

Page 2

MOMs open source

PRÉAMBULE

Smile

Smile est une société d’ingénieurs experts dans la mise en œuvre de solutions open
source et l’intégration de systèmes appuyés sur l’open source. Smile est membre de
l’APRIL, l’association pour la promotion et la défense du logiciel libre, de Alliance
Libre, PLOSS, et PLOSS RA, des associations clusters régionaux d'entreprises du
logiciel libre.

Smile compte 480 collaborateurs en France, 600 dans le monde, ce qui en fait la
première société en France spécialisée dans l’open source.

Depuis 2000, environ, Smile mène une action active de veille technologique qui lui
permet de découvrir les produits les plus prometteurs de l’open source, de les
qualifier et de les évaluer, de manière à proposer à ses clients les produits les plus
aboutis, les plus robustes et les plus pérennes.

Cette démarche a donné lieu à toute une gamme de livres blancs couvrant différents
domaines d’application. La gestion de contenus (2004), les portails (2005), la
business intelligence (2006), les frameworks PHP (2007), la virtualisation (2007), et
la gestion électronique de documents (2008), ainsi que les PGIs/ERPs (2008). Parmi
les ouvrages publiés en 2009, citons également « Les VPN open source », et « Firewall
est Contrôle de flux open source », et « Middleware », dans le cadre de la collection «
Système et Infrastructure ».

Chacun de ces ouvrages présente une sélection des meilleures solutions open
source dans le domaine considéré, leurs qualités respectives, ainsi que des retours
d’expérience opérationnels.

Au fur et à mesure que des solutions open source solides gagnent de nouveaux
domaines, Smile sera présent pour proposer à ses clients d’en bénéficier sans risque.
Smile apparaît dans le paysage informatique français comme le prestataire
intégrateur de choix pour accompagner les plus grandes entreprises dans l’adoption
des meilleures solutions open source.

Ces dernières années, Smile a également étendu la gamme des services proposés.
Depuis 2005, un département consulting accompagne nos clients, tant dans les
phases d’avantprojet, en recherche de solutions, qu’en accompagnement de projet.
Depuis 2000, Smile dispose d’un studio graphique, devenu en 2007 Smile Digital –
agence interactive, proposant outre la création graphique, une expertise e -
marketing, éditoriale et interfaces riches. Smile dispose aussi d’une agence
spécialisée dans la TMA (support et l’exploitation des applications) et d’un centre de
formation complet, Smile Training. Enfin, Smile est implanté à Paris, Lille, Lyon,
Grenoble, Nantes, Bordeaux, Poitiers, Aix-en-Provence et Montpellier. Et présent
également en Espagne, en Suisse, au Benelux, en Ukraine et au Maroc.

© Smile – Open Source Solutions

Page 3

MOMs open source

Quelques références

Intranets et Extranets

Société Générale - Caisse d'Épargne - Bureau Veritas - Commissariat à l'Energie Atomique - Visual
- CIRAD - Camif - Lynxial - RATP - Sonacotra - Faceo - CNRS - AmecSpie - INRA - CTIFL - Château
de Versailles - Banque PSA Finance - Groupe Moniteur - Vega Finance - Ministère de
l’Environnement - Arjowiggins - JCDecaux - Ministère du Tourisme - DIREN PACA - SAS - CIDJ -
Institut National de l’Audiovisuel - Cogedim - Diagnostica Stago Ecureuil Gestion - Prolea - IRP-
Auto - Conseil Régional Ile de France - Verspieren - Conseil Général de la Côte d’Or - Ipsos -
Bouygues Telecom - Prisma Presse - Zodiac - SANEF - ETS Europe - Conseil Régional d’Ile de
France - AON Assurances & Courtage - IONIS - Structis (Bouygues Construction) - Degrémont Suez
- GS1-France - DxO - Conseil Régional du Centre - Beauté Prestige International - HEC - Veolia

Internet, Portails et e-Commerce

Cadremploi.fr - chocolat.nestle.fr - creditlyonnais.fr - explorimmo.com - meilleurtaux.com -
cogedim.fr - capem.fr - Editions-cigale.com - hotels-exclusive.com - souriau.com - pci.fr - odit-
france.fr - dsv-cea.fr - egide.asso.fr - Osmoz.com - spie.fr - nec.fr - vizzavi.fr - sogeposte.fr - ecofi.fr
- idtgv.com - metro.fr - stein-heurtey-services.fr - bipm.org - buitoni.fr - aviation-register.com -
cci.fr - eaufrance.fr - schneider-electric.com - calypso.tm.fr - inra.fr - cnil.fr - longchamp.com -
aesn.fr - bloom.com - Dassault Systemes 3ds.com - croix-rouge.fr - worldwatercouncil.org -
Projectif - credit-cooperatif.fr - editionsbussiere.com - glamour.com - nmmedical.fr - medistore.fr -
fratel.org - tiru.fr - faurecia.com - cidil.fr - prolea.fr - bsv-tourisme.fr - yves.rocher.fr -
jcdecaux.com - cg21.fr - veristar.com - Voyages-sncf.com - prismapub.com - eurostar.com -
nationalgeographic.fr - eau-seine-normandie.fr - ETS Europe - LPG Systèmes - cnous.fr -
meddispar.com - Amnesty International - pompiers.fr - Femme Actuelle - Stanhome-Kiotis - Gîtes
de France Bouygues Immobilier - GPdis - DeDietrich - OSEO - AEP - Lagardère Active Média -
Comexpo - Reed Midem - UCCIFE - Pagesjaunes Annonces - 1001 listes - UDF - Air Pays de Loire -
Jaccede.com - ECE Zodiac - Polytech Savoie - Institut Français du Pétrole - Jeulin - Atoobi.com -
Notaires de France - Conseil Régional d’Ile-de-France - AMUE

Applications métier

Renault - Le Figaro - Sucden - Capri - Libération - Société Générale - Ministère de l’Emploi -
CNOUS - Neopost - Industries - ARC - Laboratoires Merck - Egide - ATEL-Hotels - Exclusive Hotels
- CFRT - Ministère du Tourisme - Groupe Moniteur - Verspieren - Caisse d’Epargne - AFNOR -
Souriau - MTV - Capem - Institut Mutualiste Montsouris - Dassault Systèmes - Gaz de France -
CAPRI Immobilier - Croix-Rouge Française - Groupama - Crédit Agricole - Groupe Accueil -
Eurordis - CDC Arkhineo

Applications décisionnelles

IEDOM – Yves Rocher - Bureau Veritas - Mindscape – Horus Finance – Lafarge – Optimus –
CecimObs – ETS Europe – Auchan Ukraine – CDiscount – Maison de la France – Skyrock – Institut
National de l’Audiovisuel – Pierre Audouin Consultant – Armée de l’air – Jardiland – Saint-Gobain
Recherche – Xinek – Projectif – Companeo – MeilleurMobile.com – CG72 – CoachClub

© Smile – Open Source Solutions

Page 4

MOMs open source

Ce livre blanc

Les Middleware Orientés Messages, ou « MOMs », sont des outils
particulièrement précieux pour mettre en œuvre des échanges entre
applications de toutes natures. Comme il arrive très souvent dans ce
qui touche aux infrastructures, les solutions open source sont
particulièrement en pointe dans ce domaine. Parce que le middleware
est souvent le ciment de toute une architecture, les critères d’ouverture,
de pérennité et d’indépendance sont essentiels dans le choix d’un tel
outil, et personne ne souhaite dépendre, dans ce contexte, de la politique
commerciale de tel ou tel acteur particulier.

C’est pourquoi les solutions open source sont en position de force en
matière de middleware. La force de l’open source, c’est aussi la diversité
et le foisonnement de l’offre, dans une dynamique de compétition qui fait
naître des produits de grande qualité. C’est le cas en matière de MOM,
où il existe différentes solutions tout à fait solides et matures.

Ce livre blanc vise à présenter l’offre open source en matière de MOM.
Nous avons identifié quatre solutions qui se distinguent par leur qualité,
leur robustesse et la stature de leur éditeur.

Après avoir présenté les concepts fondamentaux et les fonctionnalités
communes à tous ces outils, nous étudierons chacun d’eux de manière
plus détaillée.

© Smile – Open Source Solutions

Page 5

MOMs open source

Sommaire

PRÉAMBULE..2
SMILE..2
QUELQUES RÉFÉRENCES ..3
CE LIVRE BLANC..4
SOMMAIRE...5

CONCEPTS DES MOMS ET JMS...7
QU'EST-CE QU’UN MIDDLEWARE ?...7

Pourquoi des échanges asynchrones ?..8
LES MIDDLEWARES ORIENTÉS MESSAGES OU MOM..9

Définition...9
MOM, EAI, ESB..10
EDA, Event Driven Architecture...10
Des échanges asynchrones...11
Des échanges fiables...11
Brokers.. 12
Protocoles et APIs...12
Pourquoi un MOM open source ? ...13
Les services d'un MOM..14

JAVA MESSAGING SYSTEM OU JMS..15
Introduction ...15
Modes de communication ..16
Quelques définitions..17
Encodage du Corps des messages..18
La structure du message JMS..20
Ordre des messages..20
Durée de vie d'un message..21
Priorité .. 22
Sélection des messages...22
Aiguillage et spécialisation...23
Synthèse JMS..24

CARACTÉRISTIQUES PRINCIPALES DES MOM..25
Langages d'implémentation, APIs et environnements supportés..25
Protocoles...27
Traitement des messages par le MOM...28
Gestion des transactions ..29
Dead Message Queue..32
Persistance des messages...32

FONCTIONNALITÉS AVANCÉES..34
Code générique et JNDI..34
Enterprise Integration Patterns..35
Interopérabilité entre MOMs...36
Passerelle à base d’ESB..37
Gestion de la sécurité ...39
Administration et monitoring..40
Configuration et déploiement...40
Répartition de charge applicative...40
Topologie et réseau de brokers ...41

© Smile – Open Source Solutions

Page 6

MOMs open source

Tolérance aux pannes..45
Auto-découverte...46

LES MOMS OPEN SOURCE...48
LES MOMS ÉTUDIÉS..48
JORAM..48

Présentation...48
Caractéristiques principales du produit...49
Détail sur le projet ...55

ACTIVE MQ...57
Présentation...57
Caractéristiques principales du produit...57
Gestion des messages ..59
Traitement des messages ...60
Gestion des transactions ..61
Persistance des messages ..61
Répartition de charge et haute disponibilité multi-site. ...62
Interopérabilité avec d'autres MOMs ...64
Gestion de la sécurité et d'un annuaire ...64
Administration ..64
Configuration et déploiement...66
Détail sur le projet ...66

MOM OPEN MESSAGE QUEUE (OMQ)...68
Présentation...68
Caractéristiques principales du produit...68
Détail sur le projet ...73

MOM JBOSS MESSAGING (JBM)...74
Présentation...74
Caractéristiques principales du produit...74
Détail sur le projet ...79

COMPARATIF ..81

BENCHMARK DE DÉBIT...84
Scénario de test...84
Réalisation du test...84
Configuration...84
La machine..85
Résultats du test..85
Active MQ avec Persistance...86
Active MQ, sans Persistance (volatile)..86
Joram avec Persistance...87
JORAM sans Persistance (volatile)...87
Analyse.. 88

SYNTHÈSE...90

© Smile – Open Source Solutions

Page 7

MOMs open source

CONCEPTS DES MOMS ET JMS

Qu'est-ce qu’un Middleware ?

Un middleware est un logiciel qui permet à différentes applications
d’échanger et d'interopérer.

Un middleware permet aux applications d'interopérer y compris
lorsqu'elles tournent sur des serveurs différents, interconnectés par un
réseau. Le middleware est un outil de haut niveau, puisqu’il offre ses
services aux applications, mais les échanges induits s’appuient sur toute
une pile de protocoles réseau.

Par exemple, les outils qui permettent à des applications d'invoquer les
services d'un SGBD sont une catégorie particulière de middlewares.

Parmi les middlewares qui permettent l'interopérabilité entre applications
homologues (de même nature), on peut distinguer deux grandes familles:

 Les middlewares qui permettent l'invocation synchrone de
fonctions et méthodes, parmi lesquels on trouve la famille des
request brokers, avec CORBA ou encore DCOM.

 Les middlewares d'échange asynchrones, qui sont
principalement à base de messages, ce sont les MOMs, les
Message Oriented Middleware.

Un middleware est davantage qu'un simple protocole d'appel des services
offerts par une application, et typiquement RPC, RMI ou bien SOAP, tous
également synchrones, ne sont pas vraiment considérés comme des
middlewares.

© Smile – Open Source Solutions

Page 8

MOMs open source

Outre la gestion de l’échange proprement dit, les services offerts par un
middleware peuvent être de différentes natures, en particulier:

 L'identification et la localisation des applications à un niveau
supérieur, au dessus des adresses réseau et des noms de
serveurs, et l'acheminement des échanges à ce niveau.

 Dans certains cas, la conversion de formats de représentation des
données entre les applications, permettant à des applications
d'environnements et langages différents d'échanger de manière
transparente.

 Dans certains cas également, des fonctions de sécurité, de
répartition de charge ou de gestion du secours.

Pourquoi des échanges asynchrones ?

Lorsqu'une application invoque les services d'une autre application au
moyen d'un middleware synchrone, il faut impérativement :

 que la seconde application soit en état de marche, à l’instant où
elle est invoquée ;

 qu'elle soit joignable par le réseau.

Si l'une ou l'autre de ces conditions n'est pas réunie, la première
application doit renoncer à invoquer le service distant. Dans certains
cas, cette impossibilité peut avoir des conséquences graves pour
l'application initiatrice de l’échange, qui doit être prévue pour traiter
l’échec de l’appel. L'invocation synchrone d'un service distant crée une
dépendance très forte entre les deux applications.

© Smile – Open Source Solutions

Page 9

MOMs open source

Et quand bien même ces deux conditions sont réunies, la question se
pose encore du temps de réponse de cet appel de service. L'application
appelante peut-elle rester en attente de la réponse ? Peut-elle faire
attendre un utilisateur ? Après combien de temps doit-elle renoncer ?

Dans certains contextes, les échanges synchrones sont possibles. En
particulier lorsque les deux applications sont sur le même serveur, ou à
la rigueur sur la même plateforme, et que leurs temps de réponse
peuvent être garantis.

Dans tous les autres cas, la dépendance qu'implique un mode d’échange
synchrone, tant au niveau des applications elles-mêmes que des
serveurs, est néfaste.

Au contraire, avec un middleware asynchrone, l’application initiatrice de
l’échange ne reste pas en attente d’une réponse : elle confie son message
au middleware et poursuit sont traitement.

On dit qu'un middleware asynchrone met en œuvre une faible
dépendance, un couplage lâche (« loose coupling »), entre les applications,
ce qui permet une bien plus grande flexibilité dans les architectures.

Les Middleware Orientés Messages, ou MOM, sont de loin les
implémentations les plus courantes du principe d'échanges asynchrones
et, comme nous le verrons, il existe un standard en la matière, la
spécification JMS, qui a un bon nombre d'implémentations de qualité.

Les Middlewares Orientés Messages ou
MOM

Définition

On l’a vu, les MOMs sont des middlewares, des outils d’échange qui
permettent à des applications de communiquer en échangeant des
messages. Une application « A » doit adresser un message à une
application « B », qui tourne (peut-être) sur un serveur différent.
L’application « A » confie son message au MOM, qui se charge de
l’acheminer et de le remettre à l’application « B ».

L’objet véhiculé par le MOM entre deux applications est appelé message.
Mais rien n’est imposé quant à ce que représente ce message, sa taille, ou
encore le format des données qu’il véhicule. Pour l’essentiel, ces
questions ne concernent que l’application « A » et l’application « B », qui
doivent partager un certain nombre de conventions, afin de se
comprendre.

Le MOM, quant à lui, ne s’intéresse donc pas au contenu du message, il
ne fait que le transmettre, et il le remet au destinataire sans y avoir
apporté de changement.

© Smile – Open Source Solutions

Page 10

MOMs open source

MOM, EAI, ESB

À la différence d’un MOM, un outil d’EAI (Enterprise Application
Integration), est aussi en charge de réaliser transformations sur les
informations portées par les messages, afin d’adapter les données de
l’émetteur aux formats gérés par le destinataire.

Un EAI englobe donc les fonctionnalités du MOM, et y ajoute des
possibilités facilitant l’intégration des applications au niveau des
données transférées.

Dans un MOM, comme on l’ a vu, les applications doivent parler le même
langage, tandis qu’un EAI au contraire prend en charge les traductions
entre représentations différentes.

Un EAI est donc un middleware qui a comme principales fonctions :

•L’interconnexion des systèmes hétérogènes.

•La gestion de la transformation des messages.

•La gestion du routage des messages.

L’ESB, Enterprise Service Bus, est un concept plus ambitieux encore, qui
se présente comme le socle uniforme d’une architecture SOA globale. Là
où l’EAI peut prendre en charge des transformations de formats
permettant à une application A d’interopérer avec une application B,
l’ESB généralise le concept, en posant pour principe qu’il suffit qu’une
application A soit interfacée à l’ESB pour qu’elle puisse interopérer par
son intermédiaire avec toute autre application interfacée à l’ESB. Et par
ailleurs, la connexion à l’ESB n’est pas exclusivement à base de
messages, elle doit supporter une grande diversité de modes d’échange et
de protocoles.

EDA, Event Driven Architecture

Puisque nous évoquons quelques acronymes en vogue, il faut parler
aussi du concept EDA, « Event-Driven Architecture », architecture pilotée
par les événements, qui est à certains égards une alternative à l'approche
SOA.

L'approche EDA part de l'idée que tout traitement est d'une certaine
manière exécuté en réaction à un événement. Et bien sûr, tout
traitement est par ailleurs générateur d'événements. Ainsi, la vente d'un
produit est un événement, qui induit un ensemble de traitements relatifs
par exemple à la gestion des stocks, à la comptabilité, à la logistique, à la
relation client, etc. Tout est événement, tout est réaction à des
événements, et il en va de même pour nous-mêmes, êtres humains, qui
agissons en réaction à un ensemble de stimuli externes.

Dans l'approche EDA, la réaction à un événement n'est pas un
traitement synchrone. Elle peut avoir des exigences de rapidité, mais

© Smile – Open Source Solutions

Page 11

MOMs open source

elle est par essence asynchrone. Alors que l'approche SOA, même si elle
peut se décliner dans une logique asynchrone, est malgré tout par
essence une approche synchrone. Et bien sûr, les MOMs sont le
support naturel d'une approche EDA.

Un dernier acronyme à trois lettres pour la route: CEP, pour « Complex
Event Processing », traitement d'événements complexes, consiste à
identifier, puis traiter, des événements complexes à partir d'une
combinaison d'événements simples. C'est donc un concept
complémentaire à l'approche EDA, partant du principe qu'il ne suffit pas
de réagir à des événements individuels, il faut être en mesure d'identifier
des événements de plus haut niveau, comme résultante d'événements
élémentaires. Par exemple: un ordre de vente, plus un autre ordre de
vente, plus encore un ordre de vente... égal une crise financière,
événement complexe, s'il en est !

Des échanges asynchrones

Les échanges de messages mis en œuvre par les MOMs sont
asynchrones. Cela signifie que les applications ne sont pas en attente
d’une réponse à leur message. En fait, il est possible qu’un message de
réponse soit attendu, mais dans ce cas il n’y a pas de délai garanti pour
cette réponse, de sorte que l’application ne doit pas se bloquer en attente
de la réponse, et encore moins faire attendre un utilisateur. Le
caractère asynchrone ne dit rien quant au délai d’acheminement du
message : il peut être très rapide, de quelques millisecondes à peine,
mais il ne doit pas être considéré comme assuré.

Des échanges fiables

L’une des qualités attendues des MOMs est de garantir l’acheminement
des messages quelles que soient les circonstances, les aléas, et en
particulier y compris dans le cas où la connectivité réseau est
interrompue, où le serveur distant est arrêté, ou bien où l’application
destinatrice n’est pas en mesure de réceptionner les messages. Dans
tous ces cas de figure, le MOM doit conserver les messages qui lui sont
confiés jusqu’à ce qu’ils aient été remis, et même, jusqu’à ce qu’ils aient
été correctement traités par l’application destinatrice.

Nous verrons que cette fiabilité de l'acheminement peut être rendue plus
ou moins forte, selon les paramètres et la configuration du MOM.

Les échanges à base de MOM ne sont pas, par nature, en mode requête /
réponse, comme peut l’être un échange HTTP par exemple. Il est
possible bien sûr que l’application destinatrice émette à son tour un
message, que l’on peut considérer comme une réponse, mais il s’agit
alors seulement d’une utilisation particulière du MOM.

© Smile – Open Source Solutions

Page 12

MOMs open source

Brokers

Les brokers sont des programmes gérant le flux de messages. En d'autres
termes, un MOM est composé d'un ou de plusieurs brokers. Comme le
montre la figure suivante, c'est avec les brokers que les applications
clientes communiquent, au travers de l’API.

Un broker est un serveur au sens logiciel du terme, c'est-à-dire un
processus qui est à l’écoute des requêtes qui peuvent lui être adressées
par d’autres processus, les applications clientes.

Une plateforme MOM ou plateforme middleware est donc constitué d’un
ensemble des brokers et des passerelles.

Protocoles et APIs

Lorsqu’une application échange avec un broker, par exemple pour lui
remettre un message, et de même lorsqu’un broker échange avec un
autre broker, ces échanges mettent en œuvre un protocole réseau. Le
protocole définit les commandes invoquées et leurs paramètres, ainsi que
la représentation des données, entêtes et corps, constituant les
messages.

© Smile – Open Source Solutions

Page 13

MOMs open source

Ce protocole est généralement invisible pour les applications, qui ne
voient que des appels de fonctions, des APIs. Et de même, pour ce qui
est des échanges entre deux brokers d’un même MOM, le protocole peut
être considéré comme une affaire privée, interne, relevant purement de
l’implémentation du MOM. C’est pourquoi on s’intéresse généralement
davantage à l’ouverture des MOMs en termes d’APIs qu’en termes de
protocoles d’échange.

Pourquoi un MOM open source ?

Un middleware est nécessairement structurant pour les applications qui
en font usage, c'est-à-dire que les applications seraient un peu
différentes si elles utilisaient un autre middleware, et en conséquence,
changer de middleware pourrait impliquer des changements sur toutes
les applications, avec donc un coût important.

En conséquence, il est clair que l'on ne souhaite pas avoir à changer de
middleware, et qu'il vaut mieux éviter aussi d'avoir un fournisseur en
position de tirer profit de cette dépendance.

C'est une des raisons pour lesquelles les solutions open source sont
naturellement à privilégier pour cette typologie d'outils.

Et c'est pourquoi aussi les grands acteurs de l'open source ont depuis
longtemps placé les middleware au premier rang de leurs priorités, ce qui
explique que l'on ait aujourd'hui un large choix de produits de qualité,
comme on le verra.

Il faut « rendre à César ce qui appartient à César », et rappeler que le père
de tous les MOMs est sans doute le produit MQSeries, de IBM,
aujourd'hui renommé « Websphere MQ », un produit introduit dans les
années 90, et qui a rencontré un grand succès en particulier dans les
banques et autres grands comptes IBM. MQSeries a posé les concepts
du MOM, échanges asynchrones et fiables, en offrant par ailleurs des
connecteurs pour une diversité d'environnements.

© Smile – Open Source Solutions

Page 14

MOMs open source

Aujourd'hui, les solutions open source sont en position de force. Elles
sont généralement plus respectueuses des standards, plus ouvertes, et –
pour certaines d'entre elles au moins – plus dynamiques dans leur
développement. Et elles présentent un coût total de possession bien
plus avantageux.

Les services d'un MOM

Le service de base d'un MOM est d'acheminer un message d'une
application vers une autre.

Mais il a d'autres valeurs ajoutées, d’autres caractéristiques :

Un service fiable

Le MOM garantit à l'application A que le message qui lui est confié ne
sera pas perdu. Ceci, même en présence d'incidents de différentes
natures (logiciels, matériel, réseau). L'application émettrice peut compter
sur le MOM, et le fait de pouvoir compter sur lui permet de simplifier la
conception de l'application. On peut, à différents égards, faire un
parallèle entre un MOM et une base de données. Lorsqu'une application
a écrit une donnée dans un SGBD, elle peut compter que cette donnée
ne sera pas perdue. Les mécanismes qui permettent d'assurer ceci
peuvent être complexes, mais l'application n'a pas à s'en préoccuper.
C'est la même chose pour un MOM. Le MOM peut donc être utilisé y
compris pour transporter des objets critiques, des transactions
financières par exemple. Nous verrons plus loin que l'on peut, dans
certains contextes d'utilisation, choisir de se passer de cette fiabilité.

Un service asynchrone

L'application A confie son message au MOM, à destination de
l'application B. Mais l'application B est peut-être saturée, ou bien
arrêtée, son serveur est peut-être en panne, ou bien injoignable. Rien
de tout cela ne pose problème: le MOM attendra. Que le réseau
remarche, que le serveur soit en état, que l'application soit lancée. Il
attendra jusqu'à avoir pu remettre le message à son destinataire. Et
même un peu plus: jusqu'à ce que son destinataire ait indiqué que le
message a pu être traité avec succès.

Une indirection de nommage

Nous avons jusqu'ici fait comme si l'application A remettait au MOM un
message « à destination de l'application B ». Ce n'est pas tout à fait exact,
et la nuance est importante. L'application A remet au MOM un message
à destination d'une file d'attente, d'une queue. Et une application B (mais
peut-être aussi différentes applications B1, B2, …) peut lire les messages
de cette queue, selon des modalités que nous verrons plus en détail.
Cette indirection est importante: l’application A ne connait pas

© Smile – Open Source Solutions

Page 15

MOMs open source

l'application B, ne connait ni son « nom », ni le serveur sur lequel elle
tourne, ni dans quel sous-réseau ce serveur peut se trouver. Néanmoins,
le message sera remis à l'application B. On voit que le principe de
couplage lâche n'est pas que dans le caractère asynchrone, il est
important également en ce qui concerne l'identification des applications
prenant part aux échanges.

Pas de transformation des données

À la différence d'autres middleware, et en particulier la famille des ORB,
les MOMs ne prennent pas en charge de transformation de la
représentation des données. Le MOM reçoit un message d'une
application A, et le remet tel quel, inchangé, à une application B. Les
applications échangeant grâce au MOM doivent donc « parler le même
langage », c'est-à-dire représenter leurs objets (chaînes, nombres,
matrices, classes, dates, etc.) de la même manière, au sein des messages,
pour se comprendre.

Autres services

Nous verrons que la gestion de la répartition de charge et la gestion du
secours sont extrêmement faciles à mettre en œuvre au moyen d'un
MOM. La possibilité d'avoir plusieurs applications lisant et traitant les
messages sur une même queue, implémente une répartition de charge
très simple, mais très efficace.

Java Messaging System ou JMS

Introduction

JMS est l'API de communication asynchrone via Message de Java. C’est
l’API qui permet à une application d’invoquer les services d’un MOM.

JMS fait partie de JEE 5 et est ainsi disponible aux applications
tournant sur des serveurs applicatifs Java.

La première version de JMS, JMS 1.0.2b est sortie le 25juinn 2001. La
seconde version, JMS 1.1 est sortie le 18 mars 2007, sans présenter de
différence importante. Les classes JMS 1.1 permettent de réaliser des
clients JMS plus facilement. Nous allons étudier sommairement JMS 1.1.
Mais nous commencerons par poser quelques définitions et concepts.

Comme toute spécification, JMS doit assurer que toutes les applications
qui s’y conforment ont le même comportement quel que soit le
fournisseur de l’implémentation. La JMS laisse aussi dans des cas bien
définis, la liberté aux fournisseurs d'implémenter ou non certaines
fonctionnalités. Nous reviendrons en détail sur ces fonctionnalités qui
distinguent les différents MOMs.

© Smile – Open Source Solutions

Page 16

MOMs open source

Comme JDBC pour l’accès aux bases de données, ou JCR pour l’accès à
un référentiel de contenus, JMS permet en théorie de développer une
application interfacée à un MOM, sans dépendre d’un produit particulier.
C'est-à-dire qu’il devrait être possible de remplacer un MOM JMS par un
autre de manière transparente pour l’application. Comme pour les
accès aux bases de données, cet aspect interchangeable n’est pas
toujours vérifié en pratique. Il peut exister des petites différences
d’implémentation de la spécification, et par ailleurs les différents outils
MOMs s’efforcent d’offrir des petits « plus », des fonctionnalités
différenciantes.

Modes de communication

La spécification JMS introduit deux modes de communication, les
« domaines JMS »: les topics d'une part, les queues d'autre part..

Le mode point à point ou « queue »

Ce mode de communication est aussi appelé communication via queue.
Une application envoie des messages à une queue. Une seule des
applications connectées reçoit le message. Il peut y avoir plusieurs
applications en lecture sur la queue, mais une seule d’entre elles recevra
le message.

Le mode « publish-subscribe » ou « topic »

Ce mode de communication est aussi appelé communication via topic.
Une application envoie des messages à des topic.

Dans ce mode, on dit que les applications s'abonnent (subscribe) à un
topic, afin de recevoir les messages. Plusieurs applications peuvent être
abonnées à un même topic, et chacune d'elles reçoit une copie des
messages.

© Smile – Open Source Solutions

Page 17

MOMs open source

À la manière de la diffusion d’un magazine par exemple, l’émetteur publie
un message, et les différents destinataires s’abonnent pour recevoir une
copie du message.

C’est donc un échange de 1 vers N, mais qui peut être aussi bien « de P
vers N », car plusieurs applications peuvent écrire dans le topic.

Queues et topics

On voit bien les différences d’usage de ces deux modes. Dans le mode
queue, on peut imaginer qu’un message représente une unité de
traitement. L’application destinatrice reçoit le message et effectue un
traitement à partir du message, et dans ce cas il faut que le traitement ne
soit pas exécuté deux fois. Dans le mode topic, on peut voir le message
plutôt comme une unité d’information, qui peut intéresser différents
acteurs, différentes applications. Par exemple, un ordre de bourse sera
une unité de traitement, tandis qu’un cours de bourse sera une
information.

Queue et Topic sont regroupés sous le nom de « Domaine ». Ainsi, «
envoyer un message à un domaine » équivaut à « envoyer un message à
une queue ou à un topic ».

Quelques définitions

JMS introduit différents termes et concepts que nous allons rapidement
parcourir:

JMS Client

Un client JMS est une application écrite en Java envoyant et/ou recevant
des messages au moyen de l’API JMS.

© Smile – Open Source Solutions

Page 18

MOMs open source

Non-JMS Client

Un client non-JMS est une application envoyant et/ou recevant des
messages en communiquant avec le JMS Provider selon son protocole
particulier, soit en direct, soit par l’intermédiaire des fonctions d’une API.
Cette application n'est pas écrite en Java.

JMS Provider

Un Fournisseur JMS est une implémentation des services JMS écrite en
Java. Ainsi,i les MOMs que nous étudierons plus loin sont des JMS
Providers.

JMS Consumer

Un Consommateur JMS est une application qui reçoit et traite des
messages JMS.

JMS Producer

Un Producteur JMS est une application qui crée et envoie des messages
JMS. Une même application peut être à la fois JMS Producer et
Consumer.

JMS Message

Le message JMS est l'unité fondamentale de JMS. Il est envoyé et reçu
par des Client JMS.

JMS Domains

Les deux domaines JMS correspondent aux deux modes de
communication déjà évoqués : point à point avec les queues ou publish-
subscribe avec les topics.

Destination

Les objets destinations sont des objets servant à identifier la cible des
messages à envoyer ou à recevoir, c'est-à-dire des domaines, queues et
topics.

Encodage du Corps des messages

Même si le contenu et le format du corps sont fondamentalement l’affaire
des applications, JMS aide les applications à manipuler certains types
d’objets en fournissant différents types de corps de message.

© Smile – Open Source Solutions

Page 19

MOMs open source

Le corps des messages peut être encodé selon les 5 « Message Types »
disponibles :

 « TextMessage » : Le corps contient des caractères.
StringstockData;
TextMessage message;
message = session.createTextMessage();
message.setText(stockData);
String stockInfo; /* String to hold stock info */
stockInfo = message.getText();

 « BytesMessage » : Le corps contient une suite de bytes, selon le
langage Java

byte[]stockData; /* Stock information as a byte array */
BytesMessage message;
message = session.createBytesMessage();
message.writeBytes(stockData);
byte[]stockInfo; /* Byte array to hold stock information */
int length;
length = message.readBytes(stockData);

 « MapMessage » : Le corps contient une map. Une map est un type
de données reliant une clef (codée en String) a une valeur (codée
en String, Double ou Long)

message = session.createMapMessage();
/* First parameter is the name of the map element, * second is the value
*/
message.setString("Name", "SUNW");
message.setDouble("Value", stockValue);
message.setLong("Time", stockTime);
message.setDouble("Diff", stockDiff);
message.setString("Info", "Recent server announcement causes market
interest");
stockName = message.getString("Name");
stockDiff = message.getDouble("Diff");
stockValue = message.getDouble("Value");
stockTime = message.getLong("Time");

 « StreamMessage »

Ce type permet de concaténer plusieurs type natif (String, Double ou
Long).

/* Create message */ message = session.createStreamMessage();
/* Set data for message */
message.writeString(stockName); message.writeDouble(stockValue);
message.writeLong(stockTime);
message.writeDouble(stockDiff);
message.writeString(stockInfo);

stockName = message.readString();
stockValue = message.readDouble();
stockTime = message.readLong();
stockDiff = message.readDouble();
stockInfo = message.readString();

 « ObjectMessage » : Ce type permet de transférer un objet java.
 ObjectMessage message = session.createObjectMessage();
 message.setObject(myObject);

© Smile – Open Source Solutions

Page 20

MOMs open source

La structure du message JMS

Le message manipulé par le MOM JMS est composé des parties
suivantes:

 Une entête, qui a la même structure pour tous les messages, et
contient principalement les champs nécessaires à l'identification
et au routage du message.

 Des propriétés, qui viennent en quelque sorte compléter l'entête,
avec des attributs spécifiques, soit définis par le MOM en
complément de l'entête minimale JMS, soit définis par
l'application pour ses besoins particuliers.

 Le corps du message, qui peut avoir différents formats: texte, objets
Java ou données XML.

Les principaux champs de l'entête sont:

 JMSMessageID : identifiant unique du message

 JMSDestination : identification de la queue ou du topic destinataire
du message

 JMSCorrelationID : utilisé pour synchroniser de façon applicative
deux messages de la forme requête/réponse. Dans ce cas, dans
le message réponse, ce champ contient le messageID du message
requête

Selon l’image habituelle, l’entête correspond à ce qui est écrit sur
l’enveloppe, le corps correspond à ce qui est dans l’enveloppe. Le MOM
ne lit et n’utilise que les données de l’entête, y compris les propriétés.
Ainsi, la sélection de messages, que l'on verra plus loin, peut dépendre de
ces propriétés, mais non du corps du message.

Ordre des messages

Le MOM garantit qu'un message sur une queue sera remis au plus une
fois, mais il ne garantit pas que les messages seront remis dans l'ordre
dans lequel ils ont été émis.

En fait, il y a presque une impossibilité théorique à garantir l'une et
l'autre de ces deux propriétés: la remise unique, et la remise ordonnée.
En effet, un consommateur peut lire un message, et ne l'acquitter que
longtemps après. Si le consommateur n'acquitte pas, le message doit
être recyclé. Ainsi pour assurer la remise ordonnée, le MOM devrait
attendre que tous les messages jusqu'à N aient été non seulement reçus,
mais acquittés, avant de livrer un message N+1, ce qui aurait un effet
catastrophique sur les performances.

© Smile – Open Source Solutions

Page 21

MOMs open source

Nous verrons plus loin que les MOMs permettent une gestion des
transactions, qui permet en quelque sorte d’annuler des opérations qui
n’ont pas encore été validées, commitées, en ordonnant un retour arrière,
un rollback. Voir « Gestion des transactions », page 29.

La figure suivante montre comment un rollback, soit explicite, soit
implicite, c'est-à-dire provoqué par la fermeture de session, oblige à
recycler un message alors que les suivants ont déjà été délivrés.

Durée de vie d'un message

L'application émettrice peut spécifier la durée de vie du message. Le
message est donc 'valable' jusqu'à l'expiration de cette durée, au-delà le
MOM peut le détruire sans l'avoir remis. La plupart des MOMs
choisissent plutôt de l'aiguiller vers la Dead Message Queue, qui
permettra de garder la trace de l'événement, et de recycler le message le
cas échéant.

À noter que si l'on est dans le contexte d'une transaction, la durée de vie
démarre quand même à l'instant d'émission, et non à l’instant du commit.

© Smile – Open Source Solutions

Page 22

MOMs open source

Priorité

Une fonctionnalité optionnelle, mais utile, proposée par le JMS, est la
gestion des priorités, c'est-à-dire que la délivrance des messages
s’effectue selon leur priorité.

Un message de plus haute priorité peut donc « doubler » un message de
moindre priorité, pour autant que celui-ci n’ait pas encore été lu.

Remarquons que JMS 1.1 n'oblige pas les fournisseurs à implémenter
cette fonctionnalité.

Sélection des messages

JMS prévoit que les applications clientes ont la possibilité de
sélectionner les messages qu'elles lisent, sur la base des champs d'entête
et de propriétés. On voit bien sûr que, s’il y a sélection, les messages ne
seront forcément pas délivrés dans l'ordre.

La sélection des messages est définie dans JMS 1.1, elle est donc offerte
par tous les MOMs étudiés. La syntaxe est inspirée du SQL, elle peut
faire intervenir différents opérateurs de comparaison, d'expressions
logiques, et même des opérations arithmétiques.

À titre d'exemple, imaginons une application qui communique avec une
queue et lui envoie des messages avec les propriétés suivantes :
JMSType, market et amount. Une application cliente ne souhaitant
obtenir que les opérations sur le marché Euronext dont le montant est
inférieur à 1 000 000 €, appliquera le selector suivant : JMSType = 'order'
AND market = ''Euronext' AND amount < 1000000.

Certains MOMs peuvent accepter d'autres types de syntaxe, qui ne sont
pas requis par JMS 1.1, typiquement Xpath. Mais dans tous les cas, la
sélection porte sur entête et propriétés, et non sur le corps du message.

© Smile – Open Source Solutions

Page 23

MOMs open source

Aiguillage et spécialisation

On peut donc mettre en œuvre, au moyen de la sélection, une
spécialisation des consommateurs. En fait, dans une logique
d'affectation et de répartition de tâches, on peut distinguer trois
techniques:

 L'application émettrice, producer, place des messages dans des
queues différentes selon la nature de la tâche à effectuer. Et une
application spécifique est en lecture sur chacune des queues.

 L'application émettrice place les messages dans une queue unique,
mais la queue est ensuite éclatée en plusieurs queues, ceci soit
au moyen d'une application relais jouant un rôle d'aiguillage, soit
au moyen d'un traitement d'aiguillage, si le MOM le permet.

© Smile – Open Source Solutions

Page 24

MOMs open source

 L'application émettrice place les messages dans une même queue,
et les applications consumer sélectionnent les messages selon
leur spécialisation. Ici « Consumer C1 » prend les messages
jaunes, C2 les messages bleus, C3 les messages violets.
L’application producer n’a pas à connaître cette répartition.

Trois manières de gérer à peu près le même problème, à différents
niveaux. Dans le premier cas la logique d'aiguillage est intégrée au
producer, dans le dernier cas, elle relève du consumer, et dans le cas
intermédiaire, elle est déportée dans une application dédiée.

Synthèse JMS

JMS est une API, et cette API correspond à des services d'échange entre
des producteurs et des consommateurs de messages, s’appuyant sur des
concepts que nous avons présentés. Au-delà de l’API donc, JMS définit
les fonctionnalités centrales des MOMs.

JMS spécifie le service, mais ne spécifie pas comment ce service est mis
en œuvre. Chaque fournisseur, JMS Provider, est libre de ses choix
d’implémentation.

Comme on l’a vu plus haut, les protocoles d’échanges peuvent également
être considérés comme des choix d’implémentation propres à certains
MOMs, même si nous considérons qu’ils ont une réelle importance.

La spécification JMS n'est pas en tous points complète. Certaines
fonctions essentielles au fonctionnement d'une plateforme MOM ne sont
pas décrites dans la spécification et font donc l'objet d'implémentations
particulières. C'est le cas en particulier pour la configuration et
l'administration du service de messagerie, pour la sécurité (intégrité et

© Smile – Open Source Solutions

Page 25

MOMs open source

confidentialité des messages) et pour certains paramètres de qualité de
service.

Par ailleurs, la plupart des MOMs proposent des fonctions additionnelles
qui se présentent comme des atouts spécifiques par rapport aux offres
concurrentes (par exemple les topics hiérarchisés, des fonctions de
sécurité et des mécanismes de haute disponibilité, etc.). Bien sûr, la
mise en œuvre de ces fonctionnalités se fait au détriment de la capacité à
changer de MOM, en respectant l’API JMS.

Comme d’autres spécifications d’interface, comme le SQL par exemple, la
promesse de pouvoir changer d’implémentation de MOM JMS de manière
transparente, n’est pas facilement tenue. Mais ce n’est pas très grave.
La spécification commune apporte déjà le bénéfice d’une communauté de
vision, d’approches, et de compétences. Un architecte peut raisonner
sur la base d’un MOM sans savoir nécessairement de quelle « marque » il
sera, et un développeur qui a pratiqué JMS avec un premier MOM,
pourra presque immédiatement en pratiquer un second.

Caractéristiques principales des
MOM

Nous parcourons ici les principales classes de fonctionnalités offertes par
les MOMs, en identifiant les possibilités communes à tous les outils, et
celles qui sont plus spécifiques.

Langages d'implémentation, APIs et environnements supportés.

Les MOMs open source que nous étudions ici sont tous codés en Java.
Nous ne les avons pas sélectionnés sur ce critère, mais il se trouve que
tous les éditeurs concernés ont fait ce choix. Il est assez naturel
puisque le MOM doit souvent s’insérer dans un environnement
hétérogène, en termes de systèmes d’exploitation et de serveurs. La
portabilité est donc primordiale, et elle est l’un des atouts majeurs de
l’environnement Java. S’ajoute à cela, la disponibilité dans cet
environnement de librairies puissantes et éprouvées, pour les
fonctionnalités fondamentales en matière de réseau, de sécurité, d’accès
à des bases de données, de gestion transactionnelle, etc.

Cela dit, le langage dans lequel le MOM lui-même est codé pourrait être
d’une importance secondaire. De même qu’il importe peu de savoir dans
quel langage MySql est codé, du moment que nous pouvons en invoquer
les fonctionnalités depuis divers environnements. Ce qui importe pour
les applications, c’est la disponibilité d’APIs, de fonctions ou méthodes
qui peuvent être appelées pour invoquer les services du MOM.

Mais certains MOMs se sont largement focalisés sur l’environnement
Java, y compris pour les APIs, c'est-à-dire qu’ils n’offrent pas d’APIs pour
d’autres environnements. C’est, selon nous, un handicap majeur, car la

© Smile – Open Source Solutions

Page 26

MOMs open source

capacité à relier des applications diverses, à gérer l’hétérogénéité, est
précisément une des finalités du MOM. S’il ne peut être mis en œuvre
qu’entre des applications Java, il perd une partie de son utilité.

Lorsque le MOM offre des APIs pour d’autres environnements que Java,
elles se présentent sous la forme de librairies de fonctions dans
l’environnement cible, par exemple en C ou en PHP.

La figure suivante permet de bien distinguer ces notions:

 L'API proprement dite, qui est l'interface appelée par l'application.

 Les librairies du provider, invoquées par cet API, représentées ci-
dessous en tant que « JMS Provider API »

 Le Broker, qui est un processus indépendant de l'application, en
charge de la gestion des messages.

Les fonctions de la librairie JMS échangent avec le broker par un
protocole réseau.

L'échange peut impliquer plusieurs brokers, qui échangent entre eux. Le
protocole interne du MOM, entre brokers, peut être le même, ou bien
différer du protocole externe.

Rappelons que, par définition, JMS est une API pour l'environnement
Java. Dans les exemples précédents, les applications sont donc
nécessairement Java.

© Smile – Open Source Solutions

Page 27

MOMs open source

Si le protocole d'échange avec le broker est standard, une application
peut, théoriquement, échanger directement avec le broker, sans passer
par une librairie de fonctions. Il suffit qu’elle respecte le protocole
d’échange avec le broker. Mais mettre en œuvre un protocole réseau est
assez complexe, et source d’erreurs, de sorte que ce n’est pas le rôle
d’une application en général.

Sur l’exemple ci-dessus, on est en environnement hétérogène : certaines
applications invoquent le MOM via les APIs fournies, tandis que
l’application bleue échange directement avec le broker selon le protocole
réseau.

Des APIs peuvent être fournies pour d’autres environnements que JEE,
par exemple C++, PHP, .Net, Ruby, Perl. Plus la liste de langages grâce
auxquels on peut accéder au MOM est grande, meilleures sont les
possibilités d'intégration.

Protocoles

Lorsqu’une application appelle une API pour invoquer le MOM, la
fonction d’API prend en charge l’échange avec un broker du MOM.

L’échange entre l’application et le broker implique un protocole. Le
protocole définit comment les services du MOM seront spécifiés, leurs
paramètres, et le format des messages. Par exemple, le protocole doit
spécifier que le nom d’une queue de message est représenté par une
chaîne de caractères codés en UTF8.

On peut distinguer des protocoles externes, entre application et brokers,
et des protocoles internes, entre brokers.

Il existe deux standards en matière de protocole MOM : AMQP (Advanced
Message Queuing Protocol) et STOMP. On les appelle des « wire-level

© Smile – Open Source Solutions

Page 28

MOMs open source

protocols » (protocoles filaires), dans le sens où ils sont en charge de gérer
les échanges sous la forme d’une suite d’octets transmis.

Comme toujours en matière de communication réseau, on a affaire à une
pile de protocoles, c'est-à-dire que le protocole du MOM s’appuie lui-
même sur des couches de protocoles inférieures. Ainsi, STOMP peut
s’appuyer, à la manière du HTTP, sur une pile TCP/IP. On appelle
support de communication logique le protocole de transmission du
message, par exemple STOMP dans l’exemple précédent.

Le schéma précédent fait apparaître un exemple de pile de protocoles.
Les différentes flèches horizontales représentent les échanges virtuels,
aux différents niveaux : au niveau le plus haut, une application échange
avec une autre, en fait le broker d’un JMS provider échange avec son
homologue. Les messages descendent puis remontent la pile des
protocoles, comme classiquement.

Notons que du côté des MOMs, on parle souvent de « connecteurs » pour
parler des différents protocoles.

Traitement des messages par le MOM

La fonction naturelle, essentielle, d'un MOM n’est pas d'effectuer des
traitements sur les messages qui lui sont confiés. Sa fonction est de les
acheminer de manière fiable jusqu'à leur destinataire. C'est même ce qui
distingue le MOM d'un EAI ou bien d'un ESB: il achemine les messages
et c'est tout. En particulier, le MOM ne « regarde » pas le contenu des
messages, ce n'est pas son problème.

© Smile – Open Source Solutions

Page 29

MOMs open source

Pourtant, l'un des MOMs que nous étudierons, ActiveMQ, offre cette
possibilité supplémentaire, de définir des traitements à exécuter sur les
messages qui lui sont confiés. Ces traitements sont définis en référence
aux différents Enterprise Integration Patterns, un recensement des
familles de traitements (cf « Enterprise Integration Patterns », page 35.

Un cas simple, par exemple, est un traitement d'aiguillage, en fonction
du contenu du message: le message concerne sur des ordres de bourse,
si l'ordre porte sur une valeur EuroNext, il doit être routé sur une queue
A, s'il porte sur une valeur du NYSE, il doit être routé sur une queue B.

Un autre exemple serait une règle d'envoi d'une copie: si le montant de
l'ordre de bourse est supérieur à 1 million, alors il faut envoyer un
message en copie sur une queue C.

La question importante est: Est-ce une bonne idée d'insérer ces règles et
ces traitements dans le MOM ? Ne sont-ils pas plutôt du ressort de
l'application ? Le MOM ne devrait-il pas plutôt rester dans son rôle de
tuyauterie passive ?

La réponse n'est pas immédiate. Sortir certaines règles des applications
peut être un moyen de gagner en flexibilité, d'intervenir dans la gestion
des flux sans modifier les applications. Mais si l'on met en œuvre de tels
traitements de manière massive, alors on a en fait éparpillé des morceaux
d'applications dans le middleware, et cela au détriment de la
maintenabilité, et de la cohérence de vision.

Quoi qu'il en soit, si le MOM n'offre pas de telles possibilités, ou bien
qu'on ne veut pas en faire usage, il est toujours possible, et même aisé,
de les mettre en place dans des applications relais.

Gestion des transactions

On peut distinguer trois niveaux dans la gestion transactionnelle des
messages:

 La gestion des acquittements

 La gestion des transactions JMS

 La gestion des transactions XA

Gestion des acquittements

L'application destinataire, qui consomme les messages, doit généralement
effectuer un traitement qui dépend de ce message. Le message ne doit
donc pas seulement être lu, il doit être traité. C'est une distinction
importante, dans la mesure où l'application pourrait s'arrêter
brutalement (bug ou bien panne matérielle) entre l'instant où elle a lu le
message et l'instant où elle a fini de le traiter avec succès.

© Smile – Open Source Solutions

Page 30

MOMs open source

C'est pourquoi le fonctionnement normal de l'application consommatrice
est en trois étapes:

1.Recevoir un message

2.Traiter le message

3.Acquitter le message, c'est-à-dire notifier la bonne fin du
traitement.

Tant que le message n'a pas été acquitté, il est conservé par le broker. Si
le message n'est jamais acquitté, il est recyclé, c'est-à-dire qu'il sera
remis lors d'un prochain appel d'une application cliente. Notons que
c'est ce principe qui rend presque impossible la garantie de délivrance
ordonnée pour les MOMs en général.

Une application cliente peut acquitter en un seul appel, tous les
messages reçus et encore non acquittés. C'est donc une forme de
gestion transactionnelle en lecture.

Transactions JMS

Il est possible de réunir différents ordres d'émission et de réception de
messages en une transaction, un ensemble insécable d'opérations. C'est-
à-dire que soit toutes ces opérations seront exécutées avec succès, soit
aucune d'entre elles ne sera exécutée.

Comme pour les bases de données, l'application ouvre une transaction,
effectue différentes opérations JMS, puis termine la transaction par un
ordre commit. Si l'application détecte une condition d'erreur qui interdit
de terminer avec succès l'ensemble des opérations, elle demande un
rollback, c'est-à-dire un retour arrière sur toutes les opérations
précédentes. Si l'application « se plante », et donc s'interrompt sans
avoir fait ni commit, ni rollback, un rollback sera exécuté de manière
implicite. Dans le cas d'émissions de messages, aucun message n'a en
fait été émis avant le commit. Dans le cas de réception de messages,
aucun acquittement n'aura été exécuté avant le commit.

Il y de nombreux usages de ces transactions JMS, d'une manière
générale pour assurer la cohérence:

 Une application peut par exemple émettre 10 messages et être
assurée que soit tous seront bien émis, soit aucun ne le sera.

 Une application qui jouerait un rôle de relais pourra ainsi lire un
message sur une queue, le traiter, et écrire un message résultant
sur une queue en aval, tout cela au sein d'une transaction, et
donc avec la garantie de ne pas perdre de message si elle est
interrompue entre la lecture et l'écriture.

© Smile – Open Source Solutions

Page 31

MOMs open source

 Enfin, de la même manière, une application qui doit réceptionner
plusieurs messages avant d'effectuer un traitement, peut réunir
ces lectures en une même transaction.

Voici un petit exemple de code Java utilisant les transactions.
session = connexion.createTopicSession(true, Session.AUTO_ACKNOWLEDGE);

void onMessage(Message msg){
 try{

 // un traitement, susceptible de lever une exception
 m2 = …;
 publisher.publish(m2);
 session.commit(); // acquittement des messages

 }catch(Exception e){
 session.rollback(); // annulation des messages

 }
}

Si le traitement réussit, le programme client exécute un commit, sinon, il
demande un rollback, c'est-à-dire qu'il ordonne au broker tout annuler.

Transactions XA

Enfin, la troisième manière de gérer les transactions s’inscrit dans le
cadre de « XA » en environnement Java. XA est une spécification
définissant les interfaces qui permettent de mettre en œuvre des
transactions hétérogènes, c'est à dire s'étendant à plusieurs ressources
de différentes natures, telles que bases de données, serveurs
d'application (EJB), ainsi donc que les MOMs. En environnement Java,
XA est disponible via l'API JTA, Java Transaction API.

Il s'agit donc de réunir, dans un même ensemble insécable, indivisible,
des traitements portant sur ces diverses ressources.

Un cas très simple et typique est celui d'une application qui:

 Lit un message auprès d'un broker de MOM

 Effectue une écriture sur la base de données.

En l'absence de transactions XA, l'application devrait acquitter son
message auprès du MOM soit avant, soit après, l'écriture en base. Mais
si elle acquitte avant, puis se plante, elle n'a pas effectué l'écriture, mais
le message est pourtant considéré traité avec succès. Si à l'inverse elle
écrit dans la base en premier, mais se plante avant d'avoir acquitté le
message, alors le message sera recyclé, et il y aura donc eu deux
écritures.

Sur cet exemple très simple, on voit donc que les transactions XA
peuvent être absolument indispensables dans certains contextes afin
d'assurer une réelle garantie de cohérence au niveau global du système
d'information. Bien entendu, les transactions peuvent être
sensiblement plus larges et plus complexes.

© Smile – Open Source Solutions

Page 32

MOMs open source

Dead Message Queue

Même si ce n'est pas requis par la spécification JMS, différents MOMs
définissent une queue spéciale appelée « Dead Message Queue » ou DMQ,
qui correspond à une sorte de poubelle, où l'on pourra retrouver des
messages qui auraient pu être perdus pour différentes raisons
techniques.

 Généralement, la DMQ reçoit les messages :

 qui n'ont pas une destination valide.

 dont la destination est remplie. (limite, plus de mémoire, ...)

 dont la durée de vie (TTL, time to live) a expiré

 qui se sont fait rejeter un certain nombre de fois (configurable). Ces
messages apparaissent comme des messages « poisons » polluant
la plateforme. Par exemple, un message qui fait planter
systématiquement un client est un message polluant.

Bien sûr, il convient qu'un administrateur analyse ces messages pour en
déterminer les causes d'erreur éventuelles. La DMQ contribue à garantir
qu'aucun message n'est perdu par le MOM, il est donc naturellement
recommandé qu'elle soit persistante.

Persistance des messages

Comme on l’a vu en introduction, la fiabilité et la robustesse sont deux
qualités essentielles, constitutives des MOMs, c'est-à-dire qu’un MOM
doit acheminer un message qui lui a été confié, sans jamais le perdre,
même en présence d’événements inattendus.

Si l’application destinatrice n’est pas en mesure de recevoir le message,
le MOM peut être amené à le conserver un temps indéfini. Or le MOM
lui-même peut être arrêté, que ce soit du fait de pannes matérielles ou
pour des raisons de maintenance.

Pour garantir que les messages ne seront pas perdus, le MOM doit donc
les stocker de manière sécurisée, de manière persistante.

Il est possible de faire fonctionner un MOM dans un mode sans
persistance, c'est-à-dire dans un mode où les messages sont seulement
conservés en mémoire. On peut choisir ce mode pour atteindre des
performances plus élevées – car la persistance a un coût – au détriment
bien sûr de la fiabilité.

© Smile – Open Source Solutions

Page 33

MOMs open source

La persistance est toutefois importante, voire essentielle, dans les cas
suivants :

 Lorsque les messages sont critiques, par exemple s’il s’agit de
transactions financières.

 S’il peut y avoir un déséquilibre positif entre producteurs et
consommateurs, c'est-à-dire que de manière durable les
applications productrices émettent plus de messages que les
applications destinatrices ne peuvent lire et traiter. Les
capacités mémoires risqueraient d’être dépassées.

 Lorsque le traitement des messages est fortement asynchrone, de
manière structurelle, c'est-à-dire par exemple si les messages ne
sont traités qu’en fin de journée, d’une manière que l’on pourrait
assimiler à un traitement batch.

 Lorsque l’on doit mettre en œuvre une gestion des transactions, qui
implique une utilisation plus importante de la mémoire. Les
messages utilisant les transactions ne sont supprimés que
lorsque les transactions sont validées.

 En présence de réplication, lorsqu’elle est offerte. Il est nécessaire
de mettre en œuvre la persistance pour accroître les possibilités
de stockage : un broker ne pourra gérer la réplication de tous les
domaines de la plateforme MOM en mémoire.

La persistance peut être mise en œuvre par le MOM de différentes
manières :

 Sur de simples fichiers

 Sur une base de données relationnelle

 Au moyen d’un dispositif spécifique combinant deux supports de
persistance.

Le stockage sécurisé des données et leur gestion transactionnelle étant
un problème déjà parfaitement résolu par les SGBD relationnels, la
plupart des MOMs appuient leur persistance sur une telle base. L’accès
par JDBC leur permet de supporter un large éventail de gestionnaire de
base de données (Mysql, Postgres, Oracle, DB2, ...), y compris des bases
100% java telles que Hypersonic et Derby.

Tous les MOMs étudiés ici supportent la persistance via JDBC.
Cependant, chaque MOM stocke différemment les données. Certains
introduisent un mode de persistance optimisé. Ils sont amenés parfois à
combiner trois types de stockage : fichier, base de données et mémoire.
Et ceci dans le but d'optimiser la fiabilité et la performance. C’est donc un

© Smile – Open Source Solutions

Page 34

MOMs open source

aspect que nous développerons pour chacun des outils, et le dernier
chapitre présentera les résultats de différents tests de performance.

Fonctionnalités avancées

Code générique et JNDI

Comme nous l’avons souligné, le principe d’une spécification telle que
JMS est que l’on peut écrire un programme s’interfaçant à un provider
JMS, c'est-à-dire à un MOM, sans être dépendant d’une implémentation
particulière, d’un MOM en particulier.

Pour cela, le programme « JMS Client », ne doit pas instancier directement
les classes du MOM, et la bonne pratique est de les obtenir à partir d’un
fournisseur JNDI.

De même que JDBC est une interface permettant d’accéder à une base
de données, de même JNDI ou « Java Naming and Directory Interface » est
l’interface qui permet l’accès à des services de nommage et de répertoire
de façon standard. L’utilisation la plus commune de l’interface JNDI
concerne l’accès à un annuaire LDAP. Mais au-delà de la fonctionnalité
usuelle de gestion d’une base de personnes, d’utilisateurs, on peut
utiliser l’API JNDI simplement pour accéder à des objets désignés par des
noms. Ainsi, dans le contexte des MOMs, JNDI sert à stocker des objets
génériques du MOM, afin de transmettre leur implémentation spécifique
de JMS au programme.

Le premier objet que le programme obtient est une connectionFactory,
une usine à connexions. Puis la connectionFactory permettra de créer
un objet Connection, à partir duquel on créera un objet Session, qui lui-
même pourra instancier des objets Message, MessageProducer et
MessageConsumer.

Ce que l’on peut représenter comme suit :

© Smile – Open Source Solutions

Page 35

MOMs open source

Enterprise Integration Patterns

Le livre de Gregor Hohpe et Bobby Woolf intitulé « Enterprise Integration
Patterns: Designing, Building, and Deploying Messaging Solutions », est un
ouvrage de référence en matière de middleware. Il recense en particulier
toutes les formes d’interactions par middleware, et tous les types de
traitements que peut réaliser un middleware. Par exemple un traitement
de routage d’une queue vers une autre, selon différentes règles. Ou
encore des traitements de fusion ou de fission des messages : le moteur
de traitement peut éclater un message en plusieurs, ou à l’inverse réunir
différents messages en un seul.

EIP se ne limite pas à cela. Il décrit toutes les manières à disposition
pour intégrer des logiciels entre eux. Catégorisant ces patterns selon leur
objet, c’est un peu la bible des architectes et urbanistes.

Voici la liste des catégories référencées par EIP ainsi que quelques
exemples :

 Styles d’intégration : Liste les supports de communications comme
le transfert de fichier, le partage de donnée, l’invocation de
procédure et la communication par message. On retrouve ici les
type de middleware évoqués en introduction

© Smile – Open Source Solutions

Page 36

MOMs open source

 Les systèmes de messagerie : Cette catégorie de pattern regroupe
les composants des systèmes basés sur une communication par
messages comme un message, un traducteur de message, un
routeur de message, …

 Les cas d’utilisation d’une communication par messages : Cette
catégorie décrit le concept de queue, de topic, de bridge de
message et autres

 Méthode de construction des messages : message de commande,
message de document, message d’événement, …

 Le routage des messages : routage basé sur le contenu, agrégation
de message, …

 Transformation de message : envelopper un message, enrichir le
contenu, …

 Réception de message : Cette catégorie décrit les différentes
manières de recevoir un message comme la consommation à
callback, abonnement durable, sélection de message, …

 Administration de la plateforme : Cette catégorie décrit les
différentes manières de gérer la plateforme : persistance,
détournement de message, écoute passive, …

Interopérabilité entre MOMs

Les protocoles filaires des MOMs (par exemple entre une application et
un broker ou entre un broker et un autre) sont parfois sans spécification
et sans documentation. Parmi les MOMs de notre sélection, aucun n’offre
nativement une passerelle vers d’autres MOMs.

Pour résumer, la partie haute de la figure ci-dessous, c'est-à-dire
l'interconnexion des MOMs au niveau du protocole interne, n'est pas
possible. Il faudrait que les deux MOMs utilisent le même protocole
interne, ce qui n’est en général pas le cas.

Il ne suffit pas d’assurer la transmission des messages, il faut gérer la
propagation de tout l’annuaire des domaines.

© Smile – Open Source Solutions

Page 37

MOMs open source

À des fins d’interopérabilité, certains MOMs ont mis en place un système
dit de « Bridge » (Passerelle). C'est une application à deux faces qui est,
d'un côté connectée à un MOM et de l'autre connectée à un autre.
Lorsqu’elle reçoit un message d’un côté, elle le transmet de l’autre.

Cette solution peut rencontrer des limites en termes de performance,
flexibilité et de sécurité. Hormis le temps et la complexité de mise en
place, la passerelle risque d’être un goulot d'étranglement, et un point de
fragilité. Au sein d’un même système d’information, on vise à l’évidence,
un MOM unique. Mais bien sûr, les cas possibles d’hétérogénéité sont
nombreux : rachat et intégration d’entreprise, relations avec des
partenaires, etc.

Passerelle à base d’ESB

Le travail d'intégration est laissé aux solutions du type EAI ou ESB
(Enterprise Service Bus). À l’aide de l’ESB Mule, par exemple, il est assez
simple de mettre en place une passerelle entre deux domaines de deux
MOMs - Pas besoin d’application supplémentaire pour jouer le rôle de
passerelle ni même de toucher à une ligne de code Java. Regardons
comment configurer Mule pour cette tache. Pour ce faire, il faut créer
deux connecteurs : un vers chacun des MOMs. Puis il faut créer un
service par domaine qui aura la mission de transmettre les messages.
Voici une partie du fichier de configuration.

[...]
<jms:connector name="jmsConnectorJBOSS"
 connectionFactoryJndiName="java:/ConnectionFactory"
 jndiInitialFactory="org.jnp.interfaces.NamingContextFactory"
 jndiProviderUrl="jnp://localhost:1099"
 jndiDestinations="true"
 forceJndiDestinations="true"
 specification="1.1"/>
<jms:connector name="jmsConnectorWEBLOGIC"
 jndiProviderUrl="t3://localhost:7001"
 connectionFactoryJndiName="javax.jms.QueueConnectionFactory"
 jndiDestinations="true"

© Smile – Open Source Solutions

Page 38

MOMs open source

 forceJndiDestinations="true"
 jndiInitialFactory="weblogic.jndi.WLInitialContextFactory"
 specification="1.0.2b"/>

<model name=”JMSBridge”>
<service name="JBOSS_WebLOGIC">
 <inbound>
 <jms:inbound-endpoint topic="my.destination" connector-
ref="jmsConnectorJBOSS"/>
 </inbound>
 <outbound>
 <pass-through-router>
 <jms:inbound-endpoint topic="my.destination" connector-
ref="jmsConnectorWEBLOGIC"/>
 </pass-through-router>
 </outbound>
</service>
</model>

La tâche n’est pas d’une grande complexité, mais elle peut être
fastidieuse, et donc coûteuse, puisqu’il faut relier des domaines entre
eux un par un, sans en oublier aucun. Et bien sûr, cette configuration
devra être l’objet d’une maintenance, en fonction des variations de
configuration intervenant de part et d’autre.

Dans notre exemple, la passerelle met en correspondance :

 La queue Q2 du MOM A à la queue Q47 du MOM B

 La queue Q1 du MOM A à la queue Q12 du MOM B

 Le topic T1 du MOM A à la queue T52 du MOM B

Dans la pratique, cette passerelle est généralement réalisée en Java et
utilise le JMS. On parle de « JMS Bridge » ou de passerelle JMS.

La mise en place d'une passerelle rend caduque certaines fonctionnalités
incluant plusieurs brokers. Des fonctionnalités comme le partage de
média de stockage ou le clustering ne marcheront plus de manière
naturelle. Deux MOMs différents impliquent deux politiques différentes
de persistance, de réplication, de topologie.

© Smile – Open Source Solutions

Page 39

MOMs open source

Ceci étant, il est possible de multiplier les passerelles à des buts de
répartition de charge ou de robustesse uniquement dans les cas de
liaison de queue. D'autres solutions sont envisageables, mais cela reste
des développements spécifiques relatifs à des problématiques
d'intégration. Un exemple simple serait de buffériser les transactions. Il
est en effet bien plus performant de regrouper la réception ou l’envoi de
plusieurs messages dans une seule et même transaction.

Gestion de la sécurité

Étant donné le rôle souvent central d’un MOM dans un système
d’information, les questions de sécurité sont évidemment cruciales. Si
n’importe quelle application peut se connecter au MOM et se mettre en
lecture sur une queue, on voit qu’il sera facile de pirater le système et
d’accéder à des données critiques, ou d’injecter des messages.

Un MOM interagit avec des applications, lesquelles interagissent avec
d’autres applications, ou avec des utilisateurs. La question de la
sécurité dans le contexte des MOMs est semblable à ce qu’elle est dans le
contexte des bases de données. Les brokers doivent authentifier les
applications qui s’y connectent, mais ils doivent aussi contrôler les droits
spécifiques de chaque application vis-à-vis de chaque opération sur
chaque queue ou topic. Et les brokers doivent aussi authentifier les
autres brokers avec lesquels ils échangent.

Il est essentiel de mettre en place toute la politique de sécurisation du
MOM dès son premier déploiement, quelle que soit la nature des
informations échangées, ou la configuration réseau, car une fois le MOM
institué comme standard d’échange, il est à craindre qu’on ne se
reposera pas la question de la sécurité pour chaque nouvelle application
qui en aura l’usage.

Les MOMs que nous étudions offrent la possibilité de spécifier les règles
d’authentification et d’habilitations au moyen d’un provider de sécurité,
utilisant le cadre de JAAS, Java Authentication and Authorization Service.
Le MOM propose son propre plugin JAAS, dont le comportement est
configuré par un fichier Xml, ce qui convient le plus souvent, mais il est
envisageable également de mettre en place un plugin JAAS spécifique.

© Smile – Open Source Solutions

Page 40

MOMs open source

Administration et monitoring

Les MOMs offrent différentes possibilités d’administration et de
monitoring :

API spécifique

Configuration et déploiement

Les MOMs peuvent fournir plusieurs modes de configuration : fichiers de
configuration, messages adressés aux brokers, à travers différentes
syntaxes (Ini, Spring, DSL, …), plus ou moins compliquées. On remarque
une tendance à intégrer le MOM au sein d'environnements comme
Spring. L’intérêt d’intégrer la configuration à Spring est par exemple la
possibilité de lancer un broker à partir d’un outil le supportant. Ci-après
un exemple issu de Mule.

<spring:beans>
<spring:bean id="activeMqConnectionFactory1"

class="org.apache.activemq.xbean.BrokerFactoryBean">
<spring:property name="config"

value="file:conf/activemq/global/activemq_1.xml" />
<spring:property name="start" value="true" />

</spring:bean>
</spring:beans>

Dans certains cas, le MOM est intimement intégré à un serveur
d'application - c’est le cas de JBoss - et ainsi utilise ses fichiers de
configuration. Cette intégration est plutôt une gêne qu’autre chose.

Les MOMs peuvent aussi permettre de modifier leur configuration à
chaud. Par exemple, il est utile d'avoir la possibilité d'ajouter des brokers
à la volée sans avoir à redémarrer la plateforme, qui impliquerait une
interruption. Les messages non persistants doivent être sauvegardés et
remis en mémoire lors du démarrage, ce qui ne se fait pas
automatiquement d’ailleurs.

Les MOMs étudiés sont tous réalisés en Java. Ils sont tous utilisables
sur les plateformes supportant le Java 5 (Linux, Windows, Mac OS,
Solaris, HP UX, AIX …).

Répartition de charge applicative

On parle parfois des queues comme mettant en œuvre un échange « de 1
vers 1 ». C'est exact pour un message donné, mais ce n'est pas
nécessairement le cas pour l'ensemble du flux de messages. On a vu en
effet que plusieurs applications clientes pouvaient être en lecture sur
une même queue. Dans ce cas, le MOM délivre chaque message à une et
une seule des applications. Les règles de choix de l'application ne sont

© Smile – Open Source Solutions

Page 41

MOMs open source

pas spécifiées, mais le plus souvent il s'agit d'un simple round robin,
c'est-à-dire une attribution cyclique, « à tour de rôle ».

Ainsi, un MOM peut offrir un moyen très simple et robuste de mettre en
œuvre une répartition de charge applicative.

Considérons que chaque message représente une demande de traitement,
un par exemple un traitement d'OCR (reconnaissance de caractères) qui
consomme beaucoup de CPU. Une application principale est en charge
de définir chaque traitement unitaire, dont elle écrit les caractéristiques
dans un message, qu'elle adresse sur une queue du MOM. Le
traitement est réparti sur une dizaine de serveurs physiques, sur
lesquels tourne la même application, dont chaque exemplaire, chaque
« instance », boucle sur le traitement:

 Recevoir un message

 Effectuer le traitement

 Acquitter le message.

Le flux de travaux est donc réparti de manière équilibrée entre les
différents serveurs. Et notons que même si l'affectation est bêtement
cyclique, l'équilibrage est satisfaisant puisque chaque serveur reçoit des
travaux selon sa capacité à traiter.

Et l’on peut même spécialiser les consumers, si besoin, en leur faisant
sélectionner dans la queue, les tâches qu’ils savent faire.

Topologie et réseau de brokers

Un MOM peut être constitué d’un unique broker, ou bien de différents
brokers échangeant en réseau.

Selon quels critères peut-on définir ces questions de topologie ?

Les questions essentielles porteront sur :

© Smile – Open Source Solutions

Page 42

MOMs open source

 Les performances et la tenue en charge

 La tolérance aux pannes matérielles

 La tolérance aux pannes réseau

En général, sur une même plateforme, c'est-à-dire un ensemble de
serveurs relevant d’un même datacenters et connectés à très haut débit,
un unique broker peut suffire, pour autant que sa haute disponibilité
soit assurée, et qu’il ait la capacité à traiter la volumétrie requise.

Nous verrons plus loin comment traiter la haute disponibilité.
Concernant la capacité, comme nous le verrons dans les benchmarks, les
MOM sont des outils construits pour de hautes performances, et un
unique broker pourra acheminer plus de 1000 messages par seconde en
mode persistance, et plus de 5000 sans persistance. Dans beaucoup de
cas, cela peut suffire. D’autant qu’il s’agit là de débits de traitement et
d’acheminement, il est toujours possible de confier les messages au MOM
à un débit plus élevé en présence de pics.

Du point de vue réseau, on peut représenter cette configuration à un
seul broker, dans un seul datacenter, simplement comme ceci :

D’un point de vue logique, on peut le visualiser comme ceci, une
configuration « hub and spoke », noyau et rayons :

© Smile – Open Source Solutions

Page 43

MOMs open source

C’est principalement lorsque les applications sont réparties sur plusieurs
datacenters que l’on doit envisager des configurations à plusieurs
brokers.

Rappelons que la disponibilité du MOM n’est pas juste une bonne chose,
elle est absolument fondamentale pour les applications. Lorsqu’un
utilisateur veut se connecter au site web de sa banque, on préfère bien
sûr que ce site soit disponible. S’il ne l’est pas, l’utilisateur est
mécontent, mais il peut ré-essayer un peu plus tard.

Pour une application s’adressant à un MOM, la question de disponibilité
s’analyse différemment :

 Si le concepteur de l’application peut être certain que le MOM est
toujours disponible, il ne traite pas le cas d’indisponibilité, ou
plus exactement, il considère ce cas comme une erreur fatale, ou
en d’autres termes : « pas de MOM, pas d’appli ». C’est souvent
la politique d’une application vis-à-vis de sa base de données.

 Si au contraire l’indisponibilité du MOM est possible, le concepteur
de l’application doit gérer ce cas, ce qui peut changer
radicalement la logique de son application, et amener une grande
complexité. L’application est-elle supposée « mettre de côté » le
message en attendant le retour du MOM ? Non, certainement
pas, ce serait une erreur de s’engager dans cette voie. Le MOM
lui-même est déjà le moyen de « mettre de côté » le message, en
cas d’indisponibilité de l’application destinataire.

Ainsi, nous considérons qu’une application qui utilise un MOM est, le
plus souvent, dans un mode où l’indisponibilité du MOM est une erreur
fatale.

Et pour l’application, le MOM est indisponible lorsque le broker est
indisponible ou bien n’est pas joignable.

C’est pourquoi, lorsqu’un système d’information est réparti sur plusieurs
datacenters, connectés en WAN, on préconise de disposer d’un broker

© Smile – Open Source Solutions

Page 44

MOMs open source

dans chaque datacenters. Ainsi, même lorsque la connectivité est
perdue entre les datacenters, toutes les applications peuvent continuer à
échanger avec le MOM, via un broker local.

Ce qui donne, d’un point de vue réseau, le modèle suivant :

Et bien sûr, d’un point de vue logique :

En présence de multiples brokers, le MOM fonctionne toujours sur un
principe de « store and forward », c'est-à-dire que chaque broker conserve

© Smile – Open Source Solutions

Page 45

MOMs open source

les messages jusqu’à ce qu’il ait pu les transmettre à un autre broker,
ceci bien sûr dans une logique transactionnelle. Les brokers échangent
entre eux afin d’identifier les besoins de routage des messages. C'est-à-
dire que lorsqu’une application « D » indique à son broker local qu’elle est
en lecture sur telle queue ou tel topic, le broker local échange avec les
autres brokers pour les informer de cette attente, et obtenir les messages
de cette queue.

Notons qu’il n’y a pas de notion de « broker affecté à la gestion d’une
queue », ni de « queue affectée à un broker », la gestion de toutes les
queues est véritablement distribuée entre les brokers.

Tolérance aux pannes

Nous avons abordé plus haut, en évoquant la topologie, la question de la
tolérance aux pannes réseau, aux pertes de connectivité.

Voyons maintenant la tolérance aux pannes au niveau d’un broker
particulier.

Les techniques mises en œuvre sont en fait les mêmes que pour
n’importe quel serveur d’application : redondance du serveur et partage
des données.

Réplication maître-esclave

Lorsqu’on met en place une réplication d’un broker maître vers un
broker esclave, chaque broker possède son propre stockage, le broker
maître adresse chaque message reçu à l’esclave, et le message n’est
acquitté à l’application que lorsqu’il a été sécurisé sur le maître et sur
l’esclave, c'est-à-dire que la réplication est synchrone.

On peut représenter cette configuration comme suit :

Lorsque le broker maître devient indisponible, le broker esclave reprend
la fonction et toutes les applications clientes s’adressent à lui, de
manière transparente.

© Smile – Open Source Solutions

Page 46

MOMs open source

Partage du stockage

Une autre configuration possible assurer la haute disponibilité du broker
est le partage du système de persistance, qu’il s’agisse d’une base de
données ou bien du système de fichiers.

Dans cette configuration, il n’y a qu’un stockage, partagé entre le maître
et l’esclave. Le maître détient un verrou sur une table ou un fichier, et
l’esclave est en attente sur ce verrou. De sorte que lorsque le maître est
arrêté, l’esclave obtient le verrou et reprend la fonction de broker
principal, en accédant à tous les messages et les informations d’état qui
se trouvent dans le dispositif de stockage.

On peut représenter cette configuration ainsi :

Et le dispositif peut s’étendre assez facilement à de multiples brokers
esclaves.

Auto-découverte

Ces clusters de brokers sont configurables et peuvent profiter des
fonctionnalités d'auto-découverte. Par exemple, lors de la mise en ligne
d'un broker supplémentaire (configuré correctement), les brokers en
cours d'exécution le reconnaitront tout de suite comme faisant partie de
la plateforme.

© Smile – Open Source Solutions

Page 47

MOMs open source

Tous les mécanismes de découverte automatique reposent sur le
broadcast ou le multicast. Ces dernières permettent l'envoi de paquets
d'information à un ensemble de machines sur un réseau sans pour
autant les avoir identifiées unitairement.

L’auto-découverte par broadcast et multicast ne fonctionne pas sur
l’Internet. Dans ces cas, certains MOMs autorisent l'auto-découverte à
l’aide d’un serveur d’annuaire comme LDAP. Un soin particulier doit être
apporté à la sécurité de la plateforme distribuée.

© Smile – Open Source Solutions

Page 48

MOMs open source

LES MOMS OPEN SOURCE

Les MOMs étudiés

Nous avons sélectionné les 4 outils qui nous semblent les plus crédibles,
les plus solides, et les plus pérennes, ceux sur lesquels on peut
envisager sans risque de construire une architecture critique pour
l’entreprise.

Les outils sélectionnés ne se différencient pas tant par la liste des
fonctionnalités, qui pour l’essentiel découle de la spécification JMS. Ils
se distinguent en revanche par les possibilités d’interfaçage, par des
fonctionnalités avancées en particulier en matière de clustering. Ils se
distinguent aussi par leur dynamique de développement, et l’estimation
que l’on peut faire de leur part de marché.

Les produits sélectionnés sont les suivants :

 Active MQ

 JORAM

 Open Message Queue

 JBoss Messaging

JORAM

Présentation

JORAM ou Java Open Reliable
Asynchronous Messaging, est le
Middleware de consortium Object Web.
Object Web est aussi connu pour son
serveur d'application Java nommé Jonas
auquel est d'ailleurs intégré JORAM.

JORAM est sortie en 1999 et est distribué sous licence LGPL depuis
Mai 2000.

© Smile – Open Source Solutions

Page 49

MOMs open source

Caractéristiques principales du produit

Nous allons parcourir les caractéristiques de JORAM selon les classes de
fonctionnalités présentées plus haut.

Implémentation

JORAM a une architecture interne élégante, basée sur le modèle d'agent.

Architecture de JORAM

Un agent est un composant logiciel répondant à certains événements.
Dans le cas de JORAM, les événements sont sous forme de messages.
Les queues et les topics sont ainsi représentés par des agents. Un
utilisateur connecté à la plateforme est également représenté par un
agent dit proxy. Cette approche offre une grande flexibilité, car elle
permet la création et la suppression d'agents à la volée et sur n'importe
quel broker. Un broker est donc uniquement un serveur d'agent (ou
un container d'agent). À l’instar des EJB, ces agents ne peuvent pas
encore être déplacés de broker en broker.

Le code source récupéré du SVN JORAM est assez bien documenté. Il
est fait de « beans » séparés en Interfaces et Implémentations. Dans
l’ensemble, le code respecte les bonnes pratiques de développement
Java.

Langages pris en charge

Les langages par lesquels ont peut accéder à JORAM sont :

 Java via l'interface JMS.

 C et C++ : À l’aide de JNI, permettant ainsi de simuler un
environnement JMS.

© Smile – Open Source Solutions

Page 50

MOMs open source

Protocoles pris en charge

Le protocole interne de JORAM est propriétaire, et n'est pas
documenté. Nous estimons que c’est un handicap dans la mesure
où cela tend à limiter le nombre d’environnements dans lesquels des
APIs sont offertes, et à rendre plus difficiles les interconnexions.
Joram le désigne simplement par « TCP », mais il est évident qu’il y a
un protocole, non spécifié, au dessus de TCP/IP.

Ainsi, JORAM ne s’appuie pas sur des protocoles standards comme
AMQP ou STOMP.

JORAM met à disposition des passerelles permettant d'étendre le
nombre de protocoles gérés tout en se basant sur le protocole dit
« TCP ».

 Passerelle SOAP (grâce à un serveur d'application) : Permet la
communication en SOAP avec le broker, donc en principe depuis
des environnements autres que Java.

 Passerelle Mail : Cette passerelle permet d'envoyer et de recevoir
des messages JMS en s'appuyant sur du SMTP (Protocole de
mail). Pour cela JORAM utilise des queues et topics spécifiques.
Cette passerelle est réalisée en Java.

 Passerelle FTP : JORAM réserve des queues spécifiques pour les
canaux FTP. Cette passerelle fonctionne sur le même principe
que la passerelle Mail. Elle est destinée à l'échange de
messages volumineux. Cette passerelle est réalisée en Java.

Interfaces prises en charge

Selon les classes d'interface :

 Gestion des messages

JORAM prend en charge le JMS 1.1 et est compatible avec JMS
1.0.2b. JORAM a aussi implémenté une interface JMS 1.1 destinée,
au Framework J2ME, la version de l’environnement Java destinée
aux mobiles, téléphones et PDAs. JORAM peut donc être mis en
œuvre à partir de terminaux mobiles compatibles Java.

JORAM prend aussi en charge JCA 1.5, lui permettant de se
connecter aux différents PGI du marché (Open ERP, …) qui le gèrent.

 Interfaces d’Administration, Monitoring, Configuration

JORAM supporte l’interface d’administration JMX. Il est intégrable
et configurable en Java. Il supporte aussi le JAAS pour
l’authentification et les habilitations.

© Smile – Open Source Solutions

Page 51

MOMs open source

Gestion des messages

Outre les fonctionnalités standards, JORAM gère :

 La notion de hiérarchie des topics : Chaque topic peut être lié à un
autre (et un seul) et recevoir tous ses messages. À son tour, le
parent topic reçoit tous les messages de ces parents et les envoie
à tous ses topics fils. Prenons un exemple : Imaginons trois
topics : Manager, Operateurs_France, Operateurs_Espagne. On
souhaite que tous les messages envoyés aux topics Opérateurs_*
soient aussi envoyés au topic Manager. En plaçant Manager
comme topic père aux topic Operateurs_*, tous les
consommateurs recevront de façon transparente les messages
envoyés aux topics Opérateurs_*.

Il n'est pas possible de faire de traitement avec JORAM.

Persistance des messages

La persistance peut être gérée sur le système de fichier, dans une base
java embarquée (Derby, voir plus loin pour plus de détail), ou sur une
base de données relationnelle externe via JDBC.

Derby est un système de gestion de base de données relationnelle
embarquée. « Embarquée » veut simplement dire qu'il n'est pas
nécessaire d'avoir un serveur de base de données, au sens d’un
processus distinct. La base de données est dans le même processus que
l'application. Le support de stockage de la base Derby est le fichier.
Derby est une méthode avancée de lecture et d'écriture sur des fichiers.

Nous n’avons pas trouvé, dans les documentations fournies par JORAM,
d’information sur les optimisations possibles de la gestion de la
persistance.

Répartition de charge et haute disponibilité avec plusieurs sites

Comme on l’a évoqué, JORAM est construit selon une architecture à
base d'agents. Cette architecture est l’objet d'un livre blanc disponible
sur le site du produit.

Grâce à son architecture, JORAM assure :

 La disponibilité : pour rappel, la défaillance d’un serveur n’affecte
que les clients JMS connectés à ce serveur. Les autres
continuent à fonctionner en accédant à d’autres copies du
domaine. La synchronisation des domaines se fait d'une manière
transparente, selon un principe maître-esclave.

 Répartition de charge : les applications clientes sont réparties sur
plusieurs serveurs de telle sorte que la charge engendrée par la

© Smile – Open Source Solutions

Page 52

MOMs open source

gestion des domaines soit répartie entre les serveurs. Cette
répartition peut soit être réalisée manuellement (configuration et
utilisation du « Store and Forward »), soit être confiée à un load-
balancer.

Interopérabilité avec d'autres MOMs

JORAM fournit un squelette de passerelle avec d'autres MOM gérant le
JMS 1.1.

Gestion de la sécurité et d'un annuaire

JORAM peut être configuré pour utiliser des connexions SSL / TLS.

Il gère l'authentification et l'autorisation.

Des fichiers de configuration au format XML sont utilisés pour définir la
configuration de sécurité. Il est possible également de personnaliser la
gestion de la sécurité au travers JAAS.

Mais ces aspects ne sont pas suffisamment documentés.

Administration

JORAM met à disposition une interface graphique d'administration. Elle
se base sur l'utilisation de JMX.

Voici quelques captures d'écran de l'interface d'administration.

© Smile – Open Source Solutions

Page 53

MOMs open source

© Smile – Open Source Solutions

Page 54

MOMs open source

Lors d'une utilisation standard, l'interface d'administration graphique
présente quelques problèmes. Si l’on génère beaucoup d'actions,
l'application s’affole et devient erratique.

Il nous semble que cette interface devrait être surtout utilisée à des fins
de démonstration.

Configuration et déploiement

Après téléchargement, et modulo l'installation d'un runtime Java (JRE), il
suffit de quelques déclarations d'environnement pour faire fonctionner la
solution.

Une vingtaine d'exemples est fournie. Un système basé sur ANT rend
l'utilisation de ces exemples particulièrement simple. On regrette
l’absence d’une documentation digne de ce nom concernant le C / C++
et la persistance.

La configuration du MOM se fait à l'aide de fichiers XML. Les balises
XML sont assez claires. La définition d'un broker se fait par exemple à

© Smile – Open Source Solutions

Page 55

MOMs open source

l'aide d'une balise « server » contenant la définition de celui-ci ainsi que
la définition de services.

<?xml version="1.0"?>
<config>
 <property name="Transaction" value="fr.dyade.aaa.util.NullTransaction"/>

 <server id="0" name="S0" hostname="localhost">
 <service class="org.objectweb.joram.mom.proxies.ConnectionManager"
 args="root root"/>
 <service class="org.objectweb.joram.mom.proxies.tcp.TcpProxyService"
 args="16010"/>
 <service class="fr.dyade.aaa.jndi2.server.JndiServer" args="16400"/>
 </server>
</config>

JORAM fonctionne sur tout système d'exploitation supportant au
minimum Java 1.4.

Détail sur le projet

Détail

JORAM est distribué sous licence
LGPL et est publié par « Object
Web ». Le principal contributeur de
ce projet est la startup « ScalAgent
Distributed Technologies », une
société issue à la fois de l'INRIA et de Bull.

Nous avons testé la version 5.2.1. Des mises à jour sont disponibles
environ tous les 3 mois aussi bien pour les versions en cours que pour
les versions antérieures.

Il n'y a pas de version commerciale de JORAM, ni de modules distribués
sous une autre licence.

Qualité

JORAM utilise ANT pour gérer la construction du projet, le code source
est disponible sur un SVN public. JORAM est également disponible dans
le référentiel MAVEN Central qui ne contient que les binaires.

Concernant la documentation, un WIKI est hébergé sur la forge d'OW2,
mais celui-ci n'est pas très riche, et surtout trop peu actualisé. La
dernière mise à jour semble dater du 06/04/2006.

Un guide complet PDF en anglais abordant l'installation, l'utilisation et
l'administration de JORAM est disponible sur le site. ÀA cela, s'ajoute un
forum sous forme d’une mailing liste, avec accès aux archives. En
moyenne, on trouve quelques dizaines de messages par mois.

© Smile – Open Source Solutions

Page 56

MOMs open source

Un gestionnaire de bug est présent sur la forge OW2, mais ne semble
pas être utilisé par le projet, on trouve uniquement 10 anomalies entre
2003 et 2009. Le nombre de contributeurs au projet JORAM est de 24.

Le site officiel de JORAM est http ://joram.ow2.org . Il a un page rank
Google de 4, ce qui est plutôt faible pour ce genre de sites. Le site est
composé d'une centaine de pages tandis que le Wiki comporte une
trentaine de pages. Les archives de mails comptent, quant à elle, près
400 pages.

Le site internet de JORAM n'est pas présent sur Google Trend.

Références

Aucune référence n'est renseignée.

© Smile – Open Source Solutions

http://joram.ow2.org/

Page 57

MOMs open source

Active MQ

Présentation

Sorti en 2004, Active
MQ est le MOM open
source de la fondation
Apache. Il est distribué
sous licence Apache 2.0.

Active MQ s’appuie sur quelques autres projets Apache :

 Apache Camel : Implémentation partielle des « Entreprise
Integration Patterns », que nous avons évoqués plus haut.

 Jetty : Serveur d'application Java intégré à Active MQ

Et Active MQ est à son tour utilisé par quelques autres grands projets :

 ESB : Active MQ est utilisé par plusieurs ESBs (Enterprise Service
Bus) tels qu’ Apache Service Mix et Mule.

 Serveur J2EE : Active MQ est intégré au serveur d’application
Geronimo (certifié JEE5) comme fournisseur JMS par défaut.

 Axis et CXF : Extension de Active MQ.

Caractéristiques principales du produit

Langages d'implémentation

Le code source récupéré du SVN, ne semble pas toujours être d’une
qualité exemplaire. La mise en forme du code laisse à désirer et certaines
parties ne respectent pas les bonnes pratiques de codage Java : peu
d'interfaces, classes et méthodes trop longues, ... Mais la robustesse du
produit est néanmoins réputée.

Langages pris en charge

La diversité des langages et environnements supportés est
particulièrement grande, et c’est un des grands atouts de Active MQ.
Comme on l’a évoqué, l’aptitude à faire échanger des applications
hétérogènes fait partie des missions naturelles d’un middleware.

Les langages à partir desquelles on peut accéder à Active MQ sont :

© Smile – Open Source Solutions

Page 58

MOMs open source

 C : grâce à la bibliothèque OpenWire C Client

 C++ : grâce à CMS : C'est une bibliothèque C / C++ proposant des
interfaces similaires à JMS

 Ajax, RESTful et SOAP : sous condition d'utilisation des passerelles
proposées par Active MQ. (La passerelle est sous forme d'un
servlet Java, fonctionnant sur Jetty, ou autre)

 .Net : grâce à NMS : C'est une bibliothèque .Net proposant des
interfaces similaires à JMS

 Delphi and FreePascal grâce à Habari Active MQ Client

 Perl, PHP, Pike, Python, Ruby, grâce au protocole STOMP et aux
librairies client correspondantes.

On voit que le choix du duo STOMP et OpenWire comme protocole de
communication a ouvert la voie à l’implémentation d’APIs dans de
nombreux environnements.

De plus, s’agissant de protocoles ouverts et bien spécifiés, il est possible
de réaliser un client STOMP vers ActiveMQ depuis de nouveaux
environnements s’il en manquait à la liste.

Protocoles pris en charge

Les protocoles prit en charge par Active MQ sont les suivants :

 AMQP : Ce protocole est pris en charge,e mais comme sa définition
est volatile, Active MQ prend en charge uniquement les versions
0.8 / 0.9

 OpenWire : Protocole de communication messages

 STOMP : Protocole de communication messages

 JXTA : C'est un protocole permettant de créer des réseaux au
dessus des réseaux. JXTA (pour juxtapose), défini par une série
de protocoles légers conçus pour gérer n'importe quelle
application peer-to-peer. JXTA est compatible avec l'ensemble
des plateformes informatiques. L’implémentation Java est basée
sur du XML. Avec Active MQ, il agit en tant que connecteur.

jxta://hostname:port

 XMPP : Le protocole de messagerie instantanée utilisé par Jabber.
Ainsi, on peut se connecter au MOM grâce à un client de
messagerie de type Jabber.

 En ce qui concerne les protocoles proposés par des passerelles :

© Smile – Open Source Solutions

Page 59

MOMs open source

 Grâce aux sous-projets Axis et CXF de Apache, Active MQ gère
SOAP, REST, …

Interfaces prises en charge

Selon les classes d'interface :

 Messagerie

 JCA 1.5 sous Java

 JMS 1.1 et 1.0.2b sous Java

 NMS à partir des plateformes .Net

 CMS à partir des plateformes C/C++

 Administration, Monitoring, Configuration

 JMX, XML, Spring, Java DSL et par messages

Ces points seront revus plus loin.

Gestion des messages

Mis à part la gestion standard des messages imposée par la spécification
JMS 1.1, Active MQ gère :

 Groupe de messages : Ceci est un concept intéressant dans la
mesure où il assure que tous les messages d'un même groupe
soient reçus par un consommateur déterminé. Les messages
d'un groupe X seront consommés uniquement par le
consommateur privilégié. Si celui-ci meurt, Active MQ choisit
automatiquement un autre consommateur suivant la
configuration.

 Notion de sélecteur de messages compatible avec XPATH (et SQL
92 issue de la spécification JMS)

 Cependant, il n'y a pas de notion de priorité des messages. Il est
possible de la simuler en utilisant des groupes de messages ou
bien des sélecteurs.

 Destination virtuelle : Il est possible de définir des topics et des
queues redirigeant vers des composants du même domaine (topic
vers topic et queue vers queue).

 « Total Ordering » : Active MQ a la possibilité d’assurer que l’ordre
de réception des messages correspond bien à l’ordre d’envoi.

© Smile – Open Source Solutions

Page 60

MOMs open source

<destinationPolicy>
 <policyMap>
 <policyEntries>
 <policyEntry topic=">">
 <dispatchPolicy>
 <strictOrderDispatchPolicy />
 </dispatchPolicy>
 </policyEntry>
 </policyEntries></policyMap>
 </destinationPolicy>

 Et bien d’autres, issues des EIP

Traitement des messages

Le traitement des messages d’Active MQ est sans doute son plus célèbre
atout, après celui de sa grande connectivité. À l'aide du projet Camel qui
est intégré, il a la possibilité de traiter les messages selon les modèles
d'intégration d'entreprises (EIP).

Citons un exemple faisant d’Active MQ un EAI à part entière. Les
fonctionnalités de routage et de transformation représentent les
caractéristiques principales des EAIs.

Un exemple de routage est celui qui va rediriger le message selon son
contenu.

Routage selon le contenu du message

Et la configuration Spring associée :
<camelContext errorHandlerRef="errorHandler" streamCache="false"
id="camel" xmlns="HTTP://camel.apache.org/schema/spring">
 <route>
 <from uri="seda:demandes"/>
 <choice>
 <when>
 <xpath>$entreprise = 'smile'</xpath>
 <to uri="seda:smile"/>
 </when>
 <when>
 <xpath>$entreprise = 'autres'</xpath>
 <to uri="seda:avant-vente"/>
 </when>
 <otherwise>
 <to uri="seda:accueil"/>

© Smile – Open Source Solutions

Page 61

MOMs open source

 </otherwise>
 </choice>
 </route>
</camelContext>

Quelques explications s’imposent. Les messages reçus sur la file
« demandes » seront transmis aux files :

 smile : si la propriété entreprise du message est égale « Smile »

 avant-vente : si la propriété entreprise du message est égale
« autres »

 accueil : si aucune des conditions précédentes n'est respectée.

Il faut néanmoins rappeler que Camel n'implémente pas entièrement EIP.

Gestion des transactions

Bien qu'il n'existe pas de documentation sur la méthode de gestion des
transactions en interne, ActiveMQ nous donne quelques pistes.

Par exemple, la journalisation du « Message Store » permet la reprise sur
incident sans perte de données lors d'un « rollback » (retour arrière).

Attention, par défaut, le routage et la transformation des messages ne
sont pas transactionnels.

Une « Dead Message Queue » est présente. Voici un exemple de
configuration :

<destinationPolicy>
 <policyMap>
 <policyEntries>
<!-- Set the following policy on all queues using the '>' wildcard -->
 <policyEntry queue=">">
 <deadLetterStrategy>
<!-- Use the prefix 'DLQ.' for the destination name, and make the DLQ a
queue rather than a topic -->
 <individualDeadLetterStrategy queuePrefix="DLQ."
useQueueForQueueMessages="true" />
 </deadLetterStrategy>
 </policyEntry>
 </policyEntries>
 </policyMap>
</destinationPolicy>

Dans cet exemple, chaque domaine aura une DMQ attribuée de manière
individuelle.

Persistance des messages

Active MQ a introduit un mode de persistance appelé « Active MQ
Message Store » qui joint un stockage de données sous forme de fichiers
avec un système de journalisation et de mise en cache. Il affiche des
performances supérieures au système de persistance sur fichier ou base

© Smile – Open Source Solutions

Page 62

MOMs open source

de données seule. Il affiche aussi une meilleure fiabilité, car il a été bâti
pour le transactionnel.

Regardons de plus près son fonctionnement.

Lors de l'écriture d'une donnée, le message réside en cache (Memoire
volatile). On construit sa référence (identification) qui sera stockée dans
le journal des références. Périodiquement, une copie du journal des
références caché est réalisée sur le support persistant. Ceci représente le
journal des références persistant. De plus, si la donnée n'a pas été
consultée depuis longtemps (configurable), elle est déplacée vers média
persistant (d'une façon transactionnelle) et ses références sont mises à
jour (cache et persistant).

Lors d'une lecture, on accède soit directement à la donnée en cache, soit
dans le média de stockage.

Lors d'une transaction, Active MQ ne modifie que les références des
messages.

Active MQ recommande d'avoir un nombre de messages inférieur à 1
million par page de cache. Le nombre de page de cache n'est pas limité.

Voici une configuration simple d'un broker utilisant l' « Active MQ
Message Store » :

<broker brokerName="broker" persistent="true" useShutdownHook="false">
 <persistenceAdapter>
 <AMQ.PersistenceAdapter directory="Active MQ-data"
maxFileLength="32mb"/>
 </persistenceAdapter>
 <transportConnectors>
 <transportConnector uri="tcp://localhost:61616"/>
 </transportConnectors>
</broker>

Si un objet n’est plus référencé, il est tout simplement supprimé. Être
référencé c’est être présent dans un des domaines, et donc ne pas encore
avoir été consommé.

Les performances supérieures s'expliquent par le fait qu’Active MQ
détecte et mesure la durée d'attente d'un message avant sa
consommation. Il optimise le stockage sur un support non volatil. De
fait, il ne stocke que les messages dont la durée de latence est grande.

Les supports de stockage sont compatibles avec les pilotes JDBC.

Répartition de charge et haute disponibilité multi-site.

Active MQ propose différents modes de déploiement pour une haute
disponibilité :

© Smile – Open Source Solutions

Page 63

MOMs open source

 Cluster de brokers: permet la gestion des pannes et la répartition
de la charge.

 Réseau de brokers : permet de gérer un réseau distribué de queues
et de topics. Les messages seront transférés de brokers en
brokers par la fonction « store and forward » jusqu'à ce qu'ils
soient consommés. En d’autres termes, un broker recevant des
messages ne correspondant à aucun domaine qu'ilhéberge,
enregistrera le message et le transmettra au bon broker.
L'enregistrement permet la garantie de transmission en cas
d'instabilité réseau par exemple.

 Réplication en maître-esclave : permet d'avoir une redondance,
cependant Active MQ supporte uniquement un esclave par
maitre.

 Partage du Message Store : C'est une alternative à la réplication
maître-esclave. Dans ce cas, seul le Message Store est partagé en
utilisant un système de fichier sécurisé (SAN ou partage réseau)
ou une base de données. La charge de traitement est répartie.

 Domaine partagé : Une application de Camel serait de partager le
traitement de domaine sur plusieurs brokers. Pour ce faire, il
suffit de mettre en place un domaine virtuel distribuant les
messages sur plusieurs domaines.

Active MQ peut être configuré pour connaître l’emplacement des
différents brokers, ou bien peut les découvrir dynamiquement tout au
long du cycle de vie de la plateforme. La découverte de nouveaux
brokers se fait soit grâce au broadcast, soit grâce à ZeroConf. ZeroConf
est un protocole utilisant conjointement l'UDP et le Multicast.

Dès lors, la sécurité devient le point faible. Le risque qu'une personne
malveillante introduise un broker malveillant pour voler ou introduire
des messages est plus grand.

La découverte de machine peut aussi se faire par l'intermédiaire d'un
annuaire du type LDAP. Un broker mis en ligne se déclare dans un
annuaire. Les autres machines connectées à l’annuaire se rendent
compte de l'apparition d'une nouvelle machine et communiquent avec
lui.

Un exemple de configuration de la découverte par LDAP:
[...]
<networkConnectors>
 <ldapNetworkConnector uri="ldap://myldap.mydomain.com:389"
 base="dc=brokers-for-srv-a,dc=mydomain,dc=com"
 anonymousAuthentication="true"
 searchFilter="(cn=*)"
 searchScope="SUBTREE_SCOPE"
 networkTTL="2"
 />

© Smile – Open Source Solutions

Page 64

MOMs open source

</networkConnectors>
[...]

Interopérabilité avec d'autres MOMs

Active MQ fournit une passerelle JMS aisément configurable (DSL,
Spring XML). L'authentification est aussi prise en compte par les fichiers
de configuration. Ces fichiers de configuration peuvent être intégrés à
ceux d’Active MQ.

Gestion de la sécurité et d'un annuaire

L'authentification et la gestion des droits sont intégrées sous forme de
plugins dans Active MQ. Les plugins proposés par défaut s'appuient sur
JAAS ou sur des fichiers XML.

L'exemple le plus simple est le suivant :
[...]
<simpleAuthenticationPlugin>
 <users>
 <authenticationUser username="system" password="manager"
 groups="users,admins"/>
 <authenticationUser username="user" password="password"
 groups="users"/>
 <authenticationUser username="guest" password="password"
groups="guests"/>
 </users>
</simpleAuthenticationPlugin>
[...]

L'interconnexion entre brokers peut aussi être sécurisée par mot de
passe et / ou chiffrement (SSL).

[...]
<networkConnectors>
 <networkConnector name="brokerAbridge"
 userName="user"
 password="password"
 uri="static://(SSL://brokerA:61616)"/>
</networkConnectors>
[...]

Il est possible d'encapsuler les connexions dans du SSL entre les clients
et un broker pour sécuriser les échanges. Le SSL se comporte donc
comme un connecteur à part entière.

Il possible de lier la sécurité de la plateforme avec un serveur LDAP.

Active MQ fournit une interface de personnalisation via des « Interceptors
». Il est un ainsi possible d'étendre les possibilités de Active MQ très
facilement. L’exemple le plus commun serait la gestion de
l'authentification. Les « Interceptors » permettent de modifier certains
comportements internes sans changer le cœur d’Active MQ et en
compatibilité avec les versions futures.

© Smile – Open Source Solutions

Page 65

MOMs open source

Administration

Le monitoring et l'administration de la plateforme sont proposés :

 à travers de l'interface JMX

 au moyen d’une interface web (web console)

 par des messages : cette fonctionnalité est aussi disponible à
distance via le protocole XMPP (Voir le Glossaire).

Active MQ propose des « Advisory Message » (message d'information) qui
permettent de connaître l'état du système. Voici des exemples de
métriques :

 les connexions clients

 les files d'attentes créées et détruites par les applications

 les messages expirés

 …

Les « Advisory Messages » sont organisés en queues et topics protégés
par mot de passe. On peut y accéder à partir d’un simple client Active
MQ (JMS ou autre).

Active MQ implémente aussi des « Mirrored Queues » : les messages
envoyés à une file d'attente seront, de manière transparente, envoyés
sur un Topic. Même si cette fonctionnalité est à utiliser avec précaution,
elle permet à un ou plusieurs clients de suivre l'état d'une file d'attente.
C’est l’application du design « Wire Tap » (les écoutes téléphoniques
pratiquées par les espions) de EIP.

De plus, Active MQ nous fournit une interface d'administration Web.
Cette interface est démarrée par défaut à l'aide de Jetty. Elle démarre par
défaut à l’adresse suivante : HTTP://0.0.0.0:8161/admin

© Smile – Open Source Solutions

Page 66

MOMs open source

Capture d’écran de l'administration d’Active MQ

Configuration et déploiement

Active MQ peut être installé sur n'importe quelle plateforme supportant
au minimum Java 5.

Active MQ est configurable en utilisant des fichiers XML intégrables à
Spring. Active MQ se configure aussi à l'aide de Java DSL.

Active MQ peut aussi être configuré et lancé à partir d'un autre
programme (Java), c'est la notion de « Embedded Broker » : le broker
n’est plus un processus indépendant auquel le programme s’adresse par
le réseau, il tourne dans le même processus que le programme client.

Active MQ est livré avec un ensemble d'exemples codés en Java ou en
Ruby. Tous les cas d'utilisation d’Active MQ ne sont pas couverts par la
trentaine d'exemples fournis.

Détail sur le projet

Détail

Active MQ a été principalement développé par la société LogicBlaze, et
racheté par IONA technologies en 2007. IONA technologies était célèbre
dans les années 90 pour son expertise CORBA.

La dernière version d'Active MQ est la 5.2.0, mais la version 4.1.x est
encore maintenue par Active MQ.

Active MQ n’a pas de version commerciale.

© Smile – Open Source Solutions

Page 67

MOMs open source

Qualité

Active MQ utilise MAVEN pour gérer le projet. Le code source est
disponible sur un SVN public dans lequel on retrouve la branche de
développement, mais aussi chaque version depuis la 4.0. À noter que le
projet est également disponible dans le référentiel MAVEN central.

Le site web du projet propose une documentation détaillée et utile.
Certains des exemples que nous citons sont issus du site. On remarque
cependant la présence de fautes d'orthographe ainsi que de nombreuses
pages « en cour de construction ». Un forum pour les utilisateurs d'Active
MQ est disponible sur lequel on recense une centaine de sujets par mois.
À cela, s'ajoute un « bug tracker » (JIRA) contenant les différents bugs
référencés par version.

Le projet possède 114 contributeurs dont une trentaine y travaille à
temps plein.

Le site officiel d’Active MQ est http://activemq.apache.org. Il possède un
page Rank de 8, ce qui reflète la forte popularité de l’outil. Google
référence à peu près 14 200 pages.

La communauté dispose d’un site officiel, sous forme de Wiki. Elle a
aussi une mailing liste, un forum et un salon IRC. Le temps de réponse
moyen est de l'ordre de 2 jours. Remarquons que certaines questions ne
trouvent pas de réponses.

Signalons aussi le livre « Active MQ in Action », aux éditions MEAP. Ce
livre, disponible uniquement en version anglaise, est une bonne lecture
pour appréhender et utiliser Active MQ. Son existence même témoigne
de l’intérêt suscité par le produit.

Références

Active MQ est utilisé par de nombreux projets faisant partie de la
fondation Apache (Geronimo, Service Mix, Jet Speed, Apache Directory),
mais également par des projets extérieurs à cette fondation (Eclipse,
Active Cluster, Mule, Open IM).

Aucune autre référence client n'est indiquée sur le site.

© Smile – Open Source Solutions

Page 68

MOMs open source

MOM Open Message Queue (OMQ)

Présentation

OMQ est le Middleware Orienté Message de Sun. Il a été développé pour
fonctionner conjointement avec GlassFish (Open ESB).

Le principal contributeur est la communauté Sun / Java.

OMQ a été réalisé pour fonctionner avec GlassFish, le
serveur d'application de Sun. Cependant, OMQ peut
facilement fonctionner tout seul ou avec d'autres types de
serveur d'application Java.

OMQ est distribué sous deux licences : CDDL ou GPL v2.

Caractéristiques principales du produit

Langages d'implémentation

Les sources, récupérables du site Internet de la solution sont mal
organisées. D'une part, on constate la présence de binaires, de fichiers C
et autres. De plus, il n'y a pas de système de compilation automatique du
type MAVEN ou ANT.

Sun fournit néanmoins une documentation indiquant comment compiler
la solution (via NetBeans).

On remarque la présence de répertoires (à la racine de src) nommés
Solaris et Win32 (Windows), référent à des bouts de code spécifique. Qui
a dit que Java était multiplateformes ?

Dans cet amas de fichiers, on retrouve même le code de l'interface
d'installation.

En ce qui concerne le code java en lui même, il est bien documenté et
semble respecter les standards.

Langages pris en charge

Les seuls langages pris en compte sont :

 Java via JMS 1.1 ill ne gère pas le JMS 1.0.2)

 C : l'API est propriétaire Java, sa spécification est documentée par
Sun à l'adresse suivante :
http://docs.sun.com/app/docs/doc/819-7756

© Smile – Open Source Solutions

Page 69

MOMs open source

On note le petit nombre de langages pris en compte, ce qui constitue une
faiblesse.

Protocoles pris en charge

Les protocoles externes pris en charge sont les suivants :

 UMS comme Universal Messaging System : C'est un protocole de
communication comparable à AMQP. Sun ne le met guère en
avant, étant données ses limitations en termes fonctionnalités et
de performance. UMS est basé sur du XML, ce qui alourdit un
peu les échanges. Sun fournit sa spécification à l'adresse
suivante : HTTPS://mq.dev.java.net/4.3-
content/ums/umsIntro.html

A l’aide de passerelles, OMQ gère aussi le :

 SOAP : sur un support HTTP à partir d'un serveur d'application.

 HTTP : passerelle sur un serveur d'application.

Il y a donc peu de protocoles pris en compte.

Le protocole interne d’OMQ n’est pas documenté.

Interfaces prises en charge

Selon les classes d'interface :

 Messagerie

 JCA 1.5 sous Java

 JMS 1.1 sous Java

 API C : Elle est propriétaire à Java, sa spécification est
documentée par Sun à l'adresse suivante :
HTTP ://docs.sun.com/app/docs/doc/819-7756

 Administration, Monitoring et configuration

 JES : Java Monitoring plateforme Support

 JAAS

Gestion des messages

OMQ ne gère pas la priorité des messages.

© Smile – Open Source Solutions

http://docs.sun.com/app/docs/doc/819-7756

Page 70

MOMs open source

OMQ gère la compression et la décompression des messages à la volée.
Un exemple :

MyMessage.setBooleanProperty(“JMS_SUN_COMPRESS”,true);

Une des nouvelles fonctionnalités originales est la gestion des « WildCard
Topics ». En autorisant l'utilisation d'une syntaxe particulière, OMQ
autorise l'envoi d'un message à plusieurs domaines. Un exemple simple
est l'envoi d'un message vers toust les Topics. Pour ce faire, on envoie un
message vers un topic se nommant « * ». Voici quelques autres exemples :

Tableau 1 : Exemple de WildCard

Paterns Résultats

*.sun.com Retourne toute chaine de caractère
finissant avec .sun.com

(quark|energy).sun.com Retourne soit quark.sun.com ou
energy.sun.com

. Retourne toute chaine de caractère ayant
un point au milieu.

Pour finir avec la gestion des messages, OMQ gère la validation des
contenus XML : « XML Schema Validation ».

Traitement des messages

Le traitement des messages n'est pas pris en compte par OMQ.

Gestion des transactions

La gestion de transaction est offerte à la fois à partir du C et du Java.
OMQ propose aussi des interfaces du type XA / JTA.

La gestion interne des transactions n'est pas spécifiée.

Persistance des messages

Il est possible de réaliser de la persistance sur le système de fichier. La
persistance est aussi disponible dans des bases de données telles que :
Oracle, MySQL, PostgresSQL, Java DB (Derby), toutes accédées via
JDBC.

Répartition de charge et haute disponibilité multi site.

Deux modes sont disponibles :

© Smile – Open Source Solutions

Page 71

MOMs open source

 Cluster Normal : Ce mode n’oblige pas la persistance. Il permet la
répartition manuelle de la charge sur plusieurs brokers. La
disponibilité de la plateforme se trouve aussi améliorée.
Cependant, si un ou plusieurs brokers venaient à mourir, leurs
messages seraient perdus.

 High-availability (Haute disponibilité) : En introduisant de la
persistance, OMQ améliore encore la fiabilité de la plateforme.
Même si tous les brokers meurent au même moment, aucun
message ne sera perdu (les messages ayant été pris en compte).
Cette solution amène de moindres performances.

OMQ ne gère pas de réplication Master/Slave.

Il n’y a pas de système de découverte automatique de broker.

OMQ se montre ainsi limité concernant les problématiques d'entreprise.

Interopérabilité avec d'autres MOMs

Sun ne fournit aucun bridge JMS ou autre. Il est ainsi à notre charge
d’en créer ou d'en adapter un (open source) à nos besoins.

Gestion de la sécurité et d'un annuaire

OMQ support SSL / TLS comme mode d'encryptions des messages.Celui-
cii peut se placer aussi bien entres applications et brokers qu’inter-
brokers.

Les applications clientes (consommatrices ou productrices) peuvent se
connecter grâce à un couple (nom d'utilisateur, mot de passe). Les mots
de passe sont encodés à l'aide de l'algorithme MD5.

OMQ gère les groupes d'utilisateurs. On peut personnaliser les accès aux
éléments des brokers (queues, topics, administration, monitoring) par
utilisateurs ou par groupes.

Les supports de stockage des éléments de sécurité sont:

 Fichier de configurations sous format XML

 LDAP

Les propriétés suivantes contrôlent le comportement d’OMQ vis-à-vis du
LDAP

imq.user_repository.ldap.server
imq.user_repository.ldap.principal
imq.user_repository.ldap.password
imq.user_repository.ldap.propertyName
imq.user_repository.ldap.base
imq.user_repository.ldap.uidattr

© Smile – Open Source Solutions

Page 72

MOMs open source

imq.user_repository.ldap.usrfilter
imq.user_repository.ldap.grpsearch
imq.user_repository.ldap.grpbase
imq.user_repository.ldap.gidattr
imq.user_repository.ldap.memattr
imq.user_repository.ldap.grpfilter
imq.user_repository.ldap.timeout
imq.user_repository.ldap.ssl.enabled

La gestion de l'authentification et de l'autorisation peut être
personnalisée à l'aide de l'API JAAS.

Administration

OMQ fournit aussi des outils d'administration en ligne de commande
permettant, à l’aide de scripts (shell ou autres), d’automatiser certaines
tâches. A titre d’exemple, « imqadmin » et « imqcmd » permettent de gérer
un parc de brokers, de recharger une nouvelle configuration, … Ces
outils se montrent ainsi particulièrement utiles.

Un monitoring du middleware est possible par messages. Il suit les
mêmes concepts que les « Advisory Messages » d’Active MQ.

La plateforme OMQ implémente JMX.

Configuration et déploiement

OMQ est réalisé en Java. Voici la liste des systèmes d'exploitation dont
Sun annonce le support :

 Solaris 9 ou 10

 RedHat Entreprise Linux Advanced/ Entreprise Server

 Windows XP / 2000 Server / 2009 Server

Le fonctionnement sur une Linux Debian semble tout à fait satisfaisant.

Toujours selon Sun, OMQ peut aussi bien tourner sous une architecture
Sparc que x86. Il requiert un minimum de 256 Mo de RAM, mais Sun
recommande 2 Go de Ram pour de la HA ou pour de gros volumes de
messages.

Lors du téléchargement du paquet du site de Sun, on remarque la
présence d'un installateur graphique.

En ce qui concerne les exemples, ils sont au nombre de 41, illustrant :
JMS, JMX, le monitoring, et SOAP. On constate aussi la présence d'une
dizaine d'exemples montrant l'utilisation de l'API C. Les exemples se
limitent à l'utilisation des services de messageries et de monitoring
d’OMQ. Dommage qu’aucun exemple ne montre la mise en place d'une
plateforme en cluster ou high-availability (haute disponibilité).

© Smile – Open Source Solutions

Page 73

MOMs open source

Un autre point regrettable est que le lancement des exemples est à faire
manuellement tout en manipulant le classpath du compilateur et de la
VM.

La configuration de la solution se fait grâce à des fichiers non –XML dont
voici un exemple :

imq.cluster.brokerlist=host1:9876,host2:5000,ctrlhost

Cette ligne informe OMQ de la liste des brokers disponibles.

Il est vraiment plus simple et pratique d’utiliser les scripts fournis que de
remplir les fichiers de configuration, ce qui est bien dommage.

Détail sur le projet

Détails

La version d’OMQ étudié est la 4.3. On remarque une assez conséquente
liste de bugs dont certains sont particulièrement gênants :

 Impossibilité de parcourir une queue qui est gérée par un autre
broker (Browse).

 La persistance avec HADB est limitée en nombre de messages (10
000) et en taille (10 Mo).

… la liste complète des bugs est à cette adresse :
HTTP ://docs.sun.com/app/docs/doc/820-6360/aembi?a=view

Il est possible d’obtenir une version commerciale. Cependant, aucun
détail n’est fourni.

Qualité du projet

Sun fournit un Wiki contenant des exemples de code. La communauté
dispose d’un Forum, une mailing-list ainsi qu'un système de gestion des
tickets.

Le site prend parfois plus de 3 secondes à s'afficher. Il nous est arrivé à
plusieurs occasions que le site ne soit plus disponible. Tous ces défauts
suggèrent que le projet n’est pas très actif, ou en déperdition.

Toutefois, si l’on s’intéresse à la réactivité des contributeurs, on
constante un délai moyen de réponse de l'ordre de l'heure, ce qui est fort
appréciable.

Sur le bug tracker, il existe encore des bugs ouverts depuis près d'un an,
et de même certaines questions sur le forum n'ont pas trouvé de réponse
depuis plusieurs mois.

© Smile – Open Source Solutions

http://docs.sun.com/app/docs/doc/820-6360/aembi?a=view

Page 74

MOMs open source

Selon Google, le site officiel HTTP ://mq.dev.java.net est constitué de 62
pages et obtient un page rank de 6.

Références

Aucune information n'est donnée sur les clients ou utilisateurs d’OMQ.

MOM JBoss Messaging (JBM)

Présentation

JBoss a donné naissance à JBoss
Messaging (JBM) devenu ensuite
JBoss Queue (JBQ), actuellement en
sa version 1.4.0 SP3.

Dès 2006, JBM a été réalisé dans
l'idée d'une intégration avec les
produits JBoss. Il peut, modulo d'assez lourdes manipulations,
fonctionner en mode « standalone ».

La filiation à RedHat lui confère une place particulière parmi les
middlewares d'entreprise Open Source, et d'autant plus qu'il est sous
licence LGPL.

JBM a été réalisé, comme son nom l'indique, par la communauté JBoss
et RedHat, leader mondial dans le domaine de l'open source.

Caractéristiques principales du produit

Langages d'implémentation

Récupéré à partir du site Internet de JBM, le code source est assez bien
organisé. Un système de compilation automatique du type MAVEN est
présent.

Quant aux sources, elles ne sont pas toujours bien formatées. La
documentation du code est à revoir sérieusement et certaines méthodes
sont vraiment trop volumineuses.

Langages pris en charge

Le seul langage de programmation pris en charge par JBoss est le Java,
et ceci par l'intermédiaire de l'API JMS.

Des quatre MOMs de notre sélection, il est celui qui présente le moins de
connectivité.

© Smile – Open Source Solutions

http://mq.dev.java.net/

Page 75

MOMs open source

Protocoles pris en charge

JBM ne gère qu’un seul protocole externe dont la documentation est
introuvable. Toutefois, la roadmap du projet indique que l’outil compte
implémenter STOMP.

La version 2 de JBM, en version Beta implémente déjà le protocole
AMQP.

Des quatre MOMs comparés ici, il est aussi le plus pauvre dans cette
catégorie.

Interfaces prises en charge

Selon les classes d'interface :

 Messagerie

 JMS 1.1 : depuis du Java

 JCA 1.5 : depuis du Java

 Administration, Monitoring et configuration

 JAAS : depuis du Java

 JMX : depuis du Java

Rien de bien nouveau.

Gestion des messages

JBM gère la priorité des messages. JBM réorganise l'ordre de délivrance
des messages suivant leur priorité.

JBM ne gère ni la hiérarchie des messages ni le concept de groupe de
messages.

Traitement des messages

Les modifications à la volée des messages ne sont pas prises en compte
par la solution de JBoss.

Il est possible, de programmer l'envoi de message, c'est-à-dire de définir
une propriété particulière qui ordonne au broker de rendre un message
disponible à une heure donnée.

Gestion des transactions

Le comportement de la DMQ est standard.

© Smile – Open Source Solutions

Page 76

MOMs open source

La gestion interne des transactions n'est pas précisée.

Persistance des messages

JBM support plusieurs médias de stockage : Hypersonic, Oracle, Sybase,
MS SQL Server, Postgres et MySQL. Ils sont tous compatibles JDBC.

Par défaut, c’est Hypersonic qui est choisi. Une note de JBoss fait
remarquer que Hypersonic ne devrait pas être utilisé en production à
cause :

 de sa gestion limitée des transactions.

 de son mauvais comportement à forte charge.

Un exemple de configuration pour Hypersonic est :
 <mbean code="org.jboss.messaging.core.JMX.JDBCPersistenceManagerService"
 name="jboss.messaging:service=PersistenceManager"
 xmbean-dd="xmdesc/JDBCPersistenceManager-xmbean.XML">
 <depends>jboss.JC
A:service=DataSourceBinding,name=DefaultDS</depends>
 <depends optional-attribute-
name="TransactionManager">jboss:service=TransactionManager</depends>
 <attribute name="DataSource">java:/DefaultDS</attribute>
 <attribute name="CreateTablesOnStartup">true</attribute>
 <attribute name="UsingBatchUpdates">true</attribute>
 <attribute name="SqlProperties"><![CDATA[

CREATE_DUAL=CREATE TABLE JBM_DUAL (DUMMY INTEGER, PRIMARY KEY
(DUMMY)) ENGINE = INNODB
 CREATE_MESSAGE_REFERENCE=CREATE TABLE JBM_MSG_REF (CHANNEL_ID
BIGINT, MESSAGE_ID BIGINT, TRANSACTION_ID BIGINT, STATE CHAR(1), ORD
BIGINT, PAGE_ORD BIGINT, DELIVERY_COUNT INTEGER, SCHED_DELIVERY BIGINT,
PRIMARY KEY(CHANNEL_ID, MESSAGE_ID)) ENGINE = INNODB
 CREATE_IDX_MESSAGE_REF_TX=CREATE INDEX JBM_MSG_REF_TX ON JBM_MSG_REF
(TRANSACTION_ID)
 CREATE_IDX_MESSAGE_REF_ORD=CREATE INDEX JBM_MSG_REF_ORD ON
JBM_MSG_REF (ORD)
. . .

SELECT_EXISTS_REF_MESSAGE_ID=SELECT MESSAGE_ID FROM JBM_MSG_REF
WHERE MESSAGE_ID = ?
 UPDATE_DELIVERY_COUNT=UPDATE JBM_MSG_REF SET DELIVERY_COUNT = ?
WHERE CHANNEL_ID = ? AND MESSAGE_ID = ?
 UPDATE_CHANNEL_ID=UPDATE JBM_MSG_REF SET CHANNEL_ID = ? WHERE
CHANNEL_ID = ?
 LOAD_MESSAGES=SELECT MESSAGE_ID, RELIABLE, EXPIRATION, TIMESTAMP,
PRIORITY, HEADERS, PAYLOAD, TYPE FROM JBM_MSG
. . .

]]></attribute>
 <attribute name="MaxParams">500</attribute>
 <attribute name="UseNDBFailoverStrategy">true</attribute>
 </mbean>

La partie du milieu remplacée par des « . . . » représente la définition des
commandes SQL correspondant aux actions possibles du broker. À des
fins d’optimisation par exemple, il est possible de personnaliser très
finement la gestion de la persistance par le MOM.

© Smile – Open Source Solutions

Page 77

MOMs open source

Répartition de charge et haute disponibilité multi-site

JBoss garantit l'entière compatibilité avec une architecture en cluster
aussi bien pour le mode point à point que le mode par abonnement.

Les messages peuvent être amenés à être routés de cluster en cluster
considérant la charge de chaque machine ainsi que leur performance :
c’est le concept de « Store and Forward ».

Il est aussi possible de partager une même base de données.

JBM gère aussi la découverte automatique de brokers par multicast. La
réplication en maitre esclave est aussi gérée.

© Smile – Open Source Solutions

Page 78

MOMs open source

Faisons une petite note sur la synchronisation des différents « stores »
(média de stockage). Une gestion synchrone implique la mise en attente
du client JMS jusqu'à confirmation de l'écriture sur les deux brokers.
Suivant le nombre et la taille des messages, ce processus peut prendre
plus ou moins de temps. À l'inverse une gestion asynchrone signifie que
le broker maître réagira comme s'il n'y avait pas de broker esclave et
rendra la main au client dès la prise en compte du message.

Interopérabilité avec d'autres MOMs

La configuration de JBM est fournie avec une passerelle JMS. Le site de
JBoss nous propose d'ailleurs un tutoriel portant sur la configuration
d'une passerelle entre JBoss MQ et JBM (JBoss Messaging), car l’un et
l’autre n’utilisent pas le même protocole interne.

Le protocole interne n'est pas ouvert, limitant l'accès direct à la
plateforme MOM.

Gestion de la sécurité et d'un annuaire

Selon les spécifications de JBoss, la sécurité est gérée par JBM à l'aide
de fichiers de configuration. Par ailleurs, elle peut être personnalisée par
JAAS.

La gestion de la sécurité est réalisée par utilisateurs et par rôles. Par
défaut, les informations d'authentification sont issues de fichiers XML.
Le MOM a aussi la possibilité de se connecter à un LDAP.

Le chiffrement des données à l'aide de SSL / TLS est aussi supporté.

© Smile – Open Source Solutions

Page 79

MOMs open source

Administration

La plateforme JBM implémente JMX. Cependant, aucune interface
graphique n'est fournie.

JBM a introduit quelques spécificités au niveau de l’implémentation du
JMS. Sans dénigrer la spécification 1.1, JBM rajoute quelques sucreries.
Par exemple, on peut maintenant récupérer les statistiques sur la
plateforme sans passer par JMX. (Méthode intitulée « Message
Counter »). Rappelons néanmoins que l'utilisation de ces fonctions
supprime un avantage majeur de JMS, la portabilité du code. À utiliser
avec modération.

Configuration et déploiement

L'utilisation de JBM à travers JBoss Application Server (JAS) est très
aisée. Il suffit de les télécharger (JAS + JBM), de configurer les variables
d'environnement et d'exécuter un script de configuration situé dans le
dossier JBM.

Notons toutefois que l'installation de JBM en « standalone » est une
opération assez lourde et n'est vraiment pas dans « l’esprit JBoss ». On
comprend, après utilisation de l'outil qu'il est vraiment intégré à JAS. Par
exemple, les fichiers de configuration, sous forme de XML, sont
complètement intégrés à JBA.

Une trentaine d'exemples sont fournis. Ils traitent entre autres de :
Passerelle JMS, Clustering, Web Service, Reprise sur erreur, le
chiffrement des transmissions.

Détail sur le projet

Qualité du Projet

Malgré sa jeunesse, la communauté de développeur JBM dispose d’un
SVN, un forum et un service de suivi de tickets d’incidents.

Les utilisateurs ont, quant à eux : un Wiki et un forum. Ils sont souvent
indisponibles.

Le site officiel de JBM possède 17 Pages
(HTTP ://www.jboss.org/jbossmessaging/)

Son page Rank est de 6.

Un support technique est disponible via mail, chat (IRC) et forum. Aucun
support commercial n'est disponible pour ce produit. Cependant, les
produits JBoss intégrant JBM possèdent quant à eux un support
commercial via email uniquement.

© Smile – Open Source Solutions

http://www.jboss.org/jbossmessaging/
http://www.jboss.org/jbossmessaging/

Page 80

MOMs open source

Une équipe de 4 personnes s'occupe à plein temps du projet.

Un Wiki et des documentations sont fournis par la communauté
JBoss.

Références

Le site internet de JBoss présente les entreprises qui ont adoptées leurs
produits, qui incluent Enernoc, Scania, Iwbank, Covad, AcXium.

Autres

La version 2.0 de JBM est en préparation dans les « bunker top secret »
de la communauté JBoss. Cette version apportera des nouveautés par
lesquelles:

 AMQP / STOMP

 Conception basé sur POJO

 Gestion de gros messages (exemple : 8 Go)

 …

 À partir de cette version, il s’inscrira dans la catégorie des
concurrents sérieux d’Active MQ

© Smile – Open Source Solutions

Page 81

MOMs open source

COMPARATIF
JORAM AMQ OMQ JMQ

Langage Java    
Protocoles Interne (non

documenté /
documenté /

ouvert)

   

AMQ.P    
Open Wire    

STOMP    
Passerelles

fournies
SOAP    

RestFul    
Mail    
FTP    

JavaScript / Ajax    
Interfaces JMS 1.0.2b    

JMS 1.1    
JCA    
JMX    

JAAS    
JNDI    
JSE    

Langages Java    
C / C++    

JavaScript    
.Net    

Delphi    

© Smile – Open Source Solutions

Page 82

MOMs open source

JORAM AMQ OMQ JMQ

Perl    
PHP    
Pike    

Python    
Ruby    

Gestion des
Messages

Hiérarchie de Topic    

Priorité    
WildCard    

Groupe de
Messages

   

Destination
Virtuelle

   

EIP    
Persistance Système de Fichier

(Normal /
Optimisé)

   

Compatible JDBC    
Topologie Configuration    

Multi-site    
Réplication    

Découverte par
Multicast

   

Découverte par
Broadcast

   

Découverte par
LDAP

   

Intégration E.J.B    
Spring    

Standalone    
Configuration Fichier (XML / Non

standard/N)
   

À la volé et à
chaud

   

© Smile – Open Source Solutions

Page 83

MOMs open source

JORAM AMQ OMQ JMQ

Administration
/ Monitoring

Par Messages    

Interface graphique
fournie

   

Interface script
fournie

   

Sécurité SSL / TLS    
Gestion Utilisateur    
Gestion de Groupe    
Gestion des droits

par domaine
   

JAAS    
Autre MOM Passerelle JMS

fournie
   

Divers Version 5.2 5.2 4.2 1.4.4

Nombre de
contributeur

24 114 ? 4

Nombre de pages
du site

73 14200 62 17

Page Rank du site 4 8 6 6

Licence LGPL Apache 2 CDDL ou
GPL v2

LGPL

© Smile – Open Source Solutions

Page 84

MOMs open source

BENCHMARK DE DÉBIT

Scénario de test

Ce test de performance a pour but de mettre en exergue les limites des
MOMs selon la charge infligée. Pour ce faire, nous allons mettre en place
un MOM et lui envoyer des messages à débit constant et pendant une
période de 10 secondes. Nous allons mesurer pour chaque message le
temps écoulé de l'envoi, jusqu'à sa réception.

Le test est organisé en phases de durées égales. Chaque phase se
caractérise par un débit constant. Pour chaque débit, nous obtenons
plusieurs valeurs. Afin d'éviter toute interférence, chaque phase est
séparée d'une autre par une vidange du MOM. Cette vidange se fait
naturellement en attendant que tous les messages soient consommés.

Nous répétons ce test avec trois tailles de messages différentes : 0.1, 1 et
10 Ko.

Réalisation du test

Après la mise en place d'un MOM, nous lançons les programmes
« producteur » et « consommateur ».

Le programme « producteur » agrège plusieurs producteurs JMS. En
effet, afin de soutenir un débit constant, le programme se divise en
multiples threads. On obtient ainsi un producteur par seconde délivrant
N messages par intervalle de temps. Le nombre N correspond donc au
débit souhaité. Chaque message est daté et identifié. Afin de vraiment
soutenir le débit souhaité, chaque producteur ne peut envoyer que 1000
Messages.

Le programme « consommateur », quant à lui, ne reçoit pas
nécessairement les messages dans le bon ordre. Il les récolte, les
horodates, les analyses et les regroupe par seconde. À chaque fin de
phase, il produit ses résultats. L’analyse des messages se fait à la fin afin
de ne pas perturber le test.

Configuration

La configuration des deux outils est issue de celle par défaut. Elle est
épurée de tout ce qui n'est pas nécessaire. Le mode de transport est le
TCP. Aucun chiffrement particulier n'a été mis en place et aucune limite
de mémoire au niveau de la configuration non plus. Au niveau de la
JVM, 7 Go lui ont été alloués pour chaque broker, consommateur et
producteur.

© Smile – Open Source Solutions

Page 85

MOMs open source

La machine

Les producteurs, le consommateur et le broker tournent sur des
machines EC2 distinctes, allouées sur le cloud Amazon, du type :

 4 unités de traitement 64 bits

 7.5 Go de R.A.M

 850 Go de Disque dur

Chaque unité de traitement est équivalente à 1.0-1.2 GHz Opteron 2007
ou à Xeon 2007.

Résultats du test

Nous allons exprimer chaque résultat selon le débit de réception par
rapport au débit d’envoi.

© Smile – Open Source Solutions

Page 86

MOMs open source

Active MQ avec Persistance

Active MQ, sans Persistance (volatile)

© Smile – Open Source Solutions

Page 87

MOMs open source

Joram avec Persistance

JORAM sans Persistance (volatile)

© Smile – Open Source Solutions

Page 88

MOMs open source

Analyse

On remarque que les deux outils ne réagissent vraiment pas de la même
manière.

D’une part, le débit de réception d’active MQ se stabilise tandis que le
débit de réception de Joram chute progressivement au fur et à mesure
que le débit en entrée augmente.

Active MQ supporte mieux la charge que JORAM.

D’autre part, JORAM n’est pas aussi sensible que Active MQ à la taille
des messages. On remarque que la différence entre les débits de
réception des messages de différentes tailles est plus grande dans le cas
d’Active MQ que celle de JORAM.

Une chose est sûre, Active MQ est bien plus performant que JORAM, à
petite ou forte charge. Voici un tableau récapitulatif des débits de
réception.

Taille des messages

Débit possible, en messages par seconde

ACTIVE MQ JORAM

Max Moyenne Max Moyenne

0.1 Ko
P 2 400 2 000 320 n/a

SP 9 000 9 000 330 n/a

1 Ko
P 2 350 1 900 270 n/a

SP 9 000 9 000 320 n/a

10 Ko
P 1 300 1 200 270 n/a

SP 4 000 4 000 320 n/a

Notons que « P » signifie ici « avec Persistance », et « SP » signifie « Sans
Persistance ».

© Smile – Open Source Solutions

Page 89

MOMs open source

On remarque aussi que la différence entre persistance et sans
persistance est très grande pour Active MQ. Le débit de réception varie
avec un facteur de 3.

Au final, on retiendra que, dans un mode sans persistance, Active MQ
achemine jusqu’à 9000 messages par seconde, et jusqu’à 2000 avec
persistance.

© Smile – Open Source Solutions

Page 90

MOMs open source

SYNTHÈSE

La première question n’est pas quelle solution de MOM choisir.
L’important est d’abord de bien identifier les bénéfices importants qu’un
MOM peut apporter dans un système d’information, et c’est pourquoi
nous nous sommes attachés en premier lieu de bien décrire les services
rendus par un MOM, et la manière dont il pouvait simplifier et fiabiliser
les interactions entre applications.

Les MOMs sont encore trop peu connus des architectes, et on voit
souvent mettre en œuvre des échanges FTP, ou bien des appels
synchrones trop fragiles, ou autres moyens d’échanges rudimentaires,
voir archaïques. Les MOMs apportent une solution ouverte, flexible et
extensible à une diversité de problèmes d’intégration. On peut déployer
un MOM dans un contexte hautement hétérogène, mais il a toute sa
place également au sein d’une simple plateforme web, un peu haut de
gamme.

Une fois que l’architecte est convaincu qu’un middleware de type MOM
est le bon socle d’échange pour sa plateforme, il lui reste à faire le choix
d’un produit. L’offre est riche, et comme on l’a vu, tous les produits
convergent autour de la spécification JMS, ce qui offre un niveau de
service de base commun, mais aussi permet de concentrer l’expertise.

Lorsque nous faisons, dans nos livres blancs, un panorama des
solutions open source du marché, il arrive souvent que l’on ne puisse
conclure à la supériorité claire d’un produit en particulier. La
conclusion est alors que selon les besoins spécifiques d’un projet, selon
le contexte d’insertion, tel ou tel produit arrivera en tête.

Mais sur le sujet des MOMs, force est de constater qu’un produit sort du
lot : notre étude nous amène à conclure que Apache Active MQ est la
meilleure des quatre solutions étudiées :

 Elle a la pérennité et la légitimité de la fondation Apache, s’appuie
sur un socle de produits de qualité de la fondation, et semble
faire converger une communauté de développement plus large et
active.

 Elle offre une couverture fonctionnelle plus large, sur à peu près
tous les plans, avec en particulier l’intégration possible de
traitements et d’aiguillages.

 Elle est particulièrement extensible, et peu satisfaire aussi bien des
besoins simples que de vastes problématiques d’entreprise.

 Et enfin, elle présente des performances supérieures.

© Smile – Open Source Solutions

Page 91

MOMs open source

Pour nous, l’affaire est entendue, Active MQ nous semble être le meilleur
choix. Sauf bien sûr si l’on a par ailleurs déjà déployé une infrastructure
basée sur les autres lignes de produits : Redhat/JBoss, SUN/GlassFish,
ou OW2/Jonas.

La question ensuite, sera d’ajuster l’ambition qui est donnée au
middleware dans son infrastructure applicative. L’avantage des MOMs
est leur relative simplicité : ils ne prétendent pas tout faire, mais ce qu’ils
font ils le font de manière fiable et performante. La limitation essentielle
des MOMs, comme on l’a vu, est qu’ils ne s’occupent pas du contenu du
message, et supposent donc que les applications parlent le même
langage, se sont entendues sur un format commun. Dans un
environnement hétérogène, incluant du patrimoine ancien, on voit bien
qu’on ne pourra faire cette hypothèse.

Active MQ, avec l’intégration de Apache Camel, prend des aspects d’EAI,
et peut prendre en charge des transformations de messages et
conversions de formats, mais de manière encore relativement limitée.

Pour prendre en charge une plus forte hétérogénéité, et s’ouvrir vers un
plus large éventail de modes de connexions et de protocoles, il faudra
considérer un ESB, Enterprise Service Bus, base d’une architecture SOA
globale. Le principal ESB dans le monde de l’open source est MULE, de
MuleSource, que nous apprécions particulièrement chez Smile.

Mais en matière d’architecture, il est essentiel de savoir ajuster
l’ambition au problème, et les solutions les plus sophistiquées ne sont
pas toujours les plus appropriées.

Les simples MOM, et Active MQ en particulier, restent donc des produits
extrêmement pertinents et utiles pour construire des plateformes
distribuées, ou permettre l’interopérabilité d’un petit nombre
d’applications.

Depuis plusieurs années, Smile a construit une expertise des
middleware au service d’architectures extensibles et performantes, et
nos experts seront heureux de vous aider à tirer le meilleur parti d’une
solution MOM open source.

© Smile – Open Source Solutions

Le
s

liv
re

s
bl

an
cs

 S
m

ile

C
on

ta
ct

ez
-n

ou
s,

 n
ou

s
se

ro
ns

 h
eu

re
ux

 d
e

vo
us

 p
ré

se
nt

er
 n

os
 r

éa
lis

at
io

ns
 d

e
m

an
iè

re
 p

lu
s

ap
pr

of
on

di
e

!
+3

3
1

41
 4

0
11

 0
0

/
sd

c@
sm

ile
.fr

Le
s

liv
re

s
bl

an
cs

 S
m

ile
 s

on
t

té
lé

ch
ar

ge
ab

le
s

gr
at

ui
te

m
en

t
su

r
w

w
w

.s
m

ile
.fr


In

tr
od

uc
ti

on
 à

l’o
pe

n
so

ur
ce

et

 a
u

Lo
gi

ci
el

 L
ib

re

S
on

 h
is

to
ir

e,
 s

a
ph

ilo
so

ph
ie

, s
es

 g
ra

n
de

s
fig

u
re

s,

so
n

 m
ar

ch
é,

 s
es

 m
od

èl
es

 é
co

n
om

iq
u

es
, s

es

m
od

èl
es

 d
e

su
pp

or
t

et
 m

od
èl

es
 d

e
dé

ve
lo

pp
em

en
t.

[5

2
pa

ge
s]


G

es
ti

on
 d

e
co

nt
en

us
 :

le
s

so
lu

ti
on

s

op
en

 s
ou

rc
e

D
an

s
la

 g
es

ti
on

 d
e

co
n

te
n

u
s,

 le
s

m
ei

lle
u

re
s

so
lu

ti
on

s
so

n
t

op
en

 s
ou

rc
e.

 D
u

 s
im

pl
e

si
te

 à
la

so

lu
ti

on
 e

n
tr

ep
ri

se
, d

éc
ou

vr
ez

 l’
of

fr
e

de
s

C
M

S
 o

pe
n

so

u
rc

e.
 [5

8
pa

ge
s]


Po

rt
ai

ls
 :

le
s

so
lu

ti
on

s
op

en
 s

ou
rc

e

Po
u

r
le

s
po

rt
ai

ls
 a

u
ss

i,
l’o

pe
n

 s
ou

rc
e

es
t

ri
ch

e
en

so

lu
ti

on
s

so
lid

es
 e

t
co

m
pl

èt
es

. A
pr

ès
 le

s
C

M
S

,
S

m
ile

 v
ou

s
pr

op
os

e
u

n
e

ét
u

de
 c

om
pl

èt
e

de
s

m
ei

lle
u

re
s

so
lu

ti
on

s
po

rt
ai

ls
. [

50
 p

ag
es

]


20

0
qu

es
ti

on
s

po
ur

 c
ho

is
ir

 u
n

C
M

S

To
u

te
s

le
s

qu
es

ti
on

s
qu

’il
 fa

u
t

se
 p

os
er

 p
ou

r
ch

oi
si

r
l’o

u
ti

l d
e

ge
st

io
n

 d
e

co
n

te
n

u
 r

ép
on

dr
a

le
 m

ie
u

x
à

vo
s

be
so

in
s.

 [4
6

pa
ge

s]


C

on
ce

pt
io

n
d'

ap
pl

ic
at

io
ns

 w
eb

S
yn

th
ès

e
de

s
bo

n
n

es
 p

ra
ti

qu
es

 p
ou

r
l'u

ti
lis

ab
ili

té
et

 l'
ef

fic
ac

it
é

de
s

ap
pl

ic
at

io
n

s
m

ét
ie

r
co

n
st

ru
it

es
 e

n

te
ch

n
ol

og
ie

 w
eb

. [
61

 p
ag

es
]


Le

s
fr

am
ew

or
ks

 P
H

P

U
n

e
pr

és
en

ta
ti

on
 c

om
pl

èt
e

de
s

fr
am

ew
or

ks
 e

t
co

m
po

sa
n

ts
 q

u
i

pe
rm

et
te

n
t

de
 r

éd
u

ir
e

le
s

te
m

ps

de
 d

év
el

op
pe

m
en

t
de

s
ap

pl
ic

at
io

n
s,

 t
ou

t
en

am

él
io

ra
n

t
le

u
r

qu
al

it
é.

 [7
7

pa
ge

s]


Le

s
10

0
bo

nn
es

 p
ra

ti
qu

es
 d

u
w

eb

C
en

t
et

 q
u

el
qu

es
 «

bo
n

n
es

 p
ra

ti
qu

es
 d

u
 w

eb
 »

,
u

sa
ge

s
et

 a
st

u
ce

s,
 in

co
n

to
u

rn
ab

le
s

ou
 t

ou
t

si
m

pl
em

en
t

 u
ti

le
s

et
 q

u
i v

ou
s

ai
de

ro
n

t
à

co
n

st
ru

ir
e

u
n

 s
it

e
de

 q
u

al
it

é.
 [2

6
pa

ge
s]


E

R
P/

PG
I:

 le
s

so
lu

ti
on

s
op

en
 s

ou
rc

e

D
es

 s
ol

u
ti

on
s

op
en

 s
ou

rc
e

en
 m

at
iè

re
 d

’E
R

P
so

n
t

to
u

t
à

fa
it

 m
at

u
re

s
et

 g
ag

n
en

t
de

s
pa

rt
s

de
 m

ar
ch

é
da

n
s

le
s

en
tr

ep
ri

se
s,

 a
pp

or
ta

n
t

fle
xi

bi
lit

é
et

 c
oû

ts

ré
du

it
s.

 [1
21

 p
ag

es
]


G

E
D

 :
le

s
so

lu
ti

on
s

op
en

 s
ou

rc
e

Le
s

vr
ai

es
 s

ol
u

ti
on

s
de

 G
E

D
 s

on
t

de
s

ou
ti

ls
 t

ou
t

à
fa

it
 s

pé
ci

fiq
u

es
 ;

l’o
pe

n
 s

ou
rc

e
re

pr
és

en
te

 u
n

e
al

te
rn

at
iv

e
so

lid
e,

 u
n

e
la

rg
e

co
u

ve
rt

u
re

fo

n
ct

io
n

n
el

le
 e

t
u

n
e

fo
rt

e
dy

n
am

iq
u

e.
 [7

7
pa

ge
s]


R

éf
ér

en
ce

m
en

t
: c

e
qu

’il
 fa

ut
 s

av
oi

r

G
râ

ce
 à

ce
 li

vr
e

bl
an

c,
 d

éc
ou

vr
ez

 c
om

m
en

t
op

ti
m

is
er

 la
 "

ré
fé

re
n

ça
bi

lit
é"

 e
t

le
 p

os
iti

on
n

em
en

t
de

 v
ot

re
 s

it
e

lo
rs

 d
e

sa
 c

on
ce

pt
io

n
. [

45
 p

ag
es

]


D

éc
is

io
nn

el
 :

le
s

so
lu

ti
on

s
op

en
 s

ou
rc

e

D
éc

ou
vr

ez
 le

s
m

ei
lle

u
rs

 o
u

ti
ls

 e
t

su
it

es
 d

e
la

bu

si
n

es
s

in
te

lli
ge

n
ce

 o
pe

n
 s

ou
rc

e.

[7
8

pa
ge

s]


C

ol
le

ct
io

n
Sy

st
èm

e
et

 I
nf

ra
st

ru
ct

ur
e

:


V

ir
tu

al
is

at
io

n
 o

pe
n

 s
ou

rc
e

[4
1

pa
ge

s]


A

rc
h

it
ec

tu
re

s
W

eb
 o

pe
n

 s
ou

rc
e

[1
77

 p
ag

es
]


Fi

re
w

al
ls

 o
pe

n
 s

ou
rc

e
[5

8
pa

ge
s]


V

PN
 o

pe
n

 s
ou

rc
e

[3
1

pa
ge

s]


C

lo
u

d
C

om
pu

ti
n

g
[4

2
pa

ge
s]


M

id
dl

ew
ar

e
[9

1
pa

ge
s]

	Préambule
	Smile
	Quelques références
	Intranets et Extranets
	Internet, Portails et e-Commerce
	Applications métier
	Applications décisionnelles

	Ce livre blanc
	Sommaire

	Concepts des MOMs et JMS
	Qu'est-ce qu’un Middleware ?
	Pourquoi des échanges asynchrones ?

	Les Middlewares Orientés Messages ou MOM
	Définition
	MOM, EAI, ESB
	EDA, Event Driven Architecture
	Des échanges asynchrones
	Des échanges fiables
	Brokers
	Protocoles et APIs
	Pourquoi un MOM open source ?
	Les services d'un MOM
	Un service fiable
	Un service asynchrone
	Une indirection de nommage
	Pas de transformation des données
	Autres services

	Java Messaging System ou JMS
	Introduction
	Modes de communication
	Le mode point à point ou « queue »
	Le mode « publish-subscribe » ou « topic »
	Queues et topics

	Quelques définitions
	JMS Client
	Non-JMS Client
	JMS Provider
	JMS Consumer
	JMS Producer
	JMS Message
	JMS Domains
	Destination

	Encodage du Corps des messages
	La structure du message JMS
	Ordre des messages
	Durée de vie d'un message
	Priorité
	Sélection des messages
	Aiguillage et spécialisation
	Synthèse JMS

	Caractéristiques principales des MOM
	Langages d'implémentation, APIs et environnements supportés.
	Protocoles
	Traitement des messages par le MOM
	Gestion des transactions
	Gestion des acquittements
	Transactions JMS
	Transactions XA

	Dead Message Queue
	Persistance des messages

	Fonctionnalités avancées
	Code générique et JNDI
	Enterprise Integration Patterns
	Interopérabilité entre MOMs
	Passerelle à base d’ESB
	Gestion de la sécurité
	Administration et monitoring
	API spécifique

	Configuration et déploiement
	Répartition de charge applicative
	Topologie et réseau de brokers
	Tolérance aux pannes
	Réplication maître-esclave
	Partage du stockage

	Auto-découverte

	Les MOMs open source
	Les MOMs étudiés
	JORAM
	Présentation
	Caractéristiques principales du produit
	Implémentation
	Langages pris en charge
	Protocoles pris en charge

	Interfaces prises en charge
	Gestion des messages
	Persistance des messages
	Répartition de charge et haute disponibilité avec plusieurs sites
	Interopérabilité avec d'autres MOMs
	Gestion de la sécurité et d'un annuaire
	Administration
	Configuration et déploiement

	Détail sur le projet
	Détail
	Qualité
	Références

	Active MQ
	Présentation
	Caractéristiques principales du produit
	Langages d'implémentation
	Langages pris en charge
	Protocoles pris en charge
	Interfaces prises en charge

	Gestion des messages
	Traitement des messages
	Gestion des transactions
	Persistance des messages
	Répartition de charge et haute disponibilité multi-site.
	Interopérabilité avec d'autres MOMs
	Gestion de la sécurité et d'un annuaire
	Administration
	Configuration et déploiement
	Détail sur le projet
	Détail
	Qualité
	Références

	MOM Open Message Queue (OMQ)
	Présentation
	Caractéristiques principales du produit
	Langages d'implémentation
	Langages pris en charge
	Protocoles pris en charge
	Interfaces prises en charge
	Gestion des messages
	Traitement des messages
	Gestion des transactions
	Persistance des messages
	Répartition de charge et haute disponibilité multi site.
	Interopérabilité avec d'autres MOMs
	Gestion de la sécurité et d'un annuaire
	Administration
	Configuration et déploiement

	Détail sur le projet
	Détails
	Qualité du projet
	Références

	MOM JBoss Messaging (JBM)
	Présentation
	Caractéristiques principales du produit
	Langages d'implémentation
	Langages pris en charge
	Protocoles pris en charge
	Interfaces prises en charge
	Gestion des messages
	Traitement des messages
	Gestion des transactions
	Persistance des messages
	Répartition de charge et haute disponibilité multi-site
	Interopérabilité avec d'autres MOMs
	Gestion de la sécurité et d'un annuaire
	Administration
	Configuration et déploiement

	Détail sur le projet
	Qualité du Projet
	Références
	Autres

	Comparatif
	Benchmark de débit
	Scénario de test
	Réalisation du test
	Configuration
	La machine
	Résultats du test
	Active MQ avec Persistance
	Active MQ, sans Persistance (volatile)
	Joram avec Persistance
	JORAM sans Persistance (volatile)
	Analyse

	Synthèse

