Middleware
Orientés Messages

Principes, mise en oeuvre
et outils open source

Smile

OPEN SOURCE 5OLUTIONS

T T T I yhw | g - N a iR L sEERa P Rt~ (R | [-
wWww.sSmile.ir + 4 _i il &l 40 11 U0 = Conmacrasmie.

VA A A S CEE e e sl crviles Fr tvarit b i T e =
www . smile-oss.com * blog.smilefr * twitter: @GroupeSmile

[7¥]
o
- |
=
L
=
[+
=
vy
o
=
e
£
=
[*¥]
]
=
[TT]
™
-
vy

® Page 2

Smile

MOMs open source

PREAMBULE

Smile est une société d’ingénieurs experts dans la mise en ceuvre de solutions open
source et l'intégration de systémes appuyés sur 'open source. Smile est membre de
I’APRIL, l’association pour la promotion et la défense du logiciel libre, de Alliance
Libre, PLOSS, et PLOSS RA, des associations clusters régionaux d'entreprises du
logiciel libre.

Smile compte 480 collaborateurs en France, 600 dans le monde, ce qui en fait la
premiére société en France spécialisée dans 'open source.

Depuis 2000, environ, Smile méne une action active de veille technologique qui lui
permet de découvrir les produits les plus prometteurs de l'open source, de les
qualifier et de les évaluer, de maniére a proposer a ses clients les produits les plus
aboutis, les plus robustes et les plus pérennes.

Cette démarche a donné lieu a toute une gamme de livres blancs couvrant différents
domaines d’application. La gestion de contenus (2004), les portails (2005), la
business intelligence (2006), les frameworks PHP (2007), la virtualisation (2007), et
la gestion électronique de documents (2008), ainsi que les PGIs/ERPs (2008). Parmi
les ouvrages publiés en 2009, citons également « Les VPN open source », et « Firewall
est Contréle de flux open source », et « Middleware », dans le cadre de la collection «
Systéme et Infrastructure ».

Chacun de ces ouvrages présente une sélection des meilleures solutions open
source dans le domaine considéré, leurs qualités respectives, ainsi que des retours
d’expérience opérationnels.

Au fur et a mesure que des solutions open source solides gagnent de nouveaux
domaines, Smile sera présent pour proposer a ses clients d’en bénéficier sans risque.
Smile apparait dans le paysage informatique francais comme le prestataire
intégrateur de choix pour accompagner les plus grandes entreprises dans 1’adoption
des meilleures solutions open source.

Ces derniéres années, Smile a également étendu la gamme des services proposeés.
Depuis 2005, un département consulting accompagne nos clients, tant dans les
phases d’avantprojet, en recherche de solutions, qu’en accompagnement de projet.
Depuis 2000, Smile dispose d’'un studio graphique, devenu en 2007 Smile Digital —
agence interactive, proposant outre la création graphique, une expertise e -
marketing, éditoriale et interfaces riches. Smile dispose aussi d’'une agence
spécialisée dans la TMA (support et ’exploitation des applications) et d'un centre de
formation complet, Smile Training. Enfin, Smile est implanté a Paris, Lille, Lyon,
Grenoble, Nantes, Bordeaux, Poitiers, Aix-en-Provence et Montpellier. Et présent
également en Espagne, en Suisse, au Benelux, en Ukraine et au Maroc.

© Smile — Open Source Solutions

® Page 3

Smile

MOMs open source

Quelques références

Intranets et Extranets

Société Générale - Caisse d'Epargne - Bureau Veritas - Commissariat 4 1'Energie Atomique - Visual
- CIRAD - Camif - Lynxial - RATP - Sonacotra - Faceo - CNRS - AmecSpie - INRA - CTIFL - Chateau
de Versailles - Banque PSA Finance - Groupe Moniteur - Vega Finance - Ministére de
I’Environnement - Arjowiggins - JCDecaux - Ministére du Tourisme - DIREN PACA - SAS - CIDJ -
Institut National de ’Audiovisuel - Cogedim - Diagnostica Stago Ecureuil Gestion - Prolea - IRP-
Auto - Conseil Régional Ile de France - Verspieren - Conseil Général de la Céte d’Or - Ipsos -
Bouygues Telecom - Prisma Presse - Zodiac - SANEF - ETS Europe - Conseil Régional d’lle de
France - AON Assurances & Courtage - IONIS - Structis (Bouygues Construction) - Degrémont Suez
- GS1-France - DxO - Conseil Régional du Centre - Beauté Prestige International - HEC - Veolia

Internet, Portails et e-Commerce

Cadremploi.fr - chocolat.nestle.fr - creditlyonnais.fr - explorimmo.com - meilleurtaux.com -
cogedim.fr - capem.fr - Editions-cigale.com - hotels-exclusive.com - souriau.com - pci.fr - odit-
france.fr - dsv-cea.fr - egide.asso.fr - Osmoz.com - spie.fr - nec.fr - vizzavi.fr - sogeposte.fr - ecofi.fr
- idtgv.com - metro.fr - stein-heurtey-services.fr - bipm.org - buitoni.fr - aviation-register.com -
cci.fr - eaufrance.fr - schneider-electric.com - calypso.tm.fr - inra.fr - cnil.fr - longchamp.com -
aesn.fr - bloom.com - Dassault Systemes 3ds.com - croix-rouge.fr - worldwatercouncil.org -
Projectif - credit-cooperatif.fr - editionsbussiere.com - glamour.com - nmmedical.fr - medistore.fr -
fratel.org - tiru.fr - faurecia.com - cidil.fr - prolea.fr - bsv-tourisme.fr - yves.rocher.fr -
jedecaux.com - cg21.fr - veristar.com - Voyages-sncf.com - prismapub.com - eurostar.com -
nationalgeographic.fr - eau-seine-normandie.fr - ETS Europe - LPG Systémes - cnous.fr -
meddispar.com - Amnesty International - pompiers.fr - Femme Actuelle - Stanhome-Kiotis - Gites
de France Bouygues Immobilier - GPdis - DeDietrich - OSEO - AEP - Lagardére Active Média -
Comexpo - Reed Midem - UCCIFE - Pagesjaunes Annonces - 1001 listes - UDF - Air Pays de Loire -
Jaccede.com - ECE Zodiac - Polytech Savoie - Institut Francais du Pétrole - Jeulin - Atoobi.com -
Notaires de France - Conseil Régional dTle-de-France - AMUE

Applications métier

Renault - Le Figaro - Sucden - Capri - Libération - Société Générale - Ministére de 'Emploi -
CNOUS - Neopost - Industries - ARC - Laboratoires Merck - Egide - ATEL-Hotels - Exclusive Hotels
- CFRT - Ministére du Tourisme - Groupe Moniteur - Verspieren - Caisse d’Epargne - AFNOR -
Souriau - MTV - Capem - Institut Mutualiste Montsouris - Dassault Systémes - Gaz de France -
CAPRI Immobilier - Croix-Rouge Francaise - Groupama - Crédit Agricole - Groupe Accueil -
Eurordis - CDC Arkhineo

Applications décisionnelles

IEDOM - Yves Rocher - Bureau Veritas - Mindscape — Horus Finance — Lafarge — Optimus -
CecimObs — ETS Europe — Auchan Ukraine — CDiscount — Maison de la France — Skyrock — Institut
National de I’Audiovisuel — Pierre Audouin Consultant — Armée de l’air — Jardiland — Saint-Gobain
Recherche — Xinek — Projectif - Companeo — MeilleurMobile.com — CG72 — CoachClub

© Smile — Open Source Solutions

® Page 4

Smile

MOMs open source

Ce livre blanc

Les Middleware Orientés Messages, ou « MOMs», sont des outils
particuliérement précieux pour mettre en oeuvre des échanges entre
applications de toutes natures. Comme il arrive trés souvent dans ce
qui touche aux infrastructures, les solutions open source sont
particuliéerement en pointe dans ce domaine. Parce que le middleware
est souvent le ciment de toute une architecture, les critéres d’ouverture,
de pérennité et d’indépendance sont essentiels dans le choix dun tel
outil, et personne ne souhaite dépendre, dans ce contexte, de la politique
commerciale de tel ou tel acteur particulier.

C’est pourquoi les solutions open source sont en position de force en
matiére de middleware. La force de 'open source, c’est aussi la diversité
et le foisonnement de l'offre, dans une dynamique de compétition qui fait
naitre des produits de grande qualité. C’est le cas en matiére de MOM,
ou il existe différentes solutions tout a fait solides et matures.

Ce livre blanc vise a présenter 'offre open source en matiére de MOM.
Nous avons identifié quatre solutions qui se distinguent par leur qualité,
leur robustesse et la stature de leur éditeur.

Aprés avoir présenté les concepts fondamentaux et les fonctionnalités
communes a tous ces outils, nous étudierons chacun d’eux de maniére
plus détaillée.

© Smile — Open Source Solutions

Page 5

MOMs open source

PREAMBULE.ccutuuttuttuteecreersssassesssd

3115 oS PPN 2
QUELQUES REFERENCES +1ttuttuttenseusesensensesenseneesesenseseasensesesensessnsenssseasensessesensesensensesnsesseesseensenns 3
CE LIVRE BLANC. t 1 ettt euetettntntnenenenenee it e enenenenaeteeaenenen et e et taenenes ettt eneneneneaeaneneaseneneaneneneenen 4
SOMMAIRE . . ¢+ ettt et ettt et et e et e et et et et et e e e et et e e e e e a et et et e a et e et et e a e e e a et e n e et e e e et e aene S
CONCEPTS DES MOMS ET JMS....ccccitititintcecnrceccscercacescescesseasssccsssescesssnscssssnsee 1
QU'EST-CE QUUN MIDDLEWAREvututntntntnenenensesenenseneneeseneneesenesesensasesensaseneesesenseseressesereesesenenes 7
Pourquoi des échanges ASYNCRTOTIES P......cc.uiiiuiiiiie et 8
Les MIDDLEWARES ORIENTES MESSAGES OU MOM....ouiiiiiiiiiii e 9
DIEFITUILION . ..o ettt ettt ettt 9
MOM, EAL ESB......uuiiiieeeeeeeee ettt ettt ettt e et e et e e 10
EDA, Event Driven ATCRILECIUTC.ueeneeeeeeeeeeiee ettt ettt te et ettt e eaaaaas 10
Des EChaNges ASYNCRTOMES.cc.uueieieeei ettt eaae 11
DeS ECRANGES JIADLES.cceuieeieeeeee e ettt ettt 11
BIOKEIS.c.ccuiiieiieeeeeeee e ettt 12
ProtOCOLES @ APIS.....cccooveiiiieeee ettt ettt 12
Pourquoi Unt MOM OPEIL SOUTCE 2eeeueeeiiaeeeieeeiiee e e e tee e et e e taee e ettt e e eaee e e taeeeaseeaiaeetaeanneen 13
Les services dUN MOM..............ouuiiiiiiiiiiiiiiieee et 14
JAVA MESSAGING SYSTEM OU JMS. .. ettt 15
TNETOGUCTION ..ottt 15
Modes de COMIMUINICALIONccouuumiiiiiareeeeeiieiiieee e e e ettt e ettt e e e eeeeevaaa e 16
QUEIGUES AGfINTLIOTIS. ... eeeeiee ettt et e e e et e et e e e 17
Encodage du COTPS AES MESSOGES.u.eeeuueeeiteeeiaeeeiee et e et e ettt e et e et e et e e e e e e e eiaeeanas 18
La structure du meSSage JMS..............ccoiiiiiiiiiiiiiiiiiiiis e 20
OFdre @S MESSAGES.....cceeeieeeeeiiee ettt ettt ettt et e ettt e ettt e et e eeaees 20
Durée de Vie A UM MESSAGEO.....cccuuueeeeeiieeeeeeieee ettt ettt ettt eeeeans 21
PHIOTTEG ..ottt ettt ettt et ettt e e 22
SELECLION ABS TMESSOGES. ..ottt ettt et e e e 22
Aiguillage et SPECIALISALION.cceuuue e ettt ettt e e e e e e e eeees 23
SYIEIESE TS, ettt ettt e e ettt e e e ettt e et e et e et e e 24
CARACTERISTIQUES PRINCIPALES DES IMIOM ... o.iiuiiiiiiiiiiii e et 25
Langages d'implémentation, APIs et environnements SUPPOTLES........ccceuuuueeeeeruuneeeenuuaneennnn. 25
PrOtOCOLES. ...ttt ettt 27
Traitement des messages PAr 1@ MOM..............ceeeeuuuieeeeiiis e et 28
GeStioN AesS trANSACLIOTLSuuuuieeieiiiiiiiiieee ettt et 29
Dead MeSSAGE QULBTUC.cceuuute ettt ettt ettt et e e e e e e 32
PersSiStanCe AdeS MESSOGES.ccuuuuuee ettt ettt e eeeeans 32
FONCTIONNALITES AVANCEES. «.tu et ttetttntntntnen et ettt eneneneae it et e enenet et et eneseaaeneataeneateseneneenenenes 34
Code géneriqUe €t JINDL.............iieeiiiiie ettt 34
Enterprise INtegration PALOTTIS.cccuuueeeeeiiieeeeeieee ettt ettt e e e e e e 35
Interopérabilité @Ntre MOMS..........ccuueeeeuee ettt e e et e et te e et e e et e et e e et e aeeaaees 36
Passerelle G DASE A'ESB...........c.couuuuiiiiiiieeeiiiieeee ettt 37
GESHION A LA SECUTTLS ...ttt eaaee 39
AdMINISEIALION € TNOTUIEOTIILG. . e.. e eeeeeee ettt et et e et e et e et e et e e et e e e e eans 40
Configuration et déPlOTEIMENL.......c...veeuu et 40
Répartition de charge QPPUCALIVE.cceuuieeiiiieii et 40
Topologie et r8SEAU A@ DTOKEOTSccuuuiieeeiiiiieeeeiee ettt e e 41

© Smile — Open Source Solutions

® Page 6

Smile

MOMs open source

TOLETATICE QU POTUES. ...ttt ettt ettt et et e et e et e e e e e 45
AULO-AECOUUVCTEC. ..ottt et ettt e ettt e et e et et e et e e eaeen 46
LES MOMS OPEN SOURCE......cccoccetteertcensccessccssccsscsssscsscssssssssssssssssssssssessscscssss 38
LIES IMIOMS EoTUDIES . et ttetentntteteneneneteseneneneesesesenentasesensnensesesenensnsetesesesensssesssenensesenseneeneeneesens 48
0 L@) 22N PPN 48
PrESEIEALION. ..ot ettt e e e e ettt e et e ettt e ettt e et e et e et e et e et a e 48
Caractéristiques principales A PrOAUTL............ceeuieiiuiee e 49
DELAIL SUT L@ PTOJOL et et et ettt et e e e e e e 55

Y Xes 1y ol Y (O R U TP 57
PrESEIEQLION. ..ottt ettt e et 57
Caractéristiques principales A PrOAUTL...........ceeeuueeeiiieeiee et e e 57
GESLION ABS TMESSOGES ...ttt ettt ettt e e et e ettt e e e ettt e et e et e e e e ee e eanes 59
TraitemMent AeS MESSOGES ...c.ueeuueeeie ettt ettt e e e 60
GEStION AES LFANLSACHIONLS ...ttt ettt et e e e 61
PerSiStONCE AES MESSAYGES ...ccevviueeeeiiie et e ettt e e ettt e e ettt e e ettt e e ettt s e e e et e e et e et aeannas 61
Répartition de charge et haute diSponibilité MUILI-STEE.ceveeeeuuiieeeiiiieeeeiiieeiiaeeieeeia, 62
Interopérabilité avec d'AULTEeS MOMScceeueeeieieeeiee ettt ettt e et e et e e e taeeaaeaeees 64
Gestion de la SECUrité et d'UN QIMNUAITEceeeeeuuieeeiiiie ettt 64
ACMINISTIGLIOTL ..ot ettt et et et e et e e e et e et et e e e et eeaeen 64
Configuration et dePIOTEIMENL...........eeeuueeii ettt e e e e e e e 66
DELAIL SUT 1@ PIOJOL .ot ettt e e e 66
MOM OpeN MESSAGE QUEUE (OMQ). .. enininiiinie ettt et ettt ettt et e et e e eeaene 68
PrESEIEALION. ...eeeveeeie et ettt ettt et et e ettt e et e et e et e et e et e e et et a e 68
Caractéristiques principQles Al PrOAUIL...........ccceuueeeiuieeiiieeeiiaee e e iee e eie e teeeeieeeeeaaeeaeeaeens 68
DELAIL SUT L@ PIOJOL ettt et e et e et e e e e e 73
MOM JBo0ss MESSAGING (JBIM).. .ttt e et e e 74
PrESEIEQLION. ..ot ettt e et e et e ettt aans 74
Caractéristiques principales A PrOAUIL...........ccceuueeriueeiieesieee e sieeetieeeieeeeteeeeetaerieeaeens 74
DELAIL SUT L@ PTOJOL ettt ettt et e ettt e et e et e e e e e e e 79
COMPARATIF ...oictiieieerinriestortoessestossorssnssessorsonssessossorssnsssssossssssssssssssssessescssssssns 81
BENCHMARK DE DEBIT.....ccccccettttuiieerrnrieeereneeeesssseeessssesesssssssessssssessssssssssssssnns 84
SCONUATTO A LOSE et ettt e ettt e et e e e ettt e et e et s et e et e aaias 84
REQUISALION AU EOSTL...ceeeieeeeee e ettt e e 84
CONMYUGUTALION. .ot ettt ettt e e et e e et e et e et e e e e e aans 84
LO MGCRIIIC. ..o et ettt e e et e et e e e 85
RESUILALS AU EOSTL..c. oottt et e et e et e et e e e e e e 85
Active MQ QUEC POISISEANCE.ceueeeeeeeeeeee ettt ettt et et te e e e et e e e e e raenes 86
Active MQ, sans PersiStance (VOLALIE)..............c.uiieuuiiieuieeiii et 86
JOTAIM QUEC POTSISTANCE. ... seeeeiie ettt ettt e e e et e et e e e e e 87
JORAM sans PersiStance (VOIALILE)...........ceeeeeuuieeeeiiieaeeeiiee ettt eee e e 87
ATUALYS. .ottt 88
SYNTHESE......cciiiiitiiiiiiittiiiiiteeisiinetesseisseessssssstessssssstessssssssesssssssssssssssssssess 90

© Smile — Open Source Solutions

Smile Page

MOMs open source

Concepts pEs MOMs er JMS

Qu'est-ce qu’un Middleware ?

Un middleware est un logiciel qui permet a différentes applications
d’échanger et d'interopérer.

Un middleware permet aux applications d'interopérer y compris
lorsqu'elles tournent sur des serveurs différents, interconnectés par un
réseau. Le middleware est un outil de haut niveau, puisqu’il offre ses
services aux applications, mais les échanges induits s’appuient sur toute
une pile de protocoles réseau.

Par exemple, les outils qui permettent a des applications d'invoquer les
services d'un SGBD sont une catégorie particuliére de middlewares.

Parmi les middlewares qui permettent l'interopérabilité entre applications
homologues (de méme nature), on peut distinguer deux grandes familles:

» Les middlewares qui permettent l'invocation synchrone de
fonctions et méthodes, parmi lesquels on trouve la famille des
request brokers, avec CORBA ou encore DCOM.

= Les middlewares d'échange asynchrones, qui sont
principalement a base de messages, ce sont les MOMs, les
Message Oriented Middleware.

Un middleware est davantage qu'un simple protocole d'appel des services
offerts par une application, et typiquement RPC, RMI ou bien SOAP, tous
également synchrones, ne sont pas vraiment considérés comme des
middlewares.

© Smile — Open Source Solutions

® Page 8

Smile

MOMs open source

Application A

Site B

p vy

Outre la gestion de I’échange proprement dit, les services offerts par un
middleware peuvent étre de différentes natures, en particulier:

» L'identification et la localisation des applications a un niveau
supérieur, au dessus des adresses réseau et des noms de
serveurs, et l'acheminement des échanges a ce niveau.

» Dans certains cas, la conversion de formats de représentation des
données entre les applications, permettant a des applications
d'environnements et langages différents d'échanger de maniére
transparente.

* Dans certains cas également, des fonctions de sécurité, de
répartition de charge ou de gestion du secours.

Pourquoi des échanges asynchrones ?

Lorsqu'une application invoque les services d'une autre application au
moyen d'un middleware synchrone, il faut impérativement :

= que la seconde application soit en état de marche, a l'instant ou
elle est invoquée ;

» qu'elle soit joignable par le réseau.

Si l'une ou l'autre de ces conditions n'est pas réunie, la premiére
application doit renoncer a invoquer le service distant. Dans certains
cas, cette impossibilité peut avoir des conséquences graves pour
l'application initiatrice de l’échange, qui doit étre prévue pour traiter
I’échec de l'appel. L'invocation synchrone d'un service distant crée une
dépendance trés forte entre les deux applications.

© Smile — Open Source Solutions

® Page 9

Smile

MOMs open source

Et quand bien méme ces deux conditions sont réunies, la question se
pose encore du temps de réponse de cet appel de service. L'application
appelante peut-elle rester en attente de la réponse ? Peut-elle faire
attendre un utilisateur ? Aprés combien de temps doit-elle renoncer ?

Dans certains contextes, les échanges synchrones sont possibles. En
particulier lorsque les deux applications sont sur le méme serveur, ou a
la rigueur sur la méme plateforme, et que leurs temps de réponse
peuvent étre garantis.

Dans tous les autres cas, la dépendance qu'implique un mode d’échange
synchrone, tant au niveau des applications elles-mémes que des
serveurs, est néfaste.

Au contraire, avec un middleware asynchrone, 1’application initiatrice de
I’échange ne reste pas en attente d’'une réponse : elle confie son message
au middleware et poursuit sont traitement.

On dit qu'un middleware asynchrone met en ocuvre une faible
dépendance, un couplage lache (« loose coupling »), entre les applications,
ce qui permet une bien plus grande flexibilité dans les architectures.

Les Middleware Orientés Messages, ou MOM, sont de loin les
implémentations les plus courantes du principe d'échanges asynchrones
et, comme nous le verrons, il existe un standard en la matiére, la
spécification JMS, qui a un bon nombre d'implémentations de qualité.

Les Middlewares Orientés Messages ou
MOM

Définition

On l'a vu, les MOMs sont des middlewares, des outils d’échange qui
permettent a des applications de communiquer en échangeant des
messages. Une application « A» doit adresser un message a une
application «B», qui tourne (peut-étre) sur un serveur différent.
L’application « A» confie son message au MOM, qui se charge de
l'acheminer et de le remettre a ’application « B ».

L’objet véhiculé par le MOM entre deux applications est appelé message.
Mais rien n’est imposé quant a ce que représente ce message, sa taille, ou
encore le format des données qu’il véhicule. Pour l'essentiel, ces
questions ne concernent que l'application « A » et 'application « B », qui
doivent partager un certain nombre de conventions, afin de se
comprendre.

Le MOM, quant a lui, ne s’intéresse donc pas au contenu du message, il
ne fait que le transmettre, et il le remet au destinataire sans y avoir
apporté de changement.

© Smile — Open Source Solutions

® Page 10

Smile

MOMs open source

MOM, EAI, ESB

A la difference d'un MOM, un outil d’EAI (Enterprise Application
Integration), est aussi en charge de réaliser transformations sur les
informations portées par les messages, afin d’adapter les données de
I'émetteur aux formats gérés par le destinataire.

Un EAI englobe donc les fonctionnalités du MOM, et y ajoute des
possibilités facilitant lintégration des applications au niveau des
données transférées.

Dans un MOM, comme on 1’ a vu, les applications doivent parler le méme
langage, tandis qu'un EAI au contraire prend en charge les traductions
entre représentations différentes.

Un EAI est donc un middleware qui a comme principales fonctions :
*L’interconnexion des systémes hétérogeénes.
*La gestion de la transformation des messages.

*La gestion du routage des messages.

L’ESB, Enterprise Service Bus, est un concept plus ambitieux encore, qui
se présente comme le socle uniforme d’une architecture SOA globale. La
ou I'EAl peut prendre en charge des transformations de formats
permettant a une application A d’interopérer avec une application B,
I'ESB généralise le concept, en posant pour principe qu’il suffit qu’une
application A soit interfacée a I’ESB pour qu’elle puisse interopérer par
son intermédiaire avec toute autre application interfacée a ’'ESB. Et par
ailleurs, la connexion a I'ESB n’est pas exclusivement a base de
messages, elle doit supporter une grande diversité de modes d’échange et
de protocoles.

EDA, Event Driven Architecture

Puisque nous évoquons quelques acronymes en vogue, il faut parler
aussi du concept EDA, « Event-Driven Architecture », architecture pilotée
par les événements, qui est a certains égards une alternative a 1'approche
SOA.

L'approche EDA part de l'idée que tout traitement est d'une certaine
maniére exécuté en réaction a un événement. Et bien sUr, tout
traitement est par ailleurs générateur d'événements. Ainsi, la vente d'un
produit est un événement, qui induit un ensemble de traitements relatifs
par exemple a la gestion des stocks, a la comptabilité, a la logistique, a la
relation client, etc. Tout est événement, tout est réaction a des
événements, et il en va de méme pour nous-mémes, €tres humains, qui
agissons en réaction a un ensemble de stimuli externes.

Dans l'approche EDA, la réaction a un événement n'est pas un
traitement synchrone. Elle peut avoir des exigences de rapidité, mais

© Smile — Open Source Solutions

® Page 11

Smile

MOMs open source

elle est par essence asynchrone. Alors que 'approche SOA, méme si elle
peut se décliner dans une logique asynchrone, est malgré tout par
essence une approche synchrone. Et bien sar, les MOMs sont le
support naturel dune approche EDA.

Un dernier acronyme a trois lettres pour la route: CEP, pour « Complex
Event Processing », traitement d'événements complexes, consiste a
identifier, puis traiter, des événements complexes a partir d'une
combinaison d'événements simples. Cest donc wun concept
complémentaire a 'approche EDA, partant du principe qu'il ne suffit pas
de réagir a des événements individuels, il faut étre en mesure d'identifier
des événements de plus haut niveau, comme résultante d'événements
élémentaires. Par exemple: un ordre de vente, plus un autre ordre de
vente, plus encore un ordre de vente... égal une crise financiére,
événement complexe, s'il en est !

Des échanges asynchrones

Les échanges de messages mis en ocuvre par les MOMs sont
asynchrones. Cela signifie que les applications ne sont pas en attente
d’'une réponse a leur message. En fait, il est possible quun message de
réponse soit attendu, mais dans ce cas il n'y a pas de délai garanti pour
cette réponse, de sorte que 'application ne doit pas se bloquer en attente
de la réponse, et encore moins faire attendre un utilisateur. Le
caractére asynchrone ne dit rien quant au délai d’acheminement du
message : il peut étre trés rapide, de quelques millisecondes a peine,
mais il ne doit pas étre considéré comme assuré.

Des échanges fiables

L'une des qualités attendues des MOMSs est de garantir ’'acheminement
des messages quelles que soient les circonstances, les aléas, et en
particulier y compris dans le cas ou la connectivité réseau est
interrompue, ou le serveur distant est arrété, ou bien ou l’application
destinatrice n’est pas en mesure de réceptionner les messages. Dans
tous ces cas de figure, le MOM doit conserver les messages qui lui sont
confiés jusqu’a ce qu’ils aient été remis, et méme, jusqu’a ce qu’ils aient
été correctement traités par ’application destinatrice.

Nous verrons que cette fiabilité de l'acheminement peut étre rendue plus
ou moins forte, selon les parameétres et la configuration du MOM.

Les échanges a base de MOM ne sont pas, par nature, en mode requéte /
réponse, comme peut I'’étre un échange HTTP par exemple. Il est
possible bien sur que l’application destinatrice émette a son tour un
message, que l'on peut considérer comme une réponse, mais il s’agit
alors seulement d’une utilisation particuliere du MOM.

© Smile — Open Source Solutions

Smile

® Page 12

MOMs open source

Brokers

Les brokers sont des programmes gérant le flux de messages. En d'autres
termes, un MOM est composé d'un ou de plusieurs brokers. Comme le
montre la figure suivante, c'est avec les brokers que les applications
clientes communiquent, au travers de ’APL.

- "MOM ™ ~4--

Application A

LAN

—

-

s
.

/|

/

WAN

— —|Application E

\
—‘ Broker \

/

-

o

|Appl|¢atlon Bl | Broker =
\ | | -~ SiteC

b
SiteA -~ _ /

| Broker
\ 7 (LAN

-~ ~

—_ -

|Application c

Application D

Site B

Un broker est un serveur au sens logiciel du terme, c'est-a-dire un
processus qui est a I’écoute des requétes qui peuvent lui étre adressées
par d’autres processus, les applications clientes.

Une plateforme MOM ou plateforme middleware est donc constitué dun
ensemble des brokers et des passerelles.

Protocoles et APIs

Lorsqu'une application échange avec un broker, par exemple pour lui
remettre un message, et de méme lorsqu’un broker échange avec un
autre broker, ces échanges mettent en ceuvre un protocole réseau. Le
protocole définit les commandes invoquées et leurs parameétres, ainsi que
la représentation des données, entétes et corps, constituant les
messages.

© Smile — Open Source Solutions

® Page 13

Smile

MOMs open source

Lgngaga at ‘ AP
ervironnement

Protocola

e e Broker

Application
JMS Provider
API

Ce protocole est généralement invisible pour les applications, qui ne
voient que des appels de fonctions, des APIs. Et de méme, pour ce qui
est des échanges entre deux brokers d'un méme MOM, le protocole peut
étre considéré comme une affaire privée, interne, relevant purement de
I'implémentation du MOM. C’est pourquoi on s’intéresse généralement
davantage a l'ouverture des MOMs en termes d’APIs qu’en termes de
protocoles d’échange.

Pourquoi un MOM open source ?

Un middleware est nécessairement structurant pour les applications qui
en font wusage, c'est-a-dire que les applications seraient un peu
différentes si elles utilisaient un autre middleware, et en conséquence,
changer de middleware pourrait impliquer des changements sur toutes
les applications, avec donc un cout important.

En conséquence, il est clair que l'on ne souhaite pas avoir a changer de
middleware, et qu'il vaut mieux éviter aussi d'avoir un fournisseur en
position de tirer profit de cette dépendance.

C'est une des raisons pour lesquelles les solutions open source sont
naturellement a privilégier pour cette typologie d'outils.

Et c'est pourquoi aussi les grands acteurs de l'open source ont depuis
longtemps placé les middleware au premier rang de leurs priorités, ce qui
explique que l'on ait aujourd'hui un large choix de produits de qualité,
comme on le verra.

I1 faut « rendre a César ce qui appartient a César », et rappeler que le pére
de tous les MOMs est sans doute le produit MQSeries, de IBM,
aujourd'hui renommé « Websphere MQ », un produit introduit dans les
années 90, et qui a rencontré un grand succes en particulier dans les
banques et autres grands comptes IBM. MQSeries a posé les concepts
du MOM, échanges asynchrones et fiables, en offrant par ailleurs des
connecteurs pour une diversité d'environnements.

© Smile — Open Source Solutions

® Page 14

Smile

MOMs open source

Aujourd'hui, les solutions open source sont en position de force. Elles
sont généralement plus respectueuses des standards, plus ouvertes, et —
pour certaines d'entre elles au moins — plus dynamiques dans leur
développement. Et elles présentent un cout total de possession bien
plus avantageux.

Les services d'un MOM

Le service de base dun MOM est d'acheminer un message d'une
application vers une autre.

Mais il a d'autres valeurs ajoutées, d’autres caractéristiques :

Un service fiable

Le MOM garantit a l'application A que le message qui lui est confié ne
sera pas perdu. Ceci, méme en présence d'incidents de différentes
natures (logiciels, matériel, réseau). L'application émettrice peut compter
sur le MOM, et le fait de pouvoir compter sur lui permet de simplifier la
conception de l'application. On peut, a différents égards, faire un
parallele entre un MOM et une base de données. Lorsqu'une application
a écrit une donnée dans un SGBD, elle peut compter que cette donnée
ne sera pas perdue. Les meécanismes qui permettent d'assurer ceci
peuvent étre complexes, mais l'application n'a pas a s'en préoccuper.
C'est la méme chose pour un MOM. Le MOM peut donc étre utilisé y
compris pour transporter des objets critiques, des transactions
financiéres par exemple. Nous verrons plus loin que l'on peut, dans
certains contextes d'utilisation, choisir de se passer de cette fiabilité.

Un service asynchrone

L'application A confie son message au MOM, a destination de
l'application B. Mais l'application B est peut-étre saturée, ou bien
arrétée, son serveur est peut-étre en panne, ou bien injoignable. Rien
de tout cela ne pose probléme: le MOM attendra. Que le réseau
remarche, que le serveur soit en état, que l'application soit lancée. Il
attendra jusqu'a avoir pu remettre le message a son destinataire. Et
méme un peu plus: jusqu'a ce que son destinataire ait indiqué que le
message a pu étre traité avec succes.

Une indirection de nommage

Nous avons jusqu'ici fait comme si l'application A remettait au MOM un
message « a destination de l'application B ». Ce n'est pas tout a fait exact,
et la nuance est importante. L'application A remet au MOM un message
a destination d'une file d'attente, d'une queue. Et une application B (mais
peut-étre aussi différentes applications B1, B2, ...) peut lire les messages
de cette queue, selon des modalités que nous verrons plus en détail.
Cette indirection est importante: lapplication A ne connait pas

© Smile — Open Source Solutions

® Page 15

Smile

MOMs open source

l'application B, ne connait ni son « nom », ni le serveur sur lequel elle
tourne, ni dans quel sous-réseau ce serveur peut se trouver. Néanmoins,
le message sera remis a l'application B. On voit que le principe de
couplage lache n'est pas que dans le caractére asynchrone, il est
important également en ce qui concerne l'identification des applications
prenant part aux échanges.

Pas de transformation des données

A la différence d'autres middleware, et en particulier la famille des ORB,
les MOMs ne prennent pas en charge de transformation de la
représentation des données. Le MOM recoit un message d'une
application A, et le remet tel quel, inchangé, a une application B. Les
applications échangeant grace au MOM doivent donc « parler le méme
langage », c'est-a-dire représenter leurs objets (chaines, nombres,
matrices, classes, dates, etc.) de la méme maniere, au sein des messages,
pour se comprendre.

Autres services

Nous verrons que la gestion de la répartition de charge et la gestion du
secours sont extrémement faciles a mettre en ceuvre au moyen dun
MOM. La possibilité d'avoir plusieurs applications lisant et traitant les
messages sur une méme queue, implémente une répartition de charge
trés simple, mais trés efficace.

Java Messaging System ou JMS

Introduction

JMS est I'API de communication asynchrone via Message de Java. C’est
I’API qui permet a une application d’invoquer les services d'un MOM.

JMS fait partie de JEE 5 et est ainsi disponible aux applications
tournant sur des serveurs applicatifs Java.

La premiere version de JMS, JMS 1.0.2b est sortie le 25juinn 2001. La
seconde version, JMS 1.1 est sortie le 18 mars 2007, sans présenter de
diffétrence importante. Les classes JMS 1.1 permettent de réaliser des
clients JMS plus facilement. Nous allons étudier sommairement JMS 1.1.
Mais nous commencerons par poser quelques définitions et concepts.

Comme toute spécification, JMS doit assurer que toutes les applications
qui s’y conforment ont le méme comportement quel que soit le
fournisseur de I'implémentation. La JMS laisse aussi dans des cas bien
définis, la liberté aux fournisseurs d'implémenter ou non certaines
fonctionnalités. Nous reviendrons en détail sur ces fonctionnalités qui
distinguent les différents MOMs.

© Smile — Open Source Solutions

® Page 16

Smile

MOMs open source

Comme JDBC pour l'accés aux bases de données, ou JCR pour l'acceés a
un référentiel de contenus, JMS permet en théorie de développer une
application interfacée a un MOM, sans dépendre d’un produit particulier.
C'est-a-dire qu’il devrait étre possible de remplacer un MOM JMS par un
autre de maniére transparente pour l’application. Comme pour les
accés aux bases de données, cet aspect interchangeable n’est pas
toujours vérifié en pratique. Il peut exister des petites différences
d’implémentation de la spécification, et par ailleurs les différents outils
MOMs s’efforcent d’offrir des petits «plus», des fonctionnalités
différenciantes.

Modes de communication

La spécification JMS introduit deux modes de communication, les
« domaines JMS »: les topics d'une part, les queues d'autre part..

Le mode point a point ou « queue »

Ce mode de communication est aussi appelé communication via queue.
Une application envoie des messages a une queue. Une seule des
applications connectées recoit le message. Il peut y avoir plusieurs
applications en lecture sur la queue, mais une seule d’entre elles recevra
le message.

Avec une quewe chagque message n'est remis gu'une
fois, & une seule application « consumer », méme s y
a plusieurs consumers en leciure. |l peut toutefois étre

recyclé s'il n'est pas acquitte.

Consumer C1

queue
PrnducerFﬂl ; I]

Consumer C2

S = piConsumer C3

Le mode « publish-subscribe » ou « topic »

Ce mode de communication est aussi appelé communication via topic.
Une application envoie des messages a des topic.

Dans ce mode, on dit que les applications s'abonnent (subscribe) a un
topic, afin de recevoir les messages. Plusieurs applications peuvent étre
abonnées a un méme topic, et chacune d'elles recoit une copie des
messages.

© Smile — Open Source Solutions

® Page 17

Smile

MOMs open source

A la maniére de la diffusion d’'un magazine par exemple, ’émetteur publie

un message, et les difféerents destinataires s’abonnent pour recevoir une
copie du message.

C’est donc un échange de 1 vers N, mais qui peut étre aussi bien « de P
vers N », car plusieurs applications peuvent écrire dans le topic.

Chague application “consumer’ abonnée recoit tous les
messages. L'ordre peut varier toulefois, selon les
acquittements

Consumer C1

topic
Producer P1 | I] Consumer C2

Consumer C3

Queues et topics

On voit bien les différences d’usage de ces deux modes. Dans le mode
queue, on peut imaginer qu'un message représente une unité de
traitement. L’application destinatrice recoit le message et effectue un
traitement a partir du message, et dans ce cas il faut que le traitement ne
soit pas exécuté deux fois. Dans le mode topic, on peut voir le message
plutét comme une unité d’information, qui peut intéresser différents
acteurs, différentes applications. Par exemple, un ordre de bourse sera

une unité de traitement, tandis qu’un cours de bourse sera une
information.

Queue et Topic sont regroupés sous le nom de « Domaine». Ainsi, «

envoyer un message a un domaine » équivaut a « envoyer un message a
une queue ou a un topic ».

Quelques définitions

JMS introduit différents termes et concepts que nous allons rapidement
parcourir:

JMS Client

Un client JMS est une application écrite en Java envoyant et/ou recevant
des messages au moyen de I’API JMS.

© Smile — Open Source Solutions

® Page 18

Smile

MOMs open source

Non-JMS Client

Un client non-JMS est une application envoyant et/ou recevant des
messages en communiquant avec le JMS Provider selon son protocole
particulier, soit en direct, soit par l'intermédiaire des fonctions d'une API.
Cette application n'est pas écrite en Java.

JMS Provider

Un Fournisseur JMS est une implémentation des services JMS écrite en
Java. Ainsi,i les MOMs que nous étudierons plus loin sont des JMS
Providers.

JMS Consumer

Un Consommateur JMS est une application qui recoit et traite des
messages JMS.

JMS Producer

Un Producteur JMS est une application qui crée et envoie des messages
JMS. Une méme application peut étre a la fois JMS Producer et
Consumer.

JMS Message

Le message JMS est I'unité fondamentale de JMS. Il est envoyé et recu
par des Client JMS.

JMS Domains

Les deux domaines JMS correspondent aux deux modes de
communication déja évoqués : point a point avec les queues ou publish-
subscribe avec les topics.

Destination

Les objets destinations sont des objets servant a identifier la cible des
messages a envoyer ou a recevoir, c'est-a-dire des domaines, queues et
topics.

Encodage du Corps des messages

Méme si le contenu et le format du corps sont fondamentalement ’affaire
des applications, JMS aide les applications a manipuler certains types
d’objets en fournissant différents types de corps de message.

© Smile — Open Source Solutions

® Page 19

Smile

MOMs open source

Le corps des messages peut étre encodé selon les S5 « Message Types »
disponibles :

= « TextMessage » : Le corps contient des caractéres.

StringstockData;

TextMessage message;

message = session.createTextMessage () ;
message.setText (stockData) ;

String stockInfo; /* String to hold stock info */
stockInfo = message.getText () ;

*» « BytesMessage » : Le corps contient une suite de bytes, selon le
langage Java

byte[] stockData; /* Stock information as a byte array */
BytesMessage message;

message = session.createBytesMessage() ;

message.writeBytes (stockData) ;

byte[] stockInfo; /* Byte array to hold stock information */
int length;

length = message.readBytes (stockData) ;

* « MapMessage » : Le corps contient une map. Une map est un type
de données reliant une clef (codée en String) a une valeur (codée
en String, Double ou Long)

message = session.createMapMessage () ;

/* First parameter is the name of the map element, * second is the value
*/

message.setString ("Name", "SUNW") ;

message.setDouble ("Value", stockValue) ;

message.setLong ("Time", stockTime) ;

message.setDouble ("Diff", stockDiff);

message.setString ("Info", "Recent server announcement causes market
interest");

stockName = message.getString ("Name") ;

stockDiff = message.getDouble ("Diff") ;

stockValue = message.getDouble ("Value");

stockTime = message.getLong ("Time") ;

= « StreamMessage »

Ce type permet de concaténer plusieurs type natif (String, Double ou
Long).

/* Create message */ message = session.createStreamMessage () ;

/* Set data for message */

message.writeString (stockName); message.writeDouble (stockValue) ;
message.writelLong (stockTime) ;

message.writeDouble (stockDiff) ;

message.writeString(stockInfo) ;

stockName = message.readString() ;
stockValue = message.readDouble () ;
stockTime = message.readLong() ;
stockDiff = message.readDouble () ;
stockInfo = message.readString() ;

* « ObjectMessage » : Ce type permet de transférer un objet java.

ObjectMessage message = session.createObjectMessage () ;
message.setObject (myObject) ;

© Smile — Open Source Solutions

® Page 20

Smile

MOMs open source

La structure du message JMS

Le message manipulé par le MOM JMS est composé des parties
suivantes:

» Une entéte, qui a la méme structure pour tous les messages, et
contient principalement les champs nécessaires a l'identification
et au routage du message.

= Des propriétés, qui viennent en quelque sorte compléter lentéte,
avec des attributs spécifiques, soit définis par le MOM en
complément de l'entéte minimale JMS, soit définis par
l'application pour ses besoins particuliers.

= Le corps du message, qui peut avoir différents formats: texte, objets
Java ou données XML.

Les principaux champs de 1'entéte sont:
» JMSMessagelD : identifiant unique du message

» JMSDestination : identification de la queue ou du topic destinataire
du message

» JMSCorrelationID : utilisé pour synchroniser de facon applicative
deux messages de la forme requéte/réponse. Dans ce cas, dans
le message réponse, ce champ contient le messagelD du message
requéte

Selon limage habituelle, 'entéte correspond a ce qui est écrit sur
l’enveloppe, le corps correspond a ce qui est dans lUenveloppe. Le MOM
ne lit et n’utilise que les données de l'entéte, y compris les propriétés.
Ainsi, la sélection de messages, que l'on verra plus loin, peut dépendre de
ces propriétés, mais non du corps du message.

Ordre des messages

Le MOM garantit qu'un message sur une queue sera remis au plus une
fois, mais il ne garantit pas que les messages seront remis dans 1'ordre
dans lequel ils ont été émis.

En fait, il y a presque une impossibilité théorique a garantir l'une et
l'autre de ces deux propriétés: la remise unique, et la remise ordonnée.
En effet, un consommateur peut lire un message, et ne l'acquitter que
longtemps apres. Si le consommateur n'acquitte pas, le message doit
étre recyclé. Ainsi pour assurer la remise ordonnée, le MOM devrait
attendre que tous les messages jusqu'a N aient été non seulement recus,
mais acquittés, avant de livrer un message N+1, ce qui aurait un effet
catastrophique sur les performances.

© Smile — Open Source Solutions

® Page 21

Smile

MOMs open source

Nous verrons plus loin que les MOMs permettent une gestion des
transactions, qui permet en quelque sorte d’annuler des opérations qui
n’ont pas encore été validées, commitées, en ordonnant un retour arriére,
un rollback. Voir « Gestion des transactions », page 29.

La figure suivante montre comment un rollback, soit explicite, soit

implicite, c'est-a-dire provoqué par la fermeture de session, oblige a
recycler un message alors que les suivants ont déja été délivrés.

Broker MOM Consumer 1 Consumer 2

Lecture M ————

Lecture M2 .
A cquittement M1 e——
| Acquittement M2

Lecture M3 ———

Lecture M4 =
Lecture M5 -

{" |e——Rolback l—]
Y Y | J

temps

Durée de vie d'un message

L'application émettrice peut spécifier la durée de vie du message. Le
message est donc 'valable' jusqu'a l'expiration de cette durée, au-dela le
MOM peut le détruire sans l'avoir remis. La plupart des MOMs
choisissent plutot de l'aiguiller vers la Dead Message Queue, qui
permettra de garder la trace de I'événement, et de recycler le message le
cas échéant.

A noter que si l'on est dans le contexte d'une transaction, la durée de vie
démarre quand méme a l'instant d'émission, et non a linstant du commit.

© Smile — Open Source Solutions

® Page 22

Smile

MOMs open source

Priorité

Une fonctionnalité optionnelle, mais utile, proposée par le JMS, est la
gestion des priorités, c'est-a-dire que la délivrance des messages
s’effectue selon leur priorité.

Un message de plus haute priorité peut donc « doubler » un message de
moindre priorité, pour autant que celui-ci n’ait pas encore été lu.

Remarquons que JMS 1.1 n'oblige pas les fournisseurs a implémenter
cette fonctionnalité.

Sélection des messages

JMS prévoit que les applications clientes ont la possibilité de
sélectionner les messages qu'elles lisent, sur la base des champs d'entéte
et de propriétés. On voit bien str que, s’il y a sélection, les messages ne
seront forcément pas délivrés dans l'ordre.

La sélection des messages est définie dans JMS 1.1, elle est donc offerte
par tous les MOMs étudiés. La syntaxe est inspirée du SQL, elle peut
faire intervenir différents opérateurs de comparaison, d'expressions
logiques, et méme des opérations arithmétiques.

A titre d'exemple, imaginons une application qui communique avec une
queue et lui envoie des messages avec les propriétés suivantes
JMSType, market et amount. Une application cliente ne souhaitant
obtenir que les opérations sur le marché Euronext dont le montant est
inférieur a 1 000 000 €, appliquera le selector suivant : JMSType = 'order’
AND market = "Euronext’' AND amount < 1000000.

Certains MOMs peuvent accepter d'autres types de syntaxe, qui ne sont
pas requis par JMS 1.1, typiquement Xpath. Mais dans tous les cas, la
sélection porte sur entéte et propriétés, et non sur le corps du message.

© Smile — Open Source Solutions

® Page 23

Smile

MOMs open source

Message #345, type= order, . . y
B T Sélection d’un

message

Message #344 e= order, market= nyse,
gstu-mc:ﬁﬁ , amount=75000, &

Message #343, 13 e= order, market= nyse,
stock=G00G, amount=400,

Message #342, type= order
market= euronext, 5tun|t=RN’D,
amount=150000

Message #342 e= order, market= nyse,
608

stock= G, amount=3500,

Aiguillage et spécialisation

On peut donc mettre en ceuvre, au moyen de la sélection, une

spécialisation des consommateurs. En fait, dans une logique
d'affectation et de répartition de taches, on peut distinguer trois
techniques:

» L'application émettrice, producer, place des messages dans des
queues différentes selon la nature de la tache a effectuer. Et une
application spécifique est en lecture sur chacune des queues.

0 ["]ﬂg Consumer C1
Producer P1 |:| [" | I I~ ay Consumer C2
D ["]ﬂ\. Consumer C3

» L'application émettrice place les messages dans une queue unique,
mais la queue est ensuite éclatée en plusieurs queues, ceci soit
au moyen d'une application relais jouant un role d'aiguillage, soit
au moyen d'un traitement d'aiguillage, si le MOM le permet.

© Smile — Open Source Solutions

® Page 24

Smile

MOMs open source

I |:|[:||ﬂ‘a Consumer C1

Prod P1 igui
roducer "‘PDD[]DW Aiguilleur __P_D["]m\' Consumer C2

\[l D["ﬂ\' Consumer C3

» L'application émettrice place les messages dans une méme queue,
et les applications consumer sélectionnent les messages selon
leur spécialisation. Ici « Consumer C1 » prend les messages
jaunes, C2 les messages bleus, C3 les messages violets.
L’application producer n’a pas a connaitre cette répartition.

Consumer C1

Producer P1 |——)[| [l Consumer C2

Consumer C3

Trois manieéres de gérer a peu pres le méme probléeme, a différents
niveaux. Dans le premier cas la logique d'aiguillage est intégrée au
producer, dans le dernier cas, elle reléve du consumer, et dans le cas
intermédiaire, elle est déportée dans une application dédiée.

Synthése JMS

JMS est une API, et cette API correspond a des services d'échange entre
des producteurs et des consommateurs de messages, s’appuyant sur des
concepts que nous avons présentés. Au-dela de ’API donc, JMS définit
les fonctionnalités centrales des MOMs.

JMS spécifie le service, mais ne spécifie pas comment ce service est mis
en oceuvre. Chaque fournisseur, JMS Provider, est libre de ses choix
d’implémentation.

Comme on I’a vu plus haut, les protocoles d’échanges peuvent également
étre considérés comme des choix d’implémentation propres a certains
MOMs, méme si nous considérons qu’ils ont une réelle importance.

La spécification JMS n'est pas en tous points compléte. Certaines
fonctions essentielles au fonctionnement d'une plateforme MOM ne sont
pas décrites dans la spécification et font donc 1'objet d'implémentations
particuliéres. C'est le cas en particulier pour la configuration et
l'administration du service de messagerie, pour la sécurité (intégrité et

© Smile — Open Source Solutions

® Page 25

Smile

MOMs open source

confidentialité des messages) et pour certains paramétres de qualité de
service.

Par ailleurs, la plupart des MOMs proposent des fonctions additionnelles
qui se présentent comme des atouts spécifiques par rapport aux offres
concurrentes (par exemple les topics hiérarchisés, des fonctions de
sécurité et des mécanismes de haute disponibilité, etc.). Bien sur, la
mise en ceuvre de ces fonctionnalités se fait au détriment de la capacité a
changer de MOM, en respectant ’API JMS.

Comme d’autres spécifications d’interface, comme le SQL par exemple, la
promesse de pouvoir changer d’implémentation de MOM JMS de maniére
transparente, n’est pas facilement tenue. Mais ce n’est pas trés grave.
La spécification commune apporte déja le bénéfice d’'une communauté de
vision, d’approches, et de compétences. Un architecte peut raisonner
sur la base d’'un MOM sans savoir nécessairement de quelle « marque » il
sera, et un développeur qui a pratiqué JMS avec un premier MOM,
pourra presque immédiatement en pratiquer un second.

Caractéristiques principales des
MOM

Nous parcourons ici les principales classes de fonctionnalités offertes par
les MOMs, en identifiant les possibilités communes a tous les outils, et
celles qui sont plus spécifiques.

Langages d'implémentation, APIs et environnements supportés.

Les MOMs open source que nous étudions ici sont tous codés en Java.
Nous ne les avons pas sélectionnés sur ce critére, mais il se trouve que
tous les éditeurs concernés ont fait ce choix. Il est assez naturel
puisque le MOM doit souvent s’insérer dans un environnement
hétérogéne, en termes de systémes d’exploitation et de serveurs. La
portabilité est donc primordiale, et elle est 'un des atouts majeurs de
l'environnement Java. S’ajoute a cela, la disponibilité dans cet
environnement de librairies puissantes et éprouvées, pour les
fonctionnalités fondamentales en matiére de réseau, de sécurité, d’accés
a des bases de données, de gestion transactionnelle, etc.

Cela dit, le langage dans lequel le MOM lui-méme est codé pourrait étre
d’une importance secondaire. De méme qu’il importe peu de savoir dans
quel langage MySql est codé, du moment que nous pouvons en invoquer
les fonctionnalités depuis divers environnements. Ce qui importe pour
les applications, c’est la disponibilité d’APIs, de fonctions ou méthodes
qui peuvent étre appelées pour invoquer les services du MOM.

Mais certains MOMs se sont largement focalisés sur l’environnement
Java, y compris pour les APIs, c'est-a-dire qu’ils n’offrent pas d’APIs pour
d’autres environnements. C’est, selon nous, un handicap majeur, car la

© Smile — Open Source Solutions

® Page 26

Smile

MOMs open source

capacité a relier des applications diverses, a gérer 1’hétérogénéité, est
précisément une des finalités du MOM. S’il ne peut étre mis en ceuvre
qu’entre des applications Java, il perd une partie de son utilité.

Lorsque le MOM offre des APIs pour d’autres environnements que Java,
elles se présentent sous la forme de librairies de fonctions dans
I'environnement cible, par exemple en C ou en PHP.

La figure suivante permet de bien distinguer ces notions:
= L'API proprement dite, qui est l'interface appelée par l'application.

= Les librairies du provider, invoquées par cet API, représentées ci-
dessous en tant que « JMS Provider API »

= Le Broker, qui est un processus indépendant de l'application, en
charge de la gestion des messages.

Les fonctions de la librairie JMS échangent avec le broker par un
protocole réseau.

© o
8 3
> o] S | s
5. Tt | B °c |37 <2
=5 w2 | & S |ag =3
L83 £ Broker] o8
= = x =
85 4o L 3%
< = MOM 3 S
API API

L'échange peut impliquer plusieurs brokers, qui échangent entre eux. Le
protocole interne du MOM, entre brokers, peut étre le méme, ou bien
différer du protocole externe.

Broker 4—»@

MOM

S client

uonesiddy

Application
i
Kieaqy uano sWr

JMS client library

API API

Rappelons que, par définition, JMS est une API pour l'environnement
Java. Dans les exemples précédents, les applications sont donc
nécessairement Java.

© Smile — Open Source Solutions

® Page 27

Smile

MOMs open source

Si le protocole d'échange avec le broker est standard, une application
peut, théoriquement, échanger directement avec le broker, sans passer
par une librairie de fonctions. Il1 suffit qu’elle respecte le protocole
d’échange avec le broker. Mais mettre en ceuvre un protocole réseau est
assez complexe, et source d’erreurs, de sorte que ce n’est pas le role
d’une application en général.

[
=] Broker :l °%
sl 33
MOM 3 3

Sur l'exemple ci-dessus, on est en environnement hétérogéne : certaines
applications invoquent le MOM via les APIs fournies, tandis que
l'application bleue échange directement avec le broker selon le protocole
réseau.

Des APIs peuvent étre fournies pour d’autres environnements que JEE,
par exemple C++, PHP, .Net, Ruby, Perl. Plus la liste de langages grace
auxquels on peut accéder au MOM est grande, meilleures sont les
possibilités d'intégration.

Protocoles

Lorsqu'une application appelle une API pour invoquer le MOM, la
fonction d’API prend en charge I’échange avec un broker du MOM.

L’échange entre l'application et le broker implique un protocole. Le
protocole définit comment les services du MOM seront spécifiés, leurs
parameétres, et le format des messages. Par exemple, le protocole doit
spécifier que le nom dune queue de message est représenté par une
chaine de caractéres codés en UTF8.

On peut distinguer des protocoles externes, entre application et brokers,
et des protocoles internes, entre brokers.

Il existe deux standards en matiére de protocole MOM : AMQP (Advanced
Message Queuing Protocol) et STOMP. On les appelle des « wire-level

© Smile — Open Source Solutions

® Page 28

Smile

MOMs open source

protocols » (protocoles filaires), dans le sens ou ils sont en charge de gérer
les échanges sous la forme d’une suite d’octets transmis.

Comme toujours en matiére de communication réseau, on a affaire a une
pile de protocoles, c'est-a-dire que le protocole du MOM s’appuie lui-
méme sur des couches de protocoles inférieures. Ainsi, STOMP peut
s’appuyer, a la maniere du HTTP, sur une pile TCP/IP. On appelle
support de communication logique le protocole de transmission du
message, par exemple STOMP dans 'exemple précédent.

Application <:> Application

JMS Provid

STOMP STOMP
TCP TCP
IP IP

Le schéma précédent fait apparaitre un exemple de pile de protocoles.
Les différentes fleches horizontales représentent les échanges virtuels,
aux différents niveaux : au niveau le plus haut, une application échange
avec une autre, en fait le broker d'un JMS provider échange avec son
homologue. Les messages descendent puis remontent la pile des
protocoles, comme classiquement.

Notons que du coté des MOMs, on parle souvent de « connecteurs » pour
parler des différents protocoles.

Traitement des messages par le MOM

La fonction naturelle, essentielle, dun MOM n’est pas d'effectuer des
traitements sur les messages qui lui sont confiés. Sa fonction est de les
acheminer de maniére fiable jusqu'a leur destinataire. C'est méme ce qui
distingue le MOM d'un EAI ou bien d'un ESB: il achemine les messages
et c'est tout. En particulier, le MOM ne « regarde » pas le contenu des
messages, ce n'est pas son probléme.

© Smile — Open Source Solutions

® Page 29

Smile

MOMs open source

Pourtant, I'un des MOMs que nous étudierons, ActiveMQ, offre cette
possibilité supplémentaire, de définir des traitements a exécuter sur les
messages qui lui sont confiés. Ces traitements sont définis en référence
aux différents Enterprise Integration Patterns, un recensement des
familles de traitements (cf « Enterprise Integration Patterns », page 35.

Un cas simple, par exemple, est un traitement d'aiguillage, en fonction
du contenu du message: le message concerne sur des ordres de bourse,
si l'ordre porte sur une valeur EuroNext, il doit étre routé sur une queue
A, s'il porte sur une valeur du NYSE, il doit étre routé sur une queue B.

Un autre exemple serait une reégle d'envoi d'une copie: si le montant de
l'ordre de bourse est supérieur a 1 million, alors il faut envoyer un
message en copie sur une queue C.

La question importante est: Est-ce une bonne idée d'insérer ces régles et
ces traitements dans le MOM ? Ne sont-ils pas plutét du ressort de
l'application ? Le MOM ne devrait-il pas plutét rester dans son role de
tuyauterie passive ?

La réponse n'est pas immeédiate. Sortir certaines régles des applications
peut étre un moyen de gagner en flexibilité, d'intervenir dans la gestion
des flux sans modifier les applications. Mais si l'on met en ceuvre de tels
traitements de maniére massive, alors on a en fait éparpillé des morceaux
d'applications dans le middleware, et cela au détriment de la
maintenabilité, et de la cohérence de vision.

Quoi qu'il en soit, si le MOM n'offre pas de telles possibilités, ou bien

qu'on ne veut pas en faire usage, il est toujours possible, et méme aisé,
de les mettre en place dans des applications relais.

Gestion des transactions

On peut distinguer trois niveaux dans la gestion transactionnelle des
messages:

» La gestion des acquittements
» La gestion des transactions JMS

» La gestion des transactions XA

Gestion des acquittements

L'application destinataire, qui consomme les messages, doit généralement
effectuer un traitement qui dépend de ce message. Le message ne doit
donc pas seulement étre [u, il doit étre traité. C'est une distinction
importante, dans la mesure ou l'application pourrait s'arréter
brutalement (bug ou bien panne matérielle) entre l'instant ou elle a lu le
message et l'instant ou elle a fini de le traiter avec succes.

© Smile — Open Source Solutions

® Page 30

Smile

MOMs open source

C'est pourquoi le fonctionnement normal de 1'application consommatrice
est en trois étapes:

1.Recevoir un message
2.Traiter le message

3.Acquitter le message, c'est-a-dire notifier la bonne fin du
traitement.

Tant que le message n'a pas €té acquitté, il est conservé par le broker. Si
le message n'est jamais acquitté, il est recyclé, c'est-a-dire qu'il sera
remis lors d'un prochain appel d'une application cliente. Notons que
c'est ce principe qui rend presque impossible la garantie de délivrance
ordonnée pour les MOMs en général.

Une application cliente peut acquitter en un seul appel, tous les
messages recus et encore non acquittés. C'est donc une forme de
gestion transactionnelle en lecture.

Transactions JMS

I1 est possible de réunir différents ordres d'émission et de réception de
messages en une transaction, un ensemble insécable d'opérations. C'est-
a-dire que soit toutes ces opérations seront exécutées avec succés, soit
aucune d'entre elles ne sera exécutée.

Comme pour les bases de données, l'application ouvre une transaction,
effectue différentes opérations JMS, puis termine la transaction par un
ordre commit. Si l'application détecte une condition d'erreur qui interdit
de terminer avec succeés l'ensemble des opérations, elle demande un
rollback, c'est-a-dire un retour arriére sur toutes les opérations
précédentes. Si l'application « se plante », et donc s'interrompt sans
avoir fait ni commit, ni rollback, un rollback sera exécuté de maniére
implicite. Dans le cas d'émissions de messages, aucun message n'a en
fait été émis avant le commit. Dans le cas de réception de messages,
aucun acquittement n'aura été exécuté avant le commit.

I y de nombreux usages de ces transactions JMS, d'une maniere
générale pour assurer la cohérence:

» Une application peut par exemple émettre 10 messages et étre
assurée que soit tous seront bien émis, soit aucun ne le sera.

» Une application qui jouerait un role de relais pourra ainsi lire un
message sur une queue, le traiter, et écrire un message résultant
sur une queue en aval, tout cela au sein d'une transaction, et
donc avec la garantie de ne pas perdre de message si elle est
interrompue entre la lecture et 1'écriture.

© Smile — Open Source Solutions

® Page 31

Smile

MOMs open source

» Enfin, de la méme maniére, une application qui doit réceptionner
plusieurs messages avant d'effectuer un traitement, peut réunir
ces lectures en une méme transaction.

Voici un petit exemple de code Java utilisant les transactions.

session = connexion.createTopicSession (true, Session.AUTO ACKNOWLEDGE) ;

void onMessage (Message msg) {

try{
// un traitement, susceptible de lever une exception
m2 = ..;
publisher.publish (m2) ;
session.commit (); // acquittement des messages
}catch (Exception e) {
session.rollback(); // annulation des messages

Si le traitement réussit, le programme client exécute un commit, sinon, il
demande un rollback, c'est-a-dire qu'il ordonne au broker tout annuler.

Transactions XA

Enfin, la troisieme maniére de gérer les transactions s’inscrit dans le
cadre de « XA» en environnement Java. XA est une spécification
définissant les interfaces qui permettent de mettre en ceuvre des
transactions hétérogeénes, c'est a dire s'étendant a plusieurs ressources
de différentes natures, telles que bases de données, serveurs
d'application (EJB), ainsi donc que les MOMs. En environnement Java,
XA est disponible via I'API JTA, Java Transaction API.

Il s'agit donc de réunir, dans un méme ensemble insécable, indivisible,
des traitements portant sur ces diverses ressources.

Un cas trés simple et typique est celui d'une application qui:
» Lit un message aupres d'un broker de MOM
= Effectue une écriture sur la base de données.

En l'absence de transactions XA, l'application devrait acquitter son
message aupres du MOM soit avant, soit aprés, 1'écriture en base. Mais
si elle acquitte avant, puis se plante, elle n'a pas effectué 1'écriture, mais
le message est pourtant considéré traité avec succés. Si a l'inverse elle
écrit dans la base en premier, mais se plante avant d'avoir acquitté le
message, alors le message sera recyclé, et il y aura donc eu deux
écritures.

Sur cet exemple trés simple, on voit donc que les transactions XA
peuvent étre absolument indispensables dans certains contextes afin
d'assurer une réelle garantie de cohérence au niveau global du systéme
d'information. Bien entendu, les transactions peuvent étre
sensiblement plus larges et plus complexes.

© Smile — Open Source Solutions

® Page 32

Smile

MOMs open source

Dead Message Queue

Méme si ce n'est pas requis par la spécification JMS, différents MOMs
définissent une queue spéciale appelée « Dead Message Queue » ou DMQ,
qui correspond a une sorte de poubelle, ou l'on pourra retrouver des
messages qui auraient pu étre perdus pour différentes raisons
techniques.

Généralement, la DMQ recoit les messages :
* quin'ont pas une destination valide.
* dont la destination est remplie. (limite, plus de mémoire, ...)
» dont la durée de vie (TTL, time to live) a expiré

* qui se sont fait rejeter un certain nombre de fois (configurable). Ces
messages apparaissent comme des messages « poisons » polluant
la plateforme. Par exemple, un message qui fait planter
systématiquement un client est un message polluant.

Bien sur, il convient qu'un administrateur analyse ces messages pour en
déterminer les causes d'erreur éventuelles. La DMQ contribue a garantir
qu'aucun message n'est perdu par le MOM, il est donc naturellement
recommandé qu'elle soit persistante.

Persistance des messages

Comme on l’a vu en introduction, la fiabilité et la robustesse sont deux
qualités essentielles, constitutives des MOMs, c'est-a-dire qu'un MOM
doit acheminer un message qui lui a été confié, sans jamais le perdre,
méme en présence d’événements inattendus.

Si 'application destinatrice n’est pas en mesure de recevoir le message,
le MOM peut étre amené a le conserver un temps indéfini. Or le MOM
lui-méme peut étre arrété, que ce soit du fait de pannes matérielles ou
pour des raisons de maintenance.

Pour garantir que les messages ne seront pas perdus, le MOM doit donc
les stocker de maniére sécurisée, de maniére persistante.

I1 est possible de faire fonctionner un MOM dans un mode sans
persistance, c'est-a-dire dans un mode ou les messages sont seulement
conservés en mémoire. On peut choisir ce mode pour atteindre des
performances plus élevées — car la persistance a un cotit — au détriment
bien sur de la fiabilité.

© Smile — Open Source Solutions

® Page 33

Smile

MOMs open source

La persistance est toutefois importante, voire essentielle, dans les cas
suivants :

= Lorsque les messages sont critiques, par exemple s’il s’agit de
transactions financiéres.

» Sl peut y avoir un déséquilibre positif entre producteurs et
consommateurs, c'est-a-dire que de maniére durable les
applications productrices émettent plus de messages que les
applications destinatrices ne peuvent lire et traiter. Les
capacités mémoires risqueraient d’étre dépassées.

» Lorsque le traitement des messages est fortement asynchrone, de
maniere structurelle, c'est-a-dire par exemple si les messages ne
sont traités qu’en fin de journée, d'une maniére que l'on pourrait
assimiler a un traitement batch.

= Lorsque l'on doit mettre en ceuvre une gestion des transactions, qui
implique une utilisation plus importante de la mémoire. Les
messages utilisant les transactions ne sont supprimés que
lorsque les transactions sont validées.

» En présence de réplication, lorsqu’elle est offerte. Il est nécessaire
de mettre en ceuvre la persistance pour accroitre les possibilités
de stockage : un broker ne pourra gérer la réplication de tous les
domaines de la plateforme MOM en mémoire.

La persistance peut étre mise en ceuvre par le MOM de différentes
manieéres :

» Sur de simples fichiers
= Sur une base de données relationnelle

* Au moyen dun dispositif spécifique combinant deux supports de
persistance.

Le stockage sécurisé des données et leur gestion transactionnelle étant
un probléme déja parfaitement résolu par les SGBD relationnels, la
plupart des MOMs appuient leur persistance sur une telle base. L’accés
par JDBC leur permet de supporter un large éventail de gestionnaire de
base de données (Mysql, Postgres, Oracle, DB2, ...), y compris des bases
100% java telles que Hypersonic et Derby.

Tous les MOMs étudiés ici supportent la persistance via JDBC.
Cependant, chaque MOM stocke différemment les données. Certains
introduisent un mode de persistance optimisé. Ils sont amenés parfois a
combiner trois types de stockage : fichier, base de données et mémoire.
Et ceci dans le but d'optimiser la fiabilité et la performance. C’est donc un

© Smile — Open Source Solutions

® Page 34

Smile

MOMs open source

aspect que nous développerons pour chacun des outils, et le dernier
chapitre présentera les résultats de différents tests de performance.

Fonctionnalités avancées

Code générique et JNDI

Comme nous l'avons souligné, le principe d'une spécification telle que
JMS est que l'on peut écrire un programme s’interfacant a un provider
JMS, c'est-a-dire a un MOM, sans étre dépendant d’une implémentation
particuliére, d’'un MOM en particulier.

Pour cela, le programme « JUS Client », ne doit pas instancier directement
les classes du MOM, et la bonne pratique est de les obtenir a partir d'un
fournisseur JNDI.

De méme que JDBC est une interface permettant d’accéder a une base
de données, de méme JNDI ou « Java Naming and Directory Interface » est
I'interface qui permet 'accés a des services de nommage et de répertoire
de facon standard. L’utilisation la plus commune de l'interface JNDI
concerne l'accés a un annuaire LDAP. Mais au-dela de la fonctionnalité
usuelle de gestion d'une base de personnes, d’utilisateurs, on peut
utiliser ’'API JNDI simplement pour accéder a des objets désignés par des
noms. Ainsi, dans le contexte des MOMs, JNDI sert a stocker des objets
génériques du MOM, afin de transmettre leur implémentation spécifique
de JMS au programme.

Le premier objet que le programme obtient est une connectionFactory,
une usine a connexions. Puis la connectionFactory permettra de créer
un objet Connection, a partir duquel on créera un objet Session, qui lui-
méme pourra instancier des objets Message, MessageProducer et
MessageConsumer.

Ce que l'on peut représenter comme suit :

© Smile — Open Source Solutions

® Page 35

Smile

MOMs open source

fournit une instance

JNDI

namespace

Connection
Factory

crée

Connection

1 crée

Message o : = Message
Producer crée Session crée Consumer

Envoie a ,° i crée ‘:‘ Regoit de
S

*] -
- L J e, -
Destination Destination
queue/topic queue/topic

Message

Enterprise Integration Patterns

Le livre de Gregor Hohpe et Bobby Woolf intitulé « Enterprise Integration
Patterns: Designing, Building, and Deploying Messaging Solutions » est un
ouvrage de référence en matiere de middleware. Il recense en particulier
toutes les formes d’interactions par middleware, et tous les types de
traitements que peut réaliser un middleware. Par exemple un traitement
de routage d'une queue vers une autre, selon différentes régles. Ou
encore des traitements de fusion ou de fission des messages : le moteur
de traitement peut éclater un message en plusieurs, ou a l'inverse réunir
différents messages en un seul.

EIP se ne limite pas a cela. Il décrit toutes les maniéres a disposition
pour intégrer des logiciels entre eux. Catégorisant ces patterns selon leur
objet, c’est un peu la bible des architectes et urbanistes.

Voici la liste des catégories référencées par EIP ainsi que quelques
exemples :

» Styles d’intégration : Liste les supports de communications comme
le transfert de fichier, le partage de donnée, l'invocation de
procédure et la communication par message. On retrouve ici les
type de middleware évoqués en introduction

© Smile — Open Source Solutions

® Page 36

Smile

MOMs open source

= Les systémes de messagerie : Cette catégorie de pattern regroupe
les composants des systémes basés sur une communication par
messages comme un message, un traducteur de message, un
routeur de message, ...

» Les cas d’utilisation d’une communication par messages : Cette
catégorie décrit le concept de queue, de topic, de bridge de
message et autres

» Méthode de construction des messages : message de commande,
message de document, message d’événement, ...

» Le routage des messages : routage basé sur le contenu, agrégation
de message, ...

» Transformation de message : envelopper un message, enrichir le
contenu, ...

» Réception de message: Cette catégorie décrit les différentes
manieéres de recevoir un message comme la consommation a
callback, abonnement durable, sélection de message, ...

» Administration de la plateforme: Cette catégorie décrit les
diffétrentes maniéres de gérer la plateforme : persistance,
détournement de message, écoute passive, ...

Interopérabilité entre MOMs

Les protocoles filaires des MOMs (par exemple entre une application et
un broker ou entre un broker et un autre) sont parfois sans spécification
et sans documentation. Parmi les MOMs de notre sélection, aucun n’offre
nativement une passerelle vers d’autres MOMSs.

Pour résumer, la partie haute de la figure ci-dessous, c'est-a-dire
l'interconnexion des MOMs au niveau du protocole interne, n'est pas
possible. Il faudrait que les deux MOMs utilisent le méme protocole
interne, ce qui n’est en général pas le cas.

I1 ne suffit pas d’assurer la transmission des messages, il faut gérer la
propagation de tout 'annuaire des domaines.

© Smile — Open Source Solutions

Page 37

MOMs open source

) i
Broker Il > & |?- - I : | Broker |

Broker Broker

Broker Broker

Broker Broker

A des fins d’interopérabilité, certains MOMSs ont mis en place un systéme
dit de « Bridge » (Passerelle). C'est une application a deux faces qui est,
dun coté connectée a un MOM et de l'autre connectée a un autre.
Lorsqu’elle recoit un message d’un coté, elle le transmet de ’autre.

Cette solution peut rencontrer des limites en termes de performance,
flexibilité et de sécurité. Hormis le temps et la complexité de mise en
place, la passerelle risque d’étre un goulot d'étranglement, et un point de
fragilité. Au sein d’'un méme systéme d’information, on vise a I’évidence,
un MOM unique. Mais bien sur, les cas possibles d’hétérogénéité sont
nombreux : rachat et intégration d’entreprise, relations avec des
partenaires, etc.

Passerelle a base d’ESB

Le travail d'intégration est laissé aux solutions du type EAI ou ESB
(Enterprise Service Bus). A l’aide de ’'ESB Mule, par exemple, il est assez
simple de mettre en place une passerelle entre deux domaines de deux
MOMs - Pas besoin d’application supplémentaire pour jouer le role de
passerelle ni méme de toucher a une ligne de code Java. Regardons
comment configurer Mule pour cette tache. Pour ce faire, il faut créer
deux connecteurs : un vers chacun des MOMs. Puis il faut créer un
service par domaine qui aura la mission de transmettre les messages.
Voici une partie du fichier de configuration.

[oool
<jms:connector name="jmsConnectorJBOSS"
connectionFactorydJndiName="java:/ConnectionFactory"
jndiInitialFactory="org.jnp.interfaces.NamingContextFactory"
jndiProviderUrl="jnp://localhost:1099"
jndiDestinations="true"
forcedJndiDestinations="true"
specification="1.1"/>
<jms:connector name="jmsConnectorWEBLOGIC"
jndiProviderUrl="t3://localhost:7001"
connectionFactorydndiName="javax.jms.QueueConnectionFactory"
jndiDestinations="true"

© Smile — Open Source Solutions

® Page 38

Smile

MOMs open source

forcedndiDestinations="true"
jndiInitialFactory="weblogic.jndi.WLInitialContextFactory"
specification="1.0.2b"/>

<model name="”JMSBridge”>
<service name="JBOSS WebLOGIC">
<inbound>
<jms:inbound-endpoint topic="my.destination" connector-
ref="jmsConnectorJBOSS" />
</inbound>
<outbound>
<pass-through-router>
<jms:inbound-endpoint topic="my.destination" connector-
ref="jmsConnectorWEBLOGIC" />
</pass-through-router>
</outbound>
</service>
</model>

La tache n’est pas d'une grande complexité, mais elle peut étre
fastidieuse, et donc coulteuse, puisqu’il faut relier des domaines entre
eux un par un, sans en oublier aucun. Et bien suar, cette configuration
devra étre l'objet d'une maintenance, en fonction des variations de
configuration intervenant de part et d’autre.

a=""

:O
—
1]

‘

‘I

L]

0

o

w

wn

2

@

)
A

Dans notre exemple, la passerelle met en correspondance :
» La queue Q2 du MOM A a la queue Q47 du MOM B
» La queue Q1 du MOM A a la queue Q12 du MOM B
» Le topic T1 du MOM A a la queue T52 du MOM B

Dans la pratique, cette passerelle est généralement réalisée en Java et
utilise le JMS. On parle de « JMS Bridge » ou de passerelle JMS.

La mise en place d'une passerelle rend caduque certaines fonctionnalités
incluant plusieurs brokers. Des fonctionnalités comme le partage de
média de stockage ou le clustering ne marcheront plus de maniére
naturelle. Deux MOMs différents impliquent deux politiques différentes
de persistance, de réplication, de topologie.

© Smile — Open Source Solutions

® Page 39

Smile

MOMs open source

Ceci étant, il est possible de multiplier les passerelles a des buts de
répartition de charge ou de robustesse uniquement dans les cas de
liaison de queue. D'autres solutions sont envisageables, mais cela reste
des développements spécifiques relatifs a des problématiques
d'intégration. Un exemple simple serait de buffériser les transactions. Il
est en effet bien plus performant de regrouper la réception ou l’envoi de
plusieurs messages dans une seule et méme transaction.

Gestion de la sécurité

Etant donné le réle souvent central dun MOM dans un systéme
d’information, les questions de sécurité sont évidemment cruciales. Si
n’importe quelle application peut se connecter au MOM et se mettre en
lecture sur une queue, on voit qu’il sera facile de pirater le systéme et
d’accéder a des données critiques, ou d’injecter des messages.

Un MOM interagit avec des applications, lesquelles interagissent avec
d’autres applications, ou avec des utilisateurs. La question de la
sécurité dans le contexte des MOMs est semblable a ce qu’elle est dans le
contexte des bases de données. Les brokers doivent authentifier les
applications qui s’y connectent, mais ils doivent aussi contréler les droits
spécifiques de chaque application vis-a-vis de chaque opération sur
chaque queue ou topic. Et les brokers doivent aussi authentifier les
autres brokers avec lesquels ils échangent.

Il est essentiel de mettre en place toute la politique de sécurisation du
MOM dés son premier déploiement, quelle que soit la nature des
informations échangées, ou la configuration réseau, car une fois le MOM
institué comme standard d’é¢change, il est a craindre qu'on ne se
reposera pas la question de la sécurité pour chaque nouvelle application
qui en aura l'usage.

Les MOMs que nous étudions offrent la possibilité de spécifier les régles
d’authentification et d’habilitations au moyen dun provider de sécurité,
utilisant le cadre de JAAS, Java Authentication and Authorization Service.
Le MOM propose son propre plugin JAAS, dont le comportement est
configuré par un fichier Xml, ce qui convient le plus souvent, mais il est
envisageable également de mettre en place un plugin JAAS spécifique.

© Smile — Open Source Solutions

® Page 40

Smile

MOMs open source

Administration et monitoring

Les MOMs offrent différentes possibilités d’administration et de
monitoring :

API spécifique

Configuration et déploiement

Les MOMs peuvent fournir plusieurs modes de configuration : fichiers de
configuration, messages adressés aux brokers, a travers différentes
syntaxes (Ini, Spring, DSL, ...), plus ou moins compliquées. On remarque
une tendance a intégrer le MOM au sein d'environnements comme
Spring. L’intérét d’intégrer la configuration a Spring est par exemple la
possibilité de lancer un broker a partir d'un outil le supportant. Ci-apres
un exemple issu de Mule.

<spring:beans>
<spring:bean id="activeMgConnectionFactoryl"
class="org.apache.activemqg.xbean.BrokerFactoryBean">
<spring:property name="config"
value="file:conf/activemg/global/activemg 1.xml" />
<spring:property name="start" value="true" />
</spring:bean>
</spring:beans>

Dans certains cas, le MOM est intimement intégré a un serveur
d'application - c’est le cas de JBoss - et ainsi utilise ses fichiers de
configuration. Cette intégration est plutot une géne qu’autre chose.

Les MOMs peuvent aussi permettre de modifier leur configuration a
chaud. Par exemple, il est utile d'avoir la possibilité d'ajouter des brokers
a la volée sans avoir a redémarrer la plateforme, qui impliquerait une
interruption. Les messages non persistants doivent étre sauvegardés et
remis en mémoire lors du démarrage, ce qui ne se fait pas
automatiquement d’ailleurs.

Les MOMs étudiés sont tous réalisés en Java. Ils sont tous utilisables
sur les plateformes supportant le Java S5 (Linux, Windows, Mac OS,
Solaris, HP UX, AIX ...).

Répartition de charge applicative

On parle parfois des queues comme mettant en ceuvre un échange « de I
vers 1 C'est exact pour un message donné, mais ce n'est pas
nécessairement le cas pour l'ensemble du flux de messages. On a vu en
effet que plusieurs applications clientes pouvaient étre en lecture sur
une méme queue. Dans ce cas, le MOM délivre chaque message a une et
une seule des applications. Les régles de choix de 1'application ne sont

© Smile — Open Source Solutions

® Page 41

Smile

MOMs open source

pas spécifiées, mais le plus souvent il s'agit dun simple round robin,
c'est-a-dire une attribution cyclique, « a tour de role ».

Ainsi, un MOM peut offrir un moyen trés simple et robuste de mettre en
ceuvre une répartition de charge applicative.

Considérons que chaque message représente une demande de traitement,
un par exemple un traitement d'OCR (reconnaissance de caractéres) qui
consomme beaucoup de CPU. Une application principale est en charge
de définir chaque traitement unitaire, dont elle écrit les caractéristiques
dans un message, qu'elle adresse sur une queue du MOM. Le
traitement est réparti sur une dizaine de serveurs physiques, sur
lesquels tourne la méme application, dont chaque exemplaire, chaque
« instance », boucle sur le traitement:

»= Recevoir un message

= Effectuer le traitement

» Acquitter le message.
Le flux de travaux est donc réparti de maniére équilibrée entre les
différents serveurs. Et notons que méme si l'affectation est bétement

cyclique, 1'équilibrage est satisfaisant puisque chaque serveur recoit des
travaux selon sa capacité a traiter.

Queue 1 vers N
en mode load-balancing

Producer P1 | D Consumer C2

Consumer C3

Consumer C1

Consumer C4

Et l'on peut méme spécialiser les consumers, si besoin, en leur faisant
sélectionner dans la queue, les taches qu’ils savent faire.

Topologie et réseau de brokers

Un MOM peut étre constitué d’'un unique broker, ou bien de différents
brokers échangeant en réseau.

Selon quels critéres peut-on définir ces questions de topologie ?

Les questions essentielles porteront sur :

© Smile — Open Source Solutions

® Page 42

Smile

MOMs open source

» Les performances et la tenue en charge
» La tolérance aux pannes matérielles
= La tolérance aux pannes réseau

En général, sur une méme plateforme, c'est-a-dire un ensemble de
serveurs relevant d'un méme datacenters et connectés a trés haut débit,
un unique broker peut suffire, pour autant que sa haute disponibilité
soit assurée, et qu’il ait la capacité a traiter la volumétrie requise.

Nous verrons plus loin comment traiter la haute disponibilité.
Concernant la capacité, comme nous le verrons dans les benchmarks, les
MOM sont des outils construits pour de hautes performances, et un
unique broker pourra acheminer plus de 1000 messages par seconde en
mode persistance, et plus de 5000 sans persistance. Dans beaucoup de
cas, cela peut suffire. D’autant qu’il s’agit 1a de débits de traitement et
d’acheminement, il est toujours possible de confier les messages au MOM
a un deébit plus élevé en présence de pics.

Du point de vue réseau, on peut représenter cette configuration a un
seul broker, dans un seul datacenter, simplement comme ceci :

Application A Application D
Application B
LAN Application E
Application C
MOM
Datacenter

D’un point de vue logique, on peut le visualiser comme ceci, une
configuration « hub and spoke », noyau et rayons :

© Smile — Open Source Solutions

® Page 43

Smile

MOMs open source

Application A Application D

-

Application B

MOM Application E

Application C

Datacenter)

C’est principalement lorsque les applications sont réparties sur plusieurs
datacenters que l'on doit envisager des configurations a plusieurs
brokers.

Rappelons que la disponibilité du MOM n’est pas juste une bonne chose,
elle est absolument fondamentale pour les applications. Lorsqu’un
utilisateur veut se connecter au site web de sa banque, on préfére bien
sir que ce site soit disponible. S’il ne l'est pas, l'utilisateur est
meécontent, mais il peut ré-essayer un peu plus tard.

Pour une application s’adressant a un MOM, la question de disponibilité
s’analyse difféeremment :

» Si le concepteur de l'application peut étre certain que le MOM est
toujours disponible, il ne traite pas le cas d’indisponibilité, ou
plus exactement, il considére ce cas comme une erreur fatale, ou
en d’autres termes : « pas de MOM, pas d’appli ». C’est souvent
la politique dune application vis-a-vis de sa base de données.

* Si au contraire l'indisponibilité du MOM est possible, le concepteur
de lapplication doit gérer ce cas, ce qui peut changer
radicalement la logique de son application, et amener une grande
complexité. L’application est-elle supposée « mettre de coté » le
message en attendant le retour du MOM ? Non, certainement
pas, ce serait une erreur de s’engager dans cette voie. Le MOM
lui-méme est déja le moyen de « mettre de coté » le message, en
cas d’indisponibilité de I'application destinataire.

Ainsi, nous considérons qu’une application qui utilise un MOM est, le
plus souvent, dans un mode ou l'indisponibilité du MOM est une erreur
fatale.

Et pour l'application, le MOM est indisponible lorsque le broker est
indisponible ou bien n’est pas joignable.

C’est pourquoi, lorsqu'un systéme d’information est réparti sur plusieurs
datacenters, connectés en WAN, on préconise de disposer d'un broker

© Smile — Open Source Solutions

® Page 44

Smile

MOMs open source

dans chaque datacenters. Ainsi, méme lorsque la connectivité est
perdue entre les datacenters, toutes les applications peuvent continuer a
échanger avec le MOM, via un broker local.

Ce qui donne, d’'un point de vue réseau, le modéle suivant :

.

//'___H_-EL“‘“ —
p MOM — — —|Application
/
4
Application A LAN i b
- WAN Broker |
N e /{
/ i
Application B | Broker ol
\ -~ SiteC
< =
SiteA ~_ 4
— s "J
| /
| | Broker jei
\
S
Application D
—
Site B

b

Et bien suar, d’'un point de vue logique :

‘ \
£)

I /7
~
MOM %
\ =
~ ~
SiteA S~ _ _ 4
= - Y
/—A r’
| /
/
\\ -
Application C
Site B
_ oy

En présence de multiples brokers, le MOM fonctionne toujours sur un
principe de « store and forward », c'est-a-dire que chaque broker conserve

© Smile — Open Source Solutions

® Page 45

Smile

MOMs open source

les messages jusqu’a ce qu’il ait pu les transmettre a un autre broker,
ceci bien str dans une logique transactionnelle. Les brokers échangent
entre eux afin d’identifier les besoins de routage des messages. C'est-a-
dire que lorsqu’une application « D » indique a son broker local qu’elle est
en lecture sur telle queue ou tel topic, le broker local échange avec les
autres brokers pour les informer de cette attente, et obtenir les messages
de cette queue.

Notons qu’il n'y a pas de notion de « broker affecté a la gestion d’une
queue », ni de « queue affectée a un broker », la gestion de toutes les
queues est véritablement distribuée entre les brokers.

Tolérance aux pannes

Nous avons abordé plus haut, en évoquant la topologie, la question de la
tolérance aux pannes réseau, aux pertes de connectiviteé.

Voyons maintenant la tolérance aux pannes au niveau dun broker
particulier.

Les techniques mises en ocuvre sont en fait les mémes que pour

n’importe quel serveur d’application : redondance du serveur et partage
des données.

Réplication maitre-esclave

Lorsqu'on met en place une réplication d'un broker maitre vers un
broker esclave, chaque broker posséde son propre stockage, le broker
maitre adresse chaque message recu a l'esclave, et le message n’est
acquitté a l'application que lorsqu’il a été sécurisé sur le maitre et sur
I'esclave, c'est-a-dire que la réplication est synchrone.

On peut représenter cette configuration comme suit :

— Broker Broker
Application A H Maitre Esclave

Lorsque le broker maitre devient indisponible, le broker esclave reprend
la fonction et toutes les applications clientes s’adressent a lui, de
maniére transparente.

© Smile — Open Source Solutions

® Page 46

Smile

MOMs open source

Broker

Application A Esclave

Partage du stockage

Une autre configuration possible assurer la haute disponibilité du broker
est le partage du systéme de persistance, qu’il s’agisse d'une base de
données ou bien du systéme de fichiers.

Dans cette configuration, il n’y a qu’un stockage, partagé entre le maitre
et I'esclave. Le maitre détient un verrou sur une table ou un fichier, et
l'esclave est en attente sur ce verrou. De sorte que lorsque le maitre est
arrété, l’esclave obtient le verrou et reprend la fonction de broker
principal, en accédant a tous les messages et les informations d’état qui
se trouvent dans le dispositif de stockage.

On peut représenter cette configuration ainsi :

Application A H Maitre

Broker

Esclave

Et le dispositif peut s’étendre assez facilement a de multiples brokers
esclaves.

Auto-découverte

Ces clusters de brokers sont configurables et peuvent profiter des
fonctionnalités d'auto-découverte. Par exemple, lors de la mise en ligne
dun broker supplémentaire (configuré correctement), les brokers en
cours d'exécution le reconnaitront tout de suite comme faisant partie de
la plateforme.

© Smile — Open Source Solutions

® Page 47

Smile

MOMs open source

Tous les mécanismes de découverte automatique reposent sur le
broadcast ou le multicast. Ces derniéres permettent 1'envoi de paquets
d'information a un ensemble de machines sur un réseau sans pour
autant les avoir identifiées unitairement.

L’auto-découverte par broadcast et multicast ne fonctionne pas sur
I'Internet. Dans ces cas, certains MOMs autorisent 1'auto-découverte a
l'aide d’un serveur d’annuaire comme LDAP. Un soin particulier doit étre
apporté a la sécurité de la plateforme distribuée.

© Smile — Open Source Solutions

Page 48

MOMs open source

Les MOMSs OPEN SOURCE
Les MOMs étudiés

Nous avons sélectionneé les 4 outils qui nous semblent les plus crédibles,
les plus solides, et les plus pérennes, ceux sur lesquels on peut
envisager sans risque de construire une architecture critique pour
lentreprise.

Les outils sélectionnés ne se différencient pas tant par la liste des
fonctionnalités, qui pour l’essentiel découle de la spécification JMS. Ils
se distinguent en revanche par les possibilités d’interfacage, par des
fonctionnalités avancées en particulier en matiére de clustering. Ils se
distinguent aussi par leur dynamique de développement, et I'estimation
que l'on peut faire de leur part de marché.

Les produits sélectionnés sont les suivants :
= Active MQ
= JORAM
= Open Message Queue

» JBoss Messaging

JORAM

Présentation

JORAM ou Java Open Reliable
Asynchronous Messaging, est le
Middleware de consortium Object Web.
Object Web est aussi connu pour son
serveur d'application Java nommé Jonas
auquel est d'ailleurs intégré JORAM.

JORAM est sortie en 1999 et est distribué sous licence LGPL depuis
Mai 2000.

© Smile — Open Source Solutions

® Page 49

Smile

MOMs open source

Caractéristiques principales du produit

Nous allons parcourir les caractéristiques de JORAM selon les classes de
fonctionnalités présentées plus haut.

Implémentation

JORAM a une architecture interne élégante, basée sur le modéle d'agent.

Env

Channel | cannal

Architecture de JORAM

Un agent est un composant logiciel répondant a certains événements.
Dans le cas de JORAM, les événements sont sous forme de messages.
Les queues et les topics sont ainsi représentés par des agents. Un
utilisateur connecté a la plateforme est également représenté par un
agent dit proxy. Cette approche offre une grande flexibilité, car elle
permet la création et la suppression d'agents a la volée et sur n'importe
quel broker. Un broker est donc uniquement un serveur d'agent (ou
un container d'agent). A linstar des EJB, ces agents ne peuvent pas
encore étre déplacés de broker en broker.

Le code source récupéré du SVN JORAM est assez bien documenté. I1
est fait de « beans» séparés en Interfaces et Implémentations. Dans
I'ensemble, le code respecte les bonnes pratiques de développement
Java.

Langages pris en charge

Les langages par lesquels ont peut accéder a JORAM sont :
» Java via l'interface JMS.

» C et C++ : A l'aide de JNI, permettant ainsi de simuler un
environnement JMS.

© Smile — Open Source Solutions

Page 50

Smile

MOMs open source

Protocoles pris en charge

Le protocole interne de JORAM est propriétaire, et n'est pas
documenté. Nous estimons que c’est un handicap dans la mesure
ou cela tend a limiter le nombre d’environnements dans lesquels des
APIs sont offertes, et a rendre plus difficiles les interconnexions.
Joram le désigne simplement par « TCP », mais il est évident qu’ily a
un protocole, non spécifié, au dessus de TCP/IP.

Ainsi, JORAM ne s’appuie pas sur des protocoles standards comme
AMQP ou STOMP.

JORAM met a disposition des passerelles permettant d'étendre le
nombre de protocoles gérés tout en se basant sur le protocole dit
« TCP ».

» Passerelle SOAP (grace a un serveur d'application) : Permet la
communication en SOAP avec le broker, donc en principe depuis
des environnements autres que Java.

» Passerelle Mail : Cette passerelle permet d'envoyer et de recevoir
des messages JMS en s'appuyant sur du SMTP (Protocole de
mail). Pour cela JORAM utilise des queues et topics spécifiques.
Cette passerelle est réalisée en Java.

= Passerelle FTP : JORAM réserve des queues spécifiques pour les
canaux FTP. Cette passerelle fonctionne sur le méme principe
que la passerelle Mail. Elle est destinée a l'échange de
messages volumineux. Cette passerelle est réalisée en Java.

Interfaces prises en charge

Selon les classes d'interface :
= QGestion des messages

JORAM prend en charge le JMS 1.1 et est compatible avec JMS
1.0.2b. JORAM a aussi implémenté une interface JMS 1.1 destinée,
au Framework J2ME, la version de l’environnement Java destinée
aux mobiles, téléphones et PDAs. JORAM peut donc étre mis en
ceuvre a partir de terminaux mobiles compatibles Java.

JORAM prend aussi en charge JCA 1.5, lui permettant de se
connecter aux différents PGI du marché (Open ERP, ...) qui le gérent.

* Interfaces d’Administration, Monitoring, Configuration
JORAM supporte 'interface d’administration JMX. Il est intégrable

et configurable en Java. II supporte aussi le JAAS pour
l'authentification et les habilitations.

© Smile — Open Source Solutions

® Page 51

Smile

MOMs open source

Gestion des messages

Outre les fonctionnalités standards, JORAM geére :

» La notion de hiérarchie des topics : Chaque topic peut étre lié a un
autre (et un seul) et recevoir tous ses messages. A son tour, le
parent topic recoit tous les messages de ces parents et les envoie
a tous ses topics fils. Prenons un exemple : Imaginons trois
topics : Manager, Operateurs_France, Operateurs_Espagne. On
souhaite que tous les messages envoyés aux topics Opérateurs_*
soient aussi envoyés au topic Manager. En placant Manager
comme topic peére aux topic Operateurs_*, tous les
consommateurs recevront de facon transparente les messages
envoyés aux topics Opérateurs_*.

Il n'est pas possible de faire de traitement avec JORAM.

Persistance des messages

La persistance peut étre gérée sur le systéme de fichier, dans une base
java embarquée (Derby, voir plus loin pour plus de détail), ou sur une
base de données relationnelle externe via JDBC.

Derby est un systéme de gestion de base de données relationnelle
embarquée. « Embarquée » veut simplement dire qu'il n'est pas
nécessaire d'avoir un serveur de base de données, au sens d'un
processus distinct. La base de données est dans le méme processus que
l'application. Le support de stockage de la base Derby est le fichier.
Derby est une méthode avancée de lecture et d'écriture sur des fichiers.

Nous n’avons pas trouvé, dans les documentations fournies par JORAM,

d’information sur les optimisations possibles de la gestion de la
persistance.

Répartition de charge et haute disponibilité avec plusieurs sites

Comme on l’a évoqué, JORAM est construit selon une architecture a
base d'agents. Cette architecture est l'objet d'un livre blanc disponible
sur le site du produit.

Grace a son architecture, JORAM assure :

» La disponibilité : pour rappel, la défaillance d’'un serveur n’affecte
que les clients JMS connectés a ce serveur. Les autres
continuent a fonctionner en accédant a d’autres copies du
domaine. La synchronisation des domaines se fait d'une maniére
transparente, selon un principe maitre-esclave.

» Répartition de charge : les applications clientes sont réparties sur
plusieurs serveurs de telle sorte que la charge engendrée par la

© Smile — Open Source Solutions

® Page 52

Smile

MOMs open source

gestion des domaines soit répartie entre les serveurs. Cette
répartition peut soit étre réalisée manuellement (configuration et
utilisation du « Store and Forward »), soit étre confiée a un load-
balancer.

Interopérabilité avec d'autres MOMs

JORAM fournit un squelette de passerelle avec d'autres MOM gérant le
JMS 1.1.

Gestion de la sécurité et d'un annuaire
JORAM peut étre configuré pour utiliser des connexions SSL / TLS.

I1 gére 'authentification et 'autorisation.

Des fichiers de configuration au format XML sont utilisés pour définir la
configuration de sécurité. Il est possible également de personnaliser la
gestion de la sécurité au travers JAAS.

Mais ces aspects ne sont pas suffisamment documentés.

Administration

JORAM met a disposition une interface graphique d'administration. Elle
se base sur l'utilisation de JMX.

Voici quelques captures d'écran de l'interface d'administration.

© Smile — Open Source Solutions

Smile

OPEN SOURCE SOLUTIONS

MOMs open source

Page 53

JORAM Administration Tool EEE
Admin JNDI
F Configuration | JNDI | Admin connection: //localhost16010
Platform

¢ @ Server #0: 50 (localhost)
? Destinations
o TempTopic#0.0.1032

o [topic
o |9 queus
? Users

o [anommous#0.0.1029
o [root#0.0.11
o Domains

Destination Information
Destination identifier: #0.0.1027
JNDI name: queue

Destination type: queue

Pending messages: 40

Pending requests: 0

Threshold:
Dead Message Queue: |No Dead Message Queue

Allow free reading

Allow free writing

G Reading Access Control List
anonymous

root

<< Remove

ﬂ Writing Access Control List

anonymous
root

<< Remove

Apply Changes

© Smile — Open Source Solutions

Smile

® Page 54

MOMs open source

w JORAM Administration Tool E@E
Admin JNDI
(Cunfigumion INDI | | Admin connection: //localhost:16010
Root Context i . 3 =
D o | Destination Information
b o :

tef

Wi | INDI name: queue

i i

1) queue | Destination identifier: #0.0.1027
i :

i 2

|| Destination type: queue

| Pending messages: 40

| Pending requests: 0

Threshold:

Dead Message Queue: |No Dead Message Queus H
2 Allow free reading

Allow free writing

B Reading Access Control List

| [anonymous Add ==
‘| [root

—_
<+ Remove ‘

: {3 writing Access Control List
| [anonymous Add > ‘
| root ' :

L << Remove

Apply Changes

Lors d'une utilisation standard, linterface d'administration graphique
présente quelques problémes. Si l'on génére beaucoup d'actions,
l'application s’affole et devient erratique.

I1 nous semble que cette interface devrait étre surtout utilisée a des fins
de démonstration.

Configuration et déploiement

Apres téléchargement, et modulo l'installation d'un runtime Java (JRE), il
suffit de quelques déclarations d'environnement pour faire fonctionner la
solution.

Une vingtaine d'exemples est fournie. Un systéme basé sur ANT rend
I'utilisation de ces exemples particulierement simple. On regrette
l'absence d’une documentation digne de ce nom concernant le C / C++
et la persistance.

La configuration du MOM se fait a l'aide de fichiers XML. Les balises
XML sont assez claires. La définition d'un broker se fait par exemple a

© Smile — Open Source Solutions

® Page 55

Smile

MOMs open source

l'aide d'une balise « server » contenant la définition de celui-ci ainsi que
la définition de services.

<?xml version="1.0"?2>
<config>
<property name="Transaction" value="fr.dyade.aaa.util.NullTransaction"/>

<server id="0" name="S0" hostname="localhost">
<service class="org.objectweb.joram.mom.proxies.ConnectionManager"
args="root root"/>
<service class="org.objectweb.joram.mom.proxies.tcp.TcpProxyService"
args="16010"/>
<service class="fr.dyade.aaa.jndi2.server.JdndiServer" args="16400"/>
</server>
</config>

JORAM fonctionne sur tout systéme d'exploitation supportant au
minimum Java 1.4.

Détail sur le projet

Détail

JORAM est distribué sous licence w
LGPL et est publié par « Object S A p
Web ». Le principal contributeur de CAL G it
ce projet est la startup « ScalAgent w.lllde

Distributed Technologies », une
société issue a la fois de 'INRIA et de Bull.

o logies

Nous avons testé la version 5.2.1. Des mises a jour sont disponibles
environ tous les 3 mois aussi bien pour les versions en cours que pour
les versions antérieures.

Il n'y a pas de version commerciale de JORAM, ni de modules distribués
sous une autre licence.

Qualité

JORAM utilise ANT pour gérer la construction du projet, le code source
est disponible sur un SVN public. JORAM est également disponible dans
le référentiel MAVEN Central qui ne contient que les binaires.

Concernant la documentation, un WIKI est hébergé sur la forge d'OW2,
mais celui-ci n'est pas trés riche, et surtout trop peu actualisé. La
derniére mise a jour semble dater du 06/04/2006.

Un guide complet PDF en anglais abordant l'installation, 1'utilisation et
l'administration de JORAM est disponible sur le site. AA cela, s'ajoute un
forum sous forme d’'une mailing liste, avec accés aux archives. En
moyenne, on trouve quelques dizaines de messages par mois.

© Smile — Open Source Solutions

® Page 56

Smile

MOMs open source

Un gestionnaire de bug est présent sur la forge OW2, mais ne semble
pas étre utilisé par le projet, on trouve uniquement 10 anomalies entre
2003 et 2009. Le nombre de contributeurs au projet JORAM est de 24.

Le site officiel de JORAM est http://joram.ow2.org. Il a un page rank
Google de 4, ce qui est plutét faible pour ce genre de sites. Le site est
composé d'une centaine de pages tandis que le Wiki comporte une
trentaine de pages. Les archives de mails comptent, quant a elle, prés
400 pages.

Le site internet de JORAM n'est pas présent sur Google Trend.

Références

Aucune référence n'est renseignée.

© Smile — Open Source Solutions

http://joram.ow2.org/

® Page 57

Smile

MOMs open source

Présentation

Sorti en 2004, Active

MQ est le MOM open]
source de la fondation c I“e
- . - & [} []

Apache. Il est distribué
sous licence Apache 2.0.

Active MQ s’appuie sur quelques autres projets Apache :

» Apache Camel : Implémentation partielle des «Entreprise
Integration Patterns », que nous avons évoqués plus haut.

» Jetty : Serveur d'application Java intégré a Active MQ
Et Active MQ est a son tour utilisé par quelques autres grands projets :

» ESB : Active MQ est utilisé par plusieurs ESBs (Enterprise Service
Bus) tels qu’ Apache Service Mix et Mule.

» Serveur J2EE : Active MQ est intégré au serveur d’application
Geronimo (certifié JEES) comme fournisseur JMS par défaut.

» Axis et CXF : Extension de Active MQ.
Caractéristiques principales du produit

Langages d'implémentation

Le code source récupéré du SVN, ne semble pas toujours étre d’une
qualité exemplaire. La mise en forme du code laisse a désirer et certaines
parties ne respectent pas les bonnes pratiques de codage Java : peu
d'interfaces, classes et méthodes trop longues, ... Mais la robustesse du
produit est néanmoins réputée.

Langages pris en charge

La diversité des langages et environnements supportés est
particuliéerement grande, et c’est un des grands atouts de Active MQ.
Comme on l'a évoqué, laptitude a faire échanger des applications
hétérogénes fait partie des missions naturelles d’'un middleware.

Les langages a partir desquelles on peut accéder a Active MQ sont :

© Smile — Open Source Solutions

® Page 58

Smile

MOMs open source

» C: grace a la bibliothéque OpenWire C Client

= C++ : grace a CMS : C'est une bibliothéque C / C++ proposant des
interfaces similaires a JMS

Ajax, RESTful et SOAP : sous condition d'utilisation des passerelles
proposées par Active MQ. (La passerelle est sous forme d'un
servlet Java, fonctionnant sur Jetty, ou autre)

» .Net : grace a NMS : C'est une bibliothéque .Net proposant des
interfaces similaires a JMS

Delphi and FreePascal grace a Habari Active MQ Client

Perl, PHP, Pike, Python, Ruby, grace au protocole STOMP et aux
librairies client correspondantes.

On voit que le choix du duo STOMP et OpenWire comme protocole de
communication a ouvert la voie a limplémentation d’APIs dans de
nombreux environnements.

De plus, s’agissant de protocoles ouverts et bien spécifiés, il est possible

de réaliser un client STOMP vers ActiveMQ depuis de nouveaux
environnements s’il en manquait a la liste.

Protocoles pris en charge

Les protocoles prit en charge par Active MQ sont les suivants :
= AMQP : Ce protocole est pris en charge,e mais comme sa définition
est volatile, Active MQ prend en charge uniquement les versions
0.8 /0.9

= OpenWire : Protocole de communication messages

STOMP : Protocole de communication messages

JXTA : C'est un protocole permettant de créer des réseaux au
dessus des réseaux. JXTA (pour juxtapose), défini par une série
de protocoles légers concus pour gérer n'importe quelle
application peer-to-peer. JXTA est compatible avec l'ensemble
des plateformes informatiques. L’implémentation Java est basée
sur du XML. Avec Active MQ, il agit en tant que connecteur.

| jxta://hostname:port |

= XMPP : Le protocole de messagerie instantanée utilisé par Jabber.
Ainsi, on peut se connecter au MOM grace a un client de
messagerie de type Jabber.

» En ce qui concerne les protocoles proposés par des passerelles :

© Smile — Open Source Solutions

Smi

Page 59

le

MOMs open source

Grace aux sous-projets Axis et CXF de Apache, Active MQ gére
SOAP, REST, ...

Interfaces prises en charge

Selon les classes d'interface :

Messagerie

JCA 1.5 sous Java

JMS 1.1 et 1.0.2b sous Java

NMS a partir des plateformes .Net

CMS a partir des plateformes C/C++
Administration, Monitoring, Configuration

JMX, XML, Spring, Java DSL et par messages

Ces points seront revus plus loin.

Gestion des messages

Mis a part la gestion standard des messages imposée par la spécification

JMS

1.1, Active MQ geére :

Groupe de messages : Ceci est un concept intéressant dans la
mesure ou il assure que tous les messages dun méme groupe
soient recus par un consommateur déterminé. Les messages
dun groupe X seront consommés uniquement par le
consommateur privilégié. Si celui-ci meurt, Active MQ choisit
automatiquement un autre consommateur suivant la
configuration.

Notion de sélecteur de messages compatible avec XPATH (et SQL
92 issue de la spécification JMS)

Cependant, il n'y a pas de notion de priorité des messages. Il est
possible de la simuler en utilisant des groupes de messages ou
bien des sélecteurs.

Destination virtuelle : Il est possible de définir des topics et des
queues redirigeant vers des composants du méme domaine (topic
vers topic et queue vers queue).

« Total Ordering » : Active MQ a la possibilité d’assurer que l'ordre
de réception des messages correspond bien a 'ordre d’envoi.

© Smile — Open Source Solutions

Smile

® Page 60

MOMs open source

<destinationPolicy>
<policyMap>
<policyEntries>

<policyEntry topic=">">

<dispatchPolicy>
<strictOrderDispatchPolicy />

</dispatchPolicy>

</policyEntry>

</policyEntries></policyMap>
</destinationPolicy>

= Et bien d’autres, issues des EIP

Traitement des messages

Le traitement des messages d’Active MQ est sans doute son plus célébre
atout, aprés celui de sa grande connectivité. A 'aide du projet Camel qui
est intégré, il a la possibilité de traiter les messages selon les modéles
d'intégration d'entreprises (EIP).

Citons un exemple faisant d’Active MQ un EAI a part entiére. Les
fonctionnalités de routage et de transformation représentent les
caractéristiques principales des EAls.

Un exemple de routage est celui qui va rediriger le message selon son

contenu.
outEiueue 1
—)
inGLeLe
_.=]_P outCueue 2
e)+
Router

Routage selon le contenu du message

Et la configuration Spring associée :

<camelContext errorHandlerRef="errorHandler" streamCache="false"
id="camel" xmlns="HTTP://camel.apache.org/schema/spring">
<route>
<from uri="seda:demandes"/>
<choice>
<when>
<xpath>S$entreprise = 'smile'</xpath>
<to uri="seda:smile"/>
</when>
<when>
<xpath>$entreprise = 'autres'</xpath>
<to uri="seda:avant-vente"/>
</when>
<otherwise>
<to uri="seda:accueil"/>

© Smile — Open Source Solutions

® Page 61

Smile

MOMs open source

</otherwise>
</choice>
</route>
</camelContext>

Quelques explications s’imposent. Les messages recus sur la file
« demandes » seront transmis aux files :

» smile : si la propriété entreprise du message est égale « Smile »

» avant-vente : si la propriété entreprise du message est égale
« autres »

*= accueil : si aucune des conditions précédentes n'est respectée.

Il faut néanmoins rappeler que Camel n'implémente pas entiérement EIP.

Gestion des transactions

Bien qu'il n'existe pas de documentation sur la méthode de gestion des
transactions en interne, ActiveMQ nous donne quelques pistes.

Par exemple, la journalisation du « Message Store » permet la reprise sur
incident sans perte de données lors dun « rollback » (retour arriere).

Attention, par défaut, le routage et la transformation des messages ne
sont pas transactionnels.

Une «Dead Message Queue » est présente. Voici un exemple de
configuration :

<destinationPolicy>
<policyMap>
<policyEntries>
<!-- Set the following policy on all queues using the '>' wildcard -->
<policyEntry queue=">">
<deadLetterStrategy>
<!-- Use the prefix 'DLQ.' for the destination name, and make the DLQ a
queue rather than a topic -->
<individualDeadLetterStrategy queuePrefix="DLQ."
useQueueForQueueMessages="true" />
</deadlLetterStrategy>
</policyEntry>
</policyEntries>
</policyMap>
</destinationPolicy>

Dans cet exemple, chaque domaine aura une DMQ attribuée de maniére
individuelle.

Persistance des messages

Active MQ a introduit un mode de persistance appelé « Active MQ
Message Store » qui joint un stockage de données sous forme de fichiers
avec un systéme de journalisation et de mise en cache. Il affiche des
performances supérieures au systéme de persistance sur fichier ou base

© Smile — Open Source Solutions

® Page 62

Smile

MOMs open source

de données seule. Il affiche aussi une meilleure fiabilité, car il a été bati
pour le transactionnel.

Regardons de plus prés son fonctionnement.

Lors de l'écriture d'une donnée, le message réside en cache (Memoire
volatile). On construit sa référence (identification) qui sera stockée dans
le journal des références. Périodiquement, une copie du journal des
références caché est réalisée sur le support persistant. Ceci représente le
journal des références persistant. De plus, si la donnée n'a pas été
consultée depuis longtemps (configurable), elle est déplacée vers média
persistant (d'une facon transactionnelle) et ses références sont mises a
jour (cache et persistant).

Lors d'une lecture, on accéde soit directement a la donnée en cache, soit
dans le média de stockage.

Lors d'une transaction, Active MQ ne modifie que les références des
messages.

Active MQ recommande d'avoir un nombre de messages inférieur a 1
million par page de cache. Le nombre de page de cache n'est pas limité.

Voici une configuration simple dun broker utilisant 1' « Active MQ
Message Store » :

<broker brokerName="broker" persistent="true" useShutdownHook="false">
<persistenceAdapter>
<AMQ.PersistenceAdapter directory="Active MQ-data"
maxFileLength="32mb" />
</persistenceAdapter>
<transportConnectors>
<transportConnector uri="tcp://localhost:61616"/>
</transportConnectors>
</broker>

Si un objet n’est plus référencé, il est tout simplement supprimé. Etre
référencé c’est étre présent dans un des domaines, et donc ne pas encore
avoir été consommeé.

Les performances supérieures s'expliquent par le fait qu’Active MQ
détecte et mesure la durée d'attente d'un message avant sa
consommation. Il optimise le stockage sur un support non volatil. De
fait, il ne stocke que les messages dont la durée de latence est grande.

Les supports de stockage sont compatibles avec les pilotes JDBC.

Répartition de charge et haute disponibilité multi-site.

Active MQ propose différents modes de déploiement pour une haute
disponibilité :

© Smile — Open Source Solutions

Smile

® Page 63

MOMs open source

Cluster de brokers: permet la gestion des pannes et la répartition
de la charge.

» Réseau de brokers : permet de gérer un réseau distribué de queues
et de topics. Les messages seront transférés de brokers en
brokers par la fonction « store and forward » jusqu'a ce qu'ils
soient consommés. En d’autres termes, un broker recevant des
messages ne correspondant a aucun domaine qu'ilhéberge,
enregistrera le message et le transmettra au bon broker.
L'enregistrement permet la garantie de transmission en cas
d'instabilité réseau par exemple.

» Réplication en maitre-esclave : permet d'avoir une redondance,
cependant Active MQ supporte uniquement un esclave par
maitre.

» Partage du Message Store : C'est une alternative a la réplication
maitre-esclave. Dans ce cas, seul le Message Store est partagé en
utilisant un systéme de fichier sécurisé (SAN ou partage réseau)
ou une base de données. La charge de traitement est répartie.

= Domaine partagé : Une application de Camel serait de partager le
traitement de domaine sur plusieurs brokers. Pour ce faire, il
suffit de mettre en place un domaine virtuel distribuant les
messages sur plusieurs domaines.

Active MQ peut étre configuré pour connaitre l'emplacement des
différents brokers, ou bien peut les découvrir dynamiquement tout au
long du cycle de vie de la plateforme. La découverte de nouveaux
brokers se fait soit grace au broadcast, soit grace a ZeroConf. ZeroConf
est un protocole utilisant conjointement 1'UDP et le Multicast.

Dés lors, la sécurité devient le point faible. Le risque qu'une personne
malveillante introduise un broker malveillant pour voler ou introduire
des messages est plus grand.

La découverte de machine peut aussi se faire par l'intermédiaire dun
annuaire du type LDAP. Un broker mis en ligne se déclare dans un
annuaire. Les autres machines connectées a l'annuaire se rendent
compte de l'apparition d'une nouvelle machine et communiquent avec
lui.

Un exemple de configuration de la découverte par LDAP:

[ooa

<networkConnectors>

]

<ldapNetworkConnector uri="ldap://myldap.mydomain.com:389"
base="dc=brokers-for-srv-a,dc=mydomain, dc=com"
anonymousAuthentication="true"
searchFilter=" (cn=*)"
searchScope="SUBTREE SCOPE"
networkTTL="2"
/>

© Smile — Open Source Solutions

® Page 64

Smile

MOMs open source

</networkConnectors>

loool

Interopérabilité avec d'autres MOMs

Active MQ fournit une passerelle JMS aisément configurable (DSL,
Spring XML). L'authentification est aussi prise en compte par les fichiers
de configuration. Ces fichiers de configuration peuvent étre intégrés a
ceux d’Active MQ.

Gestion de la sécurité et d'un annuaire

L'authentification et la gestion des droits sont intégrées sous forme de

plugins dans Active MQ. Les plugins proposés par défaut s'appuient sur
JAAS ou sur des fichiers XML.

L'exemple le plus simple est le suivant :

[...]
<simpleAuthenticationPlugin>
<users>
<authenticationUser username="system" password="manager"
groups="users,admins" />
<authenticationUser username="user" password="password"
groups="users" />
<authenticationUser username="guest" password="password"
groups="guests"/>
</users>
</simpleAuthenticationPlugin>

Toool

L'interconnexion entre brokers peut aussi étre sécurisée par mot de
passe et / ou chiffrement (SSL).

[...]
<networkConnectors>
<networkConnector name="brokerAbridge"
userName="user"
password="password"
uri="static://(SSL://brokerA:61616)"/>

</networkConnectors>

[oool

Il est possible d'encapsuler les connexions dans du SSL entre les clients
et un broker pour sécuriser les échanges. Le SSL se comporte donc
comme un connecteur a part entiére.

I1 possible de lier la sécurité de la plateforme avec un serveur LDAP.

Active MQ fournit une interface de personnalisation via des « Interceptors
». Il est un ainsi possible d'étendre les possibilités de Active MQ trés
facilement. L’exemple le plus commun serait la gestion de
l'authentification. Les « Interceptors » permettent de modifier certains
comportements internes sans changer le cceur d’Active MQ et en
compatibilité avec les versions futures.

© Smile — Open Source Solutions

® Page 65

Smile

MOMs open source

Administration
Le monitoring et 'administration de la plateforme sont proposés :
» a travers de l'interface JMX
* au moyen d'une interface web (web console)

= par des messages : cette fonctionnalité est aussi disponible a
distance via le protocole XMPP (Voir le Glossaire).

Active MQ propose des « Advisory Message » (message d'information) qui
permettent de connaitre 1'état du systéme. Voici des exemples de

meétriques :

= les connexions clients

les files d'attentes créées et détruites par les applications

* les messages expirés

Les « Advisory Messages » sont organisés en queues et topics protégés
par mot de passe. On peut y accéder a partir d'un simple client Active
MQ (JMS ou autre).

Active MQ implémente aussi des « Mirrored Queues » : les messages
envoyés a une file d'attente seront, de maniére transparente, envoyés
sur un Topic. Méme si cette fonctionnalité est a utiliser avec précaution,
elle permet a un ou plusieurs clients de suivre 1'état d'une file d'attente.
C’est l’application du design « Wire Tap» (les écoutes téléphoniques
pratiquées par les espions) de EIP.

De plus, Active MQ nous fournit une interface d'administration Web.
Cette interface est démarrée par défaut a l'aide de Jetty. Elle démarre par
défaut a 'adresse suivante : HTTP://0.0.0.0:8161 /admin

© Smile — Open Source Solutions

Page 66

MOMs open source

= Queue Views

- mET
L
“ou can fnd more aformatcn ascui ActwcMS ©1 ihc Apache ActiveMQ Site B Useful Links

B

name 22asast

D Pea DT AR AZATRITAATEEE D T
Stare percent used

Memory percent used S

Temp percent used

g lef SR ST e Sy ST | s cpfie . (HEntable version]

i Diesigr By Hinum

Capture d’écran de I'administration d’Active MQ

Configuration et déploiement

Active MQ peut étre installé sur n'importe quelle plateforme supportant
au minimum Java 5.

Active MQ est configurable en utilisant des fichiers XML intégrables a
Spring. Active MQ se configure aussi a 1'aide de Java DSL.

Active MQ peut aussi étre configuré et lancé a partir d'un autre
programme (Java), c'est la notion de « Embedded Broker »: le broker
n’est plus un processus indépendant auquel le programme s’adresse par
le réseau, il tourne dans le méme processus que le programme client.

Active MQ est livré avec un ensemble d'exemples codés en Java ou en
Ruby. Tous les cas d'utilisation d’Active MQ ne sont pas couverts par la
trentaine d'exemples fournis.

Détail sur le projet

Détail

Active MQ a été principalement développé par la société LogicBlaze, et
racheté par IONA technologies en 2007. IONA technologies était célébre
dans les années 90 pour son expertise CORBA.

La derniére version d'Active MQ est la 5.2.0, mais la version 4.1.x est
encore maintenue par Active MQ.

Active MQ n’a pas de version commerciale.

© Smile — Open Source Solutions

® Page 67

Smile

MOMs open source

Qualité

Active MQ utilise MAVEN pour gérer le projet. Le code source est
disponible sur un SVN public dans lequel on retrouve la branche de
développement, mais aussi chaque version depuis la 4.0. A noter que le
projet est également disponible dans le référentiel MAVEN central.

Le site web du projet propose une documentation détaillée et utile.
Certains des exemples que nous citons sont issus du site. On remarque
cependant la présence de fautes d'orthographe ainsi que de nombreuses
pages « en cour de construction ». Un forum pour les utilisateurs d'Active
MQ est disponible sur lequel on recense une centaine de sujets par mois.
A cela, s'ajoute un « bug tracker » (JIRA) contenant les différents bugs
référencés par version.

Le projet posséde 114 contributeurs dont une trentaine y travaille a
temps plein.

Le site officiel d’Active MQ est http://activemqg.apache.org. Il posséde un
page Rank de 8, ce qui reflete la forte popularité de 1outil. Google
référence a peu prés 14 200 pages.

La communauté dispose d’un site officiel, sous forme de Wiki. Elle a
aussi une mailing liste, un forum et un salon IRC. Le temps de réponse
moyen est de l'ordre de 2 jours. Remarquons que certaines questions ne
trouvent pas de réponses.

Signalons aussi le livre « Active MQ in Action », aux éditions MEAP. Ce
livre, disponible uniquement en version anglaise, est une bonne lecture
pour appréhender et utiliser Active MQ. Son existence méme témoigne
de l'intérét suscité par le produit.

Références

Active MQ est utilis€ par de nombreux projets faisant partie de la
fondation Apache (Geronimo, Service Mix, Jet Speed, Apache Directory),
mais également par des projets extérieurs a cette fondation (Eclipse,
Active Cluster, Mule, Open IM).

Aucune autre référence client n'est indiquée sur le site.

© Smile — Open Source Solutions

Page 68

Smile

MOMs open source

MOM Open Message Queue (OMQ

Présentation

OMQ est le Middleware Orienté Message de Sun. Il a été développé pour
fonctionner conjointement avec GlassFish (Open ESB).

Le principal contributeur est la communauté Sun / Java.

OMQ a été réalisé pour fonctionner avec GlassFish, le
serveur d'application de Sun. Cependant, OMQ peut
facilement fonctionner tout seul ou avec d'autres types de
serveur d'application Java.

OMQ est distribué sous deux licences : CDDL ou GPL v2.

Caractéristiques principales du produit

Langages d'implémentation

Les sources, récupérables du site Internet de la solution sont mal
organisées. D'une part, on constate la présence de binaires, de fichiers C
et autres. De plus, il n'y a pas de systéme de compilation automatique du
type MAVEN ou ANT.

Sun fournit néanmoins une documentation indiquant comment compiler
la solution (via NetBeans).

On remarque la présence de répertoires (& la racine de src) nommeés
Solaris et Win32 (Windows), référent a des bouts de code spécifique. Qui
a dit que Java était multiplateformes ?

Dans cet amas de fichiers, on retrouve méme le code de l'interface
d'installation.

En ce qui concerne le code java en lui méme, il est bien documenté et
semble respecter les standards.

Langages pris en charge
Les seuls langages pris en compte sont :
» Java via JMS 1.1 ill ne gére pas le JMS 1.0.2)

= C : I'API est propriétaire Java, sa spécification est documentée par
Sun a l'adresse suivante :
http://docs.sun.com/app/docs/doc/819-7756

© Smile — Open Source Solutions

Smile

® Page 69

MOMs open source

On note le petit nombre de langages pris en compte, ce qui constitue une
faiblesse.

Protocoles pris en charge

Les protocoles externes pris en charge sont les suivants :
» UMS comme Universal Messaging System : C'est un protocole de
communication comparable a AMQP. Sun ne le met guére en

avant, étant données ses limitations en termes fonctionnalités et
de performance. UMS est basé sur du XML, ce qui alourdit un

peu les échanges. Sun fournit sa spécification a l'adresse
suivante : HTTPS://mq.dev.java.net/4.3-
content/ums/umslntro.html
A l'aide de passerelles, OMQ gére aussi le :
= SOAP : sur un support HTTP a partir d'un serveur d'application.
= HTTP : passerelle sur un serveur d'application.

I1 y a donc peu de protocoles pris en compte.

Le protocole interne d’'OMQ n’est pas documenté.

Interfaces prises en charge
Selon les classes d'interface :
= Messagerie
» JCA 1.5 sous Java
= JMS 1.1 sous Java
= API C : Elle est propriétaire a Java, sa spécification est

documentée par Sun a l'adresse suivante
HTTP://docs.sun.com/app/docs/doc/819-7756

* Administration, Monitoring et configuration
» JES : Java Monitoring plateforme Support

= JAAS

Gestion des messages

OMQ ne gére pas la priorité des messages.

© Smile — Open Source Solutions

http://docs.sun.com/app/docs/doc/819-7756

® Page 70

Smile

MOMs open source

OMQ geére la compression et la décompression des messages a la volée.
Un exemple :

[MyMessage.setBooleanProperty (“JMS_SUN_COMPRESS”, true) ; |

Une des nouvelles fonctionnalités originales est la gestion des « WildCard
Topics ». En autorisant l'utilisation d'une syntaxe particuliere, OMQ
autorise l'envoi d'un message a plusieurs domaines. Un exemple simple
est 'envoi d'un message vers toust les Topics. Pour ce faire, on envoie un
message vers un topic se nommant « * ». Voici quelques autres exemples :

Tableau 1 : Exemple de WildCard

Paterns Résultats

* sun.com Retourne toute chaine de caractére
finissant avec .sun.com

(quark | energy).sun.com Retourne soit quark.sun.com ou
energy.sun.com

* Retourne toute chaine de caractére ayant
un point au milieu.

Pour finir avec la gestion des messages, OMQ geére la validation des
contenus XML : « XML Schema Validation ».

Traitement des messages

Le traitement des messages n'est pas pris en compte par OMQ.

Gestion des transactions

La gestion de transaction est offerte a la fois a partir du C et du Java.
OMQ propose aussi des interfaces du type XA / JTA.

La gestion interne des transactions n'est pas spécifiée.

Persistance des messages

I1 est possible de réaliser de la persistance sur le systéme de fichier. La
persistance est aussi disponible dans des bases de données telles que :
Oracle, MySQL, PostgresSQL, Java DB (Derby), toutes accédées via
JDBC.

Répartition de charge et haute disponibilité multi site.

Deux modes sont disponibles :

© Smile — Open Source Solutions

Smile

® Page 71

MOMs open source

» Cluster Normal : Ce mode n’oblige pas la persistance. Il permet la
répartition manuelle de la charge sur plusieurs brokers. La
disponibilité de la plateforme se trouve aussi améliorée.
Cependant, si un ou plusieurs brokers venaient a mourir, leurs
messages seraient perdus.

» High-availability (Haute disponibilité) : En introduisant de la
persistance, OMQ améliore encore la fiabilité de la plateforme.
Méme si tous les brokers meurent au méme moment, aucun
message ne sera perdu (les messages ayant été pris en compte).
Cette solution améne de moindres performances.
OMQ ne gére pas de réplication Master/Slave.

I1 n’y a pas de systéme de découverte automatique de broker.

OMQ se montre ainsi limité concernant les problématiques d'entreprise.

Interopérabilité avec d'autres MOMs

Sun ne fournit aucun bridge JMS ou autre. Il est ainsi a notre charge
d’en créer ou d'en adapter un (open source) a nos besoins.

Gestion de la sécurité et d'un annuaire

OMQ support SSL / TLS comme mode d'encryptions des messages.Celui-
cii peut se placer aussi bien entres applications et brokers qu’inter-
brokers.

Les applications clientes (consommatrices ou productrices) peuvent se
connecter grace a un couple (nom d'utilisateur, mot de passe). Les mots
de passe sont encodés a l'aide de l'algorithme MDS.
OMQ geére les groupes d'utilisateurs. On peut personnaliser les accés aux
éléments des brokers (queues, topics, administration, monitoring) par
utilisateurs ou par groupes.
Les supports de stockage des éléments de sécurité sont:

* Fichier de configurations sous format XML

= LDAP

Les propriétés suivantes contrélent le comportement d’'OMQ vis-a-vis du
LDAP

img.
img.
img.
img.
img.
img.

user repository.ldap.server

user repository.ldap.principal
user repository.ldap.password
user repository.ldap.propertyName
user repository.ldap.base

user repository.ldap.uidattr

© Smile — Open Source Solutions

Smile

® Page 72

MOMs open source

img.
img.
img.
img.
img.
img.
img.
img.

user repository.ldap.usrfilter
user repository.ldap.grpsearch
user repository.ldap.grpbase
user repository.ldap.gidattr
user repository.ldap.memattr
user repository.ldap.grpfilter
user repository.ldap.timeout
user repository.ldap.ssl.enabled

La gestion de l'authentification et de l'autorisation peut étre
personnalisée a 1'aide de 1'API JAAS.

Administration

OMQ fournit aussi des outils d'administration en ligne de commande
permettant, a 'aide de scripts (shell ou autres), d’automatiser certaines
taches. A titre d’exemple, « imgadmin » et « imgcmd » permettent de gérer
un parc de brokers, de recharger une nouvelle configuration, ... Ces
outils se montrent ainsi particuliérement utiles.

Un monitoring du middleware est possible par messages. Il suit les
mémes concepts que les « Advisory Messages » d’Active MQ.

La plateforme OMQ implémente JMX.

Configuration et déploiement

OMQ est réalisé en Java. Voici la liste des systémes d'exploitation dont
Sun annonce le support :

» Solaris 9 ou 10
* RedHat Entreprise Linux Advanced/ Entreprise Server
» Windows XP / 2000 Server / 2009 Server
Le fonctionnement sur une Linux Debian semble tout a fait satisfaisant.

Toujours selon Sun, OMQ peut aussi bien tourner sous une architecture
Sparc que x86. Il requiert un minimum de 256 Mo de RAM, mais Sun
recommande 2 Go de Ram pour de la HA ou pour de gros volumes de
messages.

Lors du téléchargement du paquet du site de Sun, on remarque la
présence d'un installateur graphique.

En ce qui concerne les exemples, ils sont au nombre de 41, illustrant :
JMS, JMX, le monitoring, et SOAP. On constate aussi la présence d'une
dizaine d'exemples montrant l'utilisation de I'API C. Les exemples se
limitent a l'utilisation des services de messageries et de monitoring
d’OMQ. Dommage qu’aucun exemple ne montre la mise en place d'une
plateforme en cluster ou high-availability (haute disponibilité).

© Smile — Open Source Solutions

® Page 73

Smile

MOMs open source

Un autre point regrettable est que le lancement des exemples est a faire
manuellement tout en manipulant le classpath du compilateur et de la
VM.

La configuration de la solution se fait grace a des fichiers non —XML dont
voici un exemple :

|imq. cluster.brokerlist=hostl1:9876,host2:5000,ctrlhost |

Cette ligne informe OMQ de la liste des brokers disponibles.

Il est vraiment plus simple et pratique d’utiliser les scripts fournis que de
remplir les fichiers de configuration, ce qui est bien dommage.

Détail sur le projet

Détails

La version d’OMQ étudié est la 4.3. On remarque une assez conséquente
liste de bugs dont certains sont particuliérement génants :

» Impossibilité de parcourir une queue qui est gérée par un autre
broker (Browse).

» La persistance avec HADB est limitée en nombre de messages (10
000) et en taille (10 Mo).

... la liste complete des bugs est a cette adresse

HTTP:/ /docs.sun.com/app/docs/doc/820-6360/aembi?a=view

I1 est possible d’obtenir une version commerciale. Cependant, aucun
détail n’est fourni.

Qualité du projet

Sun fournit un Wiki contenant des exemples de code. La communauté
dispose d'un Forum, une mailing-list ainsi qu'un systéme de gestion des
tickets.

Le site prend parfois plus de 3 secondes a s'afficher. Il nous est arrivé a
plusieurs occasions que le site ne soit plus disponible. Tous ces défauts
suggerent que le projet n’est pas trés actif, ou en déperdition.

Toutefois, si l'on s’intéresse a la réactivité des contributeurs, on
constante un délai moyen de réponse de l'ordre de 1'heure, ce qui est fort
appréciable.

Sur le bug tracker, il existe encore des bugs ouverts depuis prés d'un an,
et de méme certaines questions sur le forum n'ont pas trouvé de réponse
depuis plusieurs mois.

© Smile — Open Source Solutions

http://docs.sun.com/app/docs/doc/820-6360/aembi?a=view

® Page 74

Smile

MOMs open source

Selon Google, le site officiel HTTP://mq.dev.java.net est constitué de 62
pages et obtient un page rank de 6.

Références

Aucune information n'est donnée sur les clients ou utilisateurs d’OMQ.

MOM JBoss Messaging (JBM

Présentation

JBoss a donné naissance a JBoss e

Messaging (JBM) devenu ensuite ® @
JBoss Queue (JBQ), actuellement en ms
sa version 1.4.0 SP3.

. . a division of Red Hat

Dés 2006, JBM a été réalisé dans
l'idée d'une intégration avec les
produits JBoss. I peut, modulo d'assez lourdes manipulations,
fonctionner en mode « standalone ».

La filiation a RedHat lui confére une place particuliére parmi les
middlewares d'entreprise Open Source, et d'autant plus qu'il est sous
licence LGPL.

JBM a été réalisé, comme son nom l'indique, par la communauté JBoss
et RedHat, leader mondial dans le domaine de 1'open source.

Caractéristiques principales du produit

Langages d'implémentation

Récupéré a partir du site Internet de JBM, le code source est assez bien
organisé. Un systéme de compilation automatique du type MAVEN est
présent.

Quant aux sources, elles ne sont pas toujours bien formatées. La
documentation du code est a revoir sérieusement et certaines méthodes
sont vraiment trop volumineuses.

Langages pris en charge

Le seul langage de programmation pris en charge par JBoss est le Java,
et ceci par l'intermédiaire de 1'API JMS.

Des quatre MOMs de notre sélection, il est celui qui présente le moins de
connectivité.

© Smile — Open Source Solutions

http://mq.dev.java.net/

® Page 75

Smile

MOMs open source

Protocoles pris en charge

JBM ne gére qu'un seul protocole externe dont la documentation est
introuvable. Toutefois, la roadmap du projet indique que l'outil compte
implémenter STOMP.

La version 2 de JBM, en version Beta implémente déja le protocole
AMQP.

Des quatre MOMs comparés ici, il est aussi le plus pauvre dans cette
catégorie.

Interfaces prises en charge

Selon les classes d'interface :
» Messagerie
= JMS 1.1 : depuis du Java
= JCA 1.5 : depuis du Java
* Administration, Monitoring et configuration
= JAAS : depuis du Java

» JMX : depuis du Java

Rien de bien nouveau.

Gestion des messages

JBM gere la priorité des messages. JBM réorganise l'ordre de délivrance
des messages suivant leur priorité.

JBM ne gére ni la hiérarchie des messages ni le concept de groupe de
messages.

Traitement des messages

Les modifications a la volée des messages ne sont pas prises en compte
par la solution de JBoss.

Il est possible, de programmer l'envoi de message, c'est-a-dire de définir

une propriété particuliéere qui ordonne au broker de rendre un message
disponible a une heure donnée.

Gestion des transactions

Le comportement de la DMQ est standard.

© Smile — Open Source Solutions

® Page 76

Smile

MOMs open source

La gestion interne des transactions n'est pas précisée.

Persistance des messages

JBM support plusieurs médias de stockage : Hypersonic, Oracle, Sybase,
MS SQL Server, Postgres et MySQL. Ils sont tous compatibles JDBC.

Par défaut, c’est Hypersonic qui est choisi. Une note de JBoss fait
remarquer que Hypersonic ne devrait pas étre utilisé en production a
cause :

* de sa gestion limitée des transactions.

» de son mauvais comportement a forte charge.

Un exemple de configuration pour Hypersonic est :

<mbean code="org.Jjboss.messaging.core.JMX.JDBCPersistenceManagerService"
name="jboss.messaging:service=PersistenceManager"
xmbean-dd="xmdesc/JDBCPersistenceManager-xmbean.XML">
<depends>jboss.JC
A:service=DataSourceBinding, name=DefaultDS</depends>
<depends optional-attribute-
name="TransactionManager">jboss:service=TransactionManager</depends>
<attribute name="DataSource">7java:/DefaultDS</attribute>
<attribute name="CreateTablesOnStartup">true</attribute>
<attribute name="UsingBatchUpdates">true</attribute>
<attribute name="SglProperties"><! [CDATA[
CREATE DUAL=CREATE TABLE JBM_ DUAL (DUMMY INTEGER, PRIMARY KEY
(DUMMY)) ENGINE = INNODB
CREATE MESSAGE REFERENCE=CREATE TABLE JBM MSG REF (CHANNEL ID
BIGINT, MESSAGE ID BIGINT, TRANSACTION ID BIGINT, STATE CHAR (1), ORD
BIGINT, PAGE ORD BIGINT, DELIVERY COUNT INTEGER, SCHED DELIVERY BIGINT,
PRIMARY KEY(CHANNEL_ID, MESSAGE_ID)) ENGINE = INNODB
CREATE_IDX MESSAGE_REF_TX=CREATE INDEX JBM MSG REF TX ON JBM MSG REF
(TRANSACTION ID)
CREATE_IDX MESSAGE REF ORD=CREATE INDEX JBM MSG REF ORD ON
JBM MSG_REF (ORD)

SELECT_EXISTS REF MESSAGE_ ID=SELECT MESSAGE_ ID FROM JBM MSG_REF
WHERE MESSAGE ID = *?

UPDATE DELIVERY COUNT=UPDATE JBM MSG REF SET DELIVERY COUNT = ?
WHERE CHANNEL ID = ? AND MESSAGE ID = ?

UPDATE_CHANNEL ID=UPDATE JBM MSG_REF SET CHANNEL ID = ? WHERE
CHANNEL ID = ?

LOAD_MESSAGES=SELECT MESSAGE ID, RELIABLE, EXPIRATION, TIMESTAMP,
PRIORITY, HEADERS, PAYLOAD, TYPE FROM JBM MSG

]1></attribute>

<attribute name="MaxParams">500</attribute>

<attribute name="UseNDBFailoverStrategy">true</attribute>
</mbean>

La partie du milieu remplacée par des « . . . » représente la définition des
commandes SQL correspondant aux actions possibles du broker. A des
fins d’optimisation par exemple, il est possible de personnaliser tres
finement la gestion de la persistance par le MOM.

© Smile — Open Source Solutions

® Page 77

Smile

MOMs open source

Répartition de charge et haute disponibilité multi-site

JBoss garantit l'entiére compatibilité avec une architecture en cluster
aussi bien pour le mode point a point que le mode par abonnement.

Les messages peuvent étre amenés a étre routés de cluster en cluster
considérant la charge de chaque machine ainsi que leur performance :

c’est le concept de « Store and Forward ».

I1 est aussi possible de partager une méme base de données.

JBM JBM
Broker 1 Broker 2

Partage de la base de données

JBM gere aussi la découverte automatique de brokers par multicast. La
réplication en maitre esclave est aussi gérée.

© Smile — Open Source Solutions

Page 78

Smile

MOMs open source

client
JBM

JBM Réplication JBM
maitre esclave
Broker 1

Possibilité d'étre async
\ = meilleur performance /

Broker 2

Faisons une petite note sur la synchronisation des différents « stores »
(média de stockage). Une gestion synchrone implique la mise en attente
du client JMS jusqu'a confirmation de l'écriture sur les deux brokers.
Suivant le nombre et la taille des messages, ce processus peut prendre
plus ou moins de temps. A l'inverse une gestion asynchrone signifie que
le broker maitre réagira comme s'il n'y avait pas de broker esclave et
rendra la main au client dés la prise en compte du message.

Interopérabilité avec d'autres MOMs

La configuration de JBM est fournie avec une passerelle JMS. Le site de
JBoss nous propose d'ailleurs un tutoriel portant sur la configuration
dune passerelle entre JBoss MQ et JBM (JBoss Messaging), car I'un et
l'autre n’utilisent pas le méme protocole interne.

Le protocole interne n'est pas ouvert, limitant l'accés direct a la
plateforme MOM.

Gestion de la sécurité et d'un annuaire

Selon les spécifications de JBoss, la sécurité est gérée par JBM a l'aide
de fichiers de configuration. Par ailleurs, elle peut étre personnalisée par
JAAS.

La gestion de la sécurité est réalisée par utilisateurs et par rbles. Par
défaut, les informations d'authentification sont issues de fichiers XML.

Le MOM a aussi la possibilité de se connecter a un LDAP.

Le chiffrement des données a l'aide de SSL / TLS est aussi supporté.

© Smile — Open Source Solutions

® Page 79

Smile

MOMs open source

Administration

La plateforme JBM implémente JMX. Cependant, aucune interface
graphique n'est fournie.

JBM a introduit quelques spécificités au niveau de I'implémentation du
JMS. Sans dénigrer la spécification 1.1, JBM rajoute quelques sucreries.
Par exemple, on peut maintenant récupérer les statistiques sur la
plateforme sans passer par JMX. (Méthode intitulée « Message
Counter »). Rappelons néanmoins que l'utilisation de ces fonctions
supprime un avantage majeur de JMS, la portabilité du code. A utiliser
avec modération.

Configuration et déploiement

L'utilisation de JBM a travers JBoss Application Server (JAS) est trés
aisée. Il suffit de les télécharger (JAS + JBM), de configurer les variables
d'environnement et d'exécuter un script de configuration situé dans le
dossier JBM.

Notons toutefois que l'installation de JBM en « standalone » est une
opération assez lourde et n'est vraiment pas dans « 'esprit JBoss ». On
comprend, aprés utilisation de l'outil qu'il est vraiment intégré a JAS. Par
exemple, les fichiers de configuration, sous forme de XML, sont
complétement intégrés a JBA.

Une trentaine d'exemples sont fournis. Ils traitent entre autres de :
Passerelle JMS, Clustering, Web Service, Reprise sur erreur, le
chiffrement des transmissions.

Détail sur le projet

Qualité du Projet

Malgré sa jeunesse, la communauté de développeur JBM dispose d’un
SVN, un forum et un service de suivi de tickets d’incidents.

Les utilisateurs ont, quant a eux : un Wiki et un forum. Ils sont souvent
indisponibles.

Le site officiel de JBM posseéde 17 Pages
(HTTP:/ /www.jboss.org/jbossmessaging/)

Son page Rank est de 6.

Un support technique est disponible via mail, chat (IRC) et forum. Aucun
support commercial n'est disponible pour ce produit. Cependant, les
produits JBoss intégrant JBM possédent quant a eux un support
commercial via email uniquement.

© Smile — Open Source Solutions

http://www.jboss.org/jbossmessaging/
http://www.jboss.org/jbossmessaging/

® Page 80

Smile

MOMs open source

Une équipe de 4 personnes s'occupe a plein temps du projet.

Un Wiki et des documentations sont fournis par la communauté
JBoss.

Références

Le site internet de JBoss présente les entreprises qui ont adoptées leurs
produits, qui incluent Enernoc, Scania, Iwbank, Covad, AcXium.

Autres
La version 2.0 de JBM est en préparation dans les « bunker top secret »
de la communauté JBoss. Cette version apportera des nouveautés par
lesquelles:

= AMQP / STOMP

= Conception basé sur POJO

= QGestion de gros messages (exemple : 8 Go)

= A partir de cette version, il s’inscrira dans la catégorie des
concurrents sérieux d’Active MQ

© Smile — Open Source Solutions

Sm

ile

MOMs open source

Page 81

COMPARATIF

JORAM AMQ OMQ JMQ
Langage Java| % % K * % * % %k * %
Protocoles Interne (non * * % * D ¢ *
documenté /
documenté /
ouvert)
AMOQ.P X * % x x
Open Wire X Y% % % X
STOMP X Y % % X
Passerelles SOAP * % * % * % X
fournies
RestFul x * % x x
Mail| 5 K * % x x
FTP| & % - x x
JavaScript / Ajax X Y % X X
Interfaces JMS 1.0.2b * % X x * %
JMS 1.1 S % K * %k * % k * % %
JCAL % K * %k * % k * %k
JMX | e K * %k * %k * % %
JAAS | S %k %k * % k * %k * % k
JNDI| 5 5 % * % * * % * * %k
JSE x x * %k x
Langages Java| +c % K * * * * % % * % %
C/C+H++ Jxk * % * x
JavaScript X * % % x X
.Net x % % % x x
Delphi X Y % % x X

© Smile — Open Source Solutions

Smile

MOMs open source

Page 82

JORAM AMQ OMQ JMQ
Perl x % % % X x
PHP x Je e x x
Pike x % % % x x
Python x * * * x x
Ruby x * % * x X
Gestion des [Hiérarchie de Topic % % * x x
Messages
Priorité % % x X X
wildCard % * % x * %
Groupe de X * % % x X
Messages
Destination X * % % x x
Virtuelle
EIP x * % k x x
Persistance |Systéme de Fichier * * +* % % % % * %
(Normal /
Optimiseé)
Compatible JDBC * % * % % % * * %
Topologie Configuration * % > % % % % * X
Multisite| & % | Kk % * * * *
Réplication * % * % x * %
Découverte par X Y % % X X
Multicast
Découverte par X Y % % X X
Broadcast
Découverte par x * % % x x
LDAP
Intégration EJB| % % % % % % x %* % %
Spring| * k k | %k k k x x
Standalone * % * % % * % *
Configuration [Fichier (XML / Non * * % % %) ¢ * %
standard/N)
Alavolé et a * % % * % % x
chaud

© Smile — Open Source Solutions

Smile

MOMs open source

Page 83

JORAM AMQ OMQ JMQ
Administration Par Messages X * % Y % X
/ Monitoring
[nterface graphique * % % % Y % % X
fournie
Interface script X X % % % x
fournie
Sécurité SSL / TLS| + % % % % % Y % % * % %
Gestion Utilisateur | s % % % % % * % % %
Gestion de Groupe x * % % Y % % Y % %
Gestion des droits | s % % * % % % % % % % %
par domaine
JAAS | S %k Kk * %k * %k * % %
Autre MOM Passerelle JMS > % % % % Y % X
fournie
Divers Version 5.2 5.2 4.2 1.4.4
Nombre de 24 114 ? 4
contributeur
Nombre de pages 73 14200 62 17
du site
Page Rank du site 4 8 6 6
Licence LGPL Apache 2 CDDL ou LGPL
GPL v2

© Smile — Open Source Solutions

® Page 84

Smile

MOMs open source

BENCHMARK DE DEBIT

Scénario de test

Ce test de performance a pour but de mettre en exergue les limites des
MODMs selon la charge infligée. Pour ce faire, nous allons mettre en place
un MOM et lui envoyer des messages a débit constant et pendant une
période de 10 secondes. Nous allons mesurer pour chaque message le
temps écoulé de l'envoi, jusqu'a sa réception.

Le test est organisé en phases de durées égales. Chaque phase se
caractérise par un débit constant. Pour chaque débit, nous obtenons
plusieurs valeurs. Afin d'éviter toute interférence, chaque phase est
séparée dune autre par une vidange du MOM. Cette vidange se fait
naturellement en attendant que tous les messages soient consommeés.

Nous répétons ce test avec trois tailles de messages différentes : 0.1, 1 et
10 Ko.

Reéalisation du test

Aprés la mise en place dun MOM, nous lancons les programmes
« producteur » et « consommateur ».

Le programme « producteur » agrége plusieurs producteurs JMS. En
effet, afin de soutenir un débit constant, le programme se divise en
multiples threads. On obtient ainsi un producteur par seconde délivrant
N messages par intervalle de temps. Le nombre N correspond donc au
débit souhaité. Chaque message est daté et identifié. Afin de vraiment
soutenir le débit souhaité, chaque producteur ne peut envoyer que 1000
Messages.

Le programme «consommateur», quant a lui, ne recoit pas
nécessairement les messages dans le bon ordre. Il les récolte, les
horodates, les analyses et les regroupe par seconde. A chaque fin de
phase, il produit ses résultats. L’analyse des messages se fait a la fin afin
de ne pas perturber le test.

Configuration

La configuration des deux outils est issue de celle par défaut. Elle est
épurée de tout ce qui n'est pas nécessaire. Le mode de transport est le
TCP. Aucun chiffrement particulier n'a été mis en place et aucune limite
de mémoire au niveau de la configuration non plus. Au niveau de la
JVM, 7 Go lui ont été alloués pour chaque broker, consommateur et
producteur.

© Smile — Open Source Solutions

° Page 85

Smile

MOMs open source

La machine

Les producteurs, le consommateur et le broker tournent sur des
machines EC2 distinctes, allouées sur le cloud Amazon, du type :

» 4 unités de traitement 64 bits
= 7.5Gode RAM
*» 850 Go de Disque dur

Chaque unité de traitement est équivalente a 1.0-1.2 GHz Opteron 2007
ou a Xeon 2007.

Résultats du test

Nous allons exprimer chaque résultat selon le débit de réception par
rapport au débit d’envoi.

© Smile — Open Source Solutions

mile Page 86

MOMs open source

Active MQ avec Persistance

AHOQ Persistance - Debit de reception par rapport au debit d’envoi

2588 T T T T T T
Hessage de 8.1Ko
Hessage de 1Ko
Hegsage de 18Ko
[,'l
}d
J |
2080 /f \I .
r—.. III.":‘, S II
AN -
f;—_‘\\ ."I \r"l ‘Ixﬂj'l II
= | ! ’
c T “ﬂ i
5 T, J L
« 1568 = kR
=
[
g : Fa
[o ."/ "x\ Fd \\,_ =
f oy v " - F A
% 'h", .."' .‘|l " l.,"" W \". 3 ;‘r/ ““‘-'—-_I,. \\‘) \\
- | I/ul { v \.\ i f.f ‘L\.-’f \ ~
z \ \J 2 W | s
568 1
8 1 L 1 L 1 L
] 2808 4880 G888 iizlsl] 18860 12080 1488
Debit denvoi en nessages par secondes
. . .
Active MQ, sans Persistance (volatile)
AHO Yolatile - Debit de reception par rapport au debit d”envoi
12088 T T T T T T
Hessage de B8,1Ko
Hessage de 1Ko
Hessage de 18Ko
18688 7
. Beee f 1
g -
] |
- 1|
% i | |I
g / | |
o |
L Geee - \ 1
o \f
= i
-
=
2 W N
= 4008 | / '\v/.l ."'“'\."" \II II .H- i i
'._‘1' \ II ¥
\f
\f
1
2008 - b
B 1 1 1 1 1 1
a 20008 4880 6a88 gooa 186808 12880 1408

Debit d'envoi en

nessages par secondes

© Smile — Open Source Solutions

Debit de reception

Debit de reception

miic

458

488

358

388

258

2808

158

188

i)

568

458

488

358

368

2508

2608

158

188

L)

MOMs open source

Page 87

Joram avec Persistance

JORAH Persistance - Debit de reception par rapport au debit d’envoi

Heséage de 8.1Ko
Hessage de 1Ko
Hessage de 18Ko

5008

1688 1588

Debit d’envoi en nessages par secondes

JORAM sans Persistance (volatile)

JORAN VYolatile - Debit de reception par rapport au debit

2000

d envoi

250t

Hessage dé 8.1Ko
Hessage de 1Ko
Hessage de 18Ko

268

480
Debit

608 800
d’envoi en messages par secondes

1888

1288

140t

© Smile — Open Source

Solutions

° Page 88

Smile

MOMs open source

Analyse

On remarque que les deux outils ne réagissent vraiment pas de la méme
maniere.

D’une part, le débit de réception d’active MQ se stabilise tandis que le
débit de réception de Joram chute progressivement au fur et a mesure
que le débit en entrée augmente.

Active MQ supporte mieux la charge que JORAM.

D’autre part, JORAM n’est pas aussi sensible que Active MQ a la taille
des messages. On remarque que la difféerence entre les débits de
réception des messages de différentes tailles est plus grande dans le cas
d’Active MQ que celle de JORAM.

Une chose est stre, Active MQ est bien plus performant que JORAM, a
petite ou forte charge. Voici un tableau récapitulatif des débits de

réception.
Débit possible, en messages par seconde
ACTIVE MQ JORAM
Taille des messages Max Moyenne Max Moyenne
P 2 400 2 000 320 n/a
0.1 Ko
SP 9 000 9 000 330 n/a
P 2350 1 900 270 n/a
1 Ko
SP 9 000 9 000 320 n/a
P 1 300 1 200 270 n/a
10 Ko
SP 4 000 4 000 320 n/a

Notons que « P » signifie ici « avec Persistance », et « SP » signifie « Sans
Persistance ».

© Smile — Open Source Solutions

Smile

® Page 89

MOMs open source

10 000

Débit maximum observé {(messagesiseconde)

8000

5 oo
7 oo

& 000

& 000

4 000

3000
2000 H
1000

Active MO S P Active MO S SP Joram /P Joram f 5P

oo KD m1 KD @10 KO

On remarque aussi que la différence entre persistance et sans
persistance est trés grande pour Active MQ. Le débit de réception varie
avec un facteur de 3.

Au final, on retiendra que, dans un mode sans persistance, Active MQ
achemine jusqu’a 9000 messages par seconde, et jusqu’a 2000 avec
persistance.

© Smile — Open Source Solutions

® Page 90

Smile

MOMs open source

SYNTHESE

La premiére question n’est pas quelle solution de MOM choisir.
L'important est d’abord de bien identifier les bénéfices importants qu'un
MOM peut apporter dans un systéme d’information, et c’est pourquoi
nous nous sommes attachés en premier lieu de bien décrire les services
rendus par un MOM, et la maniére dont il pouvait simplifier et fiabiliser
les interactions entre applications.

Les MOMs sont encore trop peu connus des architectes, et on voit
souvent mettre en oceuvre des échanges FTP, ou bien des appels
synchrones trop fragiles, ou autres moyens d’échanges rudimentaires,
voir archaiques. Les MOMs apportent une solution ouverte, flexible et
extensible a une diversité de problémes d’intégration. On peut déployer
un MOM dans un contexte hautement hétérogéne, mais il a toute sa
place également au sein d’une simple plateforme web, un peu haut de
gamme.

Une fois que l’'architecte est convaincu qu'un middleware de type MOM
est le bon socle d’échange pour sa plateforme, il lui reste a faire le choix
d'un produit. L’offre est riche, et comme on l'a vu, tous les produits
convergent autour de la spécification JMS, ce qui offre un niveau de
service de base commun, mais aussi permet de concentrer ’expertise.

Lorsque nous faisons, dans nos livres blancs, un panorama des
solutions open source du marché, il arrive souvent que 1'on ne puisse
conclure a la supériorité claire dun produit en particulier. La
conclusion est alors que selon les besoins spécifiques d’un projet, selon
le contexte d’insertion, tel ou tel produit arrivera en téte.

Mais sur le sujet des MOMs, force est de constater qu'un produit sort du
lot : notre étude nous ameéne a conclure que Apache Active MQ est la
meilleure des quatre solutions étudiées :

= Elle a la pérennité et la légitimité de la fondation Apache, s’appuie
sur un socle de produits de qualité de la fondation, et semble
faire converger une communauté de développement plus large et
active.

= Elle offre une couverture fonctionnelle plus large, sur a peu pres
tous les plans, avec en particulier l'intégration possible de
traitements et d’aiguillages.

» Elle est particuliéerement extensible, et peu satisfaire aussi bien des
besoins simples que de vastes problématiques d’entreprise.

» Et enfin, elle présente des performances supérieures.

© Smile — Open Source Solutions

® Page 91

Smile

MOMs open source

Pour nous, l’'affaire est entendue, Active MQ nous semble étre le meilleur
choix. Sauf bien sur si 'on a par ailleurs déja déployé une infrastructure
basée sur les autres lignes de produits : Redhat/JBoss, SUN/GlassFish,
ou OW2/Jonas.

La question ensuite, sera d’ajuster lambition qui est donnée au
middleware dans son infrastructure applicative. L’avantage des MOMs
est leur relative simplicité : ils ne prétendent pas tout faire, mais ce qu’ils
font ils le font de maniére fiable et performante. La limitation essentielle
des MOMs, comme on I’a vu, est qu’ils ne s’occupent pas du contenu du
message, et supposent donc que les applications parlent le méme
langage, se sont entendues sur un format commun. Dans un
environnement hétérogene, incluant du patrimoine ancien, on voit bien
qu’on ne pourra faire cette hypothése.

Active MQ, avec l'intégration de Apache Camel, prend des aspects d’EAI,
et peut prendre en charge des transformations de messages et
conversions de formats, mais de maniére encore relativement limitée.

Pour prendre en charge une plus forte hétérogénéité, et s’ouvrir vers un
plus large éventail de modes de connexions et de protocoles, il faudra
considérer un ESB, Enterprise Service Bus, base d’une architecture SOA
globale. Le principal ESB dans le monde de 'open source est MULE, de
MuleSource, que nous apprécions particulierement chez Smile.

Mais en matiére d’architecture, il est essentiel de savoir ajuster
I'ambition au probléme, et les solutions les plus sophistiquées ne sont
pas toujours les plus appropriées.

Les simples MOM, et Active MQ en particulier, restent donc des produits
extrémement pertinents et utiles pour construire des plateformes
distribuées, ou permettre linteropérabilit¢é dun petit nombre
d’applications.

Depuis plusieurs années, Smile a construit une expertise des
middleware au service d’architectures extensibles et performantes, et
nos experts seront heureux de vous aider a tirer le meilleur parti d’'une
solution MOM open source.

© Smile — Open Source Solutions

Iy-arrwus®dps / 00 IT Ob TH T €€+
i arpuojoidde snid a19TUEBW 9P SUOIIESI[EII SOU I9)U3SId SNOA 9P XNIINIY SUOIIS SNOU ‘SNOU-ZI}OBIU0D Q.H.maw

[so3ed 16| oremaIpPIA =
[se8ed z1,| 3unndwo) pno) =
[sa8ed 1¢| 20o1nos uado NJA =
[se8ed gg] soanos uado s[remalry =
[seBed 4.1] @0anos uado gapy S9INI0IYDIY =
[seBed 14| e0snos uado uomEsIENIIIA »
! 9INJONIJSBIUT }9 dWIISAS UOIIOI[0D =

[se3ed gy
*901Nn0s uado 20ULII[AIUT SSAUISN]
B[9P S9JINS 12 S[HNO SINI[IOW SI] Z2IANO0II

99inos uado suorIN[os sI : [SUUOISIIY(=

[s98ed gt 'uondadouoo es ap SIO[23IS 1J0A P
juswauuonsod 37 39 ,2}[IqeduaIg)al, e[Josrundo

Saadl

JUSWIIOD ZIANOIIP ‘OUR[] JIAI] 90 B DBID
I10AES Inej [I,nb 90 : JUSWIOUIIIIIY =

[se8ed 4] -onbrureudp 9310] aun 39 S[[OUUOI}OUOJ
2INJI2AN0D 9FTE] SUN ‘OPIOS JATFEUId)E

aun ajuasardar soanos uado,] ¢ sanbrroads jrey

€)10} S[IINO SO JU0S (JHD 9P SUONNJOS SITreJA ST

9oinos uado suornios s9 : @A =

[seZed 1g1] "sympax

SIN00 32 AIIqIXff yuejrodde ‘sosrrdanus sof suep
Qyorews o9p sired sop juauded 32 saInjew jrej e jnoj
JUO0S JUH,P 2IIEW U 901Nn0s uado suonnjos saq

991nos uado suornios saf [HDd/JAA =

[se3ed 9g] ‘o3renb op 931s un
QIIMIISUOD B JUOJIPTe SNOoA TN 3o so[mn jusworduwrs

1N0} NO SI[CEUINOIUOIUT ‘SIONJSE 19 saFesn
‘« gam np sanbnjeid sauuoq » soanbjenb 35 Jua)

gam np sanbryeird sauuoq QQT ST =

[se3ed 2,] -o3renb inat Juesoroure

u2 Inoj ‘suonyedridde sop juswaddoraagp op
sdwa) sof axmpal op juapeurad mb sjuesodwod
10 s3sIoMmawIeI] Sap 93191dwod uonelussaid aun

dHd SYIomawesj s =

[se3ed 19] ‘qom a13010U09]

U $9IIMIISU0O Jonouwr suoryeondde sap 9110e0y)o | 39 1J°Irruus mmm
9qestnn, [anod sonbreid souuoq sop 9SAYIUAS ins HGQEOHM.—‘—HNHW
s91qeasdieyo91d)

qgom suorjeordde p uorydaouo) JUOS S[TWIS SOUE[q SOIAI SO

[se8ed 94| "sutosaq soa
e Xnorur 9] eIpuodal NUU0O 9p uonsald ap [INO,[
J1stoyo anod 19sod os nej [L,nb suonsonb s sanoy,

SIND un arstoyd inod suorysanb QQOZ =«

[s98ed (g] ‘s[rejrod suonnos saINS[IOW

sap 2391duwoo apn3e aun asodord snoa IS
‘SIND $97 so1dy 's939[duIod 39 SIPI[OS SUOINOS
U2 9UOUI 3s9 90anos uado,] ‘assne s[rejrod sa Inog

2o1nos uado sSUOIINOS SIT : S[IeIO0d =

[se3ed gg| -ooanos

uado SIND SOP 2IJ0,] ZoIAN0o9p ‘osridarius uonnjos
e & 91s o[durs n(-2o1nos uado JU0S sUonN[os
SQINS[[IOW SI ‘SNUAIU0O Ip uonsa3d e[sueq

901nos uado
SUOIIN[OS SI[: SNUIIUOD AP UOIISIN) »

[se3ed gg]

JuawaddoroAdp ap sofepout 32 3roddns ap so[epour
$9S ‘sanbrIou0d9 SI[IPOW SIS ‘QUOTEW UOS
‘saan3ry sepueld sas ‘orydosoryd es ‘9I110)STY U0S

21qr [3101307 ne 32
291nos uado,] ® uoronpoIuy =

JIIUWIS SOUB[q SAIAI[ST

	Préambule
	Smile
	Quelques références
	Intranets et Extranets
	Internet, Portails et e-Commerce
	Applications métier
	Applications décisionnelles

	Ce livre blanc
	Sommaire

	Concepts des MOMs et JMS
	Qu'est-ce qu’un Middleware ?
	Pourquoi des échanges asynchrones ?

	Les Middlewares Orientés Messages ou MOM
	Définition
	MOM, EAI, ESB
	EDA, Event Driven Architecture
	Des échanges asynchrones
	Des échanges fiables
	Brokers
	Protocoles et APIs
	Pourquoi un MOM open source ?
	Les services d'un MOM
	Un service fiable
	Un service asynchrone
	Une indirection de nommage
	Pas de transformation des données
	Autres services

	Java Messaging System ou JMS
	Introduction
	Modes de communication
	Le mode point à point ou « queue »
	Le mode « publish-subscribe » ou « topic »
	Queues et topics

	Quelques définitions
	JMS Client
	Non-JMS Client
	JMS Provider
	JMS Consumer
	JMS Producer
	JMS Message
	JMS Domains
	Destination

	Encodage du Corps des messages
	La structure du message JMS
	Ordre des messages
	Durée de vie d'un message
	Priorité
	Sélection des messages
	Aiguillage et spécialisation
	Synthèse JMS

	Caractéristiques principales des MOM
	Langages d'implémentation, APIs et environnements supportés.
	Protocoles
	Traitement des messages par le MOM
	Gestion des transactions
	Gestion des acquittements
	Transactions JMS
	Transactions XA

	Dead Message Queue
	Persistance des messages

	Fonctionnalités avancées
	Code générique et JNDI
	Enterprise Integration Patterns
	Interopérabilité entre MOMs
	Passerelle à base d’ESB
	Gestion de la sécurité
	Administration et monitoring
	API spécifique

	Configuration et déploiement
	Répartition de charge applicative
	Topologie et réseau de brokers
	Tolérance aux pannes
	Réplication maître-esclave
	Partage du stockage

	Auto-découverte

	Les MOMs open source
	Les MOMs étudiés
	JORAM
	Présentation
	Caractéristiques principales du produit
	Implémentation
	Langages pris en charge
	Protocoles pris en charge

	Interfaces prises en charge
	Gestion des messages
	Persistance des messages
	Répartition de charge et haute disponibilité avec plusieurs sites
	Interopérabilité avec d'autres MOMs
	Gestion de la sécurité et d'un annuaire
	Administration
	Configuration et déploiement

	Détail sur le projet
	Détail
	Qualité
	Références

	Active MQ
	Présentation
	Caractéristiques principales du produit
	Langages d'implémentation
	Langages pris en charge
	Protocoles pris en charge
	Interfaces prises en charge

	Gestion des messages
	Traitement des messages
	Gestion des transactions
	Persistance des messages
	Répartition de charge et haute disponibilité multi-site.
	Interopérabilité avec d'autres MOMs
	Gestion de la sécurité et d'un annuaire
	Administration
	Configuration et déploiement
	Détail sur le projet
	Détail
	Qualité
	Références

	MOM Open Message Queue (OMQ)
	Présentation
	Caractéristiques principales du produit
	Langages d'implémentation
	Langages pris en charge
	Protocoles pris en charge
	Interfaces prises en charge
	Gestion des messages
	Traitement des messages
	Gestion des transactions
	Persistance des messages
	Répartition de charge et haute disponibilité multi site.
	Interopérabilité avec d'autres MOMs
	Gestion de la sécurité et d'un annuaire
	Administration
	Configuration et déploiement

	Détail sur le projet
	Détails
	Qualité du projet
	Références

	MOM JBoss Messaging (JBM)
	Présentation
	Caractéristiques principales du produit
	Langages d'implémentation
	Langages pris en charge
	Protocoles pris en charge
	Interfaces prises en charge
	Gestion des messages
	Traitement des messages
	Gestion des transactions
	Persistance des messages
	Répartition de charge et haute disponibilité multi-site
	Interopérabilité avec d'autres MOMs
	Gestion de la sécurité et d'un annuaire
	Administration
	Configuration et déploiement

	Détail sur le projet
	Qualité du Projet
	Références
	Autres

	Comparatif
	Benchmark de débit
	Scénario de test
	Réalisation du test
	Configuration
	La machine
	Résultats du test
	Active MQ avec Persistance
	Active MQ, sans Persistance (volatile)
	Joram avec Persistance
	JORAM sans Persistance (volatile)
	Analyse

	Synthèse

