$ setenforce 1

Refer to Chapter 9, Docker Security, for more details
about SELinux.

How it works…
The benchmark script internally calls sysbench's CPU benchmark for the given input. CPU
is benchmarked by using the 64-bit integer manipulation using Euklid algorithms for prime
number computation. The result for each run gets collected in the corresponding results
directory, which can be used for comparison.

There's more…
Almost no difference is reported in bare metal and Docker CPU performance.

See also
ff Look at the CPU benchmark results published in IBM and VMware using Linpack in

the links referenced earlier in this chapter.

Benchmarking disk performance
There are tools such as Iozone (http://www.iozone.org/), smallfile (https://github.
com/bengland2/smallfile), and Flexible IO (https://github.com/axboe/fio)
available to benchmark disk performance. For this recipe, we will use FIO. For that, we need to
write a job file, which mimics the workload you want to run. Using this job file, we can simulate
the workload on the target. For this recipe, let's take the FIO example from the benchmark
results, which IBM has published (https://github.com/thewmf/kvm-docker-
comparison/tree/master/fio).

https://github.com/bengland2/smallfile
https://github.com/bengland2/smallfile
https://github.com/thewmf/kvm-docker-comparison/tree/master/fio
https://github.com/thewmf/kvm-docker-comparison/tree/master/fio

Docker Performance

154

Getting ready
In the bare metal / VM / Docker container, install FIO and mount the disk containing a
filesystem for each test under /ferrari or anything which is mentioned in the FIO job file. On
bare metal, you can mount natively and on VM it can be mounted using the virtual disk driver
or we can do device pass through. On Docker, we can attach the filesystem from the host
machine using Docker volumes.

Prepare the workload file. We can pick https://github.com/thewmf/kvm-docker-
comparison/blob/master/fio/mixed.fio:

[global]
ioengine=libaio
direct=1
size=16g
group_reporting
thread
filename=/ferrari/fio-test-file

[mixed-random-rw-32x8]
stonewall
rw=randrw
rwmixread=70
bs=4K
iodepth=32
numjobs=8
runtime=60

Using the preceding job file, we can do random direct I/O on /ferrari/fio-test-file
with 4K block size using the libaio driver on a 16 GB file. The I/O depth is 32 and
the number of parallel jobs is 8. It is a mix workload, which does 70 percent read and
30 percent write.

How to do it…
1.	 For the bare metal and VM tests, you can just run the FIO job file and collect

the result:
$ fio mixed.fio

2.	 For the Docker test, you can prepare a Docker file as follows:
FROM ubuntu
MAINTAINER nkhare@example.com
RUN apt-get update
RUN apt-get -qq install -y fio

https://github.com/thewmf/kvm-docker-comparison/blob/master/fio/mixed.fio
https://github.com/thewmf/kvm-docker-comparison/blob/master/fio/mixed.fio

Chapter 7

155

ADD mixed.fio /
VOLUME ["/ferrari"]
ENTRYPOINT ["fio"]

3.	 Now, create an image using the following command:
$ docker build -t docker_fio_perf .

4.	 Start the container as follows to run the benchmark and collect the results:
$ docker run --rm -v /ferrari:/ferrari docker_fio_perf
mixed.fio

5.	 While running the preceding test on Fedora/RHEL/CentOS, where SELinux is enabled,
you will get the Permission denied error. To fix it, re-label the host directory while
mounting it inside the container as follows:
$ docker run --rm -v /ferrari:/ferrari:z docker_fio_perf
mixed.fio

How it works…
FIO will run the workload given in the job file and spit out the results.

There's more…
Once the results are collected, you can do the result comparison. You can even try out
different kinds of I/O patterns using the job file and get the desired result.

See also
ff Look at the disk benchmark results published in IBM and VMware using FIO in the

links referenced earlier in this chapter

Benchmarking network performance
Network is one of the key aspects to consider while deploying the applications in the container
environment. To do performance comparison with bare metal, VM and containers, we have to
consider different scenarios as follows:

ff Bare metal to bare metal

ff VM to VM

ff Docker container to container with the default networking mode (bridge)

ff Docker container to container with host net (--net=host)

ff Docker container running inside VM with the external world

Docker Performance

156

In any of the preceding cases, we can pick up two endpoints to do the benchmarking. We can
use tools such as nuttcp (http://www.nuttcp.net/) and netperf (http://netperf.
org/netperf/) to measure the network bandwidth and request/response, respectively.

Getting ready
Make sure both the endpoints can reach each other and have the necessary packages/
software installed. On Fedora 21, you can install nuttcp with the following command:

$ yum install -y nuttcp

And, get netperf from its website.

How to do it…
To measure the network bandwidth using nuttcp, perform the following steps:

1.	 Start the nuttcp server on one endpoint:
$ nuttcp -S

2.	 Measure the transmit throughput (client to server) from the client with the
following command:
$ nuttcp -t <SERVER_IP>

3.	 Measure the receiver throughput on the client (server to client) with the following
command:
$ nuttcp -r <SERVER_IP>

4.	 To run the request/response benchmark using netperf, perform the following steps:

5.	 Start netserver on one endpoint:
$ netserver

6.	 Connect to the server from the other endpoint and run the request/response test:

�� For TCP:
$ netperf -H 172.17.0.6 -t TCP_RR

�� For UDP:
$ netperf -H 172.17.0.6 -t UDP_RR

How it works…
In both the cases mentioned earlier, one endpoint becomes the client and sends the requests
to the server on the other endpoint.

http://netperf.org/netperf/
http://netperf.org/netperf/

Chapter 7

157

There's more…
We can collect the benchmark results for different scenarios and compare them. netperf
can also be used for throughput tests.

See also
ff Look at the network benchmark results published by IBM and VMware in the links

referenced earlier in this chapter

Getting container resource usage using the
stats feature

With the release of version 1.5, Docker added a feature to get container resource usage from
in-built commands.

Getting ready
A Docker host with version 1.5 or later installed, which can be accessed via the Docker client.
Also, start a few containers to get stats.

How to do it…
1.	 Run the following command to get stats from one or more containers:

$ docker stats [CONTAINERS]

For example, if we have two containers with the names some-mysql and
backstabbing_turing, then run the following command to get the stats:

$ docker stats some-mysql backstabbing_turing

How it works…
The Docker daemon fetches the resource information from the Cgroups and serves it through
the APIs.

Docker Performance

158

See also
ff Refer to the release notes of Docker 1.5 at https://docs.docker.com/v1.5/

release-notes/

Setting up performance monitoring
We have tools such as SNMP, Nagios, and so on to monitor bare metal and VM performance.
Similarly, there are a few tools/plugins available to monitor container performance such as
cAdvisor (https://github.com/google/cadvisor) and sFlow (http://blog.sflow.
com/2014/06/docker-performance-monitoring.html). In this recipe, let's see how
we can configure cAdvisor.

Getting ready
Setting up cAdvisor.

ff The easiest way to run cAdvisor is to run its Docker container, which can be done with
the following command:
sudo docker run \

 --volume=/:/rootfs:ro \

 --volume=/var/run:/var/run:rw \

 --volume=/sys:/sys:ro \

 --volume=/var/lib/docker/:/var/lib/docker:ro \

 --publish=8080:8080 \

 --detach=true \

 --name=cadvisor \

 google/cadvisor:latest

ff If you want to run cAdvisor outside Docker, then follow the instructions given on
the cAdvisor home page at https://github.com/google/cadvisor/blob/
master/docs/running.md#standalone

How to do it…
After the container starts, point your browser to http://localhost:8080. You will first
get the graphs for CPU, memory usage and other information for the host machine. Then, by
clicking on the Docker Containers link, you will get the URLs for the containers running on the
machine under the Subcontainers section. If you click on any one of them, you will see the
resource usage information for the corresponding container.

https://docs.docker.com/v1.5/release-notes/
https://docs.docker.com/v1.5/release-notes/
http://blog.sflow.com/2014/06/docker-performance-monitoring.html
http://blog.sflow.com/2014/06/docker-performance-monitoring.html
https://github.com/google/cadvisor/blob/master/docs/running.md#standalone
https://github.com/google/cadvisor/blob/master/docs/running.md#standalone

Chapter 7

159

The following is the screenshot of one such container:

How it works…
With the docker run command, we have mounted few volumes from host machines in read-
only mode. cAdvisor will read the relevant information from those like the Cgroup details for
containers and show them graphically.

There's more…
cAdvisor supports exporting the performance matrices to influxdb (http://influxdb.
com/). Heapster (https://github.com/GoogleCloudPlatform/heapster) is another
project from Google, which allows cluster-wide (Kubernetes) monitoring using cAdvisor.

See also
ff You can look at the matrices used by cAdvisor from Cgroups in the documentation on

the Docker website https://docs.docker.com/articles/runmetrics/

http://influxdb.com/
http://influxdb.com/
https://docs.docker.com/articles/runmetrics/

161

8
Docker Orchestration

and Hosting Platforms

In this chapter, we will cover the following recipes:

ff Running applications with Docker Compose

ff Setting up Cluster with Docker Swarm

ff Setting up CoreOS for Docker orchestration

ff Setting up a Project Atomic host

ff Doing atomic update/rollback with Project Atomic

ff Adding more storage for Docker in Project Atomic

ff Setting up Cockpit for Project Atomic

ff Setting up a Kubernetes cluster

ff Scaling up and down in a Kubernetes cluster

ff Setting up WordPress with a Kubernetes cluster

Introduction
Running Docker on a single host may be good for the development environment, but the real
value comes when we span multiple hosts. However, this is not an easy task. You have to
orchestrate these containers. So, in this chapter, we'll cover some of the orchestration tools
and hosting platforms.

Docker Orchestration and Hosting Platforms

162

Docker Inc. announced two such tools:

Docker Compose (https://docs.docker.com/compose) to create apps consisting of
multiple containers and Docker Swarm (https://docs.docker.com/swarm/) to cluster
multiple Docker hosts. Docker Compose was previously called Fig (http://www.fig.sh/).

CoreOS (https://coreos.com/) created etcd (https://github.com/coreos/etcd)
for consensus and service discovery, fleet (https://coreos.com/using-coreos/
clustering) to deploy containers in a cluster, and flannel (https://github.com/
coreos/flannel) for overlay networking.

Google started Kubernetes (http://kubernetes.io/) for Docker orchestration.
Kubernetes provides mechanisms for application deployment, scheduling, updating,
maintenance, and scaling.

Red Hat launched a container-specific operating system called Project Atomic (http://www.
projectatomic.io/), which can leverage the orchestration capabilities of Kubernetes.

Even Microsoft announced a specialized operating system for Docker (http://azure.
microsoft.com/blog/2015/04/08/microsoft-unveils-new-container-
technologies-for-the-next-generation-cloud/).

Apache Mesos (http://mesos.apache.org/), which provides resource management and
scheduling across entire datacenter and cloud environments, also added support for Docker
(http://mesos.apache.org/documentation/latest/docker-containerizer/).

VMware also launched the container-specific host VMware Photon (http://vmware.
github.io/photon/).

This is definitely a very interesting space, but the policy management tools of many
orchestration engines do not make the lives of developers and operators easy. They have to
learn different tools and formats when they move from one platform to another. It would be
great if we could have a standard way to build and launch composite, multicontainer apps.
The Project Atomic community seems to be working on one such platform-neutral specification
called Nulecule (https://github.com/projectatomic/nulecule/). A good description
about Nulecule is available at http://www.projectatomic.io/blog/2015/05/
announcing-the-nulecule-specification-for-composite-applications/:

"Nulecule defines a pattern and model for packaging complex multi-container
applications, referencing all their dependencies, including orchestration metadata, in
a single container image for building, deploying, monitoring, and active management.
Just create a container with a Nulecule file and the app will 'just work'. In the Nulecule
spec, you define orchestration providers, container locations and configuration
parameters in a graph, and the Atomic App implementation will piece them together
for you with the help of Providers. The Nulecule specification supports aggregation of
multiple composite applications, and it's also container and orchestration agnostic,
enabling the use of any container and orchestration engine."

https://coreos.com/using-coreos/clustering
https://coreos.com/using-coreos/clustering
https://github.com/coreos/flannel
https://github.com/coreos/flannel
http://www.projectatomic.io/
http://www.projectatomic.io/
http://azure.microsoft.com/blog/2015/04/08/microsoft-unveils-new-container-technologies-for-the-next-generation-cloud/
http://azure.microsoft.com/blog/2015/04/08/microsoft-unveils-new-container-technologies-for-the-next-generation-cloud/
http://azure.microsoft.com/blog/2015/04/08/microsoft-unveils-new-container-technologies-for-the-next-generation-cloud/
http://mesos.apache.org/
http://mesos.apache.org/documentation/latest/docker-containerizer/
http://vmware.github.io/photon/
http://vmware.github.io/photon/
https://github.com/projectatomic/nulecule/
http://www.projectatomic.io/blog/2015/05/announcing-the-nulecule-specification-for-composite-applications/
http://www.projectatomic.io/blog/2015/05/announcing-the-nulecule-specification-for-composite-applications/

Chapter 8

163

AtomicApp is a reference implementation (https://github.com/projectatomic/
atomicapp/) of the Nulecule specification. It can be used to bootstrap container applications
and to install and run them. AtomicApp currently has a limited number of providers (Docker,
Kubernetes, OpenShift), but support for others will be added soon.

On a related note, the CentOS community is building a CI environment, which will take
advantage of Nulecule and AtomicApp. For further information, visit http://wiki.centos.
org/ContainerPipeline.

All of the preceding tools and platforms need separate chapters for themselves. In this
chapter, we'll explore Compose, Swarm, CoreOS, Project Atomic, and Kubernetes briefly.

Running applications with Docker Compose
Docker Compose (http://docs.docker.com/compose/) is the native Docker tool to
run the interdependent containers that make up an application. We define a multicontainer
application in a single file and feed it to Docker Compose, which sets up the application. At
the time of writing, Compose is still not production-ready. In this recipe, we'll once again use
WordPress as a sample application to run.

Getting ready
Make sure you have Docker Version 1.3 or later installed on the system. To install Docker
Compose, run the following command:

$ sudo pip install docker-compose

How to do it…
1.	 Create a directory for the application, and within it create docker-compose.yml to

define the app:

2.	 We have taken the preceding example from the official WordPress Docker repo on
Docker Hub (https://registry.hub.docker.com/_/wordpress/).

https://github.com/projectatomic/atomicapp/
https://github.com/projectatomic/atomicapp/
http://wiki.centos.org/ContainerPipeline
http://wiki.centos.org/ContainerPipeline

Docker Orchestration and Hosting Platforms

164

3.	 Within the app directory, run the following command to build the app:
$ docker-compose up

4.	 Once the build is complete, access the WordPress installation page from
http://localhost:8080 or http://<host-ip>:8080.

How it works…
Docker Compose downloads both the mariadb wordpress images, if not available locally
from the official Docker registry. First, it starts the db container from the mariadb image;
then it starts the wordpress container. Next, it links with the db container and exports the
port to the host machine.

There's more…
We can even build images from the Dockerfile during the compose and then use it for the app.
For example, to build the wordpress image, we can get the corresponding Dockerfile and
other supporting file from within the application's Compose directory and update the docker-
compose.yml file in a similar manner as follows:

We can start, stop, rebuild, and get the status of the app. Visit its documentation on the
Docker website.

See also
ff The Docker Compose YAML file reference at http://docs.docker.com/

compose/yml/

ff The Docker Compose command-line reference at http://docs.docker.com/
compose/cli/

ff The Docker Compose GitHub repository at https://github.com/docker/
compose

http://docs.docker.com/compose/yml/
http://docs.docker.com/compose/yml/
http://docs.docker.com/compose/cli/
http://docs.docker.com/compose/cli/
https://github.com/docker/compose
https://github.com/docker/compose

Chapter 8

165

Setting up cluster with Docker Swarm
Docker Swarm (http://docs.docker.com/swarm/) is native clustering to Docker. It
groups multiple Docker hosts into a single pool in which one can launch containers. In this
recipe, we'll use Docker Machine (http://docs.docker.com/machine/) to set up a
Swarm cluster. At the time of writing, Swarm is still not production-ready. If you recall, we used
Docker Machine to set up a Docker host on Google Compute Engine in Chapter 1, Introduction
and Installation. To keep things simple, here we'll use VirtualBox as the backend for Docker
Machine to configure hosts.

Getting ready
1.	 Install VirtualBox on your system (https://www.virtualbox.org/). Instructions

to configure VirtualBox are outside the scope of this book.

2.	 Download and set up Docker Machine. In Fedora x86_64, run the following
commands:
$ wget
https://github.com/docker/machine/releases/download/v0.2.0/doc
ker-machine_linux-amd64

$ sudo mv docker-machine_linux-amd64 /usr/local/bin/docker-
machine

$ chmod a+x /usr/local/bin/docker-machine

How to do it…
1.	 Using the Swarm discovery service, we first need to create a Swarm token to identify

our cluster uniquely. Other than the default hosted discovery service, Swarm supports
different types of discovery services such as etcd, consul, and zookeeper. For more
details, please visit https://docs.docker.com/swarm/discovery/. To create
a token using the default hosted discovery service, we'll first set up the Docker host
using Docker Machine on a VM and then get the token:
$ docker-machine create -d virtualbox local

2.	 To access the Docker we just created from your local Docker client, run the following
command:
$ eval "$(docker-machine env local)"

3.	 To get the token, run the following command:
$ docker run swarm create

7c3a21b42708cde81d99884116d68fa1

Docker Orchestration and Hosting Platforms

166

4.	 Using the token created in the preceding step, set up Swarm master:
$ docker-machine create -d virtualbox --swarm --swarm-
master --swarm-discovery
token://7c3a21b42708cde81d99884116d68fa1 swarm-master

5.	 Similarly, let's create two Swarm nodes:
$ docker-machine create -d virtualbox --swarm --swarm-
discovery token://7c3a21b42708cde81d99884116d68fa1 swarm-node-
1

$ docker-machine create -d virtualbox --swarm --swarm-
discovery token://7c3a21b42708cde81d99884116d68fa1 swarm-node-
2

6.	 Now, connect to Docker Swarm from your local Docker client:
$ eval "$(docker-machine env swarm-master)"

7.	 Swarm APIs are compatible with Docker client APIs. Let's run the docker info
command to see Swarm's current configuration/setup:

$ docker info

As you can see, we have three nodes in the cluster: one master and two nodes.

How it works…
Using the unique token we got from the hosted discovery service, we registered the master
and nodes in a cluster.

Chapter 8

167

There's more…
ff In the preceding docker info output, we also scheduled policy (strategy) and

filters. More information on these can be found at https://docs.docker.com/
swarm/scheduler/strategy/ and https://docs.docker.com/swarm/
scheduler/filter/. These define where the container will run.

ff There is active development happening to integrate Docker Swarm and Docker
Compose so that we point and compose the app to the Swarm cluster. The app will
then start on the cluster. Visit https://github.com/docker/compose/blob/
master/SWARM.md

See also
ff The Swarm documentation on the Docker website at https://docs.docker.com/

swarm/

ff Swarm's GitHub repository at https://github.com/docker/swarm

Setting up CoreOS for Docker orchestration
CoreOS (https://coreos.com/) is a Linux distribution that has been rearchitected to
provide the features needed to run modern infrastructure stacks. It is Apache 2.0 Licensed.
It has a product called CoreOS Managed Linux (https://coreos.com/products/
managed-linux/) for which the CoreOS team provides commercial support.

Essentially, CoreOS provides platforms to host a complete applications stack. We can set up
CoreOS on different cloud providers, bare metal, and in the VM environment. Let's look at the
building blocks of CoreOS:

ff etcd

ff Container runtime

ff Systemd

ff Fleet

Let's discuss each in detail:

ff etcd: From the GitHub page of etcd (https://github.com/coreos/
etcd/#etcd). etcd is a highly available key-value store for shared configuration
and service discovery. It is inspired by Apache ZooKeeper and doozer with a focus
on being:

�� Simple: Curl-able user-facing API (HTTP plus JSON)

�� Secure: Optional SSL client certificate authentication

https://docs.docker.com/swarm/scheduler/strategy/
https://docs.docker.com/swarm/scheduler/strategy/
https://docs.docker.com/swarm/scheduler/filter/
https://docs.docker.com/swarm/scheduler/filter/
https://github.com/docker/compose/blob/master/SWARM.md
https://github.com/docker/compose/blob/master/SWARM.md
https://docs.docker.com/swarm/
https://docs.docker.com/swarm/
https://coreos.com/products/managed-linux/
https://coreos.com/products/managed-linux/
https://github.com/coreos/etcd/#etcd
https://github.com/coreos/etcd/#etcd

Docker Orchestration and Hosting Platforms

168

�� Fast: Benchmark of 1,000s of writes per instance

�� Reliable: Proper distribution using Raft

It is written in Go and uses the Raft consensus algorithm (https://
raftconsensus.github.io/) to manage a highly available replicated
log. etcd can be used independent of CoreOS. We can:

�� Set up a single or multinode cluster. More information on this can be
found at https://github.com/coreos/etcd/blob/master/
Documentation/clustering.md.

�� Access using CURL and different libraries, found at https://github.
com/coreos/etcd/blob/master/Documentation/libraries-and-
tools.md.

In CoreOS, etcd is meant for the coordination of clusters. It provides a mechanism to
store configurations and information about services in a consistent way.

ff Container runtime: CoreOS supports Docker as a container runtime environment.
In December 2014, CoreOS announced a new container runtime Rocket (https://
coreos.com/blog/rocket/). Let's restrict our discussion to Docker, which is
currently installed on all CoreOS machines.

ff systemd: systemd is an init system used to start, stop, and manage processes. In
CoreOS, it is used to:

�� Launch Docker containers

�� Register services launched by containers to etcd

Systemd manages unit files. A sample unit file looks like the following:
[Unit]
Description=Docker Application Container Engine
Documentation=http://docs.docker.com
After=network.target docker.socket
Requires=docker.socket

[Service]
Type=notify
EnvironmentFile=-/etc/sysconfig/docker
EnvironmentFile=-/etc/sysconfig/docker-storage
ExecStart=/usr/bin/docker -d -H fd:// $OPTIONS
$DOCKER_STORAGE_OPTIONS
LimitNOFILE=1048576
LimitNPROC=1048576

[Install]
WantedBy=multi-user.target

https://raftconsensus.github.io/
https://raftconsensus.github.io/
https://github.com/coreos/etcd/blob/master/Documentation/clustering.md
https://github.com/coreos/etcd/blob/master/Documentation/clustering.md
https://github.com/coreos/etcd/blob/master/Documentation/libraries-and-tools.md
https://github.com/coreos/etcd/blob/master/Documentation/libraries-and-tools.md
https://github.com/coreos/etcd/blob/master/Documentation/libraries-and-tools.md
https://coreos.com/blog/rocket/
https://coreos.com/blog/rocket/

Chapter 8

169

This unit file starts the Docker daemon with the command mentioned in ExecStart
on Fedora 21. The Docker daemon will start after the network target and docker
socket services. docker socket is a prerequisite for the Docker daemon to start.
Systemd targets are ways to group processes so that they can start at the same time.
multi-user is one of the targets with which the preceding unit file is registered.
For more details, you can look at the upstream documentation of Systemd at
http://www.freedesktop.org/wiki/Software/systemd/.

ff Fleet: Fleet (https://coreos.com/using-coreos/clustering/) is the cluster
manager that controls systemd at the cluster level. systemd unit files are combined
with some Fleet-specific properties to achieve the goal. From the Fleet documentation
(https://github.com/coreos/fleet/blob/master/Documentation/
architecture.md):

"Every system in the fleet cluster runs a single fleetd daemon.
Each daemon encapsulates two roles: the engine and the agent.
An engine primarily makes scheduling decisions while an agent
executes units. Both the engine and agent use the reconciliation
model, periodically generating a snapshot of 'current state' and
'desired state' and doing the necessary work to mutate the former
towards the latter."

etcd is the sole datastore in a fleet cluster. All persistent and ephemeral data is
stored in etcd; unit files, cluster presence, unit state, and so on. etcd is also used
for all internal communication between fleet engines and agents.

Now we know of all the building blocks of CoreOS. Let's try out CoreOS on our local system/
laptop. To keep things simple, we will use Vagrant to set up the environment.

Getting ready
1.	 Install VirtualBox on the system (https://www.virtualbox.org/) and Vagrant

(https://www.vagrantup.com/). The instructions to configure both of these
things are outside the scope of this book.

2.	 Clone the coreos-vagrant repository:
$ git clone https://github.com/coreos/coreos-vagrant.git

$ cd coreos-vagrant

3.	 Copy the sample file user-data.sample to user-data and set up the token to
bootstrap the cluster:
$ cp user-data.sample user-data

http://www.freedesktop.org/wiki/Software/systemd/
https://coreos.com/using-coreos/clustering/
https://github.com/coreos/fleet/blob/master/Documentation/architecture.md
https://github.com/coreos/fleet/blob/master/Documentation/architecture.md

Docker Orchestration and Hosting Platforms

170

4.	 When we configure the CoreOS cluster with more than one node, we need a token to
bootstrap the cluster to select the initial etcd leader. This service is provided free by
the CoreOS team. We just need to open https://discovery.etcd.io/new in
the browser to get the token and update it within the user-data file as follows:

5.	 Copy config.rb.sample to config.rb and make changes to the following line:
$num_instances=1

It should now look like this:

$num_instances=3

This will ask Vagrant to set up three node clusters. By default, Vagrant is configured to get
the VM images from the alpha release. We can change it to beta or stable by updating the
$update_channel parameter in Vagrantfile. For this recipe, I chose stable.

How to do it…
1.	 Run the following command to set up the cluster:

$ vagrant up

Now, check the status, using the command shown in the following screenshot:

2.	 Log in to one of the VMs using SSH, look at the status of services, and list the
machines in the cluster:
$ vagrant ssh core-01

$ systemctl status etcd fleet

$ fleetctl list-machines

Chapter 8

171

3.	 Create a service unit file called myapp.service with the following content:
[Unit]
Description=MyApp
After=docker.service
Requires=docker.service

[Service]
TimeoutStartSec=0
ExecStartPre=-/usr/bin/docker kill busybox1
ExecStartPre=-/usr/bin/docker rm busybox1
ExecStartPre=/usr/bin/docker pull busybox
ExecStart=/usr/bin/docker run --name busybox1 busybox /bin/sh -c
"while true; do echo Hello World; sleep 1; done"
ExecStop=/usr/bin/docker stop busybox1

4.	 Let's now submit the service for scheduling and start the service:

$ fleetctl submit myapp.service

$ fleetctl start myapp.service

$ fleetctl list-units

As we can see, our service has started on one of the nodes in the cluster.

How it works…
Vagrant uses the cloud configuration file (user-data) to boot the VMs. As they have the
same token to bootstrap the cluster, they select the leader and start operating. Then, with
fleetctl, which is the fleet cluster management tool, we submit the unit file for scheduling,
which starts on one of the nodes.

Docker Orchestration and Hosting Platforms

172

There's more…
ff Using the cloud configuration file in this recipe, we can start etcd and fleet on

all the VMs. We can choose to run etcd just on selected nodes and then configure
worker nodes running fleet to connect to etcd servers. This can be done by
setting the cloud configuration file accordingly. For more information, please visit
https://coreos.com/docs/cluster-management/setup/cluster-
architectures/.

ff With fleet, we can configure services for high availability. For more information,
take a look at https://coreos.com/docs/launching-containers/
launching/fleet-unit-files/.

ff Though your service is running on the host, you will not be able to reach it from
the outside world. You will need to add some kind of router and wildcard DNS
configuration to reach your service from the outside world.

See also
ff The CoreOS documentation for more details at https://coreos.com/docs/

ff The visualization of RAFT consensus algorithm at http://
thesecretlivesofdata.com/raft

ff How to configure the cloud config file at https://coreos.com/docs/cluster-
management/setup/cloudinit-cloud-config/ and https://coreos.com/
validate/

ff Documentation on systemd at https://coreos.com/docs/launching-
containers/launching/getting-started-with-systemd/

ff How to launch containers with fleet at https://coreos.com/docs/launching-
containers/launching/launching-containers-fleet/

Setting up a Project Atomic host
Project Atomic facilitates application-centric IT architecture by providing an end-to-end solution
to deploy containerized applications quickly and reliably, with atomic update and rollback for
the application and host alike.

This is achieved by running applications in containers on a Project Atomic host, which is a
lightweight operating system specially designed to run containers. The hosts can be based on
Fedora, CentOS, or Red Hat Enterprise Linux.

Next, we will elaborate on the building blocks of the Project Atomic host.

https://coreos.com/docs/cluster-management/setup/cluster-architectures/
https://coreos.com/docs/cluster-management/setup/cluster-architectures/
https://coreos.com/docs/launching-containers/launching/fleet-unit-files/
https://coreos.com/docs/launching-containers/launching/fleet-unit-files/
http://thesecretlivesofdata.com/raft
http://thesecretlivesofdata.com/raft
https://coreos.com/docs/cluster-management/setup/cloudinit-cloud-config/
https://coreos.com/docs/cluster-management/setup/cloudinit-cloud-config/
https://coreos.com/validate/
https://coreos.com/validate/
https://coreos.com/docs/launching-containers/launching/getting-started-with-systemd/
https://coreos.com/docs/launching-containers/launching/getting-started-with-systemd/
https://coreos.com/docs/launching-containers/launching/launching-containers-fleet/
https://coreos.com/docs/launching-containers/launching/launching-containers-fleet/

Chapter 8

173

ff OSTree and rpm-OSTree: OSTree (https://wiki.gnome.org/action/show/
Projects/OSTree) is a tool to manage bootable, immutable, and versioned
filesystem trees. Using this, we can build client-server architecture in which the server
hosts an OSTree repository and the client subscribed to it can incrementally replicate
the content.

rpm-OSTree is a system to decompose RPMs on the server side into the OSTree
repository to which the client can subscribe and perform updates. With each update,
a new root is created, which is used for the next reboot. During updates, /etc is
rebased and /var is untouched.

ff Container runtime: As of now Project Atomic only supports Docker as container
runtime.

ff systemd: As we saw in earlier recipes, systemd is a new init system. It also helps to
set up SELinux policies to containers for complete multitenant security and to control
Cgroups policies, which we looked in at Chapter 1, Introduction and Installation.

Project Atomic uses Kubernetes (http://kubernetes.io/) for application
deployment over clusters of container hosts. Project Atomic can be installed on bare
metal, cloud providers, VMs, and so on. In this recipe, let's see how we can install it
on a VM using virt-manager on Fedora.

Getting ready
1.	 Download the image:

$ wget
http://download.fedoraproject.org/pub/fedora/linux/releases/te
st/22_Beta/Cloud/x86_64/Images/Fedora-Cloud-Atomic-22_Beta-
20150415.x86_64.raw.xz

I have downloaded the beta image for Fedora 22 Cloud image For Containers. You
should look for the latest cloud image For Containers at https://getfedora.
org/en/cloud/download/.

2.	 Uncompress this image by using the following command:
$ xz -d Fedora-Cloud-Atomic-22_Beta-20150415.x86_64.raw.xz

https://wiki.gnome.org/action/show/Projects/OSTree
https://wiki.gnome.org/action/show/Projects/OSTree
http://kubernetes.io/
https://getfedora.org/en/cloud/download/
https://getfedora.org/en/cloud/download/

Docker Orchestration and Hosting Platforms

174

How to do it…
1.	 We downloaded the cloud image that does not have any password set for the default

user fedora. While booting the VM, we have to provide a cloud configuration file
through which we can customize the VM. To do this, we need to create two files,
meta-data and user-data, as follows:
$ cat meta-data

instance-id: iid-local01

local-hostname: atomichost

$ cat user-data

#cloud-config

password: atomic

ssh_pwauth: True

chpasswd: { expire: False }

ssh_authorized_keys:

- ssh-rsa AAAAB3NzaC1yc.........

In the preceding code, we need to provide the complete SSH public key. We then
need to create an ISO image consisting of these files, which we will use to boot to the
VM. As we are using a cloud image, our setting will be applied to the VM during the
boot process. This means the hostname will be set to atomichost, the password
will be set to atomic, and so on. To create the ISO, run the following command:

$ genisoimage -output init.iso -volid cidata -joliet -rock
user-data meta-data

2.	 Start virt-manager.

3.	 Select New Virtual Machine and then import the existing disk image. Enter the
image path of the Project Atomic image we downloaded earlier. Select OS type as
Linux and Version as Fedora 20/Fedora 21 (or later), and click on Forward. Next,
assign CPU and Memory and click on Forward. Then, give a name to the VM and
select Customize configuration before install. Finally, click on Finish and review
the details.

Chapter 8

175

4.	 Next, click on Add Hardware, and after selecting Storage, attach the ISO (init.iso)
file we created to the VM and select Begin Installation:

Once booted, you can see that its hostname is correctly set and you will be able to log in
through the password given in the cloud init file. The default user is fedora and password
is atomic as set in the user-data file.

How it works…
In this recipe, we took a Project Atomic Fedora cloud image and booted it using
virt-manager after supplying the cloud init file.

Docker Orchestration and Hosting Platforms

176

There's more…
ff After logging in, if you do file listing at /, you will see that most of the traditional

directories are linked to /var because it is preserved across upgrades.

ff After logging in, you can run the Docker command as usual:
$sudo docker run -it fedora bash

See also
ff The virtual manager documentation at https://virt-manager.org/

documentation/

ff More information on package systems, image systems, and RPM-OSTree at
https://github.com/projectatomic/rpm-ostree/blob/master/doc/
background.md

ff The quick-start guide on the Project Atomic website at http://www.
projectatomic.io/docs/quickstart/

ff The resources on cloud images at https://www.technovelty.org//
linux/running-cloud-images-locally.html and http://cloudinit.
readthedocs.org/en/latest/

ff How to set up Kubernetes with an Atomic host at http://www.projectatomic.
io/blog/2014/11/testing-kubernetes-with-an-atomic-host/ and
https://github.com/cgwalters/vagrant-atomic-cluster

https://virt-manager.org/documentation/
https://virt-manager.org/documentation/
https://github.com/projectatomic/rpm-ostree/blob/master/doc/background.md
https://github.com/projectatomic/rpm-ostree/blob/master/doc/background.md
http://www.projectatomic.io/docs/quickstart/
http://www.projectatomic.io/docs/quickstart/
https://www.technovelty.org//linux/running-cloud-images-locally.html
https://www.technovelty.org//linux/running-cloud-images-locally.html
http://cloudinit.readthedocs.org/en/latest/
http://cloudinit.readthedocs.org/en/latest/
http://www.projectatomic.io/blog/2014/11/testing-kubernetes-with-an-atomic-host/
http://www.projectatomic.io/blog/2014/11/testing-kubernetes-with-an-atomic-host/
https://github.com/cgwalters/vagrant-atomic-cluster

Chapter 8

177

Doing atomic update/rollback with Project
Atomic

To get to the latest version or to roll back to the older version of Project Atomic, we use the
atomic host command, which internally calls rpm-ostree.

Getting ready
Boot and log in to the Atomic host.

How to do it…
1.	 Just after the boot, run the following command:

$ atomic host status

You will see details about one deployment that is in use now.

To upgrade, run the following command:

2.	 This changes and/or adds new packages. After the upgrade, we will need to reboot
the system to use the new update. Let's reboot and see the outcome:

As we can see, the system is now booted with the new update. The *, which is at the
beginning of the first line, specifies the active build.

Docker Orchestration and Hosting Platforms

178

3.	 To roll back, run the following command:
$ sudo atomic host rollback

We will have to reboot again if we want to use older bits.

How it works…
For updates, the Atomic host connects to the remote repository hosting the newer build, which
is downloaded and used from the next reboot onwards until the user upgrades or rolls back. In
the case rollback older build available on the system used after the reboot.

See also
ff The documentation Project Atomic website, which can be found at http://www.

projectatomic.io/docs/os-updates/

Adding more storage for Docker in Project
Atomic

The Atomic host is a minimal distribution and, as such, is distributed on a 6 GB image to
keep the footprint small. This is very less amount of storage to build and store lots of Docker
images, so it is recommended to attach external storage for those operations.

By default, Docker uses /var/lib/docker as the default directory where all Docker-related
files, including images, are stored. In Project Atomic, we use direct LVM volumes via the
devicemapper backend to store Docker images and metadata in /dev/atomicos/docker-
data and /dev/atomicos/docker-meta respectively.

So, to add more storage, Project Atomic provides a helper script called docker-storage-
helper to add an external disk into the existing LVM thin pool. Let's look at the current
available storage to Docker with the docker info command:

http://www.projectatomic.io/docs/os-updates/
http://www.projectatomic.io/docs/os-updates/

Chapter 8

179

As we can see, the total data space is 2.96 GB and the total metadata space is 8.38 MB.

Getting ready
1.	 Stop the VM, if it is running.

2.	 Add an additional disk of the size you want to the Project Atomic VM. I have
added 8 GB.

3.	 Boot the VM.

4.	 Check whether the newly attached disk is visible to the VM or not.

Docker Orchestration and Hosting Platforms

180

How to do it…
1.	 Check if the additional disk is available to the Atomic host VM:

As we can see, the newly created 8 GB disk is available to the VM.

2.	 As the newly attached disk is /dev/sdb, create a file called /etc/sysconfig/
docker-storage-setup with the following content:
DEVS="/dev/sdb"

[fedora@atomichost ~]$ cat /etc/sysconfig/docker-storage-setup

DEVS="/dev/sdb"

3.	 Run the docker-storage-setup command to add /dev/sdb to the existing
volume:
$ sudo docker-storage-setup

Chapter 8

181

4.	 Now, let's look at the current available storage to Docker once again with the
docker info command:

As we can see, both the total data space and metadata space have increased.

Docker Orchestration and Hosting Platforms

182

How it works…
The procedure is the same as extending any other LVM volume. We create a physical volume
on the added disk, add that physical volume to the volume group, and then extend the LVM
volumes. Since we are directly accessing the thin pool within Docker, we won't need to create
or extend a filesystem or mount the LVM volumes.

There's more…
ff In addition to the DEVS option, you can also add the VG option to the /etc/

sysconfig/docker-storage-setup file to use a different volume group.

ff You can add more than one disk with the DEVS option.

ff If a disk that is already part of the Volume Group has been mentioned with the DEVS
option, then the docker-storage-setup script will exit, as the existing device has
a partition and physical volume already created.

ff The docker-storage-setup script reserves 0.1 percent of the size for meta-
data. This is why we saw an increase in the Metadata Space as well.

See also
ff The documentation on the Project Atomic website at http://www.

projectatomic.io/docs/docker-storage-recommendation/

ff Supported filesystems with Project Atomic at http://www.projectatomic.io/
docs/filesystems/

Setting up Cockpit for Project Atomic
Cockpit (http://cockpit-project.org/) is a server manager that makes it easy to
administer your GNU/Linux servers via a web browser. It can be used to manage the Project
Atomic host as well. More than one host can be managed through one Cockpit instance.
Cockpit does not come by default with the latest Project Atomic, and you will need to start it as
a Super Privileged Container (SPC). SPCs are specially built containers that run with security
turned off (--privileged); they turn off one or more of the namespaces or "volume mounts
in" parts of the host OS into the container. For more details on SPC, refer to https://
developerblog.redhat.com/2014/11/06/introducing-a-super-privileged-
container-concept/ and https://www.youtube.com/watch?v=eJIeGnHtIYg.

Because Cockpit runs as an SPC, it can access the resources needed to manage the Atomic
host within the container.

http://www.projectatomic.io/docs/docker-storage-recommendation/
http://www.projectatomic.io/docs/docker-storage-recommendation/
http://www.projectatomic.io/docs/filesystems/
http://www.projectatomic.io/docs/filesystems/
http://cockpit-project.org/
https://developerblog.redhat.com/2014/11/06/introducing-a-super-privileged-container-concept/
https://developerblog.redhat.com/2014/11/06/introducing-a-super-privileged-container-concept/
https://developerblog.redhat.com/2014/11/06/introducing-a-super-privileged-container-concept/

Chapter 8

183

Getting ready
Set up the Project Atomic host and log in to it.

How to do it…
1.	 Run the following command to start the Cockpit container:

[fedora@atomichost ~]$ sudo atomic run stefwalter/cockpit-ws

2.	 Open the browser (http://<VM IP>:9090) and log in with the default user/
password fedora/atomic. Once logged in, you can select the current host to
manage. You will see a screen as shown here:

Docker Orchestration and Hosting Platforms

184

How it works…
Here, we used the atomic command instead of the docker command to start the container.
Let's look at the Cockpit Dockerfile (https://github.com/fedora-cloud/Fedora-
Dockerfiles/blob/master/cockpit-ws/Dockerfile) to see why we did that. In the
Dockerfile you will see some instructions:

LABEL INSTALL /usr/bin/docker run -ti --rm --privileged -v /:/host
IMAGE /container/atomic-install
LABEL UNINSTALL /usr/bin/docker run -ti --rm --privileged -v
/:/host IMAGE /cockpit/atomic-uninstall
LABEL RUN /usr/bin/docker run -d --privileged --pid=host -v
/:/host IMAGE /container/atomic-run --local-ssh

If you recall from Chapter 2, Working with Docker Containers and Chapter 3, Working with
Docker Images, we could assign metadata to images and containers using labels. INSTALL,
UNINSTALL, and RUN are labels here. The atomic command is a command specific to
Project Atomic, which reads those labels and performs operations. As the container is running
as an SPC, it does not need port forwarding from host to container. For more details on the
atomic command, please visit https://developerblog.redhat.com/2015/04/21/
introducing-the-atomic-command/.

There's more…
You can perform almost all administrator tasks from the GUI for the given system. You can
manage Docker images/containers through this. You can perform operations such as:

ff Pulling an image

ff Starting/stopping the containers

You can also add other machines to the same Cockpit instance so that you manage them
from one central location.

See also
ff The Cockpit documentation at http://files.cockpit-project.org/guide/

https://github.com/fedora-cloud/Fedora-Dockerfiles/blob/master/cockpit-ws/Dockerfile
https://github.com/fedora-cloud/Fedora-Dockerfiles/blob/master/cockpit-ws/Dockerfile
https://developerblog.redhat.com/2015/04/21/introducing-the-atomic-command/
https://developerblog.redhat.com/2015/04/21/introducing-the-atomic-command/

Chapter 8

185

Setting up a Kubernetes cluster
Kubernetes is an open source container orchestration tool across multiple nodes in the
cluster. Currently, it only supports Docker. It was started by Google, and now developers from
other companies are contributing to it. It provides mechanisms for application deployment,
scheduling, updating, maintenance, and scaling. Kubernetes' auto-placement, auto-restart,
auto-replication features make sure that the desired state of the application is maintained,
which is defined by the user. Users define applications through YAML or JSON files, which
we'll see later in the recipe. These YAML and JSON files also contain the API Version (the
apiVersion field) to identify the schema. The following is the architectural diagram
of Kubernetes:

https://raw.githubusercontent.com/GoogleCloudPlatform/
kubernetes/master/docs/architecture.png

https://raw.githubusercontent.com/GoogleCloudPlatform/ kubernetes/master/docs/architecture.png
https://raw.githubusercontent.com/GoogleCloudPlatform/ kubernetes/master/docs/architecture.png

Docker Orchestration and Hosting Platforms

186

Let's look at some of the key components and concepts of Kubernetes.

ff Pods: A pod, which consists of one or more containers, is the deployment unit
of Kubernetes. Each container in a pod shares different namespaces with other
containers in the same pod. For example, each container in a pod shares the same
network namespace, which means they can all communicate through localhost.

ff Node/Minion: A node, which was previously known as a minion, is a worker node
in the Kubernetes cluster and is managed through master. Pods are deployed on a
node, which has the necessary services to run them:

�� docker, to run containers

�� kubelet, to interact with master

�� proxy (kube-proxy), which connects the service to the corresponding pod

ff Master: Master hosts cluster-level control services such as the following:

�� API server: This has RESTful APIs to interact with master and nodes. This is
the only component that talks to the etcd instance.

�� Scheduler: This schedules jobs in clusters, such as creating pods on nodes.

�� Replication controller: This ensures that the user-specified number of pod
replicas is running at any given time. To manage replicas with replication
controller, we have to define a configuration file with the replica count
for a pod.

Master also communicates with etcd, which is a distributed key-value pair. etcd is
used to store the configuration information, which is used by both master and nodes.
The watch functionality of etcd is used to notify the changes in the cluster. etcd can
be hosted on master or on a different set of systems.

ff Services: In Kubernetes, each pod gets its own IP address, and pods are created
and destroyed every now and then based on the replication controller configuration.
So, we cannot rely on a pod's IP address to cater an app. To overcome this problem,
Kubernetes defines an abstraction, which defines a logical set of pods and policies to
access them. This abstraction is called a service. Labels are used to define the logical
set, which a service manages.

ff Labels: Labels are key-value pairs that can be attached to objects like, using which
we select a subset of objects. For example, a service can select all pods with the
label mysql.

ff Volumes: A volume is a directory that is accessible to the containers in a pod. It is
similar to Docker volumes but not the same. Different types of volumes are supported
in Kubernetes, some of which are EmptyDir (ephemeral), HostDir, GCEPersistentDisk,
and NFS. Active development is happening to support more types of volumes.
More details can be found at https://github.com/GoogleCloudPlatform/
kubernetes/blob/master/docs/volumes.md.

https://github.com/GoogleCloudPlatform/kubernetes/blob/master/docs/volumes.md
https://github.com/GoogleCloudPlatform/kubernetes/blob/master/docs/volumes.md

Chapter 8

187

Kubernetes can be installed on VMs, physical machines, and the cloud. For the complete
matrix, take a look at https://github.com/GoogleCloudPlatform/kubernetes/
tree/master/docs/getting-started-guides. In this recipe, we'll see how to install
it on VMs, using Vagrant with VirtualBox provider. This recipe and the following recipes on
Kubernetes, were tried on v0.17.0 of Kubernetes.

Getting ready
1.	 Install latest Vagrant >= 1.6.2 from http://www.vagrantup.com/downloads.

html.

2.	 Install the latest VirtualBox from https://www.virtualbox.org/wiki/
Downloads. Detailed instructions on how to set this up are outside the scope
of this book.

How to do it…
1.	 Run the following command to set up Kubernetes on Vagrant VMs:

$ export KUBERNETES_PROVIDER=vagrant

$ export VAGRANT_DEFAULT_PROVIDER=virtualbox

$ curl -sS https://get.k8s.io | bash

How it works…
The bash script downloaded from the curl command, first downloads the latest Kubernetes
release and then runs the ./kubernetes/cluster/kube-up.sh bash script to set up
the Kubernetes environment. As we have specified Vagrant as KUBERNETES_PROVIDER, the
script first downloads the Vagrant images and then, using Salt (http://saltstack.com/),
configures one master and one node (minion) VM. Initial setup takes a few minutes to run.

Vagrant creates a credential file in ~/.kubernetes_vagrant_auth for authentication.

There's more…
Similar to ./cluster/kube-up.sh, there are other helper scripts to perform different
operations from the host machine itself. Make sure you are in the kubernetes directory,
which was created with the preceding installation, while running the following commands:

ff Get the list of nodes:
$./cluster/kubectl.sh get nodes

ff Get the list of pods:
$./cluster/kubectl.sh get pods

https://github.com/GoogleCloudPlatform/kubernetes/tree/master/docs/getting-started-guides
https://github.com/GoogleCloudPlatform/kubernetes/tree/master/docs/getting-started-guides
http://www.vagrantup.com/downloads.html
http://www.vagrantup.com/downloads.html
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads

Docker Orchestration and Hosting Platforms

188

ff Get the list of services:
$./cluster/kubectl.sh get services

ff Get the list of replication controllers:
$./cluster/kubectl.sh get replicationControllers

ff Destroy the vagrant cluster:
$./cluster/kube-down.sh

ff Then bring back the vagrant cluster:

$./cluster/kube-up.sh

You will see some pods, services, and replicationControllers listed, as Kubernetes
creates them for internal use.

See also
ff Setting up the Vagrant environment at https://github.com/

GoogleCloudPlatform/kubernetes/blob/master/docs/getting-
started-guides/vagrant.md

ff The Kubernetes user guide at https://github.com/GoogleCloudPlatform/
kubernetes/blob/master/docs/user-guide.md

ff Kubernetes API conventions at https://github.com/GoogleCloudPlatform/
kubernetes/blob/master/docs/api-conventions.md

Scaling up and down in a Kubernetes cluster
In the previous section, we mentioned that the replication controller ensures that the user-
specified number of pod replicas is running at any given time. To manage replicas with the
replication controller, we have to define a configuration file with the replica count for a pod.
This configuration can be changed at runtime.

Getting ready
Make sure the Kubernetes setup is running as described in the preceding recipe and that you
are in the kubernetes directory, which was created with the preceding installation.

https://github.com/GoogleCloudPlatform/kubernetes/blob/master/docs/getting-started-guides/vagrant.md
https://github.com/GoogleCloudPlatform/kubernetes/blob/master/docs/getting-started-guides/vagrant.md
https://github.com/GoogleCloudPlatform/kubernetes/blob/master/docs/getting-started-guides/vagrant.md
https://github.com/GoogleCloudPlatform/kubernetes/blob/master/docs/user-guide.md
https://github.com/GoogleCloudPlatform/kubernetes/blob/master/docs/user-guide.md
https://github.com/GoogleCloudPlatform/kubernetes/blob/master/docs/api-conventions.md
https://github.com/GoogleCloudPlatform/kubernetes/blob/master/docs/api-conventions.md

Chapter 8

189

How to do it…
1.	 Start the nginx container with a replica count of 3:

$./cluster/kubectl.sh run-container my-nginx --image=nginx
--replicas=3 --port=80

This will start three replicas of the nginx container. List the pods to get the status:

$./cluster/kubectl.sh get pods

2.	 Get the replication controller configuration:
$./cluster/kubectl.sh get replicationControllers

As you can see, we have a my-nginx controller, which has a replica count of 3. There
is a replication controller for kube-dns, which we will explore in next recipe.

3.	 Request the replication controller service to scale down to replica of 1 and update
the replication controller:
$./cluster/kubectl.sh resize rc my-nginx –replicas=1

$./cluster/kubectl.sh get rc

4.	 Get the list of pods to verify; you should see only one pod for nginx:
$./cluster/kubectl.sh get pods

Docker Orchestration and Hosting Platforms

190

How it works…
We request the replication controller service running on master to update the replicas for a
pod, which updates the configuration and requests nodes/minions to act accordingly to honor
the resizing.

There's more…
Get the services:

$./cluster/kubectl.sh get services

As you can see, we don't have any service defined for our nginx containers started earlier.
This means that though we have a container running, we cannot access them from outside
because the corresponding service is not defined.

See also
ff Setting up the Vagrant environment at https://github.com/

GoogleCloudPlatform/kubernetes/blob/master/docs/getting-
started-guides/vagrant.md

ff The Kubernetes user guide at https://github.com/GoogleCloudPlatform/
kubernetes/blob/master/docs/user-guide.md

Setting up WordPress with a Kubernetes
cluster

In this recipe, we will use the WordPress example given in the Kubernetes GitHub (https://
github.com/GoogleCloudPlatform/kubernetes/tree/master/examples/mysql-
wordpress-pd). The given example requires some changes, as we'll be running it on the
Vagrant environment instead of the default Google Compute engine. Also, instead of using
the helper functions (for example, <kubernetes>/cluster/kubectl.sh), we'll log in to
master and use the kubectl binary.

https://github.com/GoogleCloudPlatform/kubernetes/blob/master/docs/getting-started-guides/vagrant.md
https://github.com/GoogleCloudPlatform/kubernetes/blob/master/docs/getting-started-guides/vagrant.md
https://github.com/GoogleCloudPlatform/kubernetes/blob/master/docs/getting-started-guides/vagrant.md
https://github.com/GoogleCloudPlatform/kubernetes/blob/master/docs/user-guide.md
https://github.com/GoogleCloudPlatform/kubernetes/blob/master/docs/user-guide.md
https://github.com/GoogleCloudPlatform/kubernetes/tree/master/examples/mysql-wordpress-pd
https://github.com/GoogleCloudPlatform/kubernetes/tree/master/examples/mysql-wordpress-pd
https://github.com/GoogleCloudPlatform/kubernetes/tree/master/examples/mysql-wordpress-pd

Chapter 8

191

Getting ready
ff Make sure the Kubernetes cluster has been set up as described in the

previous recipe.

ff In the kubernetes directory that was downloaded during the setup, you
will find an examples directory that contains many examples. Let's go to the
mysql-wordpress-pd directory:
$ cd kubernetes/examples/mysql-wordpress-pd

$ ls *.yaml

mysql-service.yaml mysql.yaml wordpress-service.yaml wordpress.
yaml

ff These .yaml files describe pods and services for mysql and wordpress
respectively.

ff In the pods files (mysql.yaml and wordpress.yaml), you will find the section on
volumes and the corresponding volumeMount file. The original example assumes
that you have access to Google Compute Engine and that you have the corresponding
storage setup. For simplicity, we will not set up that and instead use ephemeral
storage with the EmptyDir volume option. For reference, our mysql.yaml will
look like the following:

ff Make the similar change to wordpress.yaml.

Docker Orchestration and Hosting Platforms

192

How to do it…
1.	 With SSH, log in to the master node and look at the running pods:

$ vagrant ssh master

$ kubectl get pods

The kube-dns-7eqp5 pod consists of three containers: etcd, kube2sky, and
skydns, which are used to configure an internal DNS server for service name to IP
resolution. We'll see it in action later in this recipe.

The Vagrantfile used in this example is created so that the kubernetes directory
that we created earlier is shared under /vagrant on VM, which means that the
changes we made to the host system will be visible here as well.

2.	 From the master node, create the mysql pod and check the running pods:
$ kubectl create -f /vagrant/examples/mysql-wordpress-
pd/mysql.yaml

$ kubectl get pods

As we can see, a new pod with the mysql name has been created and it is running
on host 10.245.1.3, which is our node (minion).

Chapter 8

193

3.	 Now let's create the service for mysql and look at all the services:
$ kubectl create -f /vagrant/examples/mysql-wordpress-pd/mysql-
service.yaml

$ kubectl get services

As we can see, a service named mysql has been created. Each service has a Virtual
IP. Other than the kubernetes services, we see a service named kube-dns, which
is used as the service name for the kube-dns pod we saw earlier.

4.	 Similar to mysql, let's create a pod for wordpress:
$ kubectl create -f /vagrant/examples/mysql-wordpress-
pd/wordpress.yaml

With this command, there are a few things happening in the background:

�� The wordpress image gets downloaded from the official Docker registry
and the container runs.

�� By default, whenever a pod starts, information about all the existing services
is exported as environment variables. For example, if we log in to the
wordpress pod and look for MYSQL-specific environment variables, we will
see something like the following:

�� When the WordPress container starts, it runs the /entrypoint.sh script,
which looks for the environment variables mentioned earlier to start the
service. https://github.com/docker-library/wordpress/blob/
master/docker-entrypoint.sh.

�� With the kube-dns service, PHP scripts of wordpress are able to the
reserve lookup to proceed forward.

https://github.com/docker-library/wordpress/blob/master/docker-entrypoint.sh
https://github.com/docker-library/wordpress/blob/master/docker-entrypoint.sh

Docker Orchestration and Hosting Platforms

194

5.	 After starting the pod, the last step here is to set up the wordpress service.
In the default example, you will see an entry like the following in the service file
(/vagrant/examples/mysql-wordpress-pd/mysql-service.yaml):
createExternalLoadBalancer: true

This has been written to keep in mind that this example will run on the Google
Compute Engine. So it is not valid here. In place of that, we will need to make an
entry like the following:
publicIPs:
 - 10.245.1.3

We have replaced the load-balancer entry with the public IP of the node, which in our
case is the IP address of the node (minion). So, the wordpress file would look like
the following:

6.	 To start the wordpress service, run the following command from the master node:
$ kubectl create -f /vagrant/examples/mysql-wordpress-
pd/wordpress-service.yaml

We can see here that our service is also available through the node (minion) IP.

7.	 To verify if everything works fine, we can install the links package on master by
which we can browse a URL through the command line and connect to the public
IP we mentioned:

$ sudo yum install links -y

$ links 10.245.1.3

With this, you should see the wordpress installation page.

Chapter 8

195

How it works…
In this recipe, we first created a mysql pod and service. Later, we connected it to a
wordpress pod, and to access it, we created a wordpress service. Each YAML file has a
kind key that defines the type of object it is. For example, in pod files, the kind is set to pod
and in service files, it is set to service.

There's more…
ff In this example setup, we have only one Node (minion). If you log in to it, you will see

all the running containers:
$ vagrant ssh minion-1

$ sudo docker ps

ff In this example, we have not configured replication controllers. We can extend this
example by creating them.

See also
ff Setting up the Vagrant environment at https://github.com/

GoogleCloudPlatform/kubernetes/blob/master/docs/getting-
started-guides/vagrant.md

ff The Kubernetes User Guide at https://github.com/GoogleCloudPlatform/
kubernetes/blob/master/docs/user-guide.md

ff The documentation on kube-dns at https://github.com/
GoogleCloudPlatform/kubernetes/tree/master/cluster/addons/dns

https://github.com/GoogleCloudPlatform/kubernetes/blob/master/docs/getting-started-guides/vagrant.md
https://github.com/GoogleCloudPlatform/kubernetes/blob/master/docs/getting-started-guides/vagrant.md
https://github.com/GoogleCloudPlatform/kubernetes/blob/master/docs/getting-started-guides/vagrant.md
https://github.com/GoogleCloudPlatform/kubernetes/blob/master/docs/user-guide.md
https://github.com/GoogleCloudPlatform/kubernetes/blob/master/docs/user-guide.md
https://github.com/GoogleCloudPlatform/kubernetes/tree/master/cluster/addons/dns
https://github.com/GoogleCloudPlatform/kubernetes/tree/master/cluster/addons/dns

197

9
Docker Security

In this chapter, we will cover the following recipes:

ff Setting Mandatory Access Control (MAC) with SELinux

ff Allowing writes to volume mounted from the host with SELinux ON

ff Removing capabilities to breakdown the power of a root user inside the container

ff Sharing namespaces between the host and the container

Introduction
Docker containers are not actually Sandbox applications, which means they are not
recommended to run random applications on the system as root with Docker. You should
always treat a container running a service/process as a service/process running on the host
system and put all the security measures inside the container you put on the host system.

We saw in Chapter 1, Introduction and Installation, how Docker uses namespaces for
isolation. The six namespaces that Docker uses are Process, Network, Mount, Hostname,
Shared Memory, and User. Not everything in Linux is namespaced, for example, SELinux,
Cgroups, Devices (/dev/mem, /dev/sd*), and Kernel Modules. Filesystems under /sys,
/proc/sys, /proc/sysrq-trigger, /proc/irq, /proc/bus are also not namespaced
but they are mounted as read only by default with the libcontainer execution driver.

Docker Security

198

To make Docker a secure environment, a lot of work has been done in the recent past and
more work is underway.

ff As Docker images are the basic building blocks, it is very important that we choose
the right base image to start with. Docker has the concept of official images, which
are maintained by either Docker, the vendor or someone else. If you recall from
Chapter 2, Working with Docker Containers, we can search images on Docker Hub
using the following syntax:
$ docker search <image name>

For example, consider the following command :
$ docker search fedora

We will see a column OFFICIAL, and if the images are official, you will see [OK]
against that image in that column. There is an experimental feature added in Docker
1.3 (http://blog.docker.com/2014/10/docker-1-3-signed-images-
process-injection-security-options-mac-shared-directories/),
which does Digital Signal Verification of official images after pulling the image. If the
image has been tampered with, the user will be notified, but it will not prevent the
user from running it. At present, this feature works only with official images. More
details about official images can be found at https://github.com/docker-
library/official-images. The image signing and verification feature is not
ready, so as of now, don't completely rely on it.

ff In Chapter 6, Docker APIs and Language Bindings, we saw how we can secure Docker
remote API, when Docker daemon access is configured over TCP.

ff We can also consider turning off the default intercontainer communication over
the network with --icc=false on the Docker host. Though containers can still
communicate through links, which overrides the default DROP policy of iptables,
they get set with the --icc=false option.

ff We can also set Cgroups resource restrictions through, which we can prevent Denial
of Service (DoS) attacks through system resource constraints.

ff Docker takes advantage of the special device, Cgroups that allows us to specify which
device nodes can be used within the container. It blocks the processes from creating
and using device nodes that could be used to attack the host.

ff Any device node precreated on the image cannot be used to talk to kernel because
images are mounted with the nodev option.

http://blog.docker.com/2014/10/docker-1-3-signed-images-process-injection-security-options-mac-shared-directories/
http://blog.docker.com/2014/10/docker-1-3-signed-images-process-injection-security-options-mac-shared-directories/
https://github.com/docker-library/official-images
https://github.com/docker-library/official-images

Chapter 9

199

The following are some guidelines (may not be complete), which one can follow to have a
secure Docker environment:

ff Run services as nonroot and treat the root in the container, as well as outside the
container, as root.

ff Use images from trusted parties to run the container; avoid using the -insecure-
registry=[] option.

ff Don't run the random container from the Docker registry or anywhere else. Red
Hat carries patches to add and block registries to give more control to enterprises
(http://rhelblog.redhat.com/2015/04/15/understanding-the-
changes-to-docker-search-and-docker-pull-in-red-hat-enterprise-
linux-7-1/).

ff Have your host kernel up to date.

ff Avoid using --privileged whenever possible and drop container privileges as soon
as possible.

ff Configure Mandatory Access Control (MAC) through SELinux or AppArmor.

ff Collect logs for auditing.

ff Do regular auditing.

ff Run containers on hosts, which are specially designed to run containers only.
Consider using Project Atomic, CoreOS, or similar solutions.

ff Mount the devices with the --device option rather than using the --privileged
option to use devices inside the container.

ff Prohibit SUID and SGID inside the container.

Recently, Docker and the Center for Internet Security (http://www.cisecurity.
org/) released a best practices guide for Docker security, which covers most of the
preceding guidelines and more guidelines at https://blog.docker.com/2015/05/
understanding-docker-security-and-best-practices/.

To set the context for some of the recipes in this chapter, let's try an experiment on the default
installation on Fedora 21 with Docker installed.

1.	 Disable SELinux using the following command:
$ sudo setenforce 0

2.	 Create a user and add it to the default Docker group so that the user can run Docker
commands without sudo:
$ sudo useradd dockertest

$ sudo passwd dockertest

$ sudo groupadd docker

$ sudo gpasswd -a dockertest docker

http://rhelblog.redhat.com/2015/04/15/understanding-the-changes-to-docker-search-and-docker-pull-in-red-hat-enterprise-linux-7-1/
http://rhelblog.redhat.com/2015/04/15/understanding-the-changes-to-docker-search-and-docker-pull-in-red-hat-enterprise-linux-7-1/
http://rhelblog.redhat.com/2015/04/15/understanding-the-changes-to-docker-search-and-docker-pull-in-red-hat-enterprise-linux-7-1/
http://www.cisecurity.org/
http://www.cisecurity.org/
https://blog.docker.com/2015/05/understanding-docker-security-and-best-practices/
https://blog.docker.com/2015/05/understanding-docker-security-and-best-practices/

Docker Security

200

3.	 Log in using the user we created earlier, start a container as follows:
$ su - dockertest

$ docker run -it -v /:/host fedora bash

4.	 From the container chroot to /host and run the shutdown command:

$ chroot /host

$ shutdown

As we can see, a user in the Docker group can shut down the host system. Docker currently
does not have authorization control, so if you can communicate to the Docker socket, you are
allowed to run any Docker command. It is similar to /etc/sudoers.

USERNAME ALL=(ALL) NOPASSWD: ALL

This is really not good. Let's see how we can guard against this and more in the rest of
the chapter.

Setting Mandatory Access Control (MAC)
with SELinux

It is recommended that you set up some form of MAC on the Docker host either through
SELinux or AppArmor, depending on the Linux distribution. In this recipe, we'll see how to set
up SELinux on a Fedora/RHEL/CentOS installed system. Let's first look at what SELinux is:

ff SELinux is a labeling system

ff Every process has a label

ff Every file, directory, and system object has a label

ff Policy rules control access between labeled processes and labeled objects

ff The kernel enforces the rules

Chapter 9

201

With Docker containers, we use two types of SELinux enforcement:

ff Type enforcement: This is used to protect the host system from container processes.
Each container process is labeled svirt_lxc_net_t and each container file is
labeled svirt_sandbox_file_t. The svirt_lxc_net_t type is allowed to
manage any content labeled with svirt_sandbox_file_t. Container processes
can only access/write container files.

ff Multi Category Security enforcement: By setting type enforcement, all container
processes will run with the svirt_lxc_net_t label and all content will be labeled
with svirt_sandbox_file_t. However, only with these settings, we are not
protecting one container from another because their labels are the same.

We use Multi Category Security (MCS) enforcement to protect one container from
another, which is based on Multi Level Security (MLS). When a container is launched,
the Docker daemon picks a random MCS label, for example, s0:c41,c717 and
saves it with the container metadata. When any container process starts, the Docker
daemon tells the kernel to apply the correct MCS label. As the MCS label is saved in
the metadata, if the container restarts, it gets the same MCS label.

Getting ready
A Fedora/RHEL/CentOS host with the latest version of Docker installed, which can be
accessed through a Docker client.

How to do it…
Fedora/RHEL/CentOS gets installed by default with SELinux in enforcing mode and the
Docker daemon is set to start with SELinux. To check whether these conditions are being met,
perform the following steps.

1.	 Run the following command to make sure SELinux is enabled:
$ getenforce

If the preceding command returns enforcing, then it's all good, else we need to
change it by updating SELinux configuration file (/etc/selinux/config) and
rebooting the system.

2.	 Docker should be running with the --selinux-enabled option. You can check the
OPTIONS section in the Docker daemon configuration (/etc/sysconfig/docker)
file. Also, cross-check whether the Docker service has started with the SELinux option:
$ systemctl status docker

The preceding command assumes that you are not starting Docker in daemon
mode manually.

Docker Security

202

Let's start a container (without the privileged option) after mounting a host directory as
volume and try to create a file in that:

As expected, we see Permission denied because a container process with the svirt_
lxc_net_t label cannot create files on the host's filesystem. If we look at the SELinux logs
(/var/log/audit.log) on the host, we will see messages similar to the following:

The s0:c157,c350 label is the MCS label on the container.

How it works…
SELinux sets both Type and Multi Category Security enforcement when the right options are
set for SELinux and Docker. The Linux kernel enforces these enforcements.

There's more…
ff If SELinux is in enforcing mode and the Docker daemon is configured to use SELinux,

then we will not be able to shut down the host from the container, like we did earlier
in this chapter:

ff As we know, by default, all the containers will run with the svirt_lxc_net_t label,
but we can also adjust SELinux labels for custom requirements. Visit the Adjusting
SELinux labels section of http://opensource.com/business/15/3/docker-
security-tuning.

ff Setting up MLS with Docker containers is also possible. Visit the Multi Level
Security mode section of http://opensource.com/business/15/3/docker-
security-tuning.

http://opensource.com/business/15/3/docker-security-tuning
http://opensource.com/business/15/3/docker-security-tuning
http://opensource.com/business/15/3/docker-security-tuning
http://opensource.com/business/15/3/docker-security-tuning

Chapter 9

203

See also
ff The SELinux Coloring Book; visit https://people.redhat.com/duffy/

selinux/selinux-coloring-book_A4-Stapled.pdf

Allowing writes to volume mounted from the
host with SELinux ON

As we saw in the earlier recipe, when SELinux is configured, a nonprivileged container cannot
access files on the volume created after mounting the directory from the host system.
However, sometimes it is needed to allow access to host files from the container. In this
recipe, we'll see how to allow access in such cases.

Getting ready
A Fedora/RHEL/CentOS host with the latest version of Docker installed, which can be
accessed through a Docker client. Also, SELinux is set to enforcing mode and the Docker
daemon is configured to use SELinux.

How to do it…
1.	 Mount the volume with the z or Z option as follows:

$ docker run -it -v /tmp/:/tmp/host:z docker.io/fedora bash

$ docker run -it -v /tmp/:/tmp/host:Z docker.io/fedora bash

How it works…
While mounting the volume, Docker will relabel to the volume to allow access. From the man
page of Docker run.

The z option tells Docker that the volume content will be shared between containers.
Docker will label the content with a shared content label. The shared volume labels allow all
containers to read/write content. The Z option tells Docker to label the content with a private
unshared label. Private volumes can only be used by the current container.

https://people.redhat.com/duffy/selinux/selinux-coloring-book_A4-Stapled.pdf
https://people.redhat.com/duffy/selinux/selinux-coloring-book_A4-Stapled.pdf

Docker Security

204

See also
ff The Volume mounts section at http://opensource.com/business/14/9/

security-for-docker

Removing capabilities to breakdown the
power of a root user inside a container

In simple terms, with capabilities, we can breakdown the power of a root user. From the man
page for capabilities:

For the purpose of performing permission checks, traditional UNIX implementations
distinguish two categories of processes: privileged processes (whose effective
user ID is 0, referred to as superuser or root), and unprivileged processes (whose
effective UID is nonzero). Privileged processes bypass all kernel permission checks,
while unprivileged processes are subject to full permission checking based on the
process's credentials (usually: effective UID, effective GID, and supplementary
group list).

Starting with kernel 2.2, Linux divides the privileges traditionally associated with
superuser into distinct units, known as capabilities, which can be independently
enabled and disabled. Capabilities are a per-thread attribute.

Some example capabilities are:

ff CAP_SYSLOG: This modifies kernel printk behavior

ff CAP_NET_ADMIN: This configures the network

ff CAP_SYS_ADMIN: This helps you to catch all the capabilities

There are only 32 slots available for capabilities in the kernel. There is one capability,
CAP_SYS_ADMIN, that catches all capabilities; this is used whenever in doubt.

In version 1.2, Docker added some features to add or remove the capabilities for a container.
It uses the chown, dac_override, fowner, kill, setgid, setuid, setpcap, net_bind_
service, net_raw, sys_chroot, mknod, setfcap, and audit_write capabilities by
default and removes the following capabilities for a container by default.

ff CAP_SETPCAP: This modifies the process capabilities

ff CAP_SYS_MODULE: This inserts/removes the kernel modules

ff CAP_SYS_RAWIO: This modifies the kernel memory

ff CAP_SYS_PACCT: This configures process accounting

ff CAP_SYS_NICE: This modifies the priority of processes

http://opensource.com/business/14/9/security-for-docker
http://opensource.com/business/14/9/security-for-docker

Chapter 9

205

ff CAP_SYS_RESOURCE: This overrides the resource limits

ff CAP_SYS_TIME: This modifies the system clock

ff CAP_SYS_TTY_CONFIG: This configures tty devices

ff CAP_AUDIT_WRITE: This writes the audit log

ff CAP_AUDIT_CONTROL: This configures the audit subsystem

ff CAP_MAC_OVERRIDE: This ignores the kernel MAC policy

ff CAP_MAC_ADMIN: This configures MAC configuration

ff CAP_SYSLOG: This modifies kernel printk behavior

ff CAP_NET_ADMIN: This configures the network

ff CAP_SYS_ADMIN: This helps you catch all the containers

We need to be very careful what capabilities we remove, as applications can break if they
don't have enough capabilities to run. To add and remove the capabilities for the container,
you can use the --cap-add and --cap-drop options respectively.

Getting ready
A host with the latest version of Docker installed, which can be accessed through a
Docker client.

How to do it...
1.	 To drop capabilities, run a command similar to the following:

$ docker run --cap-drop <CAPABILITY> <image> <command>

To remove the setuid and setgid capabilities from the container so that it cannot
run binaries, which have these bits set, run the following command:
$ docker run -it --cap-drop setuid --cap-drop setgid fedora
bash

2.	 Similarly, to add capabilities, run a command similar to the following:
$ docker run --cap-add <CAPABILITY> <image> <command>

To add all the capabilities and just drop sys-admin, run the following command:
$ docker run -it --cap-add all --cap-drop sys-admin fedora
bash

Docker Security

206

How it works…
Before starting the container, Docker sets up the capabilities for the root user inside the
container, which affects the command execution for the container process.

There's more...
Let's revisit the example we saw at the beginning of this chapter, through which we saw the
host system shut down through a container. Let SELinux be disabled on the host system;
however, while starting the container, drop the sys_choot capability:

$ docker run -it --cap-drop sys_chroot -v /:/host fedora bash

$ shutdown

See also
ff Dan Walsh's articles on opensource.com at http://opensource.com/

business/14/9/security-for-docker.
ff The Docker 1.2 release notes at http://blog.docker.com/2014/08/

announcing-docker-1-2-0/.
ff There are efforts on to selectively disable system calls from container processes to

provide tighter security. Visit the Seccomp section of http://opensource.com/
business/15/3/docker-security-future.

ff Similar to custom namespaces and capabilities with version 1.6, Docker supports the
--cgroup-parent flag to pass specific Cgroup to run containers. https://docs.
docker.com/v1.6/release-notes/.

Sharing namespaces between the host and
the container

As we know, while starting the container, by default, Docker creates six different
namespaces—Process, Network, Mount, Hostname, Shared Memory, and User for a container.
In some cases, we might want to share a namespace between two or more containers. For
example, in Kubernetes, all containers in a pod share the same network namespace.

http://opensource.com/business/14/9/security-for-docker
http://opensource.com/business/14/9/security-for-docker
http://blog.docker.com/2014/08/announcing-docker-1-2-0/
http://blog.docker.com/2014/08/announcing-docker-1-2-0/
http://opensource.com/business/15/3/docker-security-future
http://opensource.com/business/15/3/docker-security-future
https://docs.docker.com/v1.6/release-notes/
https://docs.docker.com/v1.6/release-notes/

Chapter 9

207

In some cases, we would want to share the namespaces of the host system with the
containers. For example, we share the same network namespace between the host and the
container to get near line speed inside the container. In this recipe, we will see how to share
namespaces between the host and the container.

Getting ready
A host with the latest version of Docker installed, which can be accessed through a
Docker client.

How to do it…
1.	 To share the host network namespace with the container, run the following command:

$ docker run -it --net=host fedora bash

If you see the network details inside the container, run the following command:
$ ip a

You will see a result same as the host.

2.	 To share the host network, PID, and IPC namespaces with the container, run the
following command:
$ docker run -it --net=host --pid=host --ipc=host fedora bash

How it works…
Docker does not create separate namespaces for containers when such arguments are
passed to the container.

There's more...
For hosts that are built to run just containers, such as Project Atomic (http://www.
projectatomic.io/), which we saw in Chapter 8, Docker Orchestration and Hosting
Platforms, doesn't have debugging tools such as tcpdump and sysstat on the host system.
So we have created containers with those tools and have access to host resources. In such
cases, sharing namespaces between the host and the container becomes handy. You can
read more about it at the following links:

ff http://developerblog.redhat.com/2014/11/06/introducing-a-super-
privileged-container-concept/

ff http://developerblog.redhat.com/2015/03/11/introducing-the-
rhel-container-for-rhel-atomic-host/

http://www.projectatomic.io/
http://www.projectatomic.io/
http://developerblog.redhat.com/2014/11/06/introducing-a-super-privileged-container-concept/
http://developerblog.redhat.com/2014/11/06/introducing-a-super-privileged-container-concept/
http://developerblog.redhat.com/2015/03/11/introducing-the-rhel-container-for-rhel-atomic-host/
http://developerblog.redhat.com/2015/03/11/introducing-the-rhel-container-for-rhel-atomic-host/

Docker Security

208

See also
ff Dan Walsh's documentation on Docker Security at http://opensource.com/

business/15/3/docker-security-tuning

http://opensource.com/business/15/3/docker-security-tuning
http://opensource.com/business/15/3/docker-security-tuning

209

10
Getting Help and

Tips and Tricks

In this chapter, we will see the following recipes:

ff Starting Docker in debug mode

ff Building a Docker binary from the source

ff Building images without using cached layers

ff Building your own bridge for container communication

ff Changing the default execution driver of Docker

ff Selecting the logging driver for containers

ff Getting real-time Docker events for containers

Introduction
We'll become more curious as we learn more about Docker. Mailing lists and IRC channels
are the best places to get help, learn, and share knowledge about Docker. Docker has a few
IRC channels on the free node, such as #docker and #docker-dev, to discuss Docker in
general and dev-related stuff respectively. Similarly, Docker has two mailing lists:

ff The Docker user list available at https://groups.google.com/
forum/#!forum/docker-user

ff The Docker dev list available at https://groups.google.com/
forum/#!forum/docker-dev

While working on Docker, if you find any bugs, you can report them on GitHub at
https://github.com/docker/docker/issues.

https://groups.google.com/forum/#!forum/docker-user
https://groups.google.com/forum/#!forum/docker-user
https://groups.google.com/forum/#!forum/docker-dev
https://groups.google.com/forum/#!forum/docker-dev
https://github.com/docker/docker/issues

Getting Help and Tips and Tricks

210

Similarly, if you have fixed a bug, you can send the pull request, which will get reviewed and
then get merged to the code base.

Docker also has a forum and a YouTube channel, which are great learning resources and can
be found at https://forums.docker.com/ and https://www.youtube.com/user/
dockerrun respectively.

There are many Docker meet up groups around the world, where you meet like-minded
individuals and learn by sharing experiences at
https://www.docker.com/community/meetups/.

In this chapter, I'll also put down a few tips and tricks, which will help you to work better
with Docker.

Starting Docker in debug mode
We can start Docker in debug mode to debug logs.

Getting ready
Install Docker on the system.

How to do it...
1.	 Start the Docker daemon with the debug option -D. To start from the command line,

you can run the following command:
$ docker -d -D

2.	 You can also add the --debug/-D option in the Docker configuration file to start in
debug mode.

How it works…
The preceding command would start the Docker in the daemon mode. You will see lots of
useful messages as you start the daemon, such as loading up existing images, settings for
firewalls (iptables), and so on. If you start a container, you will see messages like the following:

[info] POST /v1.15/containers/create

[99430521] +job create()

......

......

https://forums.docker.com/
https://www.youtube.com/user/dockerrun
https://www.youtube.com/user/dockerrun
https://www.docker.com/community/meetups/

Chapter 10

211

Building a Docker binary from the source
Sometimes it becomes necessary to build a Docker binary from the source for testing a patch.
It is very easy to build the Docker binary from the source.

Getting ready
1.	 Download the Docker source code using git:

$ git clone https://github.com/docker/docker.git

2.	 Install make on Fedora:
$ yum install -y make

3.	 Make sure Docker is running on the host on which you are building the code and
you can access it through the Docker client, as the build we are discussing here
happens inside a container.

How to do it…
1.	 Go inside the cloned directory:

$ cd docker

2.	 Run the make command:

$ sudo make

How it works…
This will create a container and compile the code inside that from the master branch. Once
finished, it will spit out the binary inside bundles/<version>/binary.

There's more…
ff Similar to the source code, you can build the documentation as well:

$ sudo make docs

ff You can also run tests with the following command:

 $ sudo make test

Getting Help and Tips and Tricks

212

See also
ff Look at the documentation on the Docker website

https://docs.docker.com/contributing/devenvironment/

Building images without using cached layers
By default, when we build an image, Docker will try to use the cached layers so that it takes
less time to build. However, at times it is necessary to build from scratch. For example, you
will need to force a system update such as yum -y update. Let's see how we can do that
in this recipe.

Getting ready
Get a Dockerfile to build the image.

How to do it…
1.	 While building the image, pass the --no-cache option as follows:

$ docker build -t test --no-cache - < Dockerfile

How it works…
The --no-cache option will discard any cached layer and build one Dockerfile by following
the instructions.

There's more…
Sometimes, we also want to discard the cache after only a few instructions. In such cases, we
can add any arbitrary command which doesn't affect the image, such as creation or setting up
an environment variable.

Building your own bridge for container
communication

As we know, when the Docker daemon starts, it creates a bridge called docker0 and all the
containers would get the IP from it. Sometimes we might want to customize those settings.
Let's see how we can do that in this recipe.

https://docs.docker.com/contributing/devenvironment/

Chapter 10

213

Getting ready
I am assuming you already have a Docker set up. On the Docker host, stop the Docker
daemon. On Fedora, use the following command:

$ systemctl stop docker

How to do it…
1.	 To remove the default docker0 bridge, use the following command:

$ sudo ip link set dev docker0 down

$ sudo brctl delbr docker0

2.	 To create the custom bridge, use the following command:
$ sudo brctl addbr br0

$ sudo ip addr add 192.168.2.1/24 dev br0

$ sudo ip link set dev bridge0 up

3.	 Update the Docker configuration file to start with the bridge we created earlier. On
Fedora, you can update the configuration file as follows:
$ sed -i '/^OPTIONS/ s/$/ --bridge br0/' /etc/sysconfig/docker

4.	 To start the Docker daemon, use the following command:
$ systemctl start docker

How it works…
The preceding steps will create a new bridge and it will assign the IP from 192.168.2.0 subnet
to the containers.

There's more…
You can even add an interface to the bridge.

See also
ff The documentation on the Docker website at

https://docs.docker.com/articles/networking/

https://docs.docker.com/articles/networking/

Getting Help and Tips and Tricks

214

Changing the default execution driver of
Docker

As we know, libcontainer is the default execution driver. There is legacy support for LXC
userspace tools (https://linuxcontainers.org/). Keep in mind that LXC is not the
primary development environment.

Getting ready
Install Docker on the system.

How to do it…
1.	 Start the Docker daemon with the -e lxc option, as follows:

$ docker -d -e lxc

You can also add this option in the configuration file of Docker, depending on the distribution.

How it works…
Docker uses LXC tools to access kernel features, such as Namespaces and Cgroups to run
containers.

See also
ff The documentation on the Docker website https://docs.docker.com/

reference/commandline/cli/#docker-exec-driver-option

Selecting the logging driver for containers
With the release of Docker 1.6, a new feature has been added to select the logging driver
while starting the Docker daemon. Currently, three types of logging drivers are supported:

ff none

ff json-file (default)

ff syslog

Getting ready
Install Docker 1.6 or above on the system.

https://linuxcontainers.org/
https://docs.docker.com/reference/commandline/cli/#docker-exec-driver-option
https://docs.docker.com/reference/commandline/cli/#docker-exec-driver-option

Chapter 10

215

How to do it…
1.	 Start the Docker daemon with the required logging driver as follows:

$ docker -d --log-driver=none

$ docker -d --log-driver=syslog

You can also add this option in the configuration file of Docker, depending on the distribution.

The docker logs command will just support the default logging driver JSON file.

How it works…
Depending on the log driver configuration, Docker daemon selects the corresponding logging
driver.

There's more…
There is work in progress to add journald as one of the logging drivers. It will be available
from Docker 1.7 at http://www.projectatomic.io/blog/2015/04/logging-
docker-container-output-to-journald/.

See also
ff The documentation on the Docker website http://docs.docker.com/

reference/run/#logging-drivers-log-driver

Getting real-time Docker events for
containers

As we will be running many containers in production, it will helpful if we can watch the
real-time container events for monitoring and debugging purposes. Docker containers can
report events, such as create, destroy, die, export, kill, oom, pause, restart, start, stop, and
unpause. In this recipe, we will see how to enable event logging and then use filters to select
specific event types, images or containers.

Getting ready
Make sure the Docker daemon is running on the host and you can connect through the
Docker client.

http://www.projectatomic.io/blog/2015/04/logging-docker-container-output-to-journald/
http://www.projectatomic.io/blog/2015/04/logging-docker-container-output-to-journald/
http://docs.docker.com/reference/run/#logging-drivers-log-driver
http://docs.docker.com/reference/run/#logging-drivers-log-driver

Getting Help and Tips and Tricks

216

How to do it…
1.	 Start the Docker events logging with the following command:

$ docker events

2.	 From the other terminal, do some container/image-related operation and you will see
a result similar to the following screenshot on the first terminal:

After the events collection started, I created a container to just echo something. As you can
see from the preceding screenshot, a container got created, started, and died.

How it works…
With Docker events, Docker starts listing different events.

There's more…
ff You can use the --since or --until option with Docker events to narrow down

results for a selected timestamp:
 --since="" Show all events created since timestamp

 --until="" Stream events until this timestamp

Consider the following example:

$ docker events --since '2015-01-01'

ff With filters, we can further narrow down the events log based on the event, container,
and image as follows:

�� To list only the start event, use the following command:
	 $ docker events --filter 'event=start'

�� To list events only from image CentOS, use the following command:
	 $ docker events --filter 'image=docker.io/centos:centos7'

Chapter 10

217

�� To list events from the specific container, use the following command:

	 docker events --filter
	 'container=b3619441cb444b87b4d79a8c30616ca70da4b5aa8fdc5d8a4
	 8d23a2082052174'

See also
ff The documentation on the Docker website https://docs.docker.com/

reference/commandline/cli/#events

https://docs.docker.com/reference/commandline/cli/#events
https://docs.docker.com/reference/commandline/cli/#events

219

Index
A
account

creating, with Docker Hub 45, 46
Amazon

URL 120
Apache 13
Apache image

building 60-62
Apache Mesos

URL 162
application deployment

in virtualized environment 3
with containers 3

applications
running, with Docker Compose 163, 164

AtomicApp
about 163
URL 163

atomic command
reference link 184

atomic update/rollback
performing, with Project Atomic 177, 178

automated builds
reference link 79
with Bitbucket 76-78
with GitHub 76-78

B
base image

creating, Debootstrap used 81
creating, supermin used 79, 80

Bitbucket
automated builds 76-78

breakthrough container performance, Tesla
efficiency

URL 150

C
cAdvisor

URL 158
Calio

URL 87
capabilities

CAP_AUDIT_CONTROL 205
CAP_AUDIT_WRITE 205
CAP_MAC_ADMIN 205
CAP_MAC_OVERRIDE 205
CAP_NET_ADMIN 204, 205
CAP_SETPCAP 204
CAP_SYS_ADMIN 204, 205
CAP_SYSLOG 204, 205
CAP_SYS_MODULE 204
CAP_SYS_PACCT 204
CAP_SYS_RAWIO 204
CAP_SYS_RESOURCE 205
CAP_SYS_TIME 205
CAP_SYS_TTY_CONFIG 205

Certificate Authority (CA) 142
cgroups

about 7, 149
CPUsets 149
CPU shares 149
memory limits 150

cgroups, features
accounting 7
control 7
prioritization 7
resource limiting 7

220

cgroups, subsystems
blkio 7
Cpu 7
Cpuacct 7
Cpuset 7
Devices 7
Freezer 7
Memory 7

cloud config file
URL, for configuring 172

cloud images
references 173, 176

cluster
setting up, with Docker Swarm 165, 166

Cockpit
setting up, for Project Atomic 182-184
URL 182

code
testing, with Docker 108, 109

Comprehensive Overview, of Storage
Scalability in Docker

URL 150
concepts, Kubernetes

labels 186
master 186
node/minion 186
pods 186
services 186
volumes 186

Containerizing Databases, Red Hat Enterprise
Linux

URL 151
container operations

performing, remote APIs used 139, 140
ContainerPipeline

URL 163
container runtime 168, 173
containers

about 13
accessing, from outside 88, 89
data, managing in 90-93
deleting 31, 32
filtering 40, 41
Firefox, accessing from 63-66
host device, accessing inside 36
image, creating from 46-48
IPv6 addresses, assigning to 103, 104

labeling 40, 41
linking 94, 95
listing 28
logs, viewing of 29
new process, injecting to running

container 37, 38
privileged access, obtaining inside 34, 35
references 96, 140
restart policy, setting on 33
resource usage, obtaining with stats

feature 157
running 11, 12
starting 25-27, 85-87
stopping 30

Continuous Delivery (CD) 108
Continuous Integration (CI) 108
CoreOS

setting up, for Docker orchestration 167-171
URL 162

CoreOS Cluster Architectures
reference link 172

CoreOS Managed Linux
URL 167

CPU performance
benchmarking 151-153

curl command
reference link 133

custom bridge
building, from container

communication 212, 213

D
Dan Walsh documentation

URL 208
data

managing, in containers 90-93
data volume containers

about 90
references 94

data volumes 90
Debian 13
Debootstrap

references 82
used, for creating base image 81

default execution driver, Docker
changing 214

221

Denial of Service (DoS) attacks 198
dependencies

visualizing, between layers 82
device mapper specific tuning

reference link 148
DevStack

URL 129
disk performance

benchmarking 153, 154
Docker

code, testing with 108, 109
configuring as hypervisor driver, for

OpenStack 129-131
installing 10, 11
starting, in debug mode 210
URL 14
URL, for documentation 18, 22
URL, for forum 210
URL, for installation document 10, 11
URL, for issues 209
URL, for logs command 30
URL, for meet up groups 210
URL, for ps command 29
URL, for pull command 23
URL, for rm command 33
URL, for run command 27, 34
URL, for runtime metrics 8
URL, for stop command 31
URL, for YouTube channel 210
use cases 107, 108

Docker 1.2
URL, for release environment 35

Docker 1.3
URL, for release environment 27

Docker 1.5
reference link, for release notes 105

Docker 1.6
URL 23

Docker administration
nonroot user, adding for 14

Docker binary
building, from source 211

docker build
references 60, 63, 66, 72

Docker command line
help, finding with 18

docker commit
reference link 48

Docker Compose
applications, running with 163, 164
references 162, 163

Docker Compose command-line reference
URL 164

Docker Compose YAML file
URL 164

Docker Containerizer
URL 162

Docker Containers Performance, VMware
vSphere

URL 151
Docker daemon remote API

configuring 134, 135
securing 142-145

Docker dev list
URL 209

docker export
reference link 53

Dockerfile
format 57
used, for building image 54-57

dockerfiles-fedora-registry
reference link 72

docker history
reference link 51

Docker host
setting up, with Docker Machine 15-17

Docker host setup, with Docker Machine
reference link 146

Docker Hub
about 13
account, creating with 45, 46
references 20, 72, 76

docker import
reference link 54

Docker, in Project Atomic
storage, adding for 178-182

Docker installation
requisites, verifying for 9, 10

Docker Machine
Docker host, setting up with 15-17
references 15, 165

Docker native client, for Windows
URL 14

222

Docker, on Google Compute engine
URL, for guide 18

Docker orchestration
CoreOS, setting up for 167-171

Docker package, on RHEL 7
reference link 22

Docker Plugin
URL 110

Docker public registry
reference link 21

docker push
reference link 50

docker-py
reference link 142

docker-registry, GitHub page
URL 73

Docker Remote API
reference link 136

Docker remote API client libraries
exploring 141, 142

docker rmi
reference link 52

docker save
reference link 53

Docker security
about 198
capabilities to breakdown power of root user,

removing 204-206
guidelines 199
Mandatory Access Control (MAC), setting with

SELinux 200-202
namespaces, sharing between host and

container 206, 207
URL 199
volume, allowing write access 203

Docker Swarm
about 165
cluster, setting up with 165, 166
references 162, 165, 167

DockerUI
reference link 142

Docker user list
URL 209

dockviz
reference link 82

Drone
CI/CD, performing with 117, 118

references 119
URL 117

E
emacs 13

F
Fedora-Dockerfiles GitHub repo

URL 60
Fig

URL 162
filesystems, Project Atomic

reference link 182
Firefox

accessing, from container 63-66
Flannel

about 98
URL 87
used, for networking of multihost

container 98-103
Flannel GitHub, operations theory

reference link 103
Flannel, setting on Fedora

reference link, for documentation 103
Flask

URL 108
flavors

about 75
common 75
dev 75
elliptics 75
gcs 75
glance 75
glance-swift 75
local 75
prod 75
s3 75
swift 75
test 75

Fleet
about 169
reference link 169

Flexible IO
URL 153

223

G
GitHub

automated builds 76-78
Google Compute Engine (GCE)

about 15
URL 15

H
Heapster

URL 159
help

finding, with Docker command line 18
Heroku

URL 120
host device

accessing, inside container 36

I
image operations

performing, remote APIs used 136-138
reference link 138

images
about 13
building, Dockerfiles used 54-57
building, without using cached layers 212
creating, from container 46-48
deleting 51
exporting 53
history, viewing 50, 51
importing 54
listing 20-24
publishing, to registry 48-50
pulling 11, 12, 22, 23
searching 20-22

image systems
reference link 176

index 13
influxdb

URL 159
installing

Docker 10, 11
instructions types, Dockerfile

CMD 58
COPY 59
ENTRYPOINT 58

ENV 59
EXPOSE 59
FROM 57
LABEL 58
MAINTAINER 58
ONBUILD 60
RUN 58
USER 59
VOLUME 59
WORKDIR 60

Inter Process Communication (ipc) 6
Iozone

URL 153
ipc namespace 6
IPv6 addresses

assigning, to containers 103, 104

K
Kolla

URL 132
kube-dns

reference link 195
Kubernetes

references 87, 120, 162, 173
Kubernetes API conventions

URL 188
Kubernetes cluster

scrolling down 188-190
scrolling up 188-190
setting up 185-187
WordPress, setting up with 190-194

Kubernetes GitHub
URL 190

Kubernetes setup, with Atomic host
reference link 176

L
labels 186
LAMP application

developing, by linking containers 96, 97
layers

dependencies, visualizing between 82
libnetwork

reference link 87
Linpack

URL 151

224

logging driver, for containers
selecting 214, 215

logs
viewing, of containers 29

low-level information, container
returning 38, 39

LXC userspace tools
URL 214

M
Mandatory Access Control (MAC)

about 199
setting, with SELinux 200-202

master, cluster-level control services
API server 186
replication controller 186
scheduler 186

minion 186
mnt namespace 6
Multi Category Security enforcement 201
Multi Level Security (MLS) 201
multinode cluster

reference link 168
mysql container

creating 95, 96
MySQL images, pulling from Docker registry

references 97

N
namespaces

about 4
ipc 6
mnt 6
net 5, 6
pid 4
sharing, between host and container 207
user 6
uts 6

net namespace 5, 6
netperf

URL 156
networking

reference link 87
networking documentation, Docker

reference link 90

networking, of multihost container
performing, with Flannel 98-103

network performance
benchmarking 155, 156

new process
injecting, to running container 37, 38

node 186
nonroot user

adding, for Docker administration 14
nsenter

reference link 37
Nulecule

about 162
URL 162

nuttcp
URL 156

O
OpenShift

URL 120
URL, for creating account 112

OpenShift Origin
PaaS, setting up for 120

OpenShift v3
URL 120

OpenStack
Docker, configuring as hypervisor

driver 129-131
URL 132

operating system, for Docker
reference link 162

Orchestration tools
URL 15

OSTree
about 173
URL 173

P
PaaS

about 108
setting up, with OpenShift Origin 120

package systems
reference link 176

Performance Analysis of Docker, on Red Hat
Enterprise Linux

URL 150

225

performance impacting features, Docker
--net=host 149
Cgroups 149
storage drivers 148
sysctl and ulimit settings 150
volumes 148

performance monitoring
setting up 158, 159

pid namespace 4
Platform-as-a-Service. See PaaS
pods 186
port

exposing, while starting container 35
private index/registry

setting up 72-75
privileged access

obtaining, inside container 34, 35
Project Atomic

atomic update/rollback, performing
with 177, 178

Cockpit, setting up for 182-184
URL 162

Project Atomic host
setting up 172-176

Project Atomic website
references 176, 178, 182

R
Raft consensus algorithm

URL 168
real-time Docker events

obtaining, for containers 215, 216
Red Hat OpenShift

CI/CD, performing with 111-116
registry

image, publishing to 48-50
remote APIs

used, for performing container
operations 139, 140

used, for performing image
operations 136-138

repository 13
restart policy

setting, on container 33

RFC 1918
URL 84

Rocket
reference link 168

S
Salt

URL 187
SELinux

about 200
used, for setting Mandatory Access

Control (MAC) 200-202
SELinux enforcement

Multi Category Security enforcement 201
type enforcement 201

services 186
sFlow

URL 158
Shippable

about 111
CI/CD, performing with 111-116
references 111, 114, 117

Shipyard
reference link 142

Socketplane
URL 87

Software Defined Networking (SDN) 98
stats feature

used, for obtaining container resource
 usage 157

storage
adding for Docker, in Project Atomic 178-182

supermin
references 80
used, for creating base image 79, 80

Super Privileged Container (SPC)
about 182
reference link 182

supervisord
references 67, 68

sysbench
URL 151

systemd
about 168, 173
references 34, 72, 169, 172

226

T
tools, Docker Inc.

about 162
CoreOS 162
Docker Compose 162

traditional application deployment 2
Transport Layer Security

URL 142
type enforcement 201

U
Union filesystem 8
use cases, Docker

collaboration and distribution 107
Continuous Integration (CI) 108
quick prototyping of ideas 107

user namespace 6
uts namespace 6

V
Vagrant

URL 169
Vagrant environment

URL, for setup 188, 195
VirtualBox

URL 165
Virtual Extensible LAN (VXLAN) 98
virtual manager documentation

URL 176
visualization, of RAFT consensus algorithm

URL 172

VMware Photon
URL 162

volumes
about 186
reference link 186
write access, allowing 203

W
Weave

URL 87
web browser, Docker Hub

URL, for creating account 45
WordPress

setting up, with Kubernetes cluster 190-194
WordPress Docker repo, Docker Hub

URL 163
WordPress image

building 67-70
WordPress images, pulling from Docker

registry
references 97

Y
yml file, instructions

after_success 111
before_install 111
build_image 111
language 111
script 111

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Introduction and Installation
	Introduction
	Verifying the requirements for Docker installation
	Installing Docker
	Pulling an image and running a container
	Adding a nonroot user to administer Docker
	Setting up the Docker host with Docker Machine
	Finding help with the Docker command line

	Chapter 2: Working with the Docker Containers
	Introduction
	Listing/searching for an image
	Pulling an image
	Listing images
	Starting a container
	Listing containers
	Looking at the logs of containers
	Stopping a container
	Deleting a container
	Setting the restart policy on a container
	Getting privileged access inside a container
	Exposing a port while starting a container
	Accessing the host device inside the container
	Injecting a new process to a running container
	Returning low-level information about a container
	Labeling and filtering containers

	Chapter 3: Working with
Docker Images
	Introduction
	Creating an account with Docker Hub
	Creating an image from the container
	Publishing an image to the registry
	Looking at the history of an image
	Deleting an image
	Exporting an image
	Importing an image
	Building images using Dockerfiles
	Building an Apache image – a Dockerfile example
	Accessing Firefox from a container – a Dockerfile example
	Building a WordPress image – a Dockerfile example
	Setting up a private index/registry
	Automated builds – with GitHub and Bitbucket
	Creating the base image – using supermin
	Creating the base image – using Debootstrap
	Visualizing dependencies between layers

	Chapter 4: Network and Data Management for Containers
	Introduction
	Accessing containers from outside
	Managing data in containers
	Linking two or more containers
	Developing a LAMP application by linking containers
	Networking of multihost container with Flannel
	Assigning IPv6 addresses to containers

	Chapter 5: Docker Use Cases
	Introduction
	Testing with Docker
	Doing CI/CD with Shippable and Red Hat OpenShift
	Doing CI/CD with Drone
	Setting up PaaS with OpenShift Origin
	Building and deploying an app on OpenShift v3 from the source code
	Configuring Docker as a hypervisor driver for OpenStack

	Chapter 6: Docker APIs and Language Bindings
	Introduction
	Configuring the Docker daemon remote API
	Performing image operations using remote APIs
	Performing container operations using remote APIs
	Exploring Docker remote API client libraries
	Securing the Docker daemon remote API

	Chapter 7: Docker Performance
	Introduction
	Benchmarking CPU performance
	Benchmarking disk performance
	Benchmarking network performance
	Getting container resource usage using the stats feature
	Setting up performance monitoring

	Chapter 8: Docker Orchestration and Hosting Platform
	Introduction
	Running applications with Docker Compose
	Setting up cluster with Docker Swarm
	Setting up CoreOS for Docker orchestration
	Setting up a Project Atomic host
	Doing atomic update/rollback with Project Atomic
	Adding more storage for Docker in Project Atomic
	Setting up Cockpit for Project Atomic
	Setting up a Kubernetes cluster
	Scaling up and down in a Kubernetes cluster
	Setting up WordPress with a Kubernetes cluster

	Chapter 9: Docker Security
	Introduction
	Setting Mandatory Access Control (MAC) with SELinux
	Allowing writes to volume mounted from the host with SELinux ON
	Removing capabilities to breakdown the power of a root user inside a container
	Sharing namespaces between the host and the container

	Chapter 10: Getting Help and
Tips and Tricks
	Introduction
	Starting Docker in debug mode
	Building a Docker binary from the source
	Building images without using cached layers
	Building your own bridge for container communication
	Changing the default execution driver of Docker
	Selecting the logging driver for containers
	Getting real-time Docker events for containers

	Index

