

About This E-Book
EPUB is an open, industry-standard format for e-books. However, support
for EPUB and its many features varies across reading devices and
applications. Use your device or app settings to customize the presentation to
your liking. Settings that you can customize often include font, font size,
single or double column, landscape or portrait mode, and figures that you can
click or tap to enlarge. For additional information about the settings and
features on your reading device or app, visit the device manufacturer’s Web
site.

Many titles include programming code or configuration examples. To
optimize the presentation of these elements, view the e-book in single-
column, landscape mode and adjust the font size to the smallest setting. In
addition to presenting code and configurations in the reflowable text format,
we have included images of the code that mimic the presentation found in the
print book; therefore, where the reflowable format may compromise the
presentation of the code listing, you will see a “Click here to view code
image” link. Click the link to view the print-fidelity code image. To return to
the previous page viewed, click the Back button on your device or app.

Learning Regular Expressions

Ben Forta

Boston • Columbus • Indianapolis • New York • San Francisco • Amsterdam
Cape Town • Dubai • London • Madrid • Milan • Munich • Paris Montreal •

Toronto • Delhi • Mexico City • São Paulo • Sidney Hong Kong • Seoul •
Singapore • Taipei • Tokyo

Learning Regular Expressions
Many of the designations used by manufacturers and sellers to distinguish
their products are claimed as trademarks. Where those designations appear
in this book, and the publisher was aware of a trademark claim, the
designations have been printed with initial capital letters or in all capitals.

The author and publisher have taken care in the preparation of this book, but
make no expressed or implied warranty of any kind and assume no
responsibility for errors or omissions. No liability is assumed for incidental
or consequential damages in connection with or arising out of the use of the
information or programs contained herein.
For information about buying this title in bulk quantities, or for special sales
opportunities (which may include electronic versions; custom cover designs;
and content particular to your business, training goals, marketing focus, or
branding interests), please contact our corporate sales department at
corpsales@pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact
governmentsales@pearsoned.com.

For questions about sales outside the U.S., please contact
intlcs@pearson.com.
Visit us on the Web: informit.com/aw

Library of Congress Control Number: 2018935165

Copyright © 2018 Pearson Education, Inc.
All rights reserved. This publication is protected by copyright, and
permission must be obtained from the publisher prior to any prohibited
reproduction, storage in a retrieval system, or transmission in any form or by
any means, electronic, mechanical, photocopying, recording, or likewise. For
information regarding permissions, request forms and the appropriate
contacts within the Pearson Education Global Rights & Permissions
Department, please visit www.pearsoned.com/permissions/.

ISBN-13: 978-0-13-475706-3
ISBN-10: 0-13-475706-8

mailto:corpsales@pearsoned.com
mailto:governmentsales@pearsoned.com
mailto:intlcs@pearson.com
http://informit.com/aw
http://www.pearsoned.com/permissions/

1 18

Editor
Mark Taber

Managing Editor
Sandra Schroeder

Senior Project Editor
Tonya Simpson

Copy Editor
Bill McManus

Technical Editor
Ben Schupak

Indexer
Erika Millen

Compositor
codemantra

Proofreader
Jeanine Furino

Cover Designer
Chuti Prasertsith

Contents at a Glance
Introduction

 1 Introducing Regular Expressions
 2 Matching Single Characters
 3 Matching Sets of Characters
 4 Using Metacharacters
 5 Repeating Matches
 6 Position Matching
 7 Using Subexpressions
 8 Using Backreferences
 9 Looking Ahead and Behind

 10 Embedding Conditions
 11 Regular Expression Solutions to Common Problems

Appendix A Regular Expressions in Popular Applications and
Languages

Index

Table of Contents
Introduction

Who Is Learning Regular Expressions For?

 1 Introducing Regular Expressions
Understanding the Need
How Regular Expressions Are Used

RegEx Searches
RegEx Replaces

So What Exactly Is a Regular Expression?
Using Regular Expressions
Before You Get Started
Summary

 2 Matching Single Characters
Matching Literal Text

How Many Matches?
Handling Case Sensitivity

Matching Any Characters
Matching Special Characters
Summary

 3 Matching Sets of Characters
Matching One of Several Characters
Using Character Set Ranges
“Anything But” Matching
Summary

 4 Using Metacharacters
Escaping Revisited
Matching Whitespace Characters

Matching Specific Character Types
Matching Digits (and Nondigits)
Matching Alphanumeric Characters (and Nonalphanumeric
Characters)
Matching Whitespace (and Nonwhitespace)
Specifying Hexadecimal or Octal Values

Using POSIX Character Classes
Summary

 5 Repeating Matches
How Many Matches?

Matching One or More Characters
Matching Zero or More Characters
Matching Zero or One Characters

Using Intervals
Exact Interval Matching
Range Interval Matching
“At Least” Interval Matching

Preventing Over Matching
Summary

 6 Position Matching
Using Boundaries
Using Word Boundaries
Defining String Boundaries

Using Multiline Mode
Summary

 7 Using Subexpressions
Understanding Subexpressions
Grouping with Subexpressions
Nesting Subexpressions
Summary

 8 Using Backreferences
Understanding Backreferences

Matching with Backreferences
Performing Replace Operations

Converting Case
Summary

 9 Looking Ahead and Behind
Introducing Lookaround
Looking Ahead
Looking Behind
Combining Lookahead and Lookbehind
Negating Lookaround
Summary

10 Embedding Conditions
Why Embed Conditions?
Using Conditions

Backreference Conditions
Lookaround Conditions

Summary

11 Regular Expression Solutions to Common Problems
North American Phone Numbers
U.S. ZIP Codes
Canadian Postal Codes
United Kingdom Postcodes
U.S. Social Security Numbers
IP Addresses
URLs
Complete URLs
Email Addresses
HTML Comments
JavaScript Comments
Credit Card Numbers
Summary

Appendix A Regular Expressions in Popular Applications and
Languages

grep
Java
JavaScript
Microsoft .NET
Microsoft SQL Server T-SQL
Microsoft Visual Studio .NET
MySQL
Oracle PL/SQL
Perl
PHP
Python

Index

About the Author
Ben Forta is Adobe Systems’ Senior Director of Education Initiatives. He is
also the author of numerous books on SQL, regular expressions, ColdFusion,
Windows development, JSP, and more. His book Teach Yourself SQL in 10
Minutes is the best-selling book on SQL of all time.

Accessing the Free Web Edition
Your purchase of this book in any format includes access to the
corresponding Web Edition, which provides several special online-only
features:

 The complete text of the book
 Links to online regular expression testers
 Updates and corrections as they become available

The Web Edition can be viewed on all types of computers and mobile
devices with any modern web browser that supports HTML5.

To get access to the Learning Regular Expressions Web Edition all you need
to do is register this book:

1. Go to www.informit.com/register.
2. Sign in or create a new account.
3. Enter the ISBN: 9780134757063.
4. Answer the questions as proof of purchase.
5. The Web Edition will appear under the Digital Purchases tab on your

Account page. Click the Launch link to access the product.

http://www.informit.com/register

Introduction

Regular expressions and the regular expression language have been around
for many years. Regular expression experts have long been armed with an
incredibly powerful tool, one that can be used to perform all sorts of
powerful text processing and manipulation in just about every language and
on every platform.

That’s the good news. The bad news is that for too long, regular expressions
have been the exclusive property of only the most tech savvy. Most of us do
not fully understand what regular expressions do and what problems they
solve. And those who have braved them find regular expression syntax to be
unintuitive, and even convoluted at times. That’s sad, because the truth is that
regular expressions are nowhere near as complex as they appear to be at first
glance. All it takes is a clear understanding of the problem being solved and
how to leverage regular expressions so as to solve them.

Part of the problem is the scarcity of quality content on the subject. The few
books on regular expressions (and indeed, most of the Web sites boasting
regular expression tutorials) tend to concentrate on the syntax, defining what
{ does and how + differs from *. But that is the easy part; there are not that
many special characters in the regular expression language. The tricky part is
understanding how they should be used so as to solve real-world problems.

The book you are holding is not intended to be the last word on everything
there is to know about regular expressions. If that is what you want, you’ll
need a copy of Jeffrey Friedl’s Mastering Regular Expressions (O’Reilly,
ISBN 0596528124). Mr. Friedl is the acknowledged regular expressions
guru, and his book is the definitive and most comprehensive on the subject.
But, and no offense to Mr. Friedl, his book is not for beginners—or even for

casual users who just want to get their jobs done without needing to
understand the inner workings of regular expression engines. Not that it is not
useful information—it is, but not when all you want to do is add validation to
your HTML forms or simply perform powerful replace operations on parsed
text. If you need to get up and running quickly using regular expressions,
you’ll find yourself torn between having too little information to be
productive and having too much information to know where to begin.

And that is where this book comes in. Learning Regular Expressions will
teach you the regular expressions that you really need to know, starting with
simple text matches and working up to more complex topics, including the
use of backreferences, conditional evaluation, and look-ahead processing.
You’ll learn what you can use, and you’ll learn it methodically,
systematically, and simply by using clear and practical examples and solving
real problems.

Who Is Learning Regular Expressions For?
This book is for you if:

 You are new to regular expressions.
 You want to quickly learn how to get the most out of the regular

expression language.
 You want to gain an edge by learning to solve real problems using one of

the most powerful (and least understood) tools available to you.
 You build Web applications and crave more sophisticated form and text

processing.
 You use JavaScript, Java, .NET, PHP, Python, MySQL, (and any other

languages and DBMSs with regular expression support), and you want
to learn how to use regular expressions within your own application
development.

 You want to be productive quickly and easily in regular expressions,
without having to call someone for help.

So turn to Lesson 1, “Introducing Regular Expressions,” and get to work.
You’ll be leveraging the power of regular expressions in no time at all and
wondering how you ever managed without them.

Lesson 1
Introducing Regular Expressions

In this lesson you’ll learn what regular expressions are and what they can do
for you.

Understanding the Need
Regular expressions (often shortened as RegEx or regex) are tools, and like
all tools, regular expressions are designed to solve a very specific problem.
The best way to understand regular expressions and what they do is to
understand the problem they solve.

Consider the following scenarios:

 You are searching for a file containing the text car (regardless of case)
but do not want to also locate car in the middle of a word (for
example, scar, carry, and incarcerate).

 You are generating a Web page and need to display text retrieved from a
database. Text may contain URLs, and you want those URLs to be
clickable in the generated page (so that instead of generating just text,
you generate a valid HTML <a href>).

 You create an app with a form that prompts for user information
including e-mail address. You need to verify that specified addresses
are formatted correctly (that they are syntactically valid).

 You are editing source code and need to replace all occurrences of
size with iSize, but only size and not size as part of another

word.
 You are displaying a list of all files in your computer file system and

want to filter so that you locate only files containing the text
Application.

 You are importing data into an application. The data is tab delimited and
your application supports CSV format files (one row per line, comma-
delimited values, each possibly enclosed with quotes).

 You need to search a file for some specific text, but only at a specific
location (perhaps at the start of a line or at the end of a sentence).

All these scenarios present unique programming challenges. And all of them
can be solved in just about any language that supports conditional processing
and string manipulation. But how complex a task would the solution become?
You would need to loop through words or characters one at a time, perform
all sorts of if statement tests, track lots of flags so as to know what you had
found and what you had not, check for whitespace and special characters,
and more. And you would need to do it all manually, over and over.

Or you could use regular expressions. Each of the preceding challenges can
be solved using well-crafted statements—highly concise strings containing
text and special instructions—statements that may look like this:

\b[Cc][Aa][Rr]\b

Note
Don’t worry if the previous line does not make sense yet; it will shortly.

How Regular Expressions Are Used
Look at the problem scenarios again and you will notice that they all fall into
one of two types: either information is being located (search) or information
is being located and edited (replace). In fact, at its simplest, that is all that
regular expressions are ever used for: search and replace. Every regular
expression either matches text (performing a search) or matches and replaces
text (performing a replace).

RegEx Searches
Regular expressions are used in searches when the text to be searched for is
highly dynamic, as in searching for car in the scenario described earlier.
For starters, you need to locate car or CAR or Car or even CaR; that’s the
easy part (many search tools are capable of performing searches that are not
case sensitive). The trickier part is ensuring that scar, carry, and
incarcerate are not matched. Some more sophisticated editors have
Match Only Whole Word options, but many don’t, and you may not be making
this change in a document you are editing. Using a regular expression for the
search, instead of just the text car, solves the problem.

Tip
Want to know what the solution to this one is? You’ve actually seen it
already—it is the sample statement shown previously, \b[Cc][Aa]
[Rr]\b.

It is worth noting that testing for equality (for example, does this user-
specified e-mail address match this regular expression) is a search
operation. The entire user-provided string is being searched for a match (in
contrast to a substring search, which is what searches usually are).

RegEx Replaces
Regular expression searches are immensely powerful, very useful, and not
that difficult to learn. As such, many of the lessons and examples that you
will run into are matches. However, the real power of regex is seen in
replace operations, such as in the earlier scenario in which you replace
URLs with clickable URLs. For starters, this requires that you be able to
locate URLs within text (perhaps searching for strings that start with
http:// or https:// and ending with a period or a comma or
whitespace). Then it also requires that you replace the found URL with two
occurrences of the matched string with embedded HTML so that:
http://www.forta.com/

is replaced with

http://www.forta.com/

Click here to view code image
http://www.forta.com/

Or perhaps the text being located is just an address, and not a fully qualified
URL, like this:

www.forta.com

which would also need to be turned into

Click here to view code image
http://www.forta.com/

The Search and Replace option in most applications could not handle this
type of replace operation, but this task is incredibly easy using a regular
expression.

So What Exactly Is a Regular Expression?
Now that you know what regular expressions are used for, a definition is in
order. Simply put, regular expressions are strings that are used to match and
manipulate text. Regular expressions are created using the regular expression
language, a specialized language designed to do everything that was just
discussed and more. Like any language, regular expressions have a specific
syntax and instructions that you must learn, and that is what this book will
teach you.

The regular expression language is not a full programming language. It is
usually not even an actual program or utility that you can install and use.
More often than not, regular expressions are mini-languages built-in to other
languages or products. The good news is that just about any decent language
or tool these days supports regular expressions. The bad news is that the
regular expression language itself is not going to look anything like the
language or tool you are using it with. The regular expression language is a
language unto itself—and not the most intuitive or obvious language at that.

Note

http://www.forta.com/
http://www.forta.com/
http://www.forta.com/

Regular expressions originate from research in the 1950s in the field of
mathematics. Years later, the principles and ideas derived from this early
work made their way into the Unix world into the Perl language and
utilities such as grep. For many years, regular expressions (used in the
scenarios previously described) were the exclusive domain of the Unix
community, but this has changed, and now regular expressions are
supported in a variety of forms on just about every computing platform.

To put all this into perspective, the following are all valid regular
expressions (and all will make sense shortly):

 Ben
 .
 www\.forta\.com
 [a-zA-Z0-9_.]*
 <[Hh]1>.*</[Hh]1>
 \r\n\r\n
 \d{3,3}-\d{3,3}-\d{4,4}

It is important to note that syntax is the easiest part of mastering regular
expressions. The real challenge, however, is learning how to apply that
syntax, how to dissect problems into solvable regex solutions. That is
something that cannot be taught by simply reading a book, but like any
language, mastery comes with practice.

Using Regular Expressions
As previously explained, there is no regular expressions program; it is not an
application you run nor software you buy or download. Rather, the regular
expressions language is implemented in lots of software products, languages,
utilities, and development environments.

How regular expressions are used and how regular expression functionality
is exposed varies from one application to the next. Some applications have

menu options and dialog boxes used to access regular expressions, whereas
programming languages typically provide functions or classes or objects that
expose regex functionality.

Furthermore, not all regular expression implementations are the same. There
are often subtle (and sometimes not so subtle) differences between syntax
and features.

Appendix A, “Regular Expressions in Popular Applications and Languages,”
provides usage details and notes for many of the applications and languages
that support regular expressions. Before you proceed to the next lesson,
consult that appendix to learn the specifics pertaining to the application or
language that you will be using.

To help you get started quickly, you’ll find links to online regular expression
testing tools on this book’s Web page at

Click here to view code image
http://forta.com/books/0134757068/

These online tools are often the simplest way to experiment with regular
expressions.

Before You Get Started
Before you go any further, take note of a couple of important points:

 When using regular expressions, you will discover that there are almost
always multiple solutions to any problem. Some may be simpler, some
may be faster, some may be more portable, and some may be more
capable. There is rarely a right or wrong solution when writing regular
expressions (as long as your solution works, of course).

 As already stated, differences exist between regex implementations. As
much as possible, the examples and lessons used in this book apply to
all major implementations, and differences or incompatibilities are
noted as such.

http://forta.com/books/0134757068/

 As with any language, the key to learning regular expressions is practice,
practice, practice.

Note
I strongly suggest that you try each and every example as you work through
this book.

Summary
Regular expressions are one of the most powerful tools available for text
manipulation. The regular expressions language is used to construct regular
expressions (the actual constructed string is called a regular expression),
and regular expressions are used to perform both search and replace
operations.

Lesson 2
Matching Single Characters

In this lesson you’ll learn how to perform simple character matches of one or
more characters.

Matching Literal Text
Ben is a regular expression. Because it is plain text, it may not look like a
regular expression, but it is. Regular expressions can contain plain text (and
may even contain only plain text). Admittedly, this is a total waste of regular
expression processing, but it’s a good place to start.

So, here goes:

Text
Click here to view code image
Hello, my name is Ben. Please visit
my website at http://www.forta.com/.

RegEx
Ben

Result
Click here to view code image
Hello, my name is Ben. Please visit
my website at http://www.forta.com/.

http://www.forta.com/
http://www.forta.com/

Analysis

The regular expression used here is literal text and it matches Ben in the
original text.

Note
In the examples you’ll see that the matched text is shaded. We’ll use this
format throughout the book so you can easily see exactly what an example
matched.

Let’s look at another example using the same search text and a different
regular expression:

Text
Click here to view code image
Hello, my name is Ben. Please visit
my website at http://www.forta.com/.

RegEx
my

Result
Click here to view code image
Hello, my name is Ben. Please visit
my website at http://www.forta.com/.

Analysis

my is also static text, but notice how two occurrences of my were matched.

How Many Matches?
The default behavior of most regular expression engines is to return just the
first match. In the preceding example, the first my would typically be a
match, but not the second.

http://www.forta.com/
http://www.forta.com/

So why were two matches made? Most regex implementations provide a
mechanism by which to obtain a list of all matches (usually returned in an
array or some other special format). In JavaScript, for example, using the
optional g (global) flag returns an array containing all the matches.

Note
Consult Appendix A, “Regular Expressions in Popular Applications and
Languages,” to learn how to perform global matches in your language or
tool.

Handling Case Sensitivity
Regular expressions are case sensitive, so Ben will not match ben.
However, most regex implementations also support matches that are not case
sensitive. JavaScript users, for example, can specify the optional i flag to
force a search that is not case sensitive.

Note
Consult Appendix A to learn how to use your language or tool to perform
searches that are not case sensitive.

Matching Any Characters
The regular expressions thus far have matched static text only—rather
anticlimactic, indeed. Next we’ll look at matching unknown characters.

In regular expressions, special characters (or sets of characters) are used to
identify what is to be searched for. The . character (period, or full stop)
matches any one character.

Therefore, searching for c.t will match cat and cot (and a bunch of other
nonsensical words, too).

Here is an example:

Text
Click here to view code image
sales1.xls
orders3.xls
sales2.xls
sales3.xls
apac1.xls
europe2.xls
na1.xls
na2.xls
sa1.xls

RegEx
sales.

Result
Click here to view code image
sales1.xls
orders3.xls
sales2.xls
sales3.xls
apac1.xls
europe2.xls
na1.xls
na2.xls
sa1.xls

Analysis

Here the regex sales. is being used to find all filenames starting with
sales and followed by another character. Three of the nine files match the
pattern.

Tip
You’ll often see the term pattern used to describe the actual regular
expression.

Note

Notice that regular expressions match patterns with string contents.
Matches will not always be entire strings, but the characters that match a
pattern—even if they are only part of a string. In the example used here,
the regular expression did not match a filename; rather, it matched part of a
filename. This distinction is important to remember when passing the
results of a regular expression to some other code or application for
processing.

. matches any character, alphabetic characters, digits, and even . itself:

Text
Click here to view code image
sales.xls
sales1.xls
orders3.xls
sales2.xls
sales3.xls
apac1.xls
europe2.xls
na1.xls
na2.xls
sa1.xls

RegEx
sales.

Result
Click here to view code image
sales.xls
sales1.xls
orders3.xls
sales2.xls
sales3.xls
apac1.xls
europe2.xls
na1.xls
na2.xls
sa1.xls

Analysis

This example contains one additional file, sales.xls. The file was
matched by the pattern sales. as . matches any character.

Multiple instances of . may be used, either together (one after the other—
using .. will match any two characters next to each other) or in different
locations in the pattern.

Let’s look at another example using the same text. This time you need to find
all files for North America (na) or South America (sa) regardless of what
digit comes next:

Text
Click here to view code image
sales1.xls
orders3.xls
sales2.xls
sales3.xls
apac1.xls
europe2.xls
na1.xls
na2.xls
sa1.xls

RegEx
.a.

Result
Click here to view code image
sales1.xls
orders3.xls
sales2.xls
sales3.xls
apac1.xls
europe2.xls
na1.xls
na2.xls
sa1.xls

Analysis

The regex .a. did indeed find na1, na2, and sa1, but it also found four
other matches that it was not supposed to. Why? Because the pattern matches
any three characters so long as the middle one is a.

What is needed is a pattern that matches .a. followed by a period. Here is
another try:

Text
Click here to view code image
sales1.xls
orders3.xls
sales2.xls
sales3.xls
apac1.xls
europe2.xls
na1.xls
na2.xls
sa1.xls

RegEx
.a..

Result
Click here to view code image
sales1.xls
orders3.xls
sales2.xls
sales3.xls
apac1.xls
europe2.xls
na1.xls
na2.xls
sa1.xls

Analysis

.a.. does not work any better than .a. did; appending a . will match any
additional character (regardless of what it is). How then can you search for .

when . is a special character that matches any character?

Matching Special Characters
A . has a special meaning in regex. If you need a . in your pattern, you need
a way to tell regex that you want the actual . character and not the regex
special meaning of the . character. To do this, you escape the . by preceding
it with a \ (backslash). \ is a metacharacter (a fancy way of saying a
character with a special meaning, in contrast to the character itself).
Therefore, . means match any character, and \. means match the . character
itself.

Let’s try the previous example again, this time escaping the . with \.:

Text
Click here to view code image
sales1.xls
orders3.xls
sales2.xls
sales3.xls
apac1.xls
europe2.xls
na1.xls
na2.xls
sa1.xls

RegEx
.a.\.

Result
Click here to view code image
sales1.xls
orders3.xls
sales2.xls
sales3.xls
apac1.xls
europe2.xls
na1.xls

na2.xls
sa1.xls

Analysis

.a.\. did the trick. The first . matched n (in the first two matches) or s (in
the third). The second . matched 1 (in the first and third matches) or 2 (in
the second). \. then matched the . separating the filename from the
extension.

The example could be further improved by including the xls in the pattern
so as to prevent a filename such as sa3.doc from being matched, like this:

Text
Click here to view code image
sales1.xls
orders3.xls
sales2.xls
sales3.xls
apac1.xls
europe2.xls
na1.xls
na2.xls
sa1.xls

RegEx
.a.\.xls

Result
Click here to view code image
sales1.xls
orders3.xls
sales2.xls
sales3.xls
apac1.xls
europe2.xls
na1.xls
na2.xls
sa1.xls

In regular expressions, \ is always used to mark the beginning of a block of
one or more characters that have a special meaning. You saw \. here, and
you’ll see many more examples of using \ in future lessons.

Note
The use of special characters is covered in Lesson 4, “Using
Metacharacters.”

Note
In case you were wondering, to escape \ (so as to search for a backslash)
use \\ (two backslashes).

Tip
. matches all characters, right? Well, maybe not. In most regular
expression implementations, . matches every character except a newline
character.

Summary
Regular expressions, also called patterns, are strings made up of characters.
These characters may be literal (actual text) or metacharacters (special
characters with special meanings), and in this lesson you learned how to
match a single character using both literal text and metacharacters. . matches
any character. \ is used to escape characters and to start special character
sequences.

Lesson 3
Matching Sets of Characters

In this lesson you’ll learn how to work with sets of characters. Unlike the .,
which matches any single character (as you learned in the previous lesson),
sets enable you to match specific characters and character ranges.

Matching One of Several Characters
As you learned in the previous lesson, . matches any one character (as does
any literal character). In the final example in that lesson, .a was used to
match both na and sa, . matched both the n and s. But what if there was a
file (containing Canadian sales data) named ca1.xls as well, and you still
wanted to match only na and sa)? . would also match c, and so that
filename would also be matched.

Text
Click here to view code image
sales1.xls
orders3.xls
sales2.xls
sales3.xls
apac1.xls
europe2.xls
na1.xls
na2.xls
sa1.xls
ca1.xls

RegEx

.a.\.xls

Result
Click here to view code image
sales1.xls
orders3.xls
sales2.xls
sales3.xls
apac1.xls
europe2.xls
na1.xls
na2.xls
sa1.xls
ca1.xls

To find n or s you would not want to match any character, you would want
to match just those two characters. In regular expressions a set of characters
is defined using the metacharacters [and]. [and] define a character set,
everything between them is part of the set, and any one of the set members
must match (but not all).

Here is a revised version of that example from the previous lesson:

Text
Click here to view code image
sales1.xls
orders3.xls
sales2.xls
sales3.xls
apac1.xls
europe2.xls
na1.xls
na2.xls
sa1.xls
ca1.xls

RegEx
[ns]a.\.xls

Result

Click here to view code image
sales1.xls
orders3.xls
sales2.xls
sales3.xls
apac1.xls
europe2.xls
na1.xls
na2.xls
sa1.xls
ca1.xls

Analysis

The regular expression used here starts with [ns]; this matches either n or
s (but not c or any other character). The opening [and closing] do not
match any characters—they define the set. The literal a matches a, . matches
any character, \. matches the ., and the literal xls matches xls. When you
use this pattern, only the three desired filenames are matched.

Note
Actually, [ns]a.\.xls is not quite right either. If a file named
usa1.xls existed, it would match, too (the opening u would be ignored
and sa1.xls would match). The solution to this problem involves
position matching, which will be covered in Lesson 6, “Position
Matching.”

Tip
As you can see, testing regular expressions can be tricky. Verifying that a
pattern matches what you want is pretty easy. The real challenge is in
verifying that you are not also getting matches that you don’t want.

Character sets are frequently used to make searches (or specific parts
thereof) not case sensitive. For example:

Text

Click here to view code image
The phrase "regular expression" is often
abbreviated as RegEx or regex.

RegEx
[Rr]eg[Ee]x

Result
Click here to view code image
The phrase "regular expression" is often
abbreviated as RegEx or regex.

Analysis

The pattern used here contains two character sets: [Rr] matches R and r,
and [Ee] matches E and e. This way, RegEx and regex are both matched.
REGEX, however, would not match.

Tip
If you are using matching that is not case sensitive, this technique would be
unnecessary. This type of matching is used only when performing case-
sensitive searches that are partially not case sensitive.

Using Character Set Ranges
Let’s take a look at the file list example again. The last used pattern,
[ns]a.\.xls, has another problem. What if a file was named sam.xls?
It, too, would be matched because the . matches all characters, not just
digits.

Character sets can solve this problem as follows:

Text
Click here to view code image

sales1.xls
orders3.xls
sales2.xls
sales3.xls
apac1.xls
europe2.xls
sam.xls
na1.xls
na2.xls
sa1.xls
ca1.xls

RegEx
[ns]a[0123456789]\.xls

Result
Click here to view code image
sales1.xls
orders3.xls
sales2.xls
sales3.xls
apac1.xls
europe2.xls
sam.xls
na1.xls
na2.xls
sa1.xls
ca1.xls

Analysis

In this example, the pattern has been modified so that the first character
would have to be either n or s, the second character would have to be a, and
the third could be any digit (specified as [0123456789]). Notice that file
sam.xls was not matched, because m did not match the list of allowed
characters (the 10 digits).

When working with regular expressions, you will find that you frequently
specify ranges of characters (0 through 9, A through Z, and so on). To
simplify working with character ranges, regex provides a special
metacharacter: - (hyphen) is used to specify a range.

Following is the same example, this time using a range:

Text
Click here to view code image
sales1.xls
orders3.xls
sales2.xls
sales3.xls
apac1.xls
europe2.xls
sam.xls
na1.xls
na2.xls
sa1.xls
ca1.xls

RegEx
[ns]a[0-9]\.xls

Result
Click here to view code image
sales1.xls
orders3.xls
sales2.xls
sales3.xls
apac1.xls
europe2.xls
sam.xls
na1.xls
na2.xls
sa1.xls
ca1.xls

Analysis

Pattern [0-9] is functionally equivalent to [0123456789], and so the
results are identical to those in the previous example.

Ranges are not limited to digits. The following are all valid ranges:

 A-Z matches all uppercase characters from A to Z.

 a-z matches all lowercase characters from a to z.
 A-F matches only uppercase characters A to F.
 A-z matches all characters between ASCII A to ASCII z (you should

probably never use this pattern, because it also includes characters such
as [and ^, which fall between Z and a in the ASCII table).

Any two ASCII characters may be specified as the range start and end. In
practice, however, ranges are usually made up of some or all digits and some
or all alphabetic characters.

Tip
When you use ranges, be careful not to provide an end range that is less
than the start range (like [3-1]). This will not work, and it will often
prevent the entire pattern from working.

Note
- (hyphen) is a special metacharacter because it is only a metacharacter
when used between [and]. Outside of a set, - is a literal and will match
only -. As such, - does not need to be escaped.

Multiple ranges may be combined in a single set. For example, the following
pattern matches any alphanumeric character in uppercase or lowercase, but
not anything that is neither a digit nor an alphabetic character:

[A-Za-z0-9]

This pattern is shorthand for

Click here to view code image
[ABCDEFGHIJKLMNOPQRSTUVWXYZabcde
➥fghijklmnopqrstuvwxyz01234567890]

As you can see, ranges make regex syntax much cleaner.

Following is one more example, this time finding RGB values (colors
specified in a hexadecimal notation representing the amount of red, green,

and blue used to create the color). In Web pages, RGB values are specified
as #000000 (black), #ffffff (white), #ff0000 (red), and so on. RGB
values may be specified in uppercase or lowercase, and so #FF00ff
(magenta) is legal, too. Here is an example taken from a CSS file:

Text
Click here to view code image
body {
 background-color: #fefbd8;
}
h1 {
 background-color: #0000ff;
}
div {
 background-color: #d0f4e6;
}
span {
 background-color: #f08970;
}

RegEx
Click here to view code image
#[0-9A-Fa-f][0-9A-Fa-f][0-9A-Fa-f][0-9A-Fa-f][0-9A-Fa-f][0-9A-Fa-f]

Result
Click here to view code image
body {
 background-color: #fefbd8;
}
h1 {
 background-color: #0000ff;
}
div {
 background-color: #d0f4e6;
}
span {
 background-color: #f08970;
}

Analysis

The pattern used here contains # as literal text and then the character set [0-
9A-Fa-f] repeated six times. This matches # followed by six characters,
each of which must be a digit or A through F (in either uppercase or
lowercase).

“Anything But” Matching
Character sets are usually used to specify a list of characters of which any
must match. But occasionally, you’ll want the reverse—a list of characters
that you don’t want to match. In other words, anything but the list specified
here.

Rather than having to enumerate every character you want (which could get
rather lengthy if you want all but a few), character sets can be negated using
the ^ metacharacter. Here’s an example:

Text
Click here to view code image
sales1.xls
orders3.xls
sales2.xls
sales3.xls
apac1.xls
europe2.xls
sam.xls
na1.xls
na2.xls
sa1.xls
ca1.xls

RegEx
[ns]a[^0-9]\.xls

Result
Click here to view code image
sales1.xls
orders3.xls
sales2.xls

sales3.xls
apac1.xls
europe2.xls
sam.xls
na1.xls
na2.xls
sa1.xls
ca1.xls

Analysis

The pattern used in this example is the exact opposite of the one used
previously. [0-9] matches all digits (and only digits). [^0-9] matches
anything by the specified range of digits. As such, [ns]a[^0-9]\.xls
matches sam.xls but not na1.xls, na2.xls, or sa1.xls.

Note
^ negates all characters or ranges in a set, not just the character or range
that it precedes.

Summary
Metacharacters [and] are used to define sets of characters, any one of
which must match (OR in contrast to AND). Character sets may be
enumerated explicitly or specified as ranges using the – metacharacter.
Character sets may be negated using ^; this forces a match of anything but the
specified characters.

Lesson 4
Using Metacharacters

Metacharacters were introduced in Lesson 2, “Matching Single Characters.”
In this lesson you’ll learn about additional metacharacters used to match
specific characters or character types.

Escaping Revisited
Before venturing deeply into the world of metacharacters, it is important to
revisit a topic mentioned in passing previously: escaping.

Metacharacters are characters that have special meaning within regular
expressions. The period (.) is a metacharacter; it is used to match any single
character (as explained in Lesson 2). Similarly, the left bracket ([) is a
metacharacter; it is used to mark the beginning of a set (as explained in
Lesson 3, “Matching Sets of Characters”).

Because metacharacters take on special significance when used in regular
expressions, these characters cannot be used to refer to themselves. For
example, you cannot use a [to match [or . to match .. Take a look at the
following example. A regular expression is being used to attempt to match a
JavaScript array containing [and]:

Text
Click here to view code image
var myArray = new Array();
∙∙∙

if (myArray[0] == 0) {
∙∙∙
}

RegEx
myArray[0]

Result
Click here to view code image
var myArray = new Array();
∙∙∙
if (myArray[0] == 0) {
∙∙∙
}

Analysis

In this example, the block of text is a JavaScript code snippet (or a part of
one). The regular expression is the type that you would likely use within a
text editor. It was supposed to have matched the literal text myArray[0],
but it did not. Why not? [and] are regular expression metacharacters that
are used to define a set (but not the characters [and]). As such,
myArray[0] would match myArray followed by one of the members of
the set, and 0 is the only member. Therefore, myArray[0] would only ever
match myArray0.

As explained in Lesson 2, metacharacters can be escaped by preceding them
with a backslash. Therefore, \. matches ., and \[matches [. Every
metacharacter can be escaped by preceding it with a backslash; when
escaped, the character itself is matched instead of the special metacharacter
meaning. To actually match [and], those characters must be escaped.
Following is that same example again, this time with the metacharacters
escaped:

Text
Click here to view code image

var myArray = new Array();
∙∙∙
if (myArray[0] == 0) {
∙∙∙
}

RegEx
myArray\[0\]

Result
Click here to view code image
var myArray = new Array();
∙∙∙
if (myArray[0] == 0) {
∙∙∙
}

Analysis

This time the search worked. \[matches [and \] matches]; so
myArray\[0\] matches myArray[0].

Using a regular expression in this example is somewhat unnecessary—a
simple text match would have sufficed and would have been easier, too. But
imagine if you wanted to match not just myArray[0] but also
myArray[1], myArray[2], and so on. Then using a regular expression
would make a lot of sense. You would escape [and] and specify the
characters to match in between them. If you wanted to match array elements 0
through 9, you might use a regular expression like the following:

myArray\[[0-9]\]

Tip
Any metacharacter, not just the ones mentioned here, can be escaped by
preceding it with a backslash.

Caution

Metacharacters that are part of a pair (such as [or]) must be escaped if
not being used as a metacharacter, or else the regular expression parser
may throw an error.

\ is used to escape metacharacters. This means that \ is itself a
metacharacter; it is used to escape other characters. As noted in Lesson 2, to
refer to \, you would need to escape the reference as \\.

Take a look at the following simple example. The text is a file path using
backslashes (used in Windows). Now imagine that you need to use this path
on Linux, and as such, you need to locate all backslashes to change them to
slashes:

Text
\home\ben\sales\

RegEx
\\

Result
\home\ben\sales\

Analysis

\\ matches \, and four matches are found. Had you just specified \ as the
regular expression, you would likely have generated an error (because the
regular expression parser would rightfully assume that your expression was
incomplete; after all, \ is always followed by another character in a regular
expression).

Matching Whitespace Characters
Metacharacters generally fall into two categories: those used to match text
(such as .) and those used as part of regular expression syntax (such as [
and]). You’ll be discovering many more metacharacters of both types,
starting with the whitespace metacharacters.

When you are performing regular expression searches, you’ll often need to
match nonprinting whitespace characters embedded in your text. For
example, you may want to find all tab characters, or you may want to find
line breaks. Because typing this character into your regular expressions
directly would be very tricky (to say the least), you can use the special
metacharacters listed in Table 4.1.

Table 4.1 Whitespace Metacharacters

Metacharacter Description

[\b] Backspace
\f Form feed
\n Line feed
\r Carriage return
\t Tab
\v Vertical tab

Let’s look at an example. The following block of text contains a series of
records in comma-delimited format (often called CSV). Before processing
the records, you need to remove any blank lines in the data. The example
follows:

Text
Click here to view code image
"101","Ben","Forta"
"102","Jim","James"

"103","Roberta","Robertson"
"104","Bob","Bobson"

RegEx
\r\n\r\n

Result
Click here to view code image
"101","Ben","Forta"
"102","Jim","James"

"103","Roberta","Robertson"
"104","Bob","Bobson"

Analysis

\r\n matches a carriage return line feed combination, used (by Windows)
as an end-of-line marker. Searching for \r\n\r\n therefore matches two
end-of-line markers, and thus the blank line in between two records.

Tip
I just stated that \r\n is used by Windows as an end-of-line marker.
However, Unix (and Linux) as well as Mac OSX systems use just the
linefeed character. On those system, you’ll probably just want to use \n
(and not the \r). The ideal regular expression should probably
accommodate both—an optional \r and a required \n. You’ll revisit this
example in the next lesson.

You’ll likely find frequent uses for \r and \n as well as \t (tab). The other
whitespace characters tend to be used infrequently.

Note
You’ve now seen a variation of the metacharacter. The . and [are
metacharacters unless they are escaped. f and n, for example, are
metacharacters only when they are escaped. Left unescaped, they are
literal characters that match only themselves.

Matching Specific Character Types
Thus far, you have seen how to match specific characters, any characters
(using .), and one of a set of characters (using [and]), and how to negate
matches (using ^). Sets of characters (matching one of a set) is the most
common form of matching, and special metacharacters can be used in lieu of
commonly used sets. These metacharacters are said to match classes of
characters. Class metacharacters are never actually needed (you can always
enumerate the characters to match or use ranges), but you will undoubtedly
find them to be incredibly useful.

Note
The classes listed next are the basics supported in almost all regular
expression implementations.

Matching Digits (and Nondigits)
As you learned in Lesson 3, [0-9] is a shortcut for [0123456789] and
is used to match any digit. To match anything other than a digit, the set can be
negated as [^0-9]. Table 4.2 lists the class shortcuts for digits and
nondigits.

Table 4.2 Digit Metacharacters

Metacharacter Description

\d Any digit (same as [0-9])
\D Any nondigit (same as [^0-9])

To demonstrate the use of these metacharacters, let’s revisit a prior example:

Text
Click here to view code image

var myArray = new Array();
∙∙∙
if (myArray[0] == 0) {
∙∙∙
}

RegEx
myArray\[\d\]

Result
Click here to view code image
var myArray = new Array();
∙∙∙
if (myArray[0] == 0) {
∙∙∙
}

Analysis

\[matches [, \d matches any single digit, and \] matches], so that
myArray\[\d\] matches myArray[0]. myArray\[\d\] is
shorthand for myArray\[0-9\], which is shorthand for myArray\
[0123456789\]. This regular expression would also have matched
myArray[1], myArray[2], and so on (but not myArray[10]).

Tip
As you can see, there are almost always multiple ways to define any
regular expression. Feel free to pick the syntax that you are most
comfortable with.

Caution
Regular expression syntax is case sensitive. \d matches digits. \D is the
exact opposite of \d; it only matches nondigits. The same is true of the
class metacharacters you’ll see next.
This is true even when performing non-case-sensitive matching, in which
case the text being matched will not be case sensitive, but special

characters (such as \d) will be.

Matching Alphanumeric Characters (and
Nonalphanumeric Characters)
Another frequently used set are all the alphanumeric characters, A through Z
(in uppercase and lowercase), the digits, and the underscore (often used in
file and directory names, application variable names, database object names,
and more). Table 4.3 lists the class shortcuts for alphanumeric characters and
nonalphanumeric characters.

Table 4.3 Alphanumeric Metacharacters

Metacharacter Description

\w Any alphanumeric character in upper- or lowercase and
underscore (same as [a-zA-Z0-9_])

\W Any nonalphanumeric or underscore character (same as
[^a-zA-Z0-9_])

The following example is an excerpt from a database containing records with
U.S. ZIP codes and Canadian postal codes:

Text
Click here to view code image
11213
A1C2E3
48075
48237
M1B4F2
90046
H1H2H2

RegEx
\w\d\w\d\w\d

Result
Click here to view code image
11213
A1C2E3
48075
48237
M1B4F2
90046
H1H2H2

Analysis

The pattern used here combines \w and \d metacharacters to retrieve only
the Canadian postal codes.

Note
The example here worked properly. But is it correct? Think about it. Why
were the U.S. ZIP codes not matched? Is it because they are made up of
just digits, or is there some other reason?
I’m not going to give you the answer to this question because, well, the
pattern worked. The key here is that there is rarely a right or wrong regular
expression (as long as it works, of course). More often than not, there are
varying degrees of complexity that correspond to varying degrees of
pattern-matching strictness.

Matching Whitespace (and Nonwhitespace)
The final class you should look at is the whitespace class. Earlier in this
lesson, you learned the metacharacters for specific whitespace characters.
Table 4.4 lists the class shortcuts for all whitespace characters.

Table 4.4 Whitespace Metacharacters

Metacharacter Description

\s Any whitespace character (same as [\f\n\r\t\v])
\S Any nonwhitespace character (same as

[^\f\n\r\t\v])

Note
[\b], the backspace metacharacter, is not included in \s or excluded by
\S.

Specifying Hexadecimal or Octal Values
Although you’ll not find yourself needing to refer to specific characters by
their octal or hexadecimal value, it is worth noting that this is doable.

Using Hexadecimal Values
Hexadecimal (base 16) values may be specified by preceding them with \x.
Therefore, \x0A (ASCII character 10, the linefeed character) is functionally
equivalent to \n.

Using Octal Values
Octal (base 8) values may be specified as two- or three-digit numbers
proceeded by \0. Therefore, \011 (ASCII character 9, the tab character) is
functionally equivalent to \t.

Note
Many regular expression implementations also allow the specification of
control characters using \c. For example, \cZ would match Ctrl-Z. In
practice, you’ll find very little use for this syntax.

Using POSIX Character Classes
A lesson on metacharacters and shortcuts for various character sets would
not be complete without a mention of the POSIX character classes. POSIX is
a special set of standard character classes, and these are yet another form of
shortcut that is supported by many (but not all) regular expression
implementations.

Note
JavaScript does not support the use of POSIX character classes in regular
expressions.

Table 4.5 POSIX Character Classes

Class Description

[:alnum:] Any letter or digit (same as [a-zA-Z0-9])
[:alpha:] Any letter (same as [a-zA-Z])
[:blank:] Space or tab (same as [\t])
[:cntrl:] ASCII control characters (ASCII 0 through 31 and 127)
[:digit:] Any digit (same as [0-9])
[:graph:] Same as [:print:] but excludes space
[:lower:] Any lowercase letter (same as [a-z])
[:print:] Any printable character
[:punct:] Any character that is in neither [:alnum:] nor

[:cntrl:]

[:space:] Any whitespace character including spaces (same as
[\f\n\r\t\v])

[:upper:] Any uppercase letter (same as [A-Z])
[:xdigit:] Any hexadecimal digit (same as [a-fA-F0-9])

The POSIX syntax is quite different from the metacharacters seen thus far. To
demonstrate the use of POSIX classes, let’s revisit an example from Lesson
3. The example used a regular expression to locate RGB values in a block of
HTML code:

Text
Click here to view code image
body {
 background-color: #fefbd8;
}
h1 {
 background-color: #0000ff;
}
div {
 background-color: #d0f4e6;
}
span {
 background-color: #f08970;
}

RegEx
Click here to view code image
#[[:xdigit:]][[:xdigit:]][[:xdigit:]][[:xdigit:]][[:xdigit:]]
[[:xdigit:]]

Result
Click here to view code image
body {
 background-color: #fefbd8;
}
h1 {
 background-color: #0000ff;
}
div {
 background-color: #d0f4e6;
}
span {
 background-color: #f08970;
}

Analysis

The pattern used in the previous lesson repeated the character set [0-9A-
Fa-f] six times. Here each [0-9A-Fa-f] has been replaced by
[[:xdigit:]]. The result is the same.

Note
Notice that the regular expression used here starts with [[and ends with
]] (two sets of brackets). This is important and required when using
POSIX classes. POSIX classes are enclosed within [: and :]; the
POSIX we used is [:xdigit:] (not :xdigit:). The outer [and]
are defining the set; the inner [and] are part of the POSIX class itself.

Caution
All 12 POSIX classes enumerated here are generally supported in any
implementation that supports POSIX. However, there may be subtle
variances from the preceding descriptions.

Summary
Building on the basics of character and set matching shown in Lessons 2 and
3, this lesson introduced metacharacters that match specific characters (such
as tab or linefeed) or entire sets or classes of characters (such as digits or
alphanumeric characters). These shortcut metacharacters and POSIX classes
may be used to simplify regular expression patterns.

Lesson 5
Repeating Matches

In the previous lessons, you learned how to match individual characters using
a variety of metacharacters and special class sets. In this lesson, you’ll learn
how to match multiple repeating characters or sets of characters.

How Many Matches?
You’ve learned all the basics of regular expression pattern matching, but all
the examples have had one very serious limitation. Consider what it would
take to write a regular expression to match an email address. The basic
format of an email address looks something like the following:

text@text.text

Using the metacharacters discussed in the previous lesson, you could create a
regular expression like the following:

\w@\w\.\w

The \w would match all alphanumeric characters (plus an underscore, which
is valid in an email address); @ does not need to be escaped, but . does.

This is a perfectly legal regular expression, albeit a rather useless one. It
would match an email address that looked like a@b.c (which, although
syntactically legal, is obviously not a valid address). The problem with it is
that \w matches a single character and you can’t know how many characters

to test for. After all, the following are all valid email addresses, but they all
have a different number of characters before the @:

Click here to view code image
b@forta.com
ben@forta.com
bforta@forta.com

What you need is a way to match multiple characters, and this is doable using
one of several special metacharacters.

Matching One or More Characters
To match one or more instances of a character (or set), simply append a +
character. + matches one or more characters (at least one; zero would not
match). Whereas a matches a, a+ matches one or more as. Similarly,
whereas [0-9] matches any digits, [0-9]+ matches one or more
consecutive digits.

Tip
When you use + with sets, the + should be placed outside the set.
Therefore, [0-9]+ is correct, but [0-9+] is not.
[0-9+] actually is a valid regular expression, but it will not match one
or more digits. Rather, it defines a set of 0 through 9 or the + character,
and any single digit or plus sign will match. Although legal, it is probably
not what you’d want.

Let’s revisit the email address example, this time using + to match one or
more characters:

Text
Click here to view code image
Send personal email to ben@forta.com. For questions
about a book use support@forta.com. Feel free to send
unsolicited email to spam@forta.com (wouldn't it be
nice if it were that simple, huh?).

mailto:b@forta.com
mailto:ben@forta.com
mailto:bforta@forta.com
mailto:ben@forta.com
mailto:support@forta.com
mailto:spam@forta.com

RegEx
\w+@\w+\.\w+

Result
Click here to view code image
Send personal email to ben@forta.com. For questions
about a book use support@forta.com. Feel free to send
unsolicited email to spam@forta.com (wouldn't it be
nice if it were that simple, huh?).

Analysis

The pattern matched all three addresses correctly. The regular expression
first matches one or more alphanumeric characters using \w+. Next it
matches @ followed by one or more characters, again using \w+. It then
matches . (using the escaped \.) and another \w+ to match the end of the
address.

Tip
+ is a metacharacter. To match a + you’ll need to escape it as \+.

+ can also be used to match one or more sets of characters. To demonstrate
this, the following example shows the same regular expression but with
slightly different text:

Text
Click here to view code image
Send personal email to ben@forta.com or
ben.forta@forta.com. For questions about a
book use support@forta.com. If your message
is urgent try ben@urgent.forta.com. Feel
free to send unsolicited email to
spam@forta.com (wouldn't it be nice if
it were that simple, huh?).

RegEx

mailto:ben@forta.com
mailto:support@forta.com
mailto:spam@forta.com
mailto:ben@forta.com
mailto:ben.forta@forta.com
mailto:support@forta.com
mailto:ben@urgent.forta.com
mailto:spam@forta.com

\w+@\w+\.\w+

Result
Click here to view code image
Send personal email to ben@forta.com or
ben.forta@forta.com. For questions about a
book use support@forta.com. If your message
is urgent try ben@urgent.forta.com. Feel
free to send unsolicited email to
spam@forta.com (wouldn't it be nice if
it were that simple, huh?).

Analysis

The regular expression matched five addresses, but two of them are
incomplete. Why is this? \w+@\w+\.\w+ makes no accommodations for .
characters before the @, and it allows only a single . separating the two
strings after the @. Although ben.forta@forta.com is a perfectly legal
email address, the regular expression matched only forta (instead of
ben.forta) because \w matches alphanumeric characters but not a . in
the middle of a string of text.

What we need here is to match either \w or ., or in regular expression
parlance, a set of [\w\.]. Following is a revised example:

Text
Click here to view code image
Send personal email to ben@forta.com or
ben.forta@forta.com. For questions about a
book use support@forta.com. If your message
is urgent try ben@urgent.forta.com. Feel
free to send unsolicited email to
spam@forta.com (wouldn't it be nice if
it were that simple, huh?).

RegEx
[\w.]+@[\w.]+\.\w+

mailto:ben@forta.com
mailto:forta@forta.com
mailto:support@forta.com
mailto:ben@urgent.forta.com
mailto:spam@forta.com
mailto:ben.forta@forta.com
mailto:ben@forta.com
mailto:ben.forta@forta.com
mailto:support@forta.com
mailto:ben@urgent.forta.com
mailto:spam@forta.com

Result
Click here to view code image
Send personal email to ben@forta.com or
ben.forta@forta.com. For questions about a
book use support@forta.com. If your message
is urgent try ben@urgent.forta.com. Feel
free to send unsolicited email to
spam@forta.com (wouldn't it be nice if
it were that simple, huh?).

Analysis

That seemed to do the trick. [\w.]+ matches one or more instances of any
alphanumeric character, underscore, and ., and so ben.forta is matched.
[\w.]+ is also used for the string after the @ so that deeper domain (or
host) names are matched.

Note
Notice that for the final match, you used \w+ and not [\w.]+. Can you
figure out why? Try using [\w.] for the final pattern and see what is
wrong with the second, third, and fourth matches.

Note
You’ll notice that the . in the set was not escaped, and it matched .
anyway (it was treated as a literal as opposed to a metacharacter).
Generally, metacharacters such as . and + are considered to be literal text
when used within sets, and therefore they need not be escaped. However,
escaping them does no harm. [\w.] is functionally equivalent to
[\w\.].

Matching Zero or More Characters
+ matches one or more characters. Zero characters will not match—there has
to be at least one. But what if you wanted to match entirely optional
characters so that zero characters would be allowed?

mailto:ben@forta.com
mailto:ben.forta@forta.com
mailto:support@forta.com
mailto:ben@urgent.forta.com
mailto:spam@forta.com

To do this, you use the * metacharacter. * is used exactly like +; it is placed
right after a character or a set and will match zero or more instances of the
character or set. Therefore, pattern B.* Forta would match B Forta,
B. Forta, Ben Forta, and other combinations, too.

To demonstrate the use of +, take a look at a modified version of the email
example:

Text
Click here to view code image
Hello .ben@forta.com is my email address.

RegEx
[\w.]+@[\w.]+\.\w+

Result
Click here to view code image
Hello .ben@forta.com is my email address.

Analysis

You will recall that [\w.]+ matches one or more instances of alphanumeric
characters and ., and so .ben matched. There is obviously a typo in the
preceding text (an extraneous period in the middle of the text), but that is
irrelevant. The bigger issue is that although . is a valid character in an email
address, it is not a valid character with which to start an email address.

In other words, what you really need to match is alphanumeric text with
optional additional characters, like this:

Text
Click here to view code image
Hello .ben@forta.com is my email address.

mailto:ben@forta.com
mailto:ben@forta.com
mailto:ben@forta.com

RegEx
\w+[\w.]*@[\w.]+\.\w+

Result
Click here to view code image
Hello .ben@forta.com is my email address.

Analysis

This pattern is looking increasingly complex (RegEx patterns often looks far
more complex than they actually are), so let’s look at it together. \w+
matches any alphanumeric character but not . (the valid characters with
which to start an email address). After the initial valid characters, it is
indeed possible to have a . and additional characters, although these may in
fact not be present. [\w.]* matches zero or more instances of . or
alphanumeric characters, which is exactly what was needed.

Note
Think of * as being the make it optional metacharacter. Unlike +, which
requires at least one match, * matches any number of matches if present,
but does not require that any be present.

Tip
* is a metacharacter. To match an * you’ll need to escape it as *.

Matching Zero or One Characters
One other very useful metacharacter is ?. Like +, ? matches optional text
(and so zero instances will match). But unlike +, ? matches only zero or one
instance of a character (or set), but not more than one. As such, ? is very
useful for matching specific, single optional characters in a block of text.

Consider the following example:

mailto:ben@forta.com

Text
Click here to view code image
The URL is http://www.forta.com/, to connect
securely use https://www.forta.com/ instead.

RegEx
http:\/\/[\w.\/]+

Result
Click here to view code image
The URL is http://www.forta.com/, to connect
securely use https://www.forta.com/ instead.

Analysis

The pattern used to match a URL is http:\/\/ (which is literal text,
including two escaped slashes, and therefore matches only itself) followed
by [\w./]+, which matches one or more instances of a set that allows
alphanumeric characters, ., and forward slash. This pattern can match only
the first URL (the one that starts with http://) but not the second (the one
that starts with https://). And s* (zero or more instances of s) would
not be correct because that would then also allow httpsssss:// (which
is definitely not valid).

The solution? To use s? as seen in the following example:

Text
Click here to view code image
The URL is http://www.forta.com/, to connect
securely use https://www.forta.com/ instead.

RegEx
https?:\/\/[\w.\/]+

Result

http://www.forta.com/
https://www.forta.com/
http://www.forta.com/
https://www.forta.com/
http://www.forta.com/
https://www.forta.com/

Click here to view code image
The URL is http://www.forta.com/, to connect
securely use https://www.forta.com/ instead.

Analysis

The pattern here begins with https?://. ? means that the preceding
character (the s) should be matched if it is not present, or if a single instance
of it is present. In other words, https?:// matches both http:// and
https:// (but nothing else).

Incidentally, using ? is the solution to a problem alluded to in the previous
lesson. You looked at an example where \r\n was being used to match an
end-of-line marker, and I mentioned that on Unix or Linux boxes, you would
need to use \n (without the \r) and that an ideal solution would be to match
an optional \r followed by a \n. That example follows again, this time
using a slightly modified regular expression:

Text
Click here to view code image
"101","Ben","Forta"
"102","Jim","James"

"103","Roberta","Robertson"
"104","Bob","Bobson"

RegEx
[\r]?\n[\r]?\n

Result
Click here to view code image
"101","Ben","Forta"
"102","Jim","James"

"103","Roberta","Robertson"
"104","Bob","Bobson"

http://www.forta.com/
https://www.forta.com/

Analysis

[\r]?\n matches an optional single instance of \r followed by a required
\n.

Tip
You’ll notice that the regular expression here used [\r]? instead of \r?.
[\r] defines a set containing a single metacharacter, a set of one, so
[\r]? is actually functionally identical to \r?. [] is usually used to
define a set of characters, but some developers like to use it even around
single characters to prevent ambiguity (to make it stand out so that you
know exactly what the following metacharacter applies to). If you are
using both [] and ?, make sure to place the ? outside of the set.
Therefore, http[s]?:// is correct, but http[s?]:// is not.

Tip
? is a metacharacter. To match an ? you’ll need to escape it as \?.

Using Intervals
+, *, and ? are used to solve many problems with regular expressions, but
sometimes they are not enough. Consider the following:

 + and * match an unlimited number of characters. They provide no way
to set a maximum number of characters to match.

 The only minimums supported by +, *, and ? are zero or one. They
provide no way to set an explicit minimum number of matches.

 There is also no way to specify an exact number of matches desired.

To solve these problems, and to provide a greater degree of control over
repeating matches, regular expressions allow for the use of intervals.
Intervals are specified between the { and } characters.

Note

{ and } are metacharacters and, as such, should be escaped using \ when
needed as literal text. It is worth noting that many regular expression
implementations seem to be able to correctly process { and } even if they
are not escaped (being able to determine when they are literal and when
they are metacharacters). However, it is best not to rely on this behavior
and to escape the characters when needing them as literals.

Exact Interval Matching
To specify an exact number of matches, you place that number between { and
}. Therefore, {3} means match three instances of the previous character or
set. If there are only two instances, the pattern would not match.

To demonstrate this, let’s revisit the RGB example (used in Lessons 3 and 4).
You will recall that RGB values are specified as three sets of hexadecimal
numbers (each of two characters). The first pattern used to match an RGB
value was the following:

Click here to view code image
#[0-9A-Fa-f][0-9A-Fa-f][0-9A-Fa-f][0-9A-Fa-f][0-9A-Fa-f][0-9A-Fa-f]

In Lesson 4, you used a POSIX class and changed the pattern to

Click here to view code image
#[[:xdigit:]][[:xdigit:]][[:xdigit:]][[:xdigit:]][[:xdigit:]]
[[:xdigit:]]

The problem with both patterns is that you had to repeat the exact character
set (or class) six times. Here is the same example, this time using interval
matching:

Text
Click here to view code image
body {
 background-color: #fefbd8;
}
h1 {
 background-color: #0000ff;
}

div {
 background-color: #d0f4e6;
}
span {
 background-color: #f08970;
}

RegEx
#[A-Fa-f0-9]

Result
Click here to view code image
body {
 background-color: #fefbd8;
}
h1 {
 background-color: #0000ff;
}
div {
 background-color: #d0f4e6;
}
span {
 background-color: #f08970;
}

Analysis

[A-Fa-f0-9] matches a single hexadecimal character, and {6} repeats
that match six times. This would have worked just as well using POSIX.

Range Interval Matching
Intervals may also be used to specify a range of values—a minimum and a
maximum number of instances that are to be matched. Ranges are specified as
{2,4} (which would mean a minimum of 2 and a maximum of 4). An
example of this is a regular expression used to validate the format of dates:

Text
Click here to view code image

4/8/17
10-6-2018
2/2/2
01-01-01

RegEx
Click here to view code image
\d{1,2}[-\/]\d{1,2}[-\/]\d{2,4}

Result
Click here to view code image
4/8/17
10-6-2018
2/2/2
01-01-01

Analysis

The dates listed here are values that users may have entered into a form field
—values that must be validated as correctly formatted dates. \d{1,2}
matches one or two digits (this test is used for both day and month);
\d{2,4} matches the year; and [-\/] matches either – or / as the date
separator. As such, three dates were matched, but not 2/2/2 (which fails
because the year is too short).

Tip
The regular expression used here escapes / as \/. In many regular
expression implementations this is unnecessary, but some regular
expression parsers do require this. As such, it is a good idea to always
escape /.

It is important to note that the preceding pattern does not validate dates;
invalid dates such as 54/67/9999 would pass the test. All it does is
validate the format (the step usually taken before checking the validity of the
dates themselves).

Note
Intervals may begin with 0. Interval {0,3} means match zero, one, two,
or three instances.
As seen previously, ? matches zero or one instance of whatever precedes
it. As such, ? is functionally equivalent to {0,1}.

“At Least” Interval Matching
The final use of intervals is to specify the minimum number of instances to be
matched (without any maximum). The syntax for this type of interval is
similar to that of a range, but with the maximum omitted. For example, {3,}
means match at least three instances, or stated differently, match three or
more instances.

Let’s look at an example which combines much of what was covered in this
lesson. In this example, a regular expression is used to locate all orders
valued at $100 or more:

Text
Click here to view code image
1001: $496.80
1002: $1290.69
1003: $26.43
1004: $613.42
1005: $7.61
1006: $414.90
1007: $25.00

RegEx
\d+: \$\d{3,}\.\d

Result
Click here to view code image
1001: $496.80
1002: $1290.69
1003: $26.43

1004: $613.42
1005: $7.61
1006: $414.90
1007: $25.00

Analysis

The preceding text is a report showing order numbers followed by the order
value. The regular expression first uses \d+: to match the order number
(this could have been omitted, in which case the price would have matched
and not the entire line including the order number). The pattern
\$\d{3,}\.\d{2} is used to match the price itself. \$ matches $,
\d{3,} matches numbers of at least three digits (and thus at least $100), \.
matches ., and finally \d{2} matches the two digits after the decimal point.
The pattern correctly matches four of the seven orders.

Tip
Be careful when using this form of interval. If you omit the , the test will
change from matching a minimum number of instances to matching an exact
number of instances.

Note
+ is functionally equivalent to {1,}.

Preventing Over Matching
? matches are limited in scope (zero or one matches only), and so are
interval matches when using exact amounts or ranges. But the other forms of
repetition described in this lesson can match an unlimited number of matches
—sometimes too many.

All the examples thus far were carefully chosen so as not to run into over
matching, but consider this next example. The text that follows is part of a
Web page and contains text with embedded HTML tags. The regular
expression needs to match any text within tags (perhaps so as to be able
to replace the formatting). Here’s the example:

Text
Click here to view code image
This offer is not available to customers
living in AK and HI.

RegEx
<[Bb]>.*<\/[Bb]>

Result
Click here to view code image
This offer is not available to customers
living in AK and HI.

Analysis

<[Bb]> matches the opening tag (in either uppercase or lowercase),
and </[Bb]> matches the closing tag (also in either uppercase or
lowercase). But instead of two matches, only one was found; the .* matched
everything after the first until the last so that the text AK
and HI was matched. This includes the text we wanted matched, but
also other instances of the tags as well.

The reason for this is that metacharacters like * and + are greedy; that is,
they look for the greatest possible match as opposed to the smallest. It is
almost as if the matching starts from the end of the text, working backward
until the next match is found, in contrast to starting from the beginning. This is
deliberate and by design, quantifiers are greedy.

But what if you don’t want greedy matching? The solution is to use lazy
versions of these quantifiers (they are referred to as being lazy because they
match the fewest characters instead of the most). Lazy quantifiers are defined
by appending an ? to the quantifier being used, and each of the greedy
quantifiers has a lazy equivalent as listed in Table 5.1.

Table 5.1 Greedy and Lazy Quantifiers

Greedy Lazy

* *?

+ +?

{n,} {n,}?

*? is the lazy version of *, so let’s revisit our example, this time using *?:

Text
Click here to view code image
This offer is not available to customers
living in AK and HI.

RegEx
<[Bb]>.*?<\/[Bb]>

Result
Click here to view code image
This offer is not available to customers
living in AK and HI.

Analysis

That worked. By using the lazy *? only AK, was matched in the
first match, allowing HI to be matched independently.

Note
Most of the examples in this book use greedy quantifiers so as to keep
patterns as simple as possible. However, feel free to replace these with
lazy quantifiers when needed.

Summary
The real power of regular expression patterns becomes apparent when
working with repeating matches. This lesson introduced + (match one or
more), * (match zero or more), and ? (match zero or one) as ways to perform
repeating matches. For greater control, intervals may be used to specify the
exact number of repetitions as well as minimums and maximums. Quantifiers
are greedy and may over match; to prevent this from occurring, use lazy
quantifiers.

Lesson 6
Position Matching

You’ve now learned how to match all sorts of characters in all sorts of
combinations and repetitions and in any location within text. However, it is
sometimes necessary to match at specific locations within a block of text, and
this requires position matching, which is explained in this lesson.

Using Boundaries
Position matching is used to specify where within a string of text a match
should occur. To understand the need for position matching, consider the
following example:

Text
Click here to view code image
The cat scattered his food all over the room.

RegEx
cat

Result
Click here to view code image
The cat scattered his food all over the room.

Analysis

The pattern cat matches all occurrences of cat, even cat within the word
scattered. This may, in fact, be the desired outcome, but more than likely
it is not. If you were performing the search to replace all occurrences of cat
with dog, you would end up with the following nonsense:

Click here to view code image
The dog sdogtered his food all over the room.

That brings us to the use of boundaries, or special metacharacters used to
specify the position (or boundary) before or after a pattern.

Using Word Boundaries
The first boundary (and one of the most commonly used) is the word
boundary specified as \b. As its name suggests, \b is used to match the start
or end of a word.

To demonstrate the use of \b, here is the previous example again, this time
with the boundaries specified:

Text
Click here to view code image
The cat scattered his food all over the room.

RegEx
\bcat\b

Result
Click here to view code image
The cat scattered his food all over the room.

Analysis

The word cat has a space before and after it, and so it matches \bcat\b
(space is one of the characters used to separate words). The word cat in

scattered, however, did not match, because the character before it is s
and the character after it is t (neither of which match \b).

Note
So what exactly is it that \b matches? Regular expression engines do not
understand English, or any language for that matter, and so they don’t know
what word boundaries are. \b simply matches a location between
characters that are usually parts of words (alphanumeric characters and
underscore, text that would be matched by \w) and anything else (text that
would be matched by \W).

It is important to realize that to match a whole word, \b must be used both
before and after the text to be matched. Consider this example:

Text
Click here to view code image
The captain wore his cap and cape proudly as
he sat listening to the recap of how his
crew saved the men from a capsized vessel.

RegEx
\bcap

Result
Click here to view code image
The captain wore his cap and cape proudly as
he sat listening to the recap of how his
crew saved the men from a capsized vessel.

Analysis

The pattern \bcap matches any word that starts with cap, and so four
words matched, including three that are not the word cap.

Following is the same example but with only a trailing \b:

Text
Click here to view code image
The captain wore his cap and cape proudly as
he sat listening to the recap of how his
crew saved the men from a capsized vessel.

RegEx
cat\b

Result
Click here to view code image
The captain wore his cap and cape proudly as
he sat listening to the recap of how his
crew saved the men from a capsized vessel.

Analysis

cap\b matches any word that ends with cap, and so two matches were
found, including one that is not the word cap.

If only the word cap was to be matched, the correct pattern to use would be
\bcap\b.

Note
\b does not actually match a character; rather, it matches a position. So
the string matched using \bcat\b will be three characters in length (c,
a, and t), not five characters in length.

To specifically not match at a word boundary, use \B. This example uses \B
metacharacters to help locate hyphens with extraneous spaces around them:

Text
Click here to view code image
Please enter the nine-digit id as it
appears on your color - coded pass-key.

RegEx
\B-\B

Result
Click here to view code image
Please enter the nine-digit id as it
appears on your color - coded pass-key.

Analysis

\B-\B matches a hyphen that is surrounded by word-break characters. The
hyphens in nine-digit and pass-key do not match, but the one in
color – coded does.

Note
As seen in Lesson 4, “Using Metacharacters,” uppercase metacharacters
usually negate the functionality of their lowercase equivalents.

Note
Some regular expression implementations support two additional
metacharacters. Whereas \b matches the start or end of a word, \<
matches only the start of a word and \> matches only the end of a word.
Although the use of these characters provides additional control, support
for them is very limited (they are supported in egrep, but not in many
other implementations).

Defining String Boundaries
Word boundaries are used to locate matches based on word position (start of
word, end of word, entire word, and so on). String boundaries perform a
similar function but are used to match patterns at the start or end of an entire
string. The string boundary metacharacters are ^ for start of string and $ for
end of string.

Note
In Lesson 3, “Matching Sets of Characters,” you learned that ^ is used to
negate a set. How can it also be used to indicate the start of a string?
^ is one of several metacharacters that has multiple uses. It negates a set
only if in a set (enclosed within [and]) and is the first character after the
opening]. Outside of a set, and at the beginning of a pattern, ^ matches the
start of a string.

To demonstrate the use of string boundaries, look at the following example.
Valid XML documents begin with <?xml> and likely have additional
attributes (possibly a version number, as in <xml version="1.0" ?>).
Following is a simple test to check whether text is an XML document:

Text
Click here to view code image
<?xml version="1.0" encoding="UTF-8" ?>
<wsdl:definitions targetNamespace="http://tips.cf"
xmlns:impl="http://tips.cf" xmlns:intf="http://tips.cf"
xmlns:apachesoap="http://xml.apache.org/xml-soap"

RegEx
<\?xml.*\?>

Result
Click here to view code image
<?xml version="1.0" encoding="UTF-8" ?>
<wsdl:definitions targetNamespace="http://tips.cf"
xmlns:impl="http://tips.cf" xmlns:intf="http://tips.cf"
xmlns:apachesoap="http://xml.apache.org/xml-soap"

Analysis

The pattern appeared to work. <\?xml matches <?xml, .* matches any
other text (zero or more instances of .), and \?> matches the end ?>.

http://tips.cf/
http://tips.cf/
http://xml.apache.org/xml-soap
http://tips.cf/
http://tips.cf/
http://tips.cf/
http://xml.apache.org/xml-soap

But this is a very inaccurate test. Look at the example that follows; the same
pattern is being used to match text with extraneous text before the XML
opening:

Text
Click here to view code image
This is bad, real bad!
<?xml version="1.0" encoding="UTF-8" ?>
<wsdl:definitions targetNamespace="http://tips.cf"
xmlns:impl="http://tips.cf" xmlns:intf="http://tips.cf"
xmlns:apachesoap="http://xml.apache.org/xml-soap"

RegEx
<\?xml.*\?>

Result
Click here to view code image
This is bad, real bad!
<?xml version="1.0" encoding="UTF-8" ?>
<wsdl:definitions targetNamespace="http://tips.cf"
xmlns:impl="http://tips.cf" xmlns:intf="http://tips.cf"
xmlns:apachesoap="http://xml.apache.org/xml-soap"

Analysis

The pattern <\?xml.*\?> matched the second line of the text. And
although the opening XML tag may, in fact, be on the second line of text, this
example is definitely invalid (and processing the text as XML could cause all
sorts of problems).

What is needed is a test that ensures that the opening XML tag is the first
actual text in the string, and that’s a perfect job for the ^ metacharacter as
seen next:

Text
Click here to view code image

http://tips.cf/
http://tips.cf/
http://tips.cf/
http://xml.apache.org/xml-soap
http://tips.cf/
http://tips.cf/
http://tips.cf/
http://xml.apache.org/xml-soap

<?xml version="1.0" encoding="UTF-8" ?>
<wsdl:definitions targetNamespace="http://tips.cf"
xmlns:impl="http://tips.cf" xmlns:intf="http://tips.cf"
xmlns:apachesoap="http://xml.apache.org/xml-soap"

RegEx
^\s*<\?xml.*\?>

Result
Click here to view code image
<?xml version="1.0" encoding="UTF-8" ?>
<wsdl:definitions targetNamespace="http://tips.cf"
xmlns:impl="http://tips.cf" xmlns:intf="http://tips.cf"
xmlns:apachesoap="http://xml.apache.org/xml-soap"

Analysis

The opening ^ matches the start of string; ^\s* therefore matches the start of
string followed by zero or more whitespace characters (thus handling
legitimate spaces, tabs, or line breaks before the XML opening). The
complete ^\s*<\?xml.*\?> thus matches an opening XML tag with any
attributes and correctly handles whitespace, too.

Tip
The pattern ^\s*<\?xml.*\?> worked, but only because the XML
shown in this example is incomplete. Had a complete XML listing have
been used, you would have seen an example of a greedy quantifier at
work. This is, therefore, a great example of when to use .*? instead of
just .*.

$ is used much the same way. This pattern could be used to check that
nothing comes after the closing </html> tag in a Web page:

RegEx
</[Hh][Tt][Mm][Ll]>\s*$

http://tips.cf/
http://tips.cf/
http://tips.cf/
http://xml.apache.org/xml-soap
http://tips.cf/
http://tips.cf/
http://tips.cf/
http://xml.apache.org/xml-soap

Analysis

Sets are used for each of the characters H, T, M, and L (so as to be able to
handle any combination of upper- or lowercase characters), and \s*$
matches any whitespace followed by the end of string.

Note
The pattern ^.*$ is a syntactically correct regular expression; it will
almost always find a match, and it is utterly useless. Can you work out
what it matches and when it will not find a match?

Using Multiline Mode
^ matches the start of a string and $ matches the end of a string—usually.
There is an exception, or rather, a way to change this behavior.

Many regular expression implementations support the use of special
metacharacters that modify the behavior of other metacharacters, and one of
these is (?m), which enables multiline mode. Multiline mode forces the
regular expression engine to treat line breaks as a string separator, so that ^
matches the start of a string or the start after a line break (a new line), and $
matches the end of a string or the end after a line break.

If used, (?m) must be placed at the very front of the pattern, as shown in the
following example, which uses a regular expression to locate all JavaScript
comments within a block of code:

Text
Click here to view code image
<script>
function doSpellCheck(form, field) {
 // Make sure not empty
 if (field.value == '') {
 return false;
 }
 // Init
 var windowName='spellWindow';
 var spellCheckURL='spell.cfm?

formname=comment&fieldname='+field.name;
∙∙∙
 // Done
 return false;
}
</script>

RegEx
(?m)^\s*\/\/.*$

Result
Click here to view code image
<script>
function doSpellCheck(form, field) {
 // Make sure not empty
 if (field.value == '') {
 return false;
 }
 // Init
 var windowName='spellWindow';
 var spellCheckURL='spell.cfm?
formname=comment&fieldname='+field.name;
∙∙∙
 // Done
 return false;
}
</script>

Analysis

^\s matches the start of a string, followed by any whitespace, followed by
\/\/ (used to define JavaScript comments), followed by any text, and then
an end of string. But that pattern would match only the first comment (and
only if it were the only text in the page). The (?m) modifier in (?
m)^\s*\/\/.*$ forces the pattern to treat line breaks as string
separators, and so all comments were matched.

Caution
(?m) is not supported by many regular expression implementations,
including JavaScript.

Note
Some regular expression implementations also support the use of \A to
mark the start of a string and \Z to mark the end of a string. If supported,
these metacharacters function much like ^ and $, respectively, but unlike ^
and $, they are not modified by (?m) and will therefore not operate in
multiline mode.

Summary
Regular expressions can match any blocks of text or text at specific locations
within a string. \b is used to specify a word boundary (and \B does the
exact opposite). ^ and $ mark string boundaries (start of string and end of
string, respectively), although when used with the (?m) modifier, ^ and $
will also match strings that start or end at a line break.

Lesson 7
Using Subexpressions

Metacharacters and character matching provide the basic power behind
regular expressions, as has been demonstrated in the lessons thus far. In this
lesson you’ll learn how to group expressions together using subexpressions.

Understanding Subexpressions
Matching multiple occurrences of a character was introduced in Lesson 5,
“Repeating Matches.” As discussed in that lesson, \d+ matches one or more
digits, and https?:// matches http:// or https://.

In both of these examples (and indeed, in all the examples thus far) the
repetition metacharacters (? or * or {2}, for example) apply to the previous
character or metacharacter.

For example, HTML developers often place nonbreaking spaces (using
) between words to ensure that text does not wrap between those
words. Suppose you needed to locate all repeating HTML nonbreaking
spaces (to replace them with something else). Here’s the example:

Text
Click here to view code image
Hello, my name is Ben Forta, and I am
the author of multiple books on SQL (including
MySQL, Oracle PL/SQL, and SQL Server T-SQL),
Regular Expressions, and other subjects.

RegEx
 {2,}

Result
Click here to view code image
Hello, my name is Ben Forta, and I am
the author of multiple books on SQL (including
MySQL, Oracle PL/SQL, and SQL Server T-SQL),
Regular Expressions, and other subjects.

Analysis

 is the entity reference for the HTML nonbreaking spaces. Pattern
 {2,} should have matched two or more instances of . But
it didn’t. Why not? Because the {2,} is specifying the number of repetitions
of whatever is directly preceding it, in this case a semicolon. ;;;;
would have matched, but will not.

Grouping with Subexpressions
Which brings us to the topic of subexpressions. Subexpressions are parts of a
bigger expression; the parts are grouped together so that they are treated as a
single entity. Subexpressions are enclosed between (and) characters.

Tip
(and) are metacharacters. To match the actual characters (and), you
must escape them as \(and \), respectively.

To demonstrate the use of subexpressions, let’s revisit the previous example:

Text
Click here to view code image
Hello, my name is Ben Forta, and I am
the author of multiple books on SQL (including
MySQL, Oracle PL/SQL, and SQL Server T-SQL),
Regular Expressions, and other subjects.

RegEx
(){2,}

Result
Click here to view code image
Hello, my name is Ben Forta, and I am
the author of multiple books on SQL (including
MySQL, Oracle PL/SQL, and SQL Server T-SQL),
Regular Expressions, and other subjects.

Analysis

() is a subexpression and is treated as a single entity. As such, the
{2,} that follows it applies to the entire subexpression (not just the
semicolon). That did the trick.

Here is another example—this time a regular expression is used to locate IP
addresses. IP addresses are formatted as four sets of numbers separated by
periods, such as 12.159.46.200. Because each of the numbers can be
one, two, or three digits, the pattern to match each number could be
expressed as \d{1,3}. This is shown in the following example:

Text
Click here to view code image
Pinging hog.forta.com [12.159.46.200]
with 32 bytes of data:

RegEx
Click here to view code image
\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3}

Result
Click here to view code image
Pinging hog.forta.com [12.159.46.200]
with 32 bytes of data:

http://hog.forta.com/
http://hog.forta.com/

Analysis

Each instance of \d{1,3} matches one of the numbers in an IP address. The
four numbers are separated by ., which is escaped as \.

The pattern \d{1,3}\. (up to 3 digits followed by .) is repeated three
times and can thus be expressed as a repetition as well. Following is an
alternative version of the same example:

Text
Click here to view code image
Pinging hog.forta.com [12.159.46.200]
with 32 bytes of data:

RegEx
(\d{1,3}\.){3}\d{1,3}

Result
Click here to view code image
Pinging hog.forta.com [12.159.46.200]
with 32 bytes of data:

Analysis

This pattern worked just as well as the previous one, but the syntax is
different. The expression \d{1,3}\. has been enclosed within (and) to
make it a subexpression. (\d{1,3}\.){3} repeats the subexpression
three times (for the first three numbers in the IP address), and then \d{1,3}
matches the final number.

Note
(\d{1,3}\.){4} is not a viable alternative to the pattern just used.
Can you work out why it would have failed in this example?

http://hog.forta.com/
http://hog.forta.com/

Tip
Some users like to enclose parts of expressions as subexpressions to
improve readability; the previous pattern would be expressed as
(\d{1,3}\.){3}(\d{1,3}). This practice is perfectly legal, and
using it has no effect on the actual behavior of the expression (although
there may be performance implications, depending on the regular
expression implementation being used).

The use of subexpressions for grouping is so important that it is worthwhile
to look at one more example—one not involving repetitions at all. This
example attempts to match a year in a user record:

Text
Click here to view code image
ID: 042
SEX: M
DOB: 1967-08-17
Status: Active

RegEx
19|20\d

Result
Click here to view code image
ID: 042
SEX: M
DOB: 1967-08-17
Status: Active

Analysis

In this example, the pattern was to have located a four-digit year, but for
greater accuracy, the first two digits are explicitly listed as 19 and 20. | is
the OR operator, and so 19|20 matches either 19 or 20, and pattern
19|20\d2 should therefore match any four-digit number beginning with 19
or 20 (19 or 20 followed by two digits). Obviously, this did not work. Why

not? The | operator looks at what is to its left and to its right and reads
pattern 19|20\d{2} as either 19 or 20\d{2} (thinking that the \d{2} is
part of the expression that started with 20). In other words, it will match the
number 19 or any four-digit year beginning with 20. As such, 19 matched.

The solution is to group 19|20 as a subexpression, as follows:

Text
Click here to view code image
ID: 042
SEX: M
DOB: 1967-08-17
Status: Active

RegEx
(19|20)\d

Result
Click here to view code image
ID: 042
SEX: M
DOB: 1967-08-17
Status: Active

Analysis

With the options all within a subexpression, | knows that what is wanted is
one of the options within the group. (19|20)\d{2} thus correctly matches
1967 and would also match any four digits beginning with 19 or 20. At
some later date (close to a hundred years from now), if the code needed to be
modified to also match years starting with 21, the pattern could be changed
to (19|20|21)\d{2}.

Note
Although this lesson covers the use of subexpressions for grouping, there
is another extremely important use for subexpressions. This is covered in

Lesson 8, “Using Backreferences.”

Nesting Subexpressions
Subexpressions may be nested. In fact, subexpressions may be nested within
subexpressions nested within subexpressions—you get the picture.

The capability to nest subexpressions allows for incredibly powerful
expressions, but it can also make patterns look convoluted, hard to read and
decode, and somewhat intimidating. The truth, however, is that nested
subexpressions are seldom as complicated as they look.

To demonstrate the use of nested subexpressions, we’ll look at the IP address
example again. This is the pattern used previously (a subexpression repeated
three times followed by the final number):

RegEx
(\d{1,3}\.){3}\d{1,3}

So what is wrong with this pattern? Syntactically, nothing. An IP address is
indeed made up of four numbers; each is one to three digits and separated by
periods. The pattern is correct, and it will match any valid IP address. But
that is not all it will match; invalid IP addresses will be matched, too.

An IP address is made up of 4 bytes, and the IP address presented as
12.159.46.200 is a representation of those 4 bytes. The four numbers in
an IP address therefore have the range of values in a single byte, 0 to 255.
This means that none of the numbers in an IP address may be greater than
255. Yet the pattern used will also match 345 and 700 and 999, all invalid
numbers within an IP address.

Note
There is an important lesson here. It is easy to write regular expressions to
match what you want and expect. It is much harder to write regular
expressions that anticipate all possible scenarios so that they do not match
what you do not want to match.

It would be nice to be able to specify a range of valid values, but regular
expressions match characters and have no real knowledge of what those
characters are. Mathematical calculations are therefore not an option.

Is there an option? Maybe. To construct a regular expression, you need to
clearly define what it is you want to match and what you do not. Following
are the rules defining the valid combinations in each number of an IP
address:

 Any one- or two-digit number.
 Any three-digit number beginning with 1.
 Any three-digit number beginning with 2 if the second digit is 0 through

4.
 Any three-digit number beginning with 25 if the third digit is 0 through 5.

When laid out sequentially like that, it becomes clear that there is indeed a
pattern that can work. Here’s the example:

Text
Click here to view code image
Pinging hog.forta.com [12.159.46.200]
with 32 bytes of data:

RegEx
Click here to view code image
(((25[0-5])|(2[0-4]\d)|(1\d{2})|(\d{1,2}))\.)
➥(((25[0-5])|(2[0-4]\d)|(1\d{2})|(\d{1,2})))

Result
Click here to view code image
Pinging hog.forta.com [12.159.46.200]
with 32 bytes of data:

http://hog.forta.com/
http://hog.forta.com/

Analysis

The pattern obviously worked, but it does require explanation. What makes
this pattern work is a series of nested subexpressions. We’ll start with
(((25[0-5])|(2[0-4]\d)| (1\d{2})|(\d{1,2}))\.), a set
of four nested subexpressions, and we’ll look at them in reverse order.
(\d{1,2}) matches any one- or two-digit number or numbers 0 through
99. (1\d{2}) matches any three-digit number starting with 1 (1 followed
by any two digits), or numbers 100 through 199. (2[0-4]\d) matches
numbers 200 through 249. (25[0-5]) matches numbers 250 through
255. Each of these subexpressions is enclosed within another subexpression
with an | between each (so that one of the four subexpressions has to match,
not all). After the range of numbers comes \. to match ., and then the entire
series (all the number options plus \.) is enclosed into yet another
subexpression and repeated three times using {3}. Finally, the range of
numbers is repeated (this time without the trailing \.) to match the final IP
address number. By restricting each of the four numbers to values between 0
and 255, this pattern can indeed match valid IP addresses and reject invalid
addresses.

It is worth noting that the more logical order for these four expressions (the
way I explained them above) would not have worked. Consider the
following:

Text
Click here to view code image
Pinging hog.forta.com [12.159.46.200]
with 32 bytes of data:

RegEx
Click here to view code image
(((\d{1,2})|(1\d{2})|(2[0-4]\d)|(25[0-5]))\.)
➥((\d{1,2})|(1\d{2})|(2[0-4]\d)|(25[0-5]))

Result
Click here to view code image

http://hog.forta.com/

Pinging hog.forta.com [12.159.46.200]
with 32 bytes of data:

Analysis

Notice that this time the final 0 wasn’t matched. Why is this? Because
patterns are evaluated from left to right, and so when there are four
expressions, any of which can match, the first is tested first, then the second,
and so on. As soon as any pattern matches, the other options aren’t even
tested. In this example (\d{1,2}) matches 20 in final 200, so the other
options (including the final one, (25[0-5]), which is what was needed
here) weren’t even evaluated.

Tip
Regular expressions like this one can look overwhelming. The key to
understanding them is to dissect them, analyzing and understanding one
subexpression at a time. Start from the inside and work outward rather
than trying to read character by character from the beginning. It is a lot less
complex than it looks.

Summary
Subexpressions are used to group parts of an expression together and are
defined using (and). Common uses for subexpressions include being able
to control exactly what gets repeated by the repetition metacharacters and
properly defining OR conditions. Subexpressions may be nested, if needed.

http://hog.forta.com/

Lesson 8
Using Backreferences

The previous lesson introduced subexpressions as a way to group characters
into sets. A primary use of this type of grouping is to be able to properly
control repeating pattern matches (as was demonstrated in that lesson). This
lesson looks at the other important use of subexpressions—working with
backreferences.

Understanding Backreferences
The best way to understand the need for backreferences is to look at an
example. HTML developers use the header tags (<h1> through <h6>, with
corresponding end tags) to define and format header text within Web pages.
Suppose you needed to locate all header text, regardless of header level.
Here’s the example:

Text
Click here to view code image
<body>
<h1>Welcome to my Homepage</h1>
Content is divided into two sections:

<h2>SQL</h2>
Information about SQL.
<h2>RegEx</h2>
Information about Regular Expressions.
</body>

RegEx

<[hH]1>.*<\/[hH]1>

Result
Click here to view code image
<body>
<h1>Welcome to my Homepage</h1>
Content is divided into two sections:

<h2>SQL</h2>
Information about SQL.
<h2>RegEx</h2>
Information about Regular Expressions.
</body>

Analysis

The pattern <[hH]1>.*<\/[hH]1> matched the first header (from <h1>
until </h1>) and would also match <H1> (as HTML is not case sensitive).
But what pattern could be used to match any header (which may be using any
of the six valid header levels)?

One option would be to use a simple range instead of 1, like this:

Text
Click here to view code image
<body>
<h1>Welcome to my Homepage</h1>
Content is divided into two sections:

<h2>SQL</h2>
Information about SQL.
<h2>RegEx</h2>
Information about Regular Expressions.
</body>

RegEx
<[hH][1-6]>.*?<\/[hH][1-6]>

Result
Click here to view code image

<body>
<h1>Welcome to my Homepage</h1>
Content is divided into two sections:

<h2>SQL</h2>
Information about SQL.
<h2>RegEx</h2>
Information about Regular Expressions.
</body>

Analysis

That seemed to work; <[hH][1-6]> matches any header start tag (<h1>
and <h2> in this example), and <\/[hH][1-6]> matches any header end
tag (</h1> and </h2>).

Note
Notice that .*? (lazy) was used here, and not .* (greedy). As explained
in Lesson 5, “Repeating Matches,” quantifiers such as * are greedy, and so
pattern <[hH][1-6]>.*<\/[hH][1-6]> could match all the way
from the opening <h1> on the second line until the closing </h2> on the
sixth line. Using the lazy quantifier .*? instead solves this problem.
I said could, and not would, because this specific example would
probably have worked even with the greedy quantifier. Metacharacter .
usually does not match line breaks, and in the example, each header is on
its own line. But there is no downside to using the lazy quantifier here, and
so better safe than sorry.

Success? Not exactly. Look at the following example (using the same
pattern):

Text
Click here to view code image
<body>
<h1>Welcome to my Homepage</h1>
Content is divided into two sections:

<h2>SQL</h2>
Information about SQL.
<h2>RegEx</h2>
Information about Regular Expressions.

<h2>This is not valid HTML</h3>
</body>

RegEx
<[hH][1-6]>.*?<\/[hH][1-6]>

Result
Click here to view code image
<body>
<h1>Welcome to my Homepage</h1>
Content is divided into two sections:

<h2>SQL</h2>
Information about SQL.
<h2>RegEx</h2>
Information about Regular Expressions.
<h2>This is not valid HTML</h3>
</body>

Analysis

A header tag starting with <h2> and ending with </h3> is invalid, and yet
the pattern used here matched it.

The problem is that the second part of the match (the part matching the end
tag) has no knowledge of the first part of the match (the part matching the
start tag). And this is where backreferences become very useful.

Matching with Backreferences
We’ll revisit the header problem shortly. For now let’s look at a simpler
example, and one that cannot be solved at all without the use of
backreferences.

Suppose that you had a block of text and wanted to locate all repeated words
(typos, where the same word was mistakenly typed twice). Obviously, when
searching for the second occurrence of a word, that word must be known.
Backreferences allow regular expression patterns to refer to previous
matches (in this case, the previously matched word).

The best way to understand this is to see it used, so here is some text
containing three sets of repeated words, all of which need to be located:

Text
Click here to view code image
This is a block of of text,
several words here are are
repeated, and and they
should not be.

RegEx
[]+(\w+)[]+\1

Result
Click here to view code image
This is a block of of text,
several words here are are
repeated, and and they
should not be.

Analysis

The pattern apparently worked, but how did it work? []+ matches one or
more spaces, \w+ matches one or more alphanumeric characters, and []+
then matches any trailing spaces. But notice that \w+ is enclosed within
parentheses, making it a subexpression. This subexpression is not used for
repeating matches; there is no repeat matching here. Rather, the
subexpression is used simply to group an expression, to flag it and identify it
for future use. The final part of this pattern is \1; this is a reference back to
the subexpression, \1 matches the same text as the first matched group. So
when (\w+) matched the word of, so did \1, and when (\w+) matched
the word and, so did \1.

Note
The term backreference refers to the fact that these entities refer back to a
previous expression.

What exactly does \1 mean? It matches the first subexpression used in the
pattern. \2 would match the second subexpression, \3 the third, and so on. [
]+(\w+)[]+\1 thus matches any word and then the same word again as
was seen in the preceding example.

Caution
Unfortunately, backreference syntax differs greatly from one regex
implementation to another.
JavaScript used \ to denote a backreference (except in replace operations
where $ is used), as does vi. Perl uses $ (so $1 instead of \1). The .NET
regular expression support returns an object containing a property named
Groups that contains the matches, so match.Groups[1] refers to the
first match in C# and match.Groups(1) refers to that same match in
Visual Basic .NET. PHP returns this information in an array named
$matches, so $matches[1] refers to the first match (although this
behavior can be changed based on the flags used). Java and Python return
a match object containing an array named group.
Implementation specifics are listed in Appendix A.

Tip
You can think of backreferences as similar to variables.

Now that you’ve seen how backreferences are used, let’s revisit the HTML
header example. Using backreferences, it is possible to create a pattern that
matches any header start tag and the matching end tag (ignoring any
mismatched pairs). Here’s the example:

Text
Click here to view code image
<body>
<h1>Welcome to my Homepage</h1>
Content is divided into two sections:

<h2>SQL</h2>
Information about SQL.
<h2>RegEx</h2>

Information about Regular Expressions.
<h2>This is not valid HTML</h3>
</body>

RegEx
<[hH]([1-6])>.*?<\/[hH]\1>

Result
Click here to view code image
<body>
<h1>Welcome to my Homepage</h1>
Content is divided into two sections:

<h2>SQL</h2>
Information about SQL.
<h2>RegEx</h2>
Information about Regular Expressions.
<h2>This is not valid HTML</h3>
</body>

Analysis

Again, three matches were found: one <h1> pair and two <h2> pairs. Like
before, <[hH]([1-6])> matches any header start tag. But unlike before,
[1-6] is enclosed within (and) so as to make it a subexpression. This
way, the header end tag pattern can refer to that subexpression as \1 in
<\/[hH]\1>. ([1-6]) is a subexpression that matches digits 1 through
6, and \1 therefore matches only that same digit. This way, <h2>This is
not valid HTML</h3> did not match.

Caution
Backreferences will work only if the expression to be referred to is a
subexpression (and enclosed as such).

Tip
Matches are usually referred to starting with 1. In many implementations,
match 0 can be used to refer to the entire expression.

Note
As you have seen, subexpressions are referred to by their relative
positions: \1 for first, \5 for fifth, and so on. Although commonly
supported, this syntax does have one serious limitation: moving or editing
subexpressions (and thus altering the subexpression order) could break
your pattern, and adding or deleting subexpressions can be even more
problematic.
To address this shortcoming, some newer regular expression
implementations support named capture, a feature whereby each
subexpression may be given a unique name that may subsequently be used
to refer to the subexpression (instead of the relative position). Named
capture is not covered in this book because it is still not widely supported,
and the syntax varies significantly between those implementations that do
support it. However, if your implementation supports the use of named
capture (.NET, for example), you should definitely take advantage of the
functionality.

Performing Replace Operations
Every regular expression seen thus far in this book has been used for
searching—locating text within a larger block of text. Indeed, it is likely that
most of the regex patterns that you will write will be used for text searching.
But that is not all that regular expressions can do; regular expressions can
also be used to perform powerful replace operations.

Simple text replacements do not need regular expressions. For example,
replacing all instances of CA with California and MI with Michigan
is decidedly not a job for regular expressions. Although such a regex
operation would be legal, there is no value in doing so, and in fact, the
process would be easier (and would execute faster) using whatever regular
string manipulation functions are available to you.

Regex replace operations become compelling when backreferences are used.
The following is an example used previously in Lesson 5, “Repeating
Matches”:

Text
Click here to view code image
Hello, ben@forta.com is my email address.

RegEx
\w+[\w\.]*@[\w\.]+\.\w+

Result
Click here to view code image
Hello, ben@forta.com is my email address.

Analysis

This pattern identifies email addresses within a block of text (as explained
back in Lesson 5).

But what if you wanted to make any email addresses in the text linkable? In
HTML you would use user@address.com to create a clickable email address. Could a regular expression convert an
address to this clickable address format? Actually, yes, and very easily, too
(as long as you are using backreferences):

Text
Click here to view code image
Hello, ben@forta.com is my email address.

RegEx
(\w+[\w\.]*@[\w\.]+\.\w+)

Replace
$1

mailto:ben@forta.com
mailto:ben@forta.com
mailto:user@address.com
mailto:user@address.com
mailto:ben@forta.com

Result
Click here to view code image
Hello, ben@forta.com
is my email address.

Analysis

In replace operations, two regular expressions are used: one to specify the
search pattern and a second to specify what to replace matched text with.
Backreferences may span patterns, so a subexpression matched in the first
pattern may be used in the second pattern. (\w+
[\w\.]*@[\w\.]+\.\w+) is the same pattern used previously (to
locate an email address), but this time it is specified as a subexpression. This
way the matched text may be used in the replace pattern. $1 uses the matched subexpression twice—
once in the href attribute (to define the mailto:) and the other as the
clickable text. So, ben@forta.com becomes ben@forta.com, which
is exactly what was wanted.

Caution
As noted previously, you will need to modify the backreference designator
based on the implementation used. For example, JavaScript users will
need to use $ instead of the previously used \.

Tip
As seen in this example, a subexpression may be referred to multiple times
simply by referring to the backreference as needed.

Let’s look at one more example. User information is stored in a database, and
phone numbers are stored in the format 313-555-1234. However, you
need to reformat the phone numbers as (313) 555-1234. Here is the
example:

mailto:ben@forta.com
mailto:ben@forta.com
mailto:ben@forta.com
mailto:ben@forta.com

Text
Click here to view code image
313-555-1234
248-555-9999
810-555-9000

RegEx
Click here to view code image
(\d{3})(-)(\d{3})(-)(\d{4})

Replace
($1) $3-$5

Result
Click here to view code image
(313) 555-1234
(248) 555-9999
(810) 555-9000

Analysis

Again, two regular expression patterns are used here. The first looks far
more complicated than it is, so let’s walk through it. (\d{3})(-)
(\d{3})(-)(\d{4}) matches a phone number, but breaks it into five
subexpressions (so as to isolate its parts). (\d{3}) matches the first three
digits as the first subexpression, (-) matches – as the second
subexpression, and so on. The end result is that the phone number is broken
into five parts (each part its own subexpression): the area code, a hyphen, the
first three digits of the number, another hyphen, and then the final four digits.
These five parts can be used individually and as needed, and so ($1)
$3-$5 simply reformats the number using only three of the subexpressions
and ignoring the other two, thereby turning 313-555-1234 into (313)
555-1234.

Tip

When manipulating text for reformatting, it is often useful to break the text
into lots of little subexpressions so as to have greater control over that
text.

Converting Case
Some RegEx implementations support the use of conversion operations via
the metacharacters listed in Table 8.1.

Table 8.1 Case Conversion Metacharacters

Metacharacter Description

\E Terminate \L or \U conversion
\l Convert next character to lowercase
\L Convert all characters up to \E to lowercase
\u Convert next character to uppercase
\U Convert all characters up to \E to uppercase

\l and \u are placed before a character (or expression) so as to convert the
case of the next character. \L and \U convert the case of all characters until
a terminating \E is reached.

Following is a simple example, converting the text within an <h1> tag pair
to uppercase:

Text
Click here to view code image
<body>
<h1>Welcome to my Homepage</h1>
Content is divided into two sections:

<h2>SQL</h2>
Information about SQL.
<h2>RegEx</h2>
Information about Regular Expressions.
<h2>This is not valid HTML</h3>
</body>

RegEx
(<[Hh]1>)(.*?)(<\/[Hh]1>)

Replace
$1\U$2\E$3

Result
Click here to view code image
<body>
<h1>WELCOME TO MY HOMEPAGE</h1>
Content is divided into two sections:

<h2>SQL</h2>
Information about SQL.
<h2>RegEx</h2>
Information about Regular Expressions.
<h2>This is not valid HTML</h3>
</body>

Analysis

The pattern (<[Hh]1>)(.*?)(<\/[Hh]1>) breaks the header into
three subexpressions: the opening tag, the text, and the closing tag. The
second pattern then puts the text back together: $1 contains the start tag,
\U$2\E converts the second subexpression (the header text) to uppercase,
and $3 contains the end tag.

Summary
Subexpressions are used to define sets of characters or expressions. In
addition to being used for repeating matches (as seen in the previous lesson),
subexpressions can be referred to within patterns. This type of reference is
called a backreference (and unfortunately, there are implementation
differences in backreference syntax). Backreferences are useful in text
matching and in replace operations.

Lesson 9
Looking Ahead and Behind

All the expressions used thus far have matched text, but sometimes you may
want to use expressions to mark the position of text to be matched (in contrast
to the matched text itself). This involves the use of lookaround (the
capability to look ahead and behind), which will be explained in this lesson.

Introducing Lookaround
Again, we’ll start with an example. You need to extract the title of a Web
page; HTML page titles are placed between <title> and </title> tags
in the <head> section of HTML code. Here’s the example:

Text
Click here to view code image
<head>
<title>Ben Forta's Homepage</title>
</head>

RegEx
Click here to view code image
<[tT][iI][tT][lL][eE]>.*<\/[tT][iI][tT][lL][eE]>

Result
Click here to view code image

<head>
<title>Ben Forta's Homepage</title>
</head>

Analysis

<[tT][iI][tT][lL][eE]>.*<\/[tT][iI][tT][lL][eE]>
matches the opening <title> tag (in upper, lower, or mixed case), the
closing </title> tag, and whatever text is between them. That worked.

Or did it? What you needed was the title text, but what you got also contained
the opening and closing <title> tags. Is it possible to return just the title
text?

One solution could be to use subexpressions (as seen in Lesson 7, “Using
Subexpressions”). This would allow for you to retrieve the matched text in
three parts—the opening tag, the text, and the closing tag—and with the
matched text broken into parts, it would not be too difficult to extract just that
part you want.

But it makes little sense to make the effort to retrieve something that you
actually don’t want, only to have to manually remove it. What you really need
here is a way to construct a pattern so that it contains matches that are not
returned—matches that are used so as to find the correct match location, but
not used as part of the core match. In other words, you need to look around.

Note
This lesson discusses both lookahead and lookbehind. The former is
supported in all major regular expression implementations, but the latter is
not supported as extensively.
Java, .NET, PHP, Python, and Perl all support lookbehind (some with
restrictions). JavaScript, however, does not.

Looking Ahead
Lookahead specifies a pattern to be matched but not returned. A lookahead is
actually a subexpression and is formatted as such. The syntax for a lookahead
pattern is a subexpression preceded by ?=, and the text to match follows the
= sign.

Tip
Some regular expression documentation uses the term consume to refer to
what is matched and returned; lookahead matches are said to not consume.

Here is an example. The following text contains a list of URLs, and you need
to extract the protocol portion of each (possibly so as to know how to
process them):

Text
Click here to view code image
http://www.forta.com/
https://mail.forta.com/
ftp://ftp.forta.com/

RegEx
.+(?=:)

Result
Click here to view code image
http://www.forta.com/
https://mail.forta.com/
ftp://ftp.forta.com/

Analysis

In the URLs listed, the protocol is separated from the hostname by a :.
Pattern .+ matches any text (http in the first match), and subexpression (?

http://www.forta.com/
https://mail.forta.com/
http://ftp//ftp.forta.com/
http://www.forta.com/
https://mail.forta.com/
http://ftp//ftp.forta.com/

=:) matches :. But notice that the : was not matched; ?= tells the regular
expression engine to match : but to look ahead (and not consume it).

To better understand what ?= is doing, here is the same example, this time
without the lookahead metacharacters:

Text
Click here to view code image
http://www.forta.com/
https://mail.forta.com/
ftp://ftp.forta.com/

RegEx
.+(:)

Result
Click here to view code image
http://www.forta.com/
https://mail.forta.com/
ftp://ftp.forta.com/

Analysis

The subexpression (:) correctly matches :, but the matched text is
consumed and is returned as part of the match.

The difference between the two examples is that the former used pattern (?
=:) to match the :, and the latter used (:). Both of these patterns matched
the same thing; they both matched the : after the protocol. The difference is
in whether that matched : was actually included in the matched text. When
using lookahead, the regular expression parser looks ahead to process the :
match, but does not process it as part of the primary search. .+(:) finds the
text up to and including the :. .+(?=:) finds the text up to, but not
including, the :.

Note

http://www.forta.com/
https://mail.forta.com/
http://ftp//ftp.forta.com/
http://www.forta.com/
https://mail.forta.com/
http://ftp//ftp.forta.com/

Lookahead (and lookbehind) matches actually do return results, but the
results are always 0 characters in length. As such, you will sometimes find
the lookaround operations referred to as being zero-width.

Tip
Any subexpression can be turned into a lookahead expression by simply
prefacing the text with ?=. Multiple lookahead expressions may be used in
a search pattern, and they may appear anywhere in the pattern (not just at
the beginning, as shown here).

Looking Behind
As you have just seen, ?= looks ahead (it looks at what comes after the
matched text, but does not consume what it finds). ?= is thus referred to as
the lookahead operator. In addition to looking ahead, many regular
expression implementations support looking behind. Looking at what is
before the text to be returned involves looking behind, and the lookbehind
operator ?<=.

Tip
Need help distinguishing ?= and ?<= from each other? Here’s a way to
remember which is which: the one that contains the arrow pointing behind
(the < character) is lookbehind.

Tip
Need help distinguishing ?= and ?<= from each other? Here’s a way to
remember which is which: the one that contains the arrow pointing behind
(the < character) is lookbehind.

?<= is used in the same way as ?=; it is used within a subexpression and is
followed by the text to match.

Following is an example. A database search lists products, and you need
only the prices:

Text
Click here to view code image
ABC01: $23.45
HGG42: $5.31
CFMX1: $899.00
XTC99: $69.96
Total items found: 4

RegEx
\$[0-9.]+

Result
Click here to view code image
ABC01: $23.45
HGG42: $5.31
CFMX1: $899.00
XTC99: $69.96
Total items found: 4

Analysis

\$ matches the $, and [0-9.]+ matches the price.

That worked. But what if you did not want the $ characters in the matched
text? Could you simply drop \$ from the pattern?:

Text
Click here to view code image
ABC01: $23.45
HGG42: $5.31
CFMX1: $899.00
XTC99: $69.96
Total items found: 4

RegEx
[0-9.]+

Result
Click here to view code image
ABC01: $23.45
HGG42: $5.31
CFMX1: $899.00
XTC99: $69.96
Total items found: 4

Analysis

That obviously did not work. You do need the \$ so as to determine which
text to match, but you do not want the $ to be returned.

The solution? A lookbehind match, as follows:

Text
Click here to view code image
ABC01: $23.45
HGG42: $5.31
CFMX1: $899.00
XTC99: $69.96
Total items found: 4

RegEx
(?<=\$)[0-9.]+

Result
Click here to view code image
ABC01: $23.45
HGG42: $5.31
CFMX1: $899.00
XTC99: $69.96
Total items found: 4

Analysis

That did the trick. (?<=\$) matches $, but does not consume it, and so only
the prices (without the leading $ signs) are returned.

Compare the first and last expressions used in this example. \$[0-9.]+
matched $ followed by a dollar amount. (?<=\$)[0-9.]+ also matched
$ followed by a dollar amount. The difference between the two is not in
what they located while performing the search, but in what they included in
the results. The former located and included the $. The latter located $ so as
to correctly find the prices, but did not include that $ in the matched results.

Caution
Lookahead patterns may be variable length; they may contain . and +, for
example, so as to be highly dynamic.
Lookbehind patterns, on the other hand, must generally be fixed length.
This is a restriction imposed by almost all regular expression
implementations.

Combining Lookahead and Lookbehind
Lookahead and lookbehind operations may be combined, as in the following
example (the solution to the problem at the start of this lesson):

Text
Click here to view code image
<head>
<title>Ben Forta's Homepage</title>
</head>

RegEx
+

Result

Click here to view code image
<head>
<title>Ben Forta's Homepage</title>
</head>

Analysis

That worked. (?<=<[tT][iI][tT][lL][eE]>) is a lookbehind
operation that matches (but does not consume) <title>; (?=</[tT]
[iI][tT][lL][eE]>) similarly matches (but does not consume)
</title>. All that is returned is the title text (as that is all that was
consumed).

Tip
In the preceding example, it may be worthwhile to escape the < (the first
character being matched) to prevent ambiguity, so (?<=\< instead of (?
<=<.

Negating Lookaround
As seen thus far, lookahead and lookbehind are usually used to match text,
essentially to specify the location of text to be returned (by specifying the text
before or after the desired match). These are known as positive lookahead
and positive lookbehind. The term positive refers to the fact that they look
for a match.

A lesser-used form of lookaround is the negative lookaround. Negative
lookahead looks ahead for text that does not match the specified pattern, and
negative lookbehind similarly looks behind for text that does not match the
specified pattern.

You might have expected to be able to use ^ to negate a lookaround, but no,
the syntax is a little different. Lookaround operations are negated using !
(which replaces the =). Table 9.1 lists all the lookaround operations.

Table 9.1 Lookaround Operations

Class Description

(?=) Positive lookahead
(?!) Negative lookahead
(?<=) Positive lookbehind
(?<!) Negative lookbehind

Tip
Generally, any regular expression implementations supporting lookahead
support both positive and negative lookahead. Similarly, those
implementations supporting lookbehind support both positive and negative
lookbehind.

To demonstrate the difference between positive and negative lookbehind,
here is an example. The following block of text contains numbers—both
prices and quantities. First we’ll just obtain the prices:

Text
Click here to view code image
I paid $30 for 100 apples,
50 oranges, and 60 pears.
I saved $5 on this order.

RegEx
(?<=\$)\d+

Result
Click here to view code image
I paid $30 for 100 apples,
50 oranges, and 60 pears.
I saved $5 on this order.

Analysis

This is very similar to the example seen previously. \d+ matches numbers
(one or more digits), and (?<=\$) looks behind to match (but not consume)
the $ (escaped as \$). Therefore, the numbers in the two prices were
matched, but not the quantities.

Now we’ll do the opposite, locating just the quantities but not the prices:

Text
Click here to view code image
I paid $30 for 100 apples,
50 oranges, and 60 pears.
I saved $5 on this order.

RegEx
\b(?<!\$)\d+\b

Result
Click here to view code image
I paid $30 for 100 apples,
50 oranges, and 60 pears.
I saved $5 on this order.

Analysis

Again, \d+ matched numbers, but this time only the quantities were matched
and not the prices. Expression (?<!\$) is a negative lookbehind that will
match only when what precedes the numbers is not a $. Changing the = in the
lookbehind changes the pattern from positive to negative.

You may be wondering why the pattern in the negative lookbehind example
defines word boundaries (using \b). To understand why this is necessary,
here is the same example without those boundaries:

Text
Click here to view code image

I paid $30 for 100 apples,
50 oranges, and 60 pears.
I saved $5 on this order.

RegEx
(?<!\$)\d+

Result
Click here to view code image
I paid $30 for 100 apples,
50 oranges, and 60 pears.
I saved $5 on this order.

Analysis

Without word boundaries, the 0 in $30 was also matched. Why? Because
there is $ in front of it. Enclosing the entire pattern within word boundaries
solves this problem.

Summary
Looking ahead and behind provides greater control over what is returned
when matches are made. The lookaround operations allow subexpressions to
be used to specify the location of text to be matched but not consumed
(matched, but not included in the matched text itself). Positive lookahead is
defined using (?=), and negative lookahead is defined using (?!). Some
regular expression implementations also support lookbehind using (?<=)
and negative lookahead using (?<!).

Lesson 10
Embedding Conditions

A powerful yet infrequently used feature of the regular expression language
is the capability to embed conditional processing within an expression. This
lesson will explore this topic.

Why Embed Conditions?
(123)456-7890 and 123-456-7890 are both acceptable presentation
formats for North American phone numbers. 1234567890, (123)-456-
7890, and (123-456-7890 all contain the correct number of digits, but
are badly formatted. How could you write a regular expression to match only
the acceptable formats and not any others?

This is not a trivial problem; consider this obvious solution:

Text
Click here to view code image
123-456-7890
(123)456-7890
(123)-456-7890
(123-456-7890
1234567890
123 456 7890

RegEx
\(?\d{3}\)?-?\d{3}-\d

Result
Click here to view code image
123-456-7890
(123)456-7890
(123)-456-7890
(123-456-7890
1234567890
123 456 7890

Analysis

\(? matches an optional opening parenthesis (notice that (must be
escaped), \d{3} matches the first three digits, \)? matches an optional
closing parenthesis, -? matches an optional hyphen, and \d{3}-\d{4}
match the remaining seven digits (separated by a hyphen). The pattern
correctly did not match the last two lines, but it did match the third and fourth
—both of which are incorrect (the third contains both) and -, and the fourth
has an unmatched parenthesis).

Replacing \)?-? with [\)-]? will help eliminate the third line (by
allowing only) or -, but not both) but the fourth line is a problem. The
pattern needs to match) only if there is an opening (. In truth, the pattern
needs to match) if there is an opening (. If not, it needs to match -, and that
type of pattern cannot be implemented without conditional processing.

Caution
Conditional processing is not supported by all regular expression
implementations.

Using Conditions
Regular expression conditions are defined using ?. In fact, you have already
seen a couple of very specific conditions:

 ? matches the previous character or expression if it exists.
 ?= and ?<= match text ahead or behind, if it exists.

Embedded condition syntax also uses ?, which is not surprising considering
that the conditions that are embedded are the same two just listed:

 Conditional processing based on a backreference.
 Conditional processing based on lookaround.

Backreference Conditions
A backreference condition allows for an expression to be used only if a
previous subexpression search was successful. If that sounds obscure,
consider an example: you need to locate all tags in your text; in
addition, if any tags are links (enclosed between <a> and
tags), you need to match the complete link tags as well.

The syntax for this type of condition is (?(backreference)true).
The ? starts the condition, the backreference is specified within parentheses,
and the expression to be evaluated only if the backreference is present
immediately follows.

Now for the example:

Text
Click here to view code image
<!-- Nav bar -->
<div>

</div>

RegEx
Click here to view code image
(<[Aa]\s+[^>]+>\s*)?<[Ii][Mm][Gg]\s+[^>]+>(?(1)\s*<\/[Aa]>)

Result

Click here to view code image
<!-- Nav bar -->
<div>

</div>

Analysis

This pattern requires explanation. (<[Aa]\s+[^>]+>\s*)? matches an
opening <A> or <a> tag (with any attributes that may be present), if present
(the closing ? makes the expression optional). <[Ii][Mm][Gg]\s+
[^>]+> then matches the tag (regardless of case) with any of its
attributes. (?(1)\s*</[Aa]>) starts off with a condition: ?(1) means
execute only what comes next if backreference 1 (the opening <A> tag)
exists (or in other words, execute only what comes next if the first <A>
match was successful). If (1) exists, then \s*</[Aa]> matches any
trailing whitespace followed by the closing tag.

Note
?(1) checks to see if backreference 1 exists. The backreference number
(1 in this example) does not need to be escaped in conditions. So, ?(1)
is correct, and ?(\1) is not (although the latter will usually work, too).

The pattern just used executes an expression if a condition is met. Conditions
can also have else expressions, expressions that are executed only if the
backreference does not exist (the condition is not met). The syntax for this
form of condition is (?(backreference)true|false). This syntax
accepts a condition, as well as the expressions to be executed if the condition
is met or not met.

This syntax provides the solution for the phone number problem as shown
here:

Text

Click here to view code image
123-456-7890
(123)456-7890
(123)-456-7890
(123-456-7890
1234567890
123 456 7890

RegEx
Click here to view code image
(\()?\d{3}(?(1)\)|-)\d{3}-\d

Result
Click here to view code image
123-456-7890
(123)456-7890
(123)-456-7890
(123-456-7890
1234567890
123 456 7890

Analysis

This pattern seemed to work, but why? As before, (\()? checks for the
start of a parentheses pair, but this time the results are enclosed within
parentheses so as to be able to create a subexpression. \d{3} matches the
three-digit area code. (?(1)\)|-) matches either) or – depending on
whether the condition is satisfied. If (1) exists (meaning that an open
parenthesis was found), then \) must be matched; otherwise, – must be
matched. This way, parentheses must always be paired, and the hyphen
separating the area code from the number is matched only if parentheses are
not used. Why did the fourth line match? Because the opening (has no
matching pair it is assumed to be unrelated text and is ignored altogether.

Tip
Patterns can start to look very complex when conditions are embedded,
and this can make troubleshooting very difficult. It is generally a good idea
to build and test small parts of the expression and then put them together.

Lookaround Conditions
A lookaround condition allows for expressions to be executed based on
whether a lookahead or lookbehind operation succeeded. The syntax for
lookaround conditions is much the same as it is for backreference conditions,
except that the backreference (the number inside of the parentheses) is
replaced by a complete lookaround expression.

Note
Refer to Lesson 9, “Looking Ahead and Behind,” for details on using
lookaround processing.

As an example, consider U.S. ZIP codes. These may be five-digit ZIP codes
formatted as 12345 or ZIP+4 codes formatted as 12345-6789. The
hyphen is used only if the additional four digits are present. Here’s one
solution:

Text
Click here to view code image
11111
22222
33333-
44444-4444

RegEx
\d{5}(-\d{4})?

Result
Click here to view code image
11111
22222
33333-
44444-4444

Analysis

\d{5} matches the first five digits, and (-\d{4})? matches a hyphen
followed by four more digits if they all exist.

But what if you wanted to not match any badly formatted ZIP codes? The
third line in the example has a trailing hyphen that probably should not be
there. The preceding pattern matched the digits without the hyphen, but how
could you not match that entire ZIP code because it is badly formatted?

This example may seem a bit contrived, but it does simply demonstrate the
use of lookaround conditions. So:

Text
Click here to view code image
11111
22222
33333-
44444-4444

RegEx
\d{5}(?(?=-)-\d{4})

Result
Click here to view code image
11111
22222
33333-
44444-4444

Analysis

Again, \d{5} matches the opening five digits. Then comes a condition in the
form of (?(?=-)-\d{4}). The condition uses lookahead ?=- to match
(but not consume) a hyphen, and if the condition is met (the hyphen exists),
then -\d{4} matches that hyphen followed by four digits. This way,

33333- is not matched (it has a hyphen and so the condition is met, but it
does not have the additional four digits).

Lookahead and lookbehind (both positive and negative) may be used as the
condition, and an optional else expression may be used, too (using the same
syntax seen previously, |expression).

Tip
Lookaround conditions tend not to be used frequently because similar
results can often be accomplished using simpler means.

Summary
Conditions may be embedded into regular expression patterns so as to be
able to execute expressions only if a condition has (or has not) been met. The
condition may be a backreference (the condition is then checking for its
existence) or a lookaround operation.

Lesson 11
Regular Expression Solutions to

Common Problems

This lesson is a collection of useful regular expressions, along with detailed
explanations of each. The intent is to both summarize everything you have
learned in this book by using practical real-world examples and give you a
leg up by providing commonly needed patterns that you can use.

Note
The examples presented here are not the ultimate solutions to the problems
presented. By now it should be clear that there rarely is an ultimate
solution. More often, multiple solutions exist with varying degrees of
tolerance for the unpredictable, and there is always a trade-off between
performance of a pattern and its capability to handle any and all scenarios
thrown at it. With that understanding, feel free to use the patterns presented
here (and if needed, tweak them as suits you best).

North American Phone Numbers
The North American Numbering Plan defines how North American telephone
numbers are formatted. As per the plan, telephone numbers (in the U.S.,
Canada, much of the Caribbean, and several other locations) are made up of
a three-digit area code (technically, the NPA or numbering plan area) and
then a seven-digit number (which is formatted as a three-digit prefix
followed by a hyphen and a four-digit line number). Any digits may be used
in a phone number with two exceptions: the first digit of the area code and
the first digit of the prefix may not be 0 or 1. The area code is often enclosed
within parentheses, and the area code is often separated from the actual
phone number by a hyphen. Matching one of (555) 555-5555 or
(555)555-5555 or 555-555-5555 is easy; matching any of them
(assuming that that is what you need) is a bit trickier.

Text
Click here to view code image
J. Doe: 248-555-1234
B. Smith: (313) 555-1234
A. Lee: (810)555-1234

RegEx
Click here to view code image
\(?[2-9]\d\d\)?[-]?[2-9]\d\d-\d

Result
Click here to view code image
J. Doe: 248-555-1234
B. Smith: (313) 555-1234
A. Lee: (810)555-1234

Analysis

The pattern begins with the curious-looking \(?. Parentheses are optional, \
(matches (, and ? matches 0 or 1 instance of that (. [2-9]\d\d matches
a three-digit area code (the first digit must be 2 through 9). \)? matches the

optional closing parenthesis. [-]? matches a single space or a hyphen, if
either of them exist. [2-9]\d\d-\d{4} matches the rest of the phone
number, the three-digit prefix (the first digit of which must be 2 through 9),
followed by a hyphen and four more digits.

This pattern could easily be modified to handle other presentation formats.
For example, 555.555.5555:

Text
Click here to view code image
J. Doe: 248-555-1234
B. Smith: (313) 555-1234
A. Lee: (810)555-1234
M. Jones: 734.555.9999

RegEx
Click here to view code image
[\(.]?[2-9]\d\d[\).]?[-]?[2-9]\d\d[-.]\d

Result
Click here to view code image
J. Doe: 248-555-1234
B. Smith: (313) 555-1234
A. Lee: (810)555-1234
M. Jones: 734.555.9999

Analysis

The opening match now tests for (or . as an optional set, using pattern [\
(.]?. Similarly, [\).]? tests for) or . (also both optional), and [-.]
tests for – or .. Other phone number formats could be added just as easily.

U.S. ZIP Codes
ZIP codes were introduced to the U.S. in 1963 (ZIP is actually an acronym
for Zone Improvement Plan). There are more than 40,000 U.S. ZIP codes, all
made up of digits (the first digit is assigned from East to West, with 0 being
on the East Coast and 9 being on the West Coast). In 1983, the post office
began using an expanded ZIP code called ZIP+4. The extra four digits
provide a greater level of granularity (often a specific city block or
sometimes a specific building), which in turn provides for greater mail
reliability. Use of ZIP+4 is optional, and as such, ZIP-code validation
usually must be able to accommodate both five-digit ZIP codes and ZIP+4
(with a hyphen separating the first five digits from the additional four digits):

Text
Click here to view code image
999 1st Avenue, Bigtown, NY, 11222
123 High Street, Any City, MI 48034-1234

RegEx
\d{5}(-\d{4})?

Result
Click here to view code image
999 1st Avenue, Bigtown, NY, 11222
123 High Street, Any City, MI 48034-1234

Analysis

\d{5} matches any five digits, and -\d{4} matches a hyphen followed by
the +4 digits. Because these additional four digits are essentially optional, -
\d{4} is enclosed within parentheses (turning it into a subexpression), and
? is used to optionally allow a single instance of that subexpression.

Canadian Postal Codes
Canadian postal codes are six characters made up of alternating letters and
digits. The first series of three letters and digits identify the forward
sortation area (or FSA), and the second series of three letters and digits
identify the local delivery unit (or LDU). The first letter of the FSA
identifies the province, territory, or region (18 letters are valid in this
position, A for Newfoundland and Labrador, B for Nova Scotia, K, L, N, and
P for Ontario, excluding Toronto, which uses M, and so on), and so validation
should ideally check to ensure that the first letter is a valid one. Canadian
postal codes are generally formatted using a space to separate the FSA from
the LDU:

Text
Click here to view code image
123 4th Street, Toronto, Ontario, M1A 1A1
567 8th Avenue, Montreal, Quebec, H9Z 9Z9

RegEx
Click here to view code image
[ABCEGHJKLMNPRSTVXY]\d[A-Z] \d[A-Z]\d

Result
Click here to view code image
123 4th Street, Toronto, Ontario, M1A 1A1
567 8th Avenue, Montreal, Quebec, H9Z 9Z9

Analysis

[ABCEGHJKLMNPRSTVXY] matches any one of those 18 valid characters,
and \d[A-Z] matches a digit followed by any alphabetic character, and
thus the FSA. \d[A-Z]\d matches the LDU, a digit followed by an
alphabetic character followed by a digit.

Note

This regular expression is one that should not be case sensitive.

United Kingdom Postcodes
United Kingdom postcodes are five, six, or seven letters and digits defined
by the Royal Mail. Postcodes are made up of two parts: the outward
postcode (or outcode) and the inward postcode (or incode). The outcode is
one or two alphabetic letters followed by one or two digits, or one or two
letters followed by a digit and a letter. The incode is always a single digit
followed by two characters (any characters excluding C, I, K, M, O, and V,
which are never used in postcodes). The incode and outcode are separated
by a space:

Text
Click here to view code image
171 Kyverdale Road, London N16 6PS
33 Main Street, Portsmouth, P01 3AX
18 High Street, London NW11 8AB

RegEx
Click here to view code image
[A-Z]{1,2}\d[A-Z\d]? \d[ABD-HJLNP-UW-Z]

Result
Click here to view code image
171 Kyverdale Road, London N16 6PS
33 Main Street, Portsmouth, P01 3AX
18 High Street, London NW11 8AB

Analysis

The incode first matches one or two alphabetic characters followed by a
digit using [A-Z]{1,2}\d. [A-Z\d]? matches an additional
alphanumeric character if it exists. As such, [A-Z]{1,2}\d[A-Z\d]?
matches every possible valid incode combination. To match the outcode, the

pattern \d[ABD-HJLNP-UW-Z]{2} is used; this matches a single digit
followed by two of the allowed alphabetic characters (A, B, D through H, J,
L, N, P through U, and W through Z).

Note
This regular expression is one that should not be case sensitive.

U.S. Social Security Numbers
U.S. social security numbers (often abbreviates to SSN) are three sets of
digits separated by hyphens; the first set contains three digits, the second set
contains two digits, and the third set contains four digits. Since 1972, the first
set of three digits have been assigned based on the address provided on the
application:

Text
Click here to view code image
John Smith: 123-45-6789

RegEx
\d{3}-\d{2}-\d

Result
Click here to view code image
John Smith: 123-45-6789

Analysis

\d{3}-\d{2}-\d{4} matches any three digits followed by a hyphen,
two digits, a hyphen, and any four digits.

Note

Most combinations of digits are potentially valid social security numbers,
but a couple of rules can be used if needed. Valid social security numbers
will never have a field that is all 0s, and the first set of digits (thus far)
must be no greater than 728 (numbers higher than that have never been
assigned yet, although they could be at some time in the future). However,
this would be a very complex pattern to write, and so the simpler \d{3}-
\d{2}-\d{4} is usually used.

IP Addresses
IP addresses are made up of four bytes (each with a valid range of 0-255).
IP addresses are usually formatted as four sets of digits (each is one to three
digits in length) separated by . characters:

Text
Click here to view code image
localhost is 127.0.0.1.

RegEx
Click here to view code image
(((25[0-5])|(2[0-4]\d)|(1\d{2})|(\d{1,2}))\.)
➥(((25[0-5])|(2[0-4]\d)|(1\d{2})|(\d{1,2})))

Result
Click here to view code image
localhost is 127.0.0.1.

Analysis

This pattern uses a series of nested subexpressions. (((25[0-5])|
(2[0-4]\d)| (1\d{2})|(\d{1,2}))\.) is a set of four nested
subexpressions. (\d{1,2}) matches any one- or two-digit number or
numbers 0 through 99. (1\d{2}) matches any three-digit number starting
with 1 (1 followed by any two digits), or numbers 100 through 199.

(2[0-4]\d) matches numbers 200 through 249. (25[0-5]) matches
numbers 250 through 255. Each of these subexpressions is enclosed within
another subexpression with a | between each (so that one of the four
subexpressions has to match, not all). After the range of numbers comes \.
to match ., and then the entire series (all the number options plus \.) is
enclosed into yet another subexpression and repeated three times using {3}.
Finally, the range of numbers is repeated (this time without the trailing \.) to
match the final IP address number. By restricting each of the four numbers to
values between 0 and 255, this pattern can indeed match valid IP addresses
and reject invalid addresses.

Note
This IP address example is explained in detail in Lesson 7, “Using
Subexpressions.”

URLs
URL matching is a complicated task—or rather, it can be complicated
depending on how flexible the matching needs to be. At a minimum, URL
matching should match the protocol (probably http and https), a
hostname, an optional port, and a path:

Text
Click here to view code image
http://www.forta.com/blog
https://www.forta.com:80/blog/index.cfm
http://www.forta.com
http://ben:password@www.forta.com/
http://localhost/index.php?ab=1&c=2
http://localhost:8500/

RegEx
Click here to view code image
https?:\/\/[-\w.]+(:\d+)?(\/([\w\/_.]*)?)?

http://www.forta.com/blog
https://www.forta.com:80/blog/index.cfm
http://www.forta.com/
http://ben:password@www.forta.com/
http://localhost/index.php?ab=1&c=2
http://localhost:8500/

Result
Click here to view code image
http://www.forta.com/blog
https://www.forta.com:80/blog/index.cfm
http://www.forta.com
http://ben:password@www.forta.com/
http://localhost/index.php?ab=1&c=2
http://localhost:8500/

Analysis

https?:// matches http:// or https:// (the ? makes the s
optional). [-\w.]+ matches the hostname. (:\d+)? matches an optional
port (as seen in the second and sixth lines in the example).
(/([\w/_.]*)?)? matches the path, the outer subexpression matches /
if one exists, and the inner subexpression matches the path itself. As you can
see, this pattern cannot handle query strings, and it misreads embedded
username:password pairs. However, for most URLs it will work adequately
(matching hostnames, ports, and paths).

Note
This regular expression is one that should not be case sensitive.

Tip
To accept ftp URLs as well, replace the https? with
(http|https|ftp). You can do the same for other URL types if
needed.

Complete URLs
A more complete (and slower) pattern would also match URL query strings
(variable information passed to a URL and separated from the URL itself by
a ?), as well as optional user login information, if specified:

Text

http://www.forta.com/blog
https://www.forta.com:80/blog/index.cfm
http://www.forta.com/
http://ben:password@www.forta.com/
http://localhost/index.php?ab=1&c=2
http://localhost:8500/

Click here to view code image
http://www.forta.com/blog
https://www.forta.com:80/blog/index.cfm
http://www.forta.com
http://ben:password@www.forta.com/
http://localhost/index.php?ab=1&c=2
http://localhost:8500/

RegEx
Click here to view code image
https?:\/\/(\w*:\w*@)?[-\w.]+(:\d+)?(\/([\w\/_.]*(\?\S+)?)?)?

Result
Click here to view code image
http://www.forta.com/blog
https://www.forta.com:80/blog/index.cfm
http://www.forta.com
http://ben:password@www.forta.com/
http://localhost/index.php?ab=1&c=2
http://localhost:8500/

Analysis

This pattern builds on the previous example. https?:// is now followed
by (\w*:\w*@)?. This new pattern checks for embedded user and
password (username and password separated by : and followed by @) as
seen in the fourth line in the example. In addition, (\?\S+)? (after the path)
matches the query string, ? followed by additional text, and this, too, is made
optional with ?.

Note
This regular expression is one that should not be case sensitive.

Tip
Why not always use this pattern over the previous one? In performance,
this is a slightly more complex pattern and so it will run slower; if the
extra functionality is not needed it should not be used.

http://www.forta.com/blog
https://www.forta.com:80/blog/index.cfm
http://www.forta.com/
http://ben:password@www.forta.com/
http://localhost/index.php?ab=1&c=2
http://localhost:8500/
http://www.forta.com/blog
https://www.forta.com:80/blog/index.cfm
http://www.forta.com/
http://ben:password@www.forta.com/
http://localhost/index.php?ab=1&c=2
http://localhost:8500/

Email Addresses
Regular expressions are frequently used for email address validation, and yet
validating a simple email address is anything but simple:

Text
Click here to view code image
My name is Ben Forta, and my
email address is ben@forta.com.

RegEx
Click here to view code image
(\w+\.)*\w+@(\w+\.)+[A-Za-z]+

Result
Click here to view code image
My name is Ben Forta, and my
email address is ben@forta.com.

Analysis

(\w+\.)*\w+ matches the name portion of an email address (everything
before the @). (\w+\.)* matches zero or more instances of text followed
by ., and \w+ matches required text (this combination matches both ben
and ben.forta, for example). @ matches @. (\w+\.)+ then matches at
least one instance of text followed by ., and [A-Za-z]+ matches the top-
level domain (com or edu or us or uk, and so on).

The rules governing valid email address formats are extremely complex.
This pattern will not validate every possible email address. For example, it
will allow ben..forta@forta.com (which is invalid) and will not
allow IP addresses as the hostname (which are allowed). Still, it will suffice
for most email validation, and so it may work for you.

mailto:ben@forta.com
mailto:ben@forta.com
mailto:ben..forta@forta.com

Note
Regular expressions used to match email addresses should usually not be
case sensitive.

HTML Comments
Comments in HTML pages are placed between <!-- and --> tags (use at
least two hyphens, although more are allowed). Being able to locate all
comments is useful when browsing (and debugging) Web pages:

Text
Click here to view code image
<!-- Start of page -->
<html>
<!-- Start of head -->
<head>
<tile>My Title</title> <!-- Page title -->
</head>
<!-- Body -->
<body>

RegEx
<!-{2,}.*?-{2,}>

Result
Click here to view code image
<!-- Start of page -->
<html>
<!-- Start of head -->
<head>
<tile>My Title</title> <!-- Page title -->
</head>
<!-- Body -->
<body>

Analysis

<!-{2,} matches the start of the comment, <! followed by two or more
hyphens. .*? matches the comment body (not greedy). -{2,}> matches the
end of the comment.

Note
This regular expression matches two or more hyphens and can thus be used
to find CFML comments, too (which are identified by three hyphens).
However, the pattern does not attempt to match the number of hyphens at
the comment’s start and close (potentially a useful enhancement in finding
mismatched comments).

JavaScript Comments
Comments in JavaScript (and in other scripting languages, including
ActionScript and other ECMAScript derivatives) are preceded by //. As in
the previous example, being able to locate all comments in a page at once
can be very useful:

Text
Click here to view code image
<script language="JavaScript">
// Turn off fields used only by replace
function hideReplaceFields() {
 document.getElementById('RegExReplace').disabled=true;
 document.getElementById('replaceheader').disabled=true;
}
// Turn on fields used only by replace
function showReplaceFields() {
 document.getElementById('RegExReplace').disabled=false;
 document.getElementById('replaceheader').disabled=false;
}

RegEx
\/\/.*

Result

Click here to view code image
<script language="JavaScript">
// Turn off fields used only by replace
function hideReplaceFields() {
 document.getElementById('RegExReplace').disabled=true;
 document.getElementById('replaceheader').disabled=true;
}
// Turn on fields used only by replace
function showReplaceFields() {
 document.getElementById('RegExReplace').disabled=false;
 document.getElementById('replaceheader').disabled=false;
}

Analysis

This is a simple one; \/\/.* matches // followed by the comment body.

Credit Card Numbers
Credit card numbers cannot be truly validated using regular expressions;
final validation always requires some interaction with a credit card
processing organization. However, regular expression validation can indeed
be useful in trapping typos (like one digit too many or too few) before
submitting any data anywhere.

Note
The patterns used here all assume that any embedded spaces or hyphens
have been removed. This is generally a good practice to remove any
nondigits from credit card numbers before performing any regular
expression processing.

All credit cards follow a basic numbering scheme—an opening digit
sequence followed by a specified number of digits. We’ll start with
MasterCard:

Text
Click here to view code image

MasterCard: 5212345678901234
Visa 1: 4123456789012
Visa 2: 4123456789012345
Amex: 371234567890123
Discover: 601112345678901234
Diners Club: 38812345678901

RegEx
5[1-5]\d

Result
Click here to view code image
MasterCard: 5212345678901234
Visa 1: 4123456789012
Visa 2: 4123456789012345
Amex: 371234567890123
Discover: 601112345678901234
Diners Club: 38812345678901

Analysis

All MasterCard numbers are 16 digits; the first digit is always 5, and the
second digit is 1 through 5. 5[1-5] matches the first two digits; \d{14}
matches the next 14 digits.

Visa is a little trickier:

Text
Click here to view code image
MasterCard: 5212345678901234
Visa 1: 4123456789012
Visa 2: 4123456789012345
Amex: 371234567890123
Discover: 601112345678901234
Diners Club: 38812345678901

RegEx
4\d{12}(\d{3})?

Result
Click here to view code image
MasterCard: 5212345678901234
Visa 1: 4123456789012
Visa 2: 4123456789012345
Amex: 371234567890123
Discover: 601112345678901234
Diners Club: 38812345678901

Analysis

All Visa numbers start with 4 and are 13 or 16 digits (but not 14 or 15, and
so a range cannot be used). 4 matches 4, \d{12} matches the next 12 digits,
and (\d{3})? matches an additional 3 digits if they are present.

American Express requires a much simpler pattern:

Text
Click here to view code image
MasterCard: 5212345678901234
Visa 1: 4123456789012
Visa 2: 4123456789012345
Amex: 371234567890123
Discover: 601112345678901234
Diners Club: 38812345678901

RegEx
3[47]\d

Result
Click here to view code image
MasterCard: 5212345678901234
Visa 1: 4123456789012
Visa 2: 4123456789012345
Amex: 371234567890123
Discover: 601112345678901234
Diners Club: 38812345678901

Analysis

American Express numbers are 15 digits and start with 34 or 37. 3[47]
matches the first 2 digits, and \d{13} matches the remaining 13 digits.

Discover also uses a simple pattern:

Text
Click here to view code image
MasterCard: 5212345678901234
Visa 1: 4123456789012
Visa 2: 4123456789012345
Amex: 371234567890123
Discover: 601112345678901234
Diners Club: 38812345678901

RegEx
6011\d

Result
Click here to view code image
MasterCard: 5212345678901234
Visa 1: 4123456789012
Visa 2: 4123456789012345
Amex: 371234567890123
Discover: 601112345678901234
Diners Club: 38812345678901

Analysis

All Discover cards are 16 digits and start with digits 6011; 6011\d{14}
does the trick.

Diners Club is a little trickier:

Text
Click here to view code image

MasterCard: 5212345678901234
Visa 1: 4123456789012
Visa 2: 4123456789012345
Amex: 371234567890123
Discover: 601112345678901234
Diners Club: 38812345678901

RegEx
(30[0-5]|36\d|38\d)\d

Result
Click here to view code image
MasterCard: 5212345678901234
Visa 1: 4123456789012
Visa 2: 4123456789012345
Amex: 371234567890123
Discover: 601112345678901234
Diners Club: 38812345678901

Analysis

Diners Club numbers are 14 digits and begin with 300 through 305, 36, or
38. If the opening digits are 300 through 305, an additional 11 digits are
needed, whereas if the opening digits are 36 or 38, an additional 12 digits
are needed. To make this simpler, the pattern first matches the first three
digits regardless of what they are. (30[0-5]|36\d|38\d) has three
expressions, any of which must match; 30[0-5] matches 300 through 305,
36\d matches any three-digit number starting with 36, and 38\d matches
any three-digit number starting with 38. This way, \d{11} can be used to
match the remaining 11 digits.

All that remains now is a way to check any of the five card types used here:

Text
Click here to view code image
MasterCard: 5212345678901234
Visa 1: 4123456789012
Visa 2: 4123456789012345
Amex: 371234567890123

Discover: 601112345678901234
Diners Club: 38812345678901

RegEx
Click here to view code image
(5[1-5]\d{14})|(4\d{12}(\d{3})?)|(3[47]\d{13})|
➥(6011\d{14})|((30[0-5]|36\d|38\d)\d{11})

Result
Click here to view code image
MasterCard: 5212345678901234
Visa 1: 4123456789012
Visa 2: 4123456789012345
Amex: 371234567890123
Discover: 601112345678901234
Diners Club: 38812345678901

Analysis

The pattern here uses alternation (providing alternatives, or statements) to
include all the previous patterns, each separated by a |. The result? Simple
validation of all major credit card types.

Note
The patterns used here ensure that the credit card number has the correct
opening digits and is of the correct length. However, not every 13-digit
number that begins with 4 is a valid Visa number. A formula known as
Mod 10 can be used to perform a calculation on the digits (of all the credit
card types mentioned here) so as to determine if the digits are truly valid.
Mod 10 is an important part of implementing credit card processing, but it
is not a job for regular expressions because it involves performing
mathematical calculations.

Summary
You have now seen practical examples of many of the concepts and ideas
introduced in prior lessons. Feel free to use, and adapt, any of the examples
used here; with that, welcome to the exciting and productive world of regular
expressions.

Appendix A
Regular Expressions in Popular

Applications and Languages

Although basic regular expression syntax is, for the most part, consistent
across different implementations, the way that regular expressions are used is
most definitely not. Languages and applications that support regular
expression use have their invocation methods, and most have their own
subtle (and sometimes not so subtle) differences and nuances. This appendix
describes regular expression use in popular applications and languages and
provides additional usage notes where appropriate.

Note
The information presented in this appendix is for reference and to help you
get started. Specific usage examples and notes for every implementation
are beyond the scope of this book, and you should refer to the relevant
application or language documentation for further information.

grep
grep is the Unix utility used to perform text searches against files or
standard input text. grep supports basic, extended, and Perl regular
expressions, depending on the option specified:

 -E uses extended regular expressions.
 -G uses basic regular expressions.

 -P uses Perl regular expressions.

Tip
Exact features and functionality vary based on the option specified. Most
users opt for Perl regular expressions (described later) because these are
the most standard.

Note the following:

 By default, grep displays the entire line for any lines containing
matches; to show just the match, use the –o option.

 Use option –v to negate the match and display only nonmatching lines.
 Use option –c to display the count (number of matches) instead of all

match details.
 Use option –i for matching that is not case sensitive.
 grep is used for search operations, not for replace operations. As such,

no replace functionality is supported.

Java
Regular expression matching is facilitated via the
java.util.rgex.matcher class and these methods:

 find() finds an occurrence of a pattern within a string.
 lookingAt() attempts to match the start of a string against a

specified pattern.
 matches() attempts to match an entire string against a specified

pattern.
 replaceAll() performs a replace operation and replaces all

matches.
 replaceFirst() performs a replace operation and replaces the first

match.

Additional class methods provide greater control over specific operations. In
addition, simple wrapper methods are available in the
java.util.regex.pattern class:

 compile() compiles a regular expression into a pattern.
 flags() returns a pattern’s match flags.
 matches() is functionally equivalent to the matches() method

described earlier.
 pattern() returns the regular expression from which a pattern was

created.
 split() splits a string into substrings.

Sun’s regular expression support is based on the Perl implementation, but be
aware of the following:

 To use regular expressions, the regular expression package must be
imported using import java.util.regex.*. (This will include
the entire package. If only subsets of the package are needed, specify
their names instead of *.)

 Embedded conditions are not supported.
 Case conversion using \E, \l, \L, \u, and \U is not supported.
 Backspace matching via \b is not supported.
 \z is not supported.

JavaScript
JavaScript implements regular expression processing in the String and
RegEx objects via the following methods:

 exec is a RegEx method used to search for a match.
 match is a String method used to match a string.
 replace is a String method used to perform replace operations.
 search is a String method used to test for a match in a string.

 split is a String method used to break a string into multiple strings.
 test is a RegEx method used to test for a match in a string.

JavaScript regular expression support is modeled on that of Perl, but be
aware of the following:

 JavaScript uses flags to manage global case-sensitive searching: g
enables global, i makes matches not case sensitive, and the two flags
may be combined as gi.

 Additional modifiers (supported by later than version 4 browsers) are m
to support multiline strings, s for single-line strings, and x to ignore
whitespace within the regex pattern.

 When you use backreferences, $` returns everything before the matched
string, $' returns everything after the matched string, $+ returns the last
matched subexpression, and $& returns everything that matched.

 JavaScript features a global object named RegExp, which can be
accessed to obtain information about the execution after a regular
expression has been executed.

 The POSIX character classes are not supported.
 \A and \Z are not supported.

Microsoft .NET
The .NET Framework provides powerful and flexible regular-expression
processing as part of the base class library. As such, regular expressions are
available for use by any .NET languages and tools (including ASP.NET, C#,
and Visual Studio .NET).

Regular expression support in .NET is provided by the Regex class (as
well as additional supporting classes). Regex includes the following
methods:

 IsMatch() checks to see whether a match is found in a specified
string.

 Match() searches for a single match, which is returned as a Match
object.

 Matches() searches for all matches, which are returned as a
MatchCollection object.

 Replace() performs a replace operation on a specified string.
 Split() splits a string into an array of strings.

It is also possible, via wrapper functions, to execute a regular expression
without needing to instantiate and work with a Regex class instance:

 Regex.IsMatch() is functionally equivalent to the IsMatch()
method described in the previous list.

 Regex.Match() is functionally equivalent to the Match() method.
 Regex.Matches() is functionally equivalent to the Matches()

method.
 Regex.Replace() is functionally equivalent to the Replace()

method.
 Regex.Split() is functionally equivalent to the Split() method.

Here are some important points pertaining to .NET regular expression
support:

 To use regular expressions, the regular expression objects must be
imported using Imports
System.Text.RegularExpressions.

 For quick inline regular expression processing, the wrapper functions
are ideal.

 Regular expression options are specified using the Regex.Options
property—a RegexOption enumeration that can be used to set
members such as IgnoreCase, Multiline, Singleline, and
more.

 .NET supports named capture, the capability to name subexpressions (so
as to be able to refer to them by name instead of number). The syntax for

this is ?<name> to name a subexpression, \k<name> to refer to the
backreference, and ${name} to refer to it in a replacement pattern.

 When using backreferences, $` returns everything before the matched
string, $' returns everything after the matched string, $+ returns the last
matched subexpression, $_ returns the entire original string, and $&
returns the entire matched string.

 Case conversion using \E, \l, \L, \u, and \U is not supported.
 The POSIX character classes are not supported.

Microsoft SQL Server T-SQL
Microsoft SQL Server does not support regular expressions natively.
However, SQL Server T-SQL statements can use the Microsoft CLR
(Common Language Runtime), which does expose regular expression
functionality. CLR is beyond the scope of this book, but documentation can
be found on the Microsoft site.

Microsoft Visual Studio .NET
Regular expression support in Visual Studio .NET is provided by the .NET
Framework. See the .NET section earlier in this appendix.

To use regular expressions, do the following:

 Select Find and Replace from the Edit menu.
 Select Find, Replace, Find in Files, or Replace in Files.
 Check the Use check box, and select Regular expressions from the drop-

down list.

Note the following:

 Use @ instead of *?.
 Use # instead of +?.
 Use ^n instead of {n}.

 In replace operations, backreferences may be padded so as to be left
justified by using \(w,n) (where w is the width, and n is the
backreference). To right justify, use \(-w,n).

 Visual Studio .NET uses the following special metacharacters and
symbols: :a for [a-zA-Z0-9], :c for [a-zA-Z], :d for \d, :h
for [a-fA-F0-9] (hexadecimal characters), :i for valid identifiers
[a-zA-Z_$][a-zA-Z_0-9$]*, :q for a quoted string, :w for
[a-zA-Z]+, :z for \d+.

 \n is a platform-independent line-break character and inserts a new line
when used in replace operations.

 The following special letter matching characters are supported: :Lu
matches any uppercase letter, :Ll matches any lowercase letter, :Lt
matches title case (first letter capitalized), :Lm matches punctuation
characters.

 The following special numeric matching characters are supported: :Nd
for [0-9]+, :Nl for Roman numerals.

 The following special punctuation matching characters are supported:
:Ps for punctuation openings, :Pe for punctuation closings, :Pi for
double quotation marks, :Pf for single quotation marks, :Pd for a dash
(hyphen), :Pc for underscore, :Po for other punctuation characters.

 The following special symbol matching characters are supported: :Sm
for mathematical symbols, :Sc for currency symbols, :Sk for accent
modifiers, :So for other special symbols.

 Other special characters are supported, too; consult the Visual Studio
.NET documentation for more details.

MySQL
MySQL is a popular open source database, and MySQL ventures where no
other databases have yet to venture by providing regular expression support
as a way to perform database searches.

Regular expression support in MySQL is accessed in WHERE clauses in the
following format:

REGEXP "expression"

Note
A complete MySQL statement using a regular expression would use syntax
like this: SELECT * FROM table WHERE REGEXP "pattern".

MySQL regular expression support is useful and powerful, but it is not a full
regular expression implementation:

 Only search support is provided; there is no support for replace
operations.

 Searches are not case sensitive. To perform case-sensitive searches, use
the BINARY keyword (between REGEXP and the expression itself).

 Use [[:<:]] to match the start of a word and [[:>:]] to match the
end of a word.

 Lookaround is not supported.
 Embedded conditions are not supported.
 Octal character searching is not supported.
 \a, \b, \e, \f, and \v are not supported.
 Backreferences are not supported.

Oracle PL/SQL
PL/SQL is the SQL format used in Oracle DBMSs. PL/SQL supports regular
expressions as follows:

REGEXP_LIKE can be used in lieu of SQL LIKE.

Following are some useful notes pertaining to PL/SQL regular expressions:

 REGEXP_LIKE can be used to match text in VARCHAR2, CHAR,
NVARCHAR2, NCHAR, CLOB, or NCLOB data types.

 Specify REGEXP_LIKE match parameter c for case-sensitive matching.

 Specify REGEXP_LIKE match parameter i for case-insensitive
matching.

 Specify REGEXP_LIKE match parameter n to allow . to match the
newline character.

 Specify REGEXP_LIKE match parameter x to ignore whitespace
characters.

 The pipe character | can be used for OR.

Perl
Perl is the granddaddy of regular expression implementations, and most other
implementations attempt to be Perl compatible.

Regular expression support is a core part of Perl and is used simply by
specifying the operation and the pattern:

 m/pattern/ matches the specified pattern.
 s/pattern/pattern/ performs a replace operation.
 qr/pattern/ returns a Regex object that may be used later.
 split() splits a string into substrings.

Following are some useful notes pertaining to Perl regular expressions:

 Modifiers may be passed after the pattern. Use /i for searching that is
not case sensitive and /g for global (match all matches).

 When you use backreferences, $` returns everything before the matched
string, $' returns everything after the matched string, $+ returns the last
matched subexpression, and $& returns the entire matched string.

PHP
PHP provides Perl-compatible regular expression support via the PCRE
(Perl Compatible Regular Expressions) package.

The following regular expression functions are supported by PCRE:

 preg_grep() performs a search and returns an array of matches.
 preg_match() performs a regular expression search for the first

match.
 preg_match_all() performs a global regular expression search.
 preg_quote() takes a pattern and returns an escaped version of it.
 preg_replace() performs a search-and-replace operation.
 preg_replace_callback() performs a search-and-replace

operation, but uses a callback function to perform the actual
replacement.

 preg_split() splits a string into substrings.

Note the following:

 For matching that is not case sensitive, use the i modifier.
 Multiline strings can be enabled using the m modifier.
 PHP can evaluate replacement strings as PHP code. To enable this

functionality, use the e modifier.
 preg_replace(), preg_replace_callback(), and
preg_split() all support an optional parameter that specifies a
limit—the maximum number of replacements or splits to be performed.

 Backreferences may be referred to using Perl $ syntax ($1, for example)
in PHP 4.0.4 or later; earlier versions use \\ instead of $.

 \l, \u, \L, \U, \E, \Q, and \v are not supported.

Python
Python provides regular expression support via the re module.

The following regular expression functions are supported by Python:

 preg_grep() performs a search and returns an array of matches.

 findall() finds all substrings and returns them as a list.
 finditer() finds all substrings and returns them as an iterator.
 match() performs a regular expression search on the start of a string.
 search() performs a search for all matches in a string.
 split() converts a string into a list, splitting it wherever the pattern

matches.
 sub() replaces matches with a specified substring.
 subn() returns a string in which matches are replaced with a specified

substring.

Note the following:

 Before they can be used, regular expressions are compiled into objects
using re.compile.

 re.compile accepts optional flags like re.IGNORECASE for case-
insensitive searching.

 Use flag re.VERBOSE to help with regular expression debugging.
 match() and search() return None if no matches are found.

Index

Symbols
* (asterisk), 40-41
@ (at symbol), 113
$' backreference

JavaScript, 111
Microsoft .NET, 112
Perl, 115

$` backreference
JavaScript, 111
Microsoft .NET, 112
Perl, 115

$& backreference
JavaScript, 111
Microsoft .NET, 112
Perl, 115

$_ backreference (Microsoft .NET), 112
$+ backreference

JavaScript, 111
Microsoft .NET, 112
Perl, 115

\ (backslash), 14-16, 25-27
^ (caret)

set negation, 23-24
string boundaries, 54-57

[[:<:]] characters, 114

[[:>:]] characters, 114
// comment tags, 102
<!-- --> comment tags, 101
[\)-]? condition syntax, 88
{ } (curly braces), 44-47
$ (dollar sign), 56-57
(hash sign), 113
- (hyphen), 20-23
 (nonbreaking space) entity, 59-60
?! (negative lookahead) operator, 83-85
?<! (negative lookbehind) operator, 83-85
() (parentheses), 60-63
. (period), 11-14, 25
+ (plus sign), 38-40
?<= (positive lookbehind) operator, 80-82
?= (positive lookahead) operator, 78-80, 88
? (question mark), 42-43, 88

(?(backreference)true|false) syntax, 88-90
?<! (negative lookbehind) operator, 83-85
?<= (positive lookbehind) operator, 80-82, 88
?= (positive lookahead) operator, 78-80, 88
?! (negative lookahead) operator, 83-85

[] (square brackets), 23-24, 25, 70
\(? syntax, 3
\0 (octal) metacharacter, 32

A
\A (start of string), 58
:a (Visual Studio .NET), 113
ActionScript comments, 102
addresses, matching

email addresses, 100-101

one or more characters, 38-40
zero or more characters, 40-41

IP addresses, 63-65, 98
URLs, 42-43, 98-100

[:alnum:] class, 33
[:alpha:] class, 33
alphanumeric (\w) metacharacter, 31, 70
alphanumeric characters, matching, 31-32
alphanumeric ranges, 20-23
American Express numbers, matching, 104-105
any character, matching, 11-14
“anything but” matching, 23-24
applications, regular expressions in

grep, 109-110
Microsoft .NET, 111-112
Microsoft SQL Server T-SQL, 112
Microsoft Visual Studio .NET, 112-113
MySQL, 113-114

asterisk (*), 40-41
“at least” interval matching, 46-47

B
\B (non-word boundary) metacharacter, 53-54
\b (word boundary) metacharacter, 52-54
[\b] (backspace) metacharacter, 28
backreferences, 57-58

JavaScript, 111
matching with, 70-72
Microsoft .NET, 112
Microsoft Visual Studio .NET, 113
need for, 67-70
Perl, 115
PHP, 116

replace operations, 73-75
syntax for, 88-90

backslash (\), 14-16, 25-27
backspace ([b]) metacharacter, 28
BINARY keyword, 114
[:blank:] class, 33
boundaries

multiline mode, 57-58
need for, 51
string boundaries, 54-57
word boundaries, 52-54

braces ({ }), 44-47
brackets ([]), 23-24, 25, 70

C
-c option (grep), 110
Canadian postal codes, matching, 95-96
caret (^)

set negation, 23-24
string boundaries, 54-57

carriage return (\r) metacharacter, 28-29
case conversion, 75-76
case sensitivity, 10, 19
character matching, 71. See also metacharacters; position matching

backreferences
JavaScript, 111
Microsoft .NET, 112
Microsoft Visual Studio .NET, 113
need for, 67-70
Perl, 115
PHP, 116
syntax for, 70-72, 88-90

common pattern scenarios

Canadian postal codes, 95-96
credit card numbers, 103-107
email addresses, 100-101
HTML comments, 101-102
IP addresses, 98
JavaScript comments, 102-103
North American phone numbers, 93-94
United Kingdom postcodes, 96-97
URLs, 98-100
U.S. Social Security numbers, 97
U.S. ZIP codes, 95

embedded conditions
advantages of, 87-88
backreference conditions, 88-90
lookaround conditions, 90-92
syntax for, 88

hexadecimal values, 32
octal values, 32-33
repeating matches

greedy versus lazy matching, 48-49, 69
intervals, 44-47
need for, 37
one or more characters, 38-40
over matching, preventing, 48-49
zero or more characters, 40-41
zero or one character, 42-43

sets of characters
alphanumeric/nonalphanumeric characters, 31-32
“anything but” matching, 23-24
character set ranges, 20-23
digits/nondigits, 29-30
hexadecimal values, 32
octal values, 32-33
one of several characters, 17-19

POSIX character classes, 32-33
single characters

any characters, 11-14
case sensitivity, 10, 19
global matches, 10
literal text matching, 9-10
multiple matches, 10
special characters, 14-16
whitespace characters, 28-29, 32

Visual Studio .NET, 113
character replacements, 73-75
classes

[:alnum:]33
[:alpha:]33
[:blank:]33
[:cntrl:]33
[:digit:]33
[:graph:]33
java.util.regex.pattern, 110
java.util.rgex.matcher, 110
[:lower:]33
[:print:]33
[:punct:]33
Regex, 111
[:space:]33
[:upper:]33
[:xdigit:]33-35

CLR (Common Language Runtime), 112
[:cntrl:] class, 33
comments, matching

HTML, 101-102
JavaScript, 102-103

Common Language Runtime (CLR), 112
compile() method (Java), 110

conditions
advantages of, 87-88
backreferences

case conversion, 75-76
JavaScript, 111
matching with, 70-72
Microsoft .NET, 112
Microsoft Visual Studio .NET, 113
need for, 67-70
Perl, 115
PHP, 116
replace operations, 73-75
syntax for, 88-90

lookaround conditions, 90-92
looking ahead, 78-80, 82
looking behind, 80-82
need for, 77-78
negating, 83-85

syntax for, 88
converting case, 75-76
credit card numbers, matching, 103-107
curly braces ({ }), 44-47

D
\d (digit) metacharacter, 29-30
\D (nondigit) metacharacter, 29-30
:d (Visual Studio .NET), 113
date format validation, 45-46
digit (\d) metacharacter, 29-30
[:digit:] class, 33
digits, matching, 29-30
Diners Club numbers, matching, 106
Discover card numbers, matching, 105-106

dollar sign ($), 56-57

E
\E (terminate case conversion) metacharacter, 75-76
-E option (grep), 109
ECMAScript, 102
email addresses

match operations, 100-101
one or more characters, 38-40
zero or more characters, 40-41

replace operations, 73-74
embedded conditions

advantages of, 87-88
backreferences

case conversion, 75-76
JavaScript, 111
matching with, 70-72
Microsoft .NET, 112
Microsoft Visual Studio .NET, 113
need for, 67-70
Perl, 115
PHP, 116
replace operations, 73-75
syntax for, 88-90

lookaround conditions, 90-92
looking ahead, 78-80, 82
looking behind, 80-82
need for, 77-78
negating, 83-85

syntax for, 88
end of string metacharacter (\Z), 58
escape character, 14-16, 25-27
escaping, 25-27

exact interval matching, 44-45
exec method (JavaScript), 111

F
\f (form feed) metacharacter, 28
find() method, 110
findall() function, 116
finditer() function, 116
flags

g, 10, 111
i, 10

flags() method (Java), 110
form feed (\f) metacharacter, 28
FSA (forward sortation area), 95

G
g flag (JavaScript), 10, 111
-G option (grep), 109
global matches, 10
[:graph:] class, 33
greedy matching, 48-49, 69
grep, regular expressions in, 109-110
grouping with subexpressions. See subexpressions

H
hash sign (#), 113
headers (HTML), matching

with backreferences, 70-72
without backreferences, 67-69

hexadecimal (\x) metacharacter, 32
hexadecimal notation, 22

hexadecimal values, matching, 32
history of regular expressions, 6
HTML (Hypertext Markup Language)

 (nonbreaking space) entity, 59-60
comments, matching, 101-102
headers, matching

with backreferences, 70-72
without backreferences, 67-69

hyphen (-), 20-23

I
:i (Visual Studio .NET), 113
i flag (JavaScript), 10, 111
-i option (grep), 110
implementation of regular expressions, 6-7
incodes, 96-97
intervals, 44-47

“at least” interval matching, 46-47
exact interval matching, 44-45
range interval matching, 45-46

IP addresses, matching, 63-65, 98
IsMatch() method (.NET), 111

J-K
Java

regular expression syntax in, 71
regular expressions in, 110

JavaScript
comments, matching, 102-103
flags

g, 10, 111
i, 10, 111

regular expression syntax in, 71, 111
java.util.regex.pattern class, 110
java.util.rgex.matcher class, 110

L
\L (lowercase) metacharacter, 75-76
\l (lowercase) metacharacter, 75-76
languages, regular expressions in

Java, 110
JavaScript, 111
Oracle PL/SQL, 114
Perl, 114-115
PHP, 115-116
Python, 116

lazy matching, 48-49, 69
LDU (local delivery unit), 95
letter matching. See character matching
line feed (\n) metacharacter, 28-29
line numbers (phone), 93
literal text matching, 9-10
:Ll letter-matching characters (Visual Studio .NET), 113
:Lm letter-matching characters (Visual Studio .NET), 113
local delivery unit (LDU), 95
lookaround conditions

embedded conditions, 90-92
looking ahead

combining with lookbehind, 82
syntax for, 78-80

looking behind
combining with lookahead, 82
negating, 83-85
syntax for, 80-82

need for, 77-78

lookingAt() method (Java), 110
[:lower:] class, 33
lowercase, converting to, 75-76
:Lt letter-matching characters (Visual Studio .NET), 113
:Lu letter-matching characters (Visual Studio .NET), 113

M
(?m) multiline mode metacharacters, 57-58
“make it optional” metacharacter (*), 40-41
MasterCard numbers, matching, 103-104
match() function (Python), 116
match method (JavaScript), 111
Match() method (.NET), 111
match operations. See also metacharacters

backreferences
JavaScript, 111
Microsoft .NET, 112
Microsoft Visual Studio .NET, 113
need for, 67-70
Perl, 115
PHP, 116
syntax for, 70-72, 88-90

common pattern scenarios
Canadian postal codes, 95-96
credit card numbers, 103-107
email addresses, 100-101
HTML comments, 101-102
IP addresses, 98
JavaScript comments, 102-103
North American phone numbers, 93-94
United Kingdom postcodes, 96-97
URLs, 98-100
U.S. Social Security numbers, 97

U.S. ZIP codes, 95
embedded conditions

advantages of, 87-88
backreference conditions, 88-90
lookaround conditions, 90-92
syntax for, 88

position matching, 19
multiline mode, 57-58
need for, 51
string boundaries, 54-57
word boundaries, 52-54

repeating matches
greedy versus lazy matching, 48-49, 69
intervals, 44-47
need for, 37
one or more characters, 38-40
over matching, preventing, 48-49
zero or more characters, 40-41
zero or one character, 42-43

sets of characters
alphanumeric/nonalphanumeric characters, 31-32
“anything but” matching, 23-24
character set ranges, 20-23
digits/nondigits, 29-30
hexadecimal values, 32
octal values, 32-33
one of several characters, 17-19
POSIX character classes, 32-33

single characters
any characters, 11-14
case sensitivity, 10, 19
global matches, 10
literal text matching, 9-10
multiple matches, 10

special characters, 14-16
whitespace characters, 28-29, 32

matches() method (Java), 110
Matches() method (.NET), 111
metacharacters

\0 (octal), 32
* (asterisk), 40-41

\A (start of string), 58
\B (non-word boundary), 53-54
\b (word boundary), 52-54
[\b] (backspace), 28
\ (backslash), 14-16, 25-27
 ̂(caret)
set negation, 23-24
string boundaries, 54-57

{ } (curly braces), 44-47
\d (digit), 29-30
\D (nondigit), 29-30
$ (dollar sign), 56-57
\E (terminate case conversion), 75-76
\f (form feed), 28
- (hyphen), 20-23
\L (lowercase), 75-76
\l (lowercase), 75-76
Microsoft Visual Studio .NET, 113
(?m), 57-58
\n (line feed), 28-29
?! (negative lookahead), 83-85
?<! (negative lookbehind), 83-85
() (parentheses), 60-63
. (period), 11-14, 25
+ (plus sign), 38-40
?= (positive lookahead), 78-80
?<= (positive lookbehind), 80-82

? (question mark), 42-43
\r (carriage return), 28-29
\S (nonwhitespace), 32
\s (whitespace), 32
[] (square brackets), 23-24, 25, 70
\A (start of string), 58
\t (tab), 28
\U (uppercase), 75-76
\u (uppercase), 75-76
\v (vertical tab), 28
\w (alphanumeric), 31, 70
\W (nonalphanumeric), 31
\x (hexadecimal), 32
\Z (end of string), 58

methods
Java, 110
JavaScript, 111
Microsoft .NET, 111-112
PHP, 115
Python, 116

Microsoft .NET, regular expression syntax in, 71, 111-112
Microsoft SQL Server T-SQL, regular expression syntax in, 112
Microsoft Visual Studio .NET, regular expression syntax in, 112-113
Mod10 formula, 107
m/pattern/ (Perl), 115
multiline mode, 57-58
multiple matches, 10
MySQL, regular expression syntax in, 113-114

N
\n (line feed) metacharacter, 28-29
named capture, 72, NAME
 (nonbreaking space) entity, 59-60

:Nd numeric-matching characters (Visual Studio .NET), 113
negating character sets, 23-24
negative lookahead (?!) operator, 83-85
negative lookbehind (?<!) operator, 83-85
nesting subexpressions, 63-65
.NET, regular expression syntax in, 111-112
:Nl numeric-matching characters (Visual Studio .NET), 113
nonalphanumeric (\W) metacharacter, 31
nonalphanumeric characters, matching, 31-32
nonbreaking spaces, 59-60
nondigit (\D) metacharacter, 29-30
nondigits, matching, 29-30
nonwhitespace (\S) metacharacter, 32
nonwhitespace characters, matching, 28-29
North American phone numbers

matching, 93-94
replace operations, 74-75

NPA (numbering plan area), 93
number matching. See character matching
numbering plan area (NPA), 93
numeric ranges, 20-23
numeric-matching characters (Visual Studio .NET), 113

O
-o option (grep), 110
objects, RegExp, 111
octal (\0) metacharacter, 32
octal values, matching, 32-33
operators

?<! (negative lookbehind), 83-85
?<= (positive lookbehind), 80-82
?= (positive lookahead), 78-80

?! (negative lookahead), 83-85
Oracle PL/SQL, regular expression syntax in, 114
outcodes, 96-97
over matching, preventing, 48-49

P
-P option (grep), 109
parentheses (), 60-63
pattern matching. See also metacharacters; position matching

common pattern scenarios
Canadian postal codes, 95-96
credit card numbers, 103-107
email addresses, 100-101
HTML comments, 101-102
IP addresses, 98
JavaScript comments, 102-103
North American phone numbers, 93-94
United Kingdom postcodes, 96-97
URLs, 98-100
U.S. Social Security numbers, 97
U.S. ZIP codes, 95

embedded conditions
advantages of, 87-88
backreference conditions, 88-90
lookaround conditions, 90-92
syntax for, 88

repeating matches
greedy versus lazy matching, 48-49, 69
intervals, 44-47
need for, 37
one or more characters, 38-40
over matching, preventing, 48-49
zero or more characters, 40-41

zero or one character, 42-43
sets of characters

alphanumeric/nonalphanumeric characters, 31-32
digits/nondigits, 29-30
hexadecimal values, 32
octal values, 32-33
POSIX character classes, 32-33

single characters
any characters, 11-14
case sensitivity, 10
global matches, 10
literal text matching, 9-10
multiple matches, 10
special characters, 14-16
whitespace characters, 28-29, 32

pattern() method (Java), 110
patterns, defined, 11
:Pc punctuation-matching characters (Visual Studio .NET), 113
:Pd punctuation-matching characters (Visual Studio .NET), 113
:Pe punctuation-matching characters (Visual Studio .NET), 113
period (.), 11-14, 25
Perl, regular expression syntax in, 71, 114-115
:Pf punctuation-matching characters (Visual Studio .NET), 113
phone numbers

matching, 93-94
replace operations, 74-75

PHP, regular expression syntax in, 71, 115-116
PL/SQL, regular expression syntax in, 114
plus sign (+), 38-40
:Po punctuation-matching characters (Visual Studio .NET), 113
position matching, 19

multiline mode, 57-58
need for, 51
string boundaries, 54-57

word boundaries, 52-54
positive lookahead (?=) operator, 78-80
positive lookbehind (?<=) operator, 80-82
POSIX character classes, matching, 32-33
postal codes, matching

Canadian postal codes, 95-96
United Kingdom postcodes, 96-97
U.S. zip codes, 95

prefixes (phone), 93
preg_grep() function

Perl, 115
Python, 116

preg_match() function, 115
preg_match_all() function, 115
preg_quote() function, 115
preg_replace() function, 115
preg_replace_callback() function, 115
preg_split() function, 115
[:print:] class, 33
problem/solution scenarios

Canadian postal codes, 95-96
credit card numbers, 103-107
email addresses, 100-101
HTML comments, 101-102
IP addresses, 98
JavaScript comments, 102-103
North American phone numbers, 93-94
United Kingdom postcodes, 96-97
URLs, 98-100
U.S. Social Security numbers, 97
U.S. ZIP codes, 95

:Ps punctuation-matching characters (Visual Studio .NET), 113
[:punct:] class, 33

punctuation-matching characters (Visual Studio .NET), 113
Python, regular expression syntax in, 71, 116

Q
:q (Visual Studio .NET), 113
qr/pattern/ (Perl), 115
question mark (?), 42-43, 88

(?(backreference)true|false), 88-90
?<! (negative lookbehind), 83-85
?<= (positive lookbehind), 80-82, 88
?= (positive lookahead), 78-80, 88
?! (negative lookahead), 83-85

R
\r (carriage return) metacharacter, 28-29
range interval matching, 45-46
ranges, character set, 20-23
real-world scenarios

Canadian postal codes, 95-96
credit card numbers, 103-107
email addresses, 100-101
HTML comments, 101-102
IP addresses, 98
JavaScript comments, 102-103
North American phone numbers, 93-94
United Kingdom postcodes, 96-97
URLs, 98-100
U.S. Social Security numbers, 97
U.S. ZIP codes, 95

re.compile (Python), 116
Regex class, 111
Regex.IsMatch() method (.NET), 112

Regex.Match() method (.NET), 112
Regex.Matches() method (.NET), 112
Regex.Options property, 112
RegExp object, 111
REGEXP_LIKE, 114
Regex.Replace() method (.NET), 112
Regex.Split() method (.NET), 112
regular expression searches. See searches
regular expressions

in applications and languages
grep, 109-110
Java, 110
JavaScript, 111
Microsoft .NET, 111-112
Microsoft SQL Server T-SQL, 112
Microsoft Visual Studio .NET, 112-113
MySQL, 113-114
Oracle PL/SQL, 114
Perl, 114-115
PHP, 115-116
Python, 116

caveats, 7
defined, 5-6
history of, 6
implementation of, 6-7
need for, 3-4

repeating matches
greedy versus lazy matching, 48-49, 69
intervals, 44-47

“at least” interval matching, 46-47
exact interval matching, 44-45
range interval matching, 45-46

need for, 37
one or more characters, 38-40

over matching, preventing, 48-49
zero or more characters, 40-41
zero or one character, 42-43

replace method (JavaScript), 111
Replace() method (.NET), 111
replace operations

backreferences, 73-75
power of, 5

replaceAll() method (Java), 110
replaceFirst() method (Java), 110
re.VERBOSE (Python), 116
RGB values, matching, 22-23, 44-45

S
\S (nonwhitespace) metacharacter, 32
\s (whitespace) metacharacter, 32
:Sc symbol-matching characters (Visual Studio .NET), 113
search() function (Python), 116
search method (JavaScript), 111
searches. See also metacharacters; replace operations

backreferences
JavaScript, 111
matching with, 70-72
Microsoft .NET, 112
Microsoft Visual Studio .NET, 113
need for, 67-70
Perl, 115
PHP, 116
syntax for, 88-90

common pattern scenarios
Canadian postal codes, 95-96
credit card numbers, 103-107
email addresses, 100-101

HTML comments, 101-102
IP addresses, 98
JavaScript comments, 102-103
North American phone numbers, 93-94
United Kingdom postcodes, 96-97
URLs, 98-100
U.S. Social Security numbers, 97
U.S. ZIP codes, 95

embedded conditions
advantages of, 87-88
backreference conditions, 88-90
lookaround conditions, 90-92
syntax for, 88

position matching, 19
multiline mode, 57-58
need for, 51
string boundaries, 54-57
word boundaries, 52-54

power of, 4
repeating matches

greedy versus lazy matching, 48-49, 69
intervals, 44-47
need for, 37
one or more characters, 38-40
over matching, preventing, 48-49
zero or more characters, 40-41
zero or one character, 42-43

sets of characters
alphanumeric/nonalphanumeric characters, 31-32
“anything but” matching, 23-24
character set ranges, 20-23
digits/nondigits, 29-30
hexadecimal values, 32
octal values, 32-33

one of several characters, 17-19
POSIX character classes, 32-33

single characters
any characters, 11-14
case sensitivity, 10, 19
global matches, 10
literal text matching, 9-10
multiple matches, 10
special characters, 14-16
whitespace characters, 28-29, 32

sets of characters, matching. See also match operations
alphanumeric/nonalphanumeric characters, 31-32
“anything but” matching, 23-24
character set ranges, 20-23
digits/nondigits, 31-32
one of several characters, 17-19
POSIX character classes, 32-33

single character matching. See also match operations
any characters, 11-14
case sensitivity, 10, 19
global matches, 10
literal text matching, 9-10
multiple matches, 10
special characters, 14-16
whitespace characters, 28-29

:Sk symbol-matching characters (Visual Studio .NET), 113
:Sm symbol-matching characters (Visual Studio .NET), 113
Social Security numbers, matching, 97
[:space:] class, 33
s/pattern/pattern/ (Perl), 115
special characters, matching, 14-16
split() function

Perl, 115
Python, 116

split() method
Java, 110
JavaScript, 111

Split() method (.NET), 111
SQL Server T-SQL, regular expression syntax in, 112
square brackets ([]), 23-24, 25, 70
SSNs (Social Security numbers), matching, 97
start of string metacharacter (\A), 58
string boundaries, 54-57
sub() function (Python), 116
subexpressions

backreferences
JavaScript, 111
matching with, 70-72
Microsoft .NET, 112
Microsoft Visual Studio .NET, 113
need for, 67-70
Perl, 115
PHP, 116
replacing with, 73-75
syntax for, 88-90

grouping with, 60-63
named capture, 72
need for, 59-60
nesting, 63-65
syntax for, 72

subn() function (Python), 116
at symbol (@), 113
symbol-matching characters (Visual Studio .NET), 113

T
\t (tab) metacharacter, 28
terminate case conversion metacharacter (\E), 75-76

test method (JavaScript), 111
text matching. See also metacharacters

backreferences
JavaScript, 111
Microsoft .NET, 112
Microsoft Visual Studio .NET, 113
need for, 67-70
Perl, 115
PHP, 116
syntax for, 70-72, 88-90

common pattern scenarios
Canadian postal codes, 95-96
credit card numbers, 103-107
email addresses, 100-101
HTML comments, 101-102
IP addresses, 98
JavaScript comments, 102-103
North American phone numbers, 93-94
United Kingdom postcodes, 96-97
URLs, 98-100
U.S. Social Security numbers, 97
U.S. ZIP codes, 95

embedded conditions
advantages of, 87-88
backreference conditions, 88-90
lookaround conditions, 90-92
syntax for, 88

sets of characters
alphanumeric/nonalphanumeric characters, 31-32
“anything but” matching, 23-24
character set ranges, 20-23
digits/nondigits, 29-30
hexadecimal values, 32
octal values, 32-33

one of several characters, 17-19
POSIX character classes, 32-33

single characters
any characters, 11-14
case sensitivity, 10, 19
global matches, 10
literal text matching, 9-10
multiple matches, 10
special characters, 14-16
whitespace characters, 28-29, 32

text replacements
backreferences, 73-75
case conversion, 75

T-SQL, regular expression syntax in, 112

U
\U (uppercase) metacharacter, 75-76
\u (uppercase) metacharacter, 75-76
United Kingdom postcodes, matching, 95-96
Unix, grep, 109-110
unknown characters, matching, 11-14
[:upper:] class, 33
uppercase, converting to, 75-76
URLs, matching, 42-43, 98-100
U.S. Social Security numbers, matching, 97
U.S. ZIP codes, matching, 95
utilities, grep, 109-110

V
\v (vertical tab) metacharacter, 28
-v option (grep), 110
validating credit card numbers, 103-107

validating date format, 45-46
vertical tab (\v) metacharacter, 28
Visa numbers, matching, 104
Visual Studio .NET, regular expression syntax in, 112-113

W
\w (alphanumeric) metacharacter, 31, 70
\W (nonalphanumeric) metacharacter, 31
:w (Visual Studio .NET), 113
whitespace (\s) metacharacter, 32
whitespace characters, matching, 28-29, 32
word boundaries, 52-54

X
\x (hexadecimal) metacharacter, 32
[:xdigit:] class, 33-35

Y-Z
\Z (end of string), 58
:z (Visual Studio .NET), 113
zero or more characters, matching, 40-41
zero or one character, matching, 42-43
ZIP codes, matching, 95

Code Snippets

	Title Page
	Copyright Page
	Contents at a Glance
	Table of Contents
	About This E-Book
	About the Author
	Accessing the Free Web Edition
	Introduction
	Who Is Learning Regular Expressions For?

	1 Introducing Regular Expressions
	Understanding the Need
	How Regular Expressions Are Used
	RegEx Searches
	RegEx Replaces

	So What Exactly Is a Regular Expression?
	Using Regular Expressions
	Before You Get Started
	Summary

	2 Matching Single Characters
	Matching Literal Text
	How Many Matches?
	Handling Case Sensitivity

	Matching Any Characters
	Matching Special Characters
	Summary

	3 Matching Sets of Characters
	Matching One of Several Characters
	Using Character Set Ranges
	“Anything But” Matching
	Summary

	4 Using Metacharacters
	Escaping Revisited
	Matching Whitespace Characters
	Matching Specific Character Types
	Matching Digits (and Nondigits)
	Matching Alphanumeric Characters (and Nonalphanumeric Characters)
	Matching Whitespace (and Nonwhitespace)
	Specifying Hexadecimal or Octal Values

	Using POSIX Character Classes
	Summary

	5 Repeating Matches
	How Many Matches?
	Matching One or More Characters
	Matching Zero or More Characters
	Matching Zero or One Characters

	Using Intervals
	Exact Interval Matching
	Range Interval Matching
	“At Least” Interval Matching

	Preventing Over Matching
	Summary

	6 Position Matching
	Using Boundaries
	Using Word Boundaries
	Defining String Boundaries
	Using Multiline Mode

	Summary

	7 Using Subexpressions
	Understanding Subexpressions
	Grouping with Subexpressions
	Nesting Subexpressions
	Summary

	8 Using Backreferences
	Understanding Backreferences
	Matching with Backreferences
	Performing Replace Operations
	Converting Case

	Summary

	9 Looking Ahead and Behind
	Introducing Lookaround
	Looking Ahead
	Looking Behind
	Combining Lookahead and Lookbehind
	Negating Lookaround
	Summary

	10 Embedding Conditions
	Why Embed Conditions?
	Using Conditions
	Backreference Conditions
	Lookaround Conditions

	Summary

	11 Regular Expression Solutions to Common Problems
	North American Phone Numbers
	U.S. ZIP Codes
	Canadian Postal Codes
	United Kingdom Postcodes
	U.S. Social Security Numbers
	IP Addresses
	URLs
	Complete URLs
	Email Addresses
	HTML Comments
	JavaScript Comments
	Credit Card Numbers
	Summary

	Appendix A Regular Expressions in Popular Applications and Languages
	grep
	Java
	JavaScript
	Microsoft .NET
	Microsoft SQL Server T-SQL
	Microsoft Visual Studio .NET
	MySQL
	Oracle PL/SQL
	Perl
	PHP
	Python

	Index

