

 Page 2

Architectures Hautes-Performances

© Smile – Open Source Solutions

w
w

w
.s

m
il
e
.f
r

PREAMBULE

Smile

Smile est une société d’ingénieurs experts dans la mise en œuvre de
solutions open source et l’intégration de systèmes appuyés sur l’open
source. Smile est membre de l’APRIL, l’association pour la promotion et
la défense du logiciel libre.

Smile compte 480 collaborateurs en France, 600 dans le monde, ce qui
en fait la première société en France spécialisée dans l’open source.

Depuis 2000, environ, Smile mène une action active de veille
technologique qui lui permet de découvrir les produits les plus
prometteurs de l’open source, de les qualifier et de les évaluer, de
manière à proposer à ses clients les produits les plus aboutis, les plus
robustes et les plus pérennes.

Cette démarche a donné lieu à toute une gamme de livres blancs
couvrant différents domaines d’application. La gestion de contenus
(2004), les portails (2005), la business intelligence (2006), les
frameworks PHP (2007), la virtualisation (2007), et la gestion
électronique de documents (2008), ainsi que les PGIs/ERPs (2008).
Parmi les ouvrages publiés en 2009, citons également « Les VPN open
source », et « Firewall est Contrôle de flux open source », dans le cadre
de la collection « Système et Infrastructure ».

Chacun de ces ouvrages présente une sélection des meilleures solutions
open source dans le domaine considéré, leurs qualités respectives, ainsi
que des retours d’expérience opérationnels.

Au fur et à mesure que des solutions open source solides gagnent de
nouveaux domaines, Smile sera présent pour proposer à ses clients d’en
bénéficier sans risque. Smile apparaît dans le paysage informatique
français comme le prestataire intégrateur de choix pour accompagner
les plus grandes entreprises dans l’adoption des meilleures solutions
open source.

Ces dernières années, Smile a également étendu la gamme des services
proposés. Depuis 2005, un département consulting accompagne nos
clients, tant dans les phases d’avant-projet, en recherche de solutions,
qu’en accompagnement de projet. Depuis 2000, Smile dispose d’un
studio graphique, devenu en 2007 Smile Digital – agence interactive,
proposant outre la création graphique, une expertise e -marketing,
éditoriale et interfaces riches. Smile dispose aussi d’une agence

 Page 3

Architectures Hautes-Performances

© Smile – Open Source Solutions

w
w

w
.s

m
il
e
.f
r

spécialisée dans la TMA (support et l’exploitation des applications) et
d’un centre de formation complet, Smile Training. Enfin, Smile est
implanté à Paris, Lille, Lyon, Grenoble, Nantes, Bordeaux, Poitiers, Aix-
en-Provence et Montpellier. Et présent également en Espagne, en
Suisse, au Benelux, en Ukraine et au Maroc.

Quelques références

Intranets - Extranets

Société Générale, Caisse d'Épargne, Bureau Veritas, Commissariat à l'Energie
Atomique, Visual, Vega Finance, Camif, Lynxial, RATP, SPIE, Sonacotra, Faceo,
CNRS, AmecSpie, Château de Versailles, Banque PSA Finance, Groupe
Moniteur, CIDJ, CIRAD, Bureau Veritas, Ministère de l’Environnement,
JCDecaux, Ministère du Tourisme, DIREN PACA, SAS, Institut National de
l’Audiovisuel, Cogedim, Ecureuil Gestion, IRP-Auto, AFNOR, Conseil Régional Ile
de France, Verspieren, Zodiac, OSEO, Prolea, Conseil Général de la Côte d’Or,
IPSOS, Bouygues Telecom, Pimki Diramode, Prisma Presse, SANEF, INRA, HEC,
ArjoWiggins

Internet, Portails et e-Commerce

cadremploi.fr, chocolat.nestle.fr, creditlyonnais.fr, explorimmo.com ,
meilleurtaux.com, cogedim.fr, capem.fr, editions-cigale.com, hotels-
exclusive.com, souriau.com, pci.fr, dsv-cea.fr, egide.asso.fr, osmoz.com, spie.fr,
nec.fr, sogeposte.fr, nouvelles-frontieres.fr, metro.fr, stein-heurtey-services.fr,
bipm.org, buitoni.fr, aviation-register.com, cci.fr, schneider electric.com,
calypso.tm.fr, inra.fr, cnil.fr, longchamp.com, aesn.fr, Dassault Systemes
3ds.com, croix rouge.fr, worldwatercouncil.org, projectif.fr,
editionsbussiere.com, glamour.com, fratel.org, tiru.fr, faurecia.com, cidil.fr,
prolea.fr, ETS Europe, ecofi.fr, credit cooperatif.fr, odit france.fr,
pompiersdefrance.org, watermonitoringaliance.net, bloom.com, meddispar.com,
nmmedical.fr, medistore.fr, Yves Rocher, jcdecaux.com, cg21.fr, Bureau Veritas
veristar.com, voyages sncf.fr, eurostar.com, AON, OSEO, cea.fr, eaufrance.fr,
banquepsafinance.com, nationalgeographic.fr, idtgv.fr, prismapub.com,
Bouygues Construction, Hachette Filipacchi Media, ELLE.fr, femmeactuelle.fr,
AnnoncesJaunes.fr, Groupama, Macif, Le Furet du Nord, Camif-Collectivités.

Applications métier, systèmes documentaires,
business intelligence

Renault, Le Figaro, Sucden, Capri, Libération, Société Générale, Ministère de
l’Emploi, CNOUS, Neopost Industries, ARC, Laboratoires Merck, Egide, Bureau
Veritas, ATEL-Hotels, Exclusive Hotels, Ministère du Tourisme, Groupe
Moniteur, Verspieren, Caisse d’Epargne, AFNOR, Souriau, MTV, Capem, Institut
Mutualiste Montsouris, Dassault Systemes, Gaz de France, CFRT, Zodiac,
Croix-Rouge Française, Centre d’Information de la Jeunesse (CIDJ), Pierre
Audoin Consultants, EDF, Conseil Régional de Picardie, Leroy Merlin, Renault
F1, l’INRIA, Primagaz, Véolia Propreté, Union de la Coopération Forestière
Française, Ministère Belge de la Communauté Française, Prodigg

 Page 4

Architectures Hautes-Performances

© Smile – Open Source Solutions

w
w

w
.s

m
il
e
.f
r

Ce livre blanc

Au cours des 10 dernières années, Smile a conçu et déployé quelques
unes des plus grandes plateformes du web français. Des plateformes
qui ont su évoluer en douceur pour accueillir un trafic toujours
croissant, atteignant couramment plusieurs millions de pages vues par
mois.

Les techniques et outils ont évolué, mais certains principes
fondamentaux restent les mêmes.

Cet ouvrage vous fait partager l'expertise des équipes de Smile dans la
mise en œuvre de ces grandes plateformes du web. Construit de
manière didactique, il rappelle tout d’abord les concepts élémentaires,
puis approfondit progressivement l’analyse jusqu’à présenter les
techniques les plus avancées, permettant de viser une extensibilité
réellement sans limite.

Bien entendu, une majorité des outils sur lesquels s’appuient les plus
grandes plateformes du web sont des outils open source, dont Smile
s’est fait une spécialité.

 Page 5

Architectures Hautes-Performances

© Smile – Open Source Solutions

w
w

w
.s

m
il
e
.f
r

SOMMAIRE

PREAMBULE... 2

SMILE... 2
QUELQUES RÉFÉRENCES.. 3

Intranets - Extranets.. 3
Internet, Portails et e-Commerce.. 3
Applications métier, systèmes documentaires, business intelligence 3

CE LIVRE BLANC ... 4

SOMMAIRE... 5

PROBLEMATIQUE DES SITES HAUTES-PERFORMANCES 10

HAUTES-PERFORMANCES ... 10
PERFORMANCES ET ARCHITECTURE .. 11
L’EXTENSIBILITÉ ... 12

L’extensibilité en trois dimensions .. 13
Extensibilité cellulaire ... 14
Extensibilité fonctionnelle, ou verticale ... 15
Extensibilité horizontale .. 15
Quelle cellule élémentaire, quelle brique de base ?... 15

AUDIENCE ET CAPACITÉ ... 17
Chiffres clés.. 17
Heure de pointe... 17
Connexions simultanées ... 18
Temps de réponse... 19

MÉGA-SERVEURS ?... 20
COÛTS.. 20
QUELQUES PRINCIPES POUR LA HAUTE PERFORMANCE ... 21

Share-Nothing ... 21
« Simple is beautiful » .. 22
Pas de solution unique .. 22
Les outils évoluent .. 22
Le méga-truc n’est pas la solution... 22
Le poste client est plein de ressources.. 22
L’open source apporte beaucoup de solutions... 22

URBANISME ET SOA... 23

URBANISME... 23
ENCAPSULATION DES DONNÉES ... 25
L’URBANISME ET LES PLATEFORMES WEB... 26
SERVICE ORIENTED ARCHITECTURE ... 27
UN SERVICE .. 27
MIDDLEWARE .. 28
LES MODES D’INTERACTION .. 29

Synchrone ... 29
Asynchrone, one-way (aller-seul) .. 29
Asynchrone with callback ... 29

 Page 6

Architectures Hautes-Performances

© Smile – Open Source Solutions

w
w

w
.s

m
il
e
.f
r

Asynchrone, publish / subscribe (publication / abonnement) .. 30
LES TRAITEMENTS ASYNCHRONES .. 30
MOM ET MESSAGE QUEUES.. 31
DES SERVICES SANS ÉTAT... 33
TROIS PROTOCOLES POUR LES SERVICES WEB .. 33

XML-RPC ... 33
REST ... 34
SOAP... 36
Services et interfaces .. 37
MOM open source – Apache ActiveMQ .. 39

PERFORMANCES HTTP .. 40

CHRONOLOGIE DE CHARGEMENT DE PAGE ... 40
GESTION DU CACHE NAVIGATEUR... 42
COMPRESSION DU FLUX ... 43
MOINS DE COMPOSANTS, MOINS DE REQUÊTES... 43

Quelques statistiques.. 43
Réduire le nombre de composants .. 46

INFRASTRUCTURES GLOBALES ET CDN... 46

REPARTITION DE CHARGE... 51

PRINCIPE DE RÉPARTITION DE CHARGE.. 51
FINALITÉ ET LOGIQUE DE RÉPARTITION.. 52

Augmenter la capacité... 52
Equilibrer la charge ... 52
Résister aux pannes.. 52
Spécialiser des serveurs ... 52
Faciliter l’exploitation .. 52
Répartition de requêtes ou répartition de sessions ?... 53
Répartition entre des serveurs ou entre des datacenters ? ... 53

RÉPARTITION DE CHARGE DE NIVEAU DNS .. 53
Principe ... 53
DNS-Round-Robin ... 54
GeoDNS... 55
Anycast ... 56
Avantages et limites de la répartition DNS.. 56
Redirection applicative .. 57

RÉPARTITION DE CHARGE DE NIVEAU TCP ... 58
Quelques rappels .. 58
Répartition de charge TCP... 58
Les algorithmes de répartition... 59

RÉPARTITION DE CHARGE DE NIVEAU 7 ... 60
Répartition avec affinité de serveur .. 60
Principe de la répartition niveau 7 .. 61
Spécialisation des serveurs... 62
Répartition de charge et SSL ... 62

GESTION DES SESSIONS ... 63
Partage de sessions par cookies ... 63
Partage de contexte côté serveur... 66
Partage de contexte en cache global ... 66
Synthèse ... 67

CONFIGURATION RÉSEAU ... 67

 Page 7

Architectures Hautes-Performances

© Smile – Open Source Solutions

w
w

w
.s

m
il
e
.f
r

Niveau 4, niveau 7, même configuration ... 67
Répartition de charge inter-datacenter .. 68
Configuration réseau et tolérance aux pannes de l’équipement.. 69

LES SOLUTIONS ET OUTILS.. 71
Solutions logicielles ... 71
Les boîtiers dédiés .. 74
Fonctionnalités associées.. 75

RÉPARTITION PEER-BASED.. 75
LOAD-BALANCING SUR DES SERVICES INTERNES ... 78
MAPREDUCE ET HADOOP ... 79

HAUTE DISPONIBILITE... 81

HAUTE DISPONIBILITÉ.. 81
TOLÉRANCE AUX PANNES.. 81

A tous les niveaux... 81
BONNES PRATIQUES .. 82

Quelques bonnes pratiques de la haute disponibilité.. 82
Pannes logicielles.. 82
Exploitation ... 83
Changements de version... 83

REDONDANCE ET SECOURS... 84
Surveillance et passage en secours .. 84
Surveillance par l’homologue et heartbeat .. 85
Surveillance par l’étage amont .. 85
Secours passif... 86
Secours actif.. 86
Gestion mutualisée du secours ... 87
Single Point of Failure ... 87
MTBF et probabilité de panne ... 87
La brique de base, le serveur élémentaire .. 88

MONITORING ET ALERTES ... 89
Service complet, scénarios applicatifs... 89
Monitoring Http ... 90
Woozweb... 91

LA GESTION DES DONNEES ... 92

GESTION DES DONNÉES ... 92
Un problème difficile ... 92
Pensée unique ? .. 92
Modélisation objet et programmes... 92
Les propriétés ACID .. 93
Le cluster... 94
Lecture seule, extensibilité .. 96
Ecriture seule, extensibilité ... 97
Le partitionnement des données ... 97
Synthèse ... 103

BASE DE DONNÉES ..103
La grosse base centrale .. 103
L’approche classique... 104
La réplication SGBD simple... 104
Réplication « manuelle » ... 106
Réplication croisée, multi-maîtres.. 106

 Page 8

Architectures Hautes-Performances

© Smile – Open Source Solutions

w
w

w
.s

m
il
e
.f
r

RAIDb et Sequoia .. 109
LE MOTEUR D’INDEXATION-RECHERCHE ...111
GESTION DE FICHIERS ..112

Une problématique différente.. 112
Des fichiers en base.. 112
La réplication... 113
Gestion de contenus et réplication .. 114
SAN ... 116
Architecture NAS ... 118
DRBD .. 121
L’accès concurrent aux fichiers ... 121
Lustre .. 122
MogileFS.. 123
Hadoop HDFS ... 124

LE CACHE .. 125

PRINCIPES DU CACHE ...125
ACTIF / PASSIF, PULL /PUSH ..125
CACHE EN MODE PULL ..126

Durée de vie .. 127
Le fonctionnement « MRU » .. 128

LE CACHE HTTP..128
Cache du navigateur ... 129
Un peu de mémoire suffit.. 129
La mémoire ne coûte pas cher... 130
Mise en œuvre d’un cache HTTP... 132
Les outils du cache HTTP.. 133

CACHE PAR FRAGMENTS..133
Sites personnalisés et contenus temps-réel .. 133
Introduction au cache par fragments... 134
Agrégation de fragments et portails J2EE... 135
Edge Side Include (ESI) ... 136
Web-scraping, web-clipping .. 137
Caches ESI Open Source... 137
Le Web Assembling Toolkit ... 137
Agrégation de fragments côté client .. 139

CACHE EN MODE PUSH..139
Génération de pages statiques.. 140

CACHE DE DONNÉES ..142
Cache de données... 142
Approche ensembliste ou clé/valeur ... 142
Le cache gestionnaire de données .. 143
Memcached ... 145
EhCache.. 146

QUELQUES CAS D’ECOLE... 148

UNE MONTÉE EN PUISSANCE ORDINAIRE...148
Le problème posé .. 148
Optimisation.. 148
Extension cellulaire ... 149
Extension verticale .. 149
Extension horizontale.. 151

 Page 9

Architectures Hautes-Performances

© Smile – Open Source Solutions

w
w

w
.s

m
il
e
.f
r

Extension en 2D .. 153
Spécialisation en écriture / lecture.. 155
Bases multiples en réplication croisée .. 157
Serveur dédié à la contribution ... 158
Partitionnement des données.. 159

ARCHITECTURE TYPE FACEBOOK ..159
UNE PLATEFORME DE BLOGS DE TRÈS FORTE CAPACITÉ...161

Le problème posé .. 161
Quelles options d’architecture ? .. 162
Un problème partitionnable... 163
Répartition arbitraire ... 164
Fonctions centrales via webservices ... 164
Fonctions centrales via datawarehouse .. 165
Webservices + datawarehouse ... 165
Répartition de charge .. 166
Pas d’autre axe d’extensibilité .. 166
Secours ... 167
SAN ... 167

SPORT 24 ET 01 INFORMATIQUE ..168
Le problème posé .. 168
Axes de solution.. 169
Agrégation côté client .. 170
Agrégation côté serveur... 170
Cache Squid en frontal.. 170
Génération de pages statiques.. 170
Diffusion des pages vers les frontaux... 171
Schéma d’ensemble .. 171

WOOZWEB ...174
La problématique Woozweb .. 174
Partitionnement et consolidation ... 175
Architecture de chaque « NOD » ... 176
Architecture globale... 177
Répartition de charge .. 177
Agrégation de contenus... 178
Synthèse ... 179

CONCLUSION.. 180

 Page 10

Architectures Hautes-Performances

© Smile – Open Source Solutions

w
w

w
.s

m
il
e
.f
r

PROBLEMATIQUE DES SITES

HAUTES-PERFORMANCES

Hautes-performances

Dans le titre de cet ouvrage, hautes performances est une expression un
peu vague. La performance a de multiples dimensions, dont nous ne
traiterons que quelques-unes. Dans l’ensemble, nous présenterons les
principes d’architectures qui permettent de construire des plateformes
web à grande capacité d’accueil et haute disponibilité, mais surtout, des
plateformes extensibles, capables d’accompagner la montée en
puissance d’un site web.

Ici donc, « hautes performances » recouvrira différentes qualités :

La capacité d’accueil

La capacité d’accueil est la capacité à offrir un service à un grand
nombre de visiteurs, et tout particulièrement lors de pointes de trafic.

La haute disponibilité

La haute disponibilité est la garantie que le service offert sera accessible
sans interruption, ou avec un très faible taux d’interruption. La
tolérance aux pannes, c’est à dire l’aptitude à offrir un service sans
interruption en présence d’une panne, est l’une des conditions de la
haute-disponibilité.

Les temps de réponse

Le temps de réponse est le délai entre une requête d’un visiteur et sa
réponse. C’est un aspect important de la qualité de service, pour lequel
l’architecture et l’infrastructure peuvent avoir un impact important.

La qualité de service

La qualité de service, porte en général sur la satisfaction globale du
visiteur, dans son utilisation du site, le fait qu’il trouve aisément ce qu’il
recherche, qu’il ait envie de revenir. La qualité de service recouvre
donc des aspects divers : temps de réponse, ergonomie, disponibilité,
etc.

 Page 11

Architectures Hautes-Performances

© Smile – Open Source Solutions

w
w

w
.s

m
il
e
.f
r

Il faut citer d’autres qualités, moins en vue, mais également
importantes.

L’exploitabilité

C’est la facilité à exploiter la plateforme, à assurer la supervision et les
opérations d’entretien.

L’évolutivité

La capacité à évoluer, tant au plan fonctionnel qu’au plan technique.

L’extensibilité

La possibilité d’accroître la capacité d’accueil aisément et à moindre
coût. Nous y reviendrons, c’est l’une des qualités fondamentales d’une
architecture hautes-performances.

Performances et
architecture

Une première précision à apporter, qui trace le périmètre de cet
ouvrage, est une distinction entre les questions de performances et
celles d’architecture.

Bien souvent, la performance observée sur un serveur peut être
améliorée par différentes actions d’optimisation, des algorithmes, de la
configuration d’une base de données, des index, voire même par le
choix d’un langage plus rapide.

L’optimisation vise une économie de moyens, en cherchant à réduire le
temps que met un programme à réaliser sa tâche, ou bien encore à
réduire l’utilisation de ressources, en particulier CPU, dans cette
exécution.

Certes, il est ridicule de commencer à monter un cluster et empiler les
serveurs pour tenir la charge alors que de bons index dans la base de
données feraient gagner un facteur 20, comme on le voit couramment.
Rien ne sert de s’attaquer à l’architecture avant d’avoir traité un niveau
élémentaire d’optimisation.

L’optimisation est un sujet évidemment primordial pour bâtir des
plateformes hautes-performances, mais c’est un sujet différent. Il est
transverse : on peut travailler la performance par optimisation d’une
part, et travailler à améliorer l’architecture d’autre part. Et bien sûr

 Page 12

Architectures Hautes-Performances

© Smile – Open Source Solutions

w
w

w
.s

m
il
e
.f
r

combiner les deux démarches, mais surtout mener une analyse de la
valeur pour cibler ses efforts sur l’un ou l’autre de ces axes.

Mais les démarches d’optimisation ont toujours une limite – quand tout
est optimal ! – tandis que les démarches portant sur l’architecture
peuvent apporter une croissance sans limite, et c’est ce que nous
rechercherons.

Dans le cadre de cet ouvrage, nous ne traiterons pas de l’optimisation
des programmes, bases de données ou plus largement des composants
unitaires, mais uniquement de l’optimisation générale de l’architecture,
c’est à dire de l’agencement des composants et de leurs échanges.

L’extensibilité

L’extensibilité, ou par anglicisme, « scalabilité », est la capacité d’une
architecture à croître sans rupture, en ajoutant simplement du
matériel.

L’extensibilité est la qualité principale d’une architecture web. On
l’entend pour atteindre de fortes capacité, mais elle est importante aussi
à l’autre extrême, pour commencer petit, et adapter la dépense en
infrastructure à la croissance. C’est en quelque sorte le moyen de
payer son infrastructure en success-fee, c’est à dire en cas de réussite.
Et dans ce cas, on est toujours heureux de payer.

 Page 13

Architectures Hautes-Performances

© Smile – Open Source Solutions

w
w

w
.s

m
il
e
.f
r

Le schéma précédent représente différents cas de croissance de la
capacité d’accueil d’une plateforme web, en fonction du nombre de
serveurs qu’on y intègre :

� En bas, une architecture médiocrement extensible : il n’y a guère à
gagner en ajoutant des serveurs, et la capacité peut même
rapidement se trouver dégradée, par exemple par des problèmes de
synchronisation entre serveurs.

� En haut, l’extensibilité théorique idéale : la capacité d’accueil
augmente de manière linéaire avec les machines.

� Et au milieu, le cas ordinaire type, une architecture qui est
extensible jusqu’à un certain point, mais qui atteint une limite en
asymptote horizontale.

L’extensibilité en trois dimensions

On peut travailler l’extensibilité selon trois dimensions, que nous
appellerons ici l’extensibilité cellulaire, fonctionnelle et horizontale.

� L’extensibilité cellulaire consiste simplement à augmenter la
puissance du ou des serveurs.

� L’extensibilité fonctionnelle, que l’on pourrait appeler aussi
« verticale », consiste à répartir les fonctions de la plateforme sur
des serveurs différents.

� L’extensibilité horizontale consiste à répartir les traitements sur
différents serveurs homologues.

C
a
p
a
c
it
é

 Page 14

Architectures Hautes-Performances

© Smile – Open Source Solutions

w
w

w
.s

m
il
e
.f
r

Nous analyserons les caractéristiques de chacune de ces démarches
d’extensibilité, et nous verrons que seule l’extensibilité horizontale est
pratiquement sans limite.

Extensibilité cellulaire

On appelle ici extensibilité « cellulaire », la capacité à faire gonfler la
cellule élémentaire de l’architecture, le serveur de base : CPU, mémoire,
disque, etc.

Il faut garder à l’esprit la fameuse loi de Moore, selon laquelle la
puissance CPU disponible pour un prix donné est multipliée par deux
tous les 18 mois.

C’est à dire que si votre plateforme a plus de 18 mois et commence à
saturer, le moyen le plus simple et parfois le moins coûteux d’aller plus
loin consiste à remplacer les serveurs par la dernière génération.

Mais une fois qu’on a fait cela, il faut trouver d’autres voies
d’extensibilité, ou attendre à nouveau 18 mois.

 Page 15

Architectures Hautes-Performances

© Smile – Open Source Solutions

w
w

w
.s

m
il
e
.f
r

Extensibilité fonctionnelle, ou verticale

Il s’agit ici de distinguer différentes fonctions dans la plateforme, et de
répartir ces fonctions sur différents serveurs. Dans certains cas, ces
fonctions peuvent s’organiser en couches, ou tiers, et on parlera
d’architectures multi-tiers.

Ainsi on peut distinguer sur une plateforme web typique, les fonctions
suivantes :

� Le serveur HTTP, typiquement Apache,

� Le serveur d’application, par exemple Tomcat ou Jboss,

� Les applications web

� La base de données.

Mais on identifie parfois d’autres fonctions, pas nécessairement en
couches. Par exemple un moteur d’indexation-recherche, ou bien la
distinction d’une application de back-office par rapport à un front-office.

Ces différentes fonctions, que l’on pourra appeler services dans une
logique SOA, peuvent être initialement disposées sur un même serveur.
Et au fur et à mesure de la montée en charge, elles peuvent être
réparties sur différents serveurs spécialisés, ce qui évidemment permet
de donner plus de ressources physiques, particulièrement de CPU, à
l’ensemble de la plateforme.

Cette forme d’extensibilité est limitée, bien sûr, par le nombre de
fonctions identifiées dans l’architecture.

Extensibilité horizontale

Enfin, comme on l’a vu, l’extensibilité horizontale consiste à répartir
une même typologie de traitements, une même fonction, sur différents
serveurs homologues. Nous verrons au chapitre « Répartition de
Charge », page 51, les principes et outils de ce type de répartition.

Des trois axes, c’est le seul qui soit véritablement sans limite. Mais
bien sûr, les trois peuvent être combinés.

Quelle cellule élémentaire, quelle brique de base ?

En supposant que l’on soit parvenu à un degré satisfaisant
d’extensibilité, on a gagné la possibilité de choisir entre N1 serveurs de
capacité unitaire C1 et de prix unitaire P1, ou bien N2 serveurs de
capacité unitaire C2 et de prix unitaire P2, pour une même capacité
totale, c’est à dire N1C1 = N2C2.

 Page 16

Architectures Hautes-Performances

© Smile – Open Source Solutions

w
w

w
.s

m
il
e
.f
r

On peut traiter la question par le simple prix unitaire de la capacité de
traitement : quel est le meilleur rapport C/P, et donc le moindre coût
d’acquisition de la plateforme. Cette simple analyse conduirait le plus
souvent vers les serveurs les plus bas de gamme du marché.

Mais plusieurs autres considérations sont à prendre en compte :

� Les coûts d’hébergement dépendent pour une part importante du
nombre de serveurs, indépendamment de leur puissance : espace
de racks, ports des switchs, etc.

� Toute l’administration et l’exploitation prennent une complexité
croissante, et donc un coût supérieur, avec le nombre de serveurs.
Cette augmentation n’est cependant pas linéaire : passer de 3
serveurs à 10 serveurs peut doubler le coût d’exploitation, mais
passer de 10 à 20 n’augmentera peut être que de 50%.

� Le nombre de pannes est proportionnel au nombre de serveurs – à
qualité égale – et chaque panne engendre un coût spécifique de
traitement.

� Le coût de l’électricité n’est pas négligeable, et il importe de
considérer aussi le rapport C/E, capacité par Watt, qui varie de
manière importante entre les serveurs.

Il s’ensuit que, à rapport puissance/prix égal, on préfèrera minimiser le
nombre de serveurs. C’est à dire typiquement que si un serveur bi-
processeur coûte deux fois le prix d’un serveur mono-processeur, alors
on préfèrera mettre en œuvre des serveurs bi-processeurs.

Chaque étage ne s’analyse pas de la même manière, précisément parce
que l’impact du nombre de processeurs peut être très différent. Ainsi,
l’étage base de données est toujours moins extensible, plus difficile à
paralléliser. Plutôt que de mettre en œuvre une base répartie sur 4
serveurs, il sera sans doutes moins coûteux de n’administrer qu’un
serveur unique, quadri-processeurs. Mais bien sûr, on sera alors en
butée, sans plus d’extensibilité horizontale.

Les serveurs multi-processeurs apportent une certaine extensibilité de
manière quasi-transparente. Mais quelques-uns des problèmes liés à
la parallélisation, que l’on traitera avec l’extensibilité horizontale se
retrouveront déjà à l’échelle d’un serveur multi-processeurs.

Une autre considération importante en matière d’acquisition de
serveurs est que l’on ne peut pas espérer une plateforme homogène en
termes de configuration. Une plateforme monte en gamme
progressivement, et l’on ne peut pas passer commande d’un coup pour
les 3 années à venir. Sur le plan logiciel, en revanche, on s’attachera à
avoir des configurations identiques, mais les écarts matériels,
principalement au niveau du processeur, auront des impacts en

 Page 17

Architectures Hautes-Performances

© Smile – Open Source Solutions

w
w

w
.s

m
il
e
.f
r

particulier dans les dispositifs de répartition de charge, qui devront
prendre en considération la puissance spécifique de chaque serveur.
On verra plus loin que l’un des apports majeurs des solutions de
virtualisation est justement de mieux masquer les petites différences du
matériel, et donc de faciliter la gestion d’un parc hétérogène.

Audience et Capacité

Chiffres clés

Lorsque l’on parle de capacité d’accueil, il faut souvent manipuler des
notions qui s’entremêlent. Marketing, webmestres et architectes ne
parlent pas le même langage. Voyons rapidement comment construire
des équivalences.

Visites par mois Vmois Une visite est une session, une suite
de requêtes plus ou moins enchaînées.
On parle aussi de visiteurs uniques,
mais cela n’a pas d’intérêt au plan
technique. Un même visiteur (unique)
peut effectuer plusieurs visites dans le
mois.

Pages par visite P Le nombre de pages parcourues lors
d’une visite. On parle d’une moyenne
sur l’ensemble du trafic, bien sûr. Il
se situe typiquement entre 5 et 15
pages par visite. C’est une grandeur
qui est en général assez stable, pour
un site donné.

Délai moyen entre
deux pages

D Le délai moyen entre deux requêtes de
pages. Il peut être typiquement de
l’ordre de 15-30 secondes, mais
dépend fortement bien sûr de la
quantité d’information de la page, et
plus encore des phases de saisies.

Heure de pointe

Le trafic n’est pas régulier, il y a des jours de pointe, et au sein d’une
journée typique, il y a des heures de pointe. Pour le dimensionnement
d’une plateforme, c’est uniquement l’heure de pointe qui importe.

On considère parfois que le jour de pointe représente 1/20ème du trafic
du mois, soit Vjour= Vmois/20. Et de même, on peut estimer que l’heure
de pointe concentre 1/5ème du trafic de la journée, Vheure= Vjour/5. Et au
total donc Vheure=Vmois/100.

 Page 18

Architectures Hautes-Performances

© Smile – Open Source Solutions

w
w

w
.s

m
il
e
.f
r

En fait ces ratios dépendent fortement de la typologie de l’application,
de sa cible, grand public ou professionnelle. Le site d’une émission de
télévision, ou d’événements sportifs, pourront avoir un trafic bien plus
concentré encore. Mais du moins en l’absence de plus d’information,
on peut utiliser ces ratios.

Pour la plateforme, la notion de visite n’est pas la plus importante. Sur
un site de publication, on s’intéressera plutôt au nombre de pages
servies.

Si à l’heure de pointe, on reçoit Vheure visites, cela correspond à P.Vheure
pages servies, que l’on peut ramener à la seconde : W = P.Vheure/3600
pages servies par seconde. Pour fixer les idées, un serveur sert
typiquement entre 10 et 1000 pages par seconde. Oui, l’écart est très
grand, mais c’est un fait : la capacité unitaire dépend de l’optimisation,
du langage et de nombreux paramètres internes.

Application numérique : 100 000 visites par mois, 10 pages par visite,
on obtient W = 2,77 pages par seconde à l’heure de pointe, ce qui
devrait être supporté sans difficulté par un serveur unique.

Nous sommes passés des visites aux pages de manière un peu rapide.
En fait, tout dépend ici encore de la typologie du service. Si une visite
type se compose d’une page de recherche, de trois pages de saisie et de
5 pages de consultation, alors c’est ce scénario qui importe. Et l’on
calculera plutôt le nombre de recherches par seconde, le nombre de
saisies par seconde et le nombre de consultations par seconde, avec des
impacts très différents sur la base de données par exemple.

Notons que dans ces calculs, le délai moyen entre deux requêtes n’a pas
été utilisé. En effet, il n’intervient pas à ce niveau : si les internautes
naviguent plus rapidement, ils sollicitent davantage le serveur, mais
pendant moins longtemps.

Connexions simultanées

On entend parfois raisonner en termes de connexions simultanées.
C’est une notion qui n’est pas la plus appropriée pour le web, mais qui
peut avoir un sens, par exemple s’il y a des ressources mobilisées pour
la durée d’une visite, d’une session. Chaque visite a une durée égale à
D.P, délai moyen entre pages multiplié par nombre de pages par visite.

A l’heure de pointe, on a donc Vh.D.P « secondes de visite », sur 3600
secondes, donc un nombre moyen de sessions simultanées égal à S =
V.D.P/3600, c’est à dire aussi S = W.D.

Application numérique : dans le cas précédent, et pour un délai moyen
de 30 secondes, on trouve S = 2,77 x 30 = 83 sessions simultanées.

 Page 19

Architectures Hautes-Performances

© Smile – Open Source Solutions

w
w

w
.s

m
il
e
.f
r

Temps de réponse

Lorsque l’on parle de temps de réponse observés, il faut toujours
préciser « à XX% », typiquement à 90 ou 95%.

En effet, lorsqu’un grand nombre d’internautes soumettent des
requêtes, de manière totalement indépendante, il est possible que 10
d’entre eux cliquent sur un lien dans un même petit intervalle de
temps, disons 1/100ème de seconde. S’il y a peu de trafic au total, alors
la probabilité de cette coïncidence est faible, mais toujours non nulle.
Et si cela se produit, alors au moins une partie de ces 10 requêtes sera
servie plus lentement.

Sans entrer ici dans des calculs de probabilité poussés, on voit bien
qu’on ne peut jamais garantir un temps de réponse à 100%, car il peut
toujours y avoir des coïncidence rares de trafic qui dégradent
exceptionnellement le temps de réponse.

Si l’on conduit un test de forte charge, que l’on relève chacun des temps
de réponse observés, et que l’on range ces temps de réponse du plus
court au plus élevé, alors on obtient en général une courbe qui a
sensiblement la forme suivante :

Où l’on voit que les courbes tendent vers une asymptote verticale vers la
droite, correspondant aux conjonctions extrêmes. Ces cas extrêmes ne
sont pas les plus intéressant, ce qui évalue le mieux la qualité de
service est le temps de réponse à 90%, ou encore à 95%.

 Page 20

Architectures Hautes-Performances

© Smile – Open Source Solutions

w
w

w
.s

m
il
e
.f
r

Méga-serveurs ?

En matière de hautes performances, on peut distinguer
schématiquement deux voies : une voie centralisée et une voie
distribuée.

La voie centralisée consiste à rechercher un serveur ayant une très
grande capacité de traitement, donc un très grand nombre de
processeurs très rapides, beaucoup de mémoire et de disques. C’était
la voie privilégiée dans les années 90, et elle correspond encore à une
offre aujourd’hui, de la part des plus grands constructeurs. On peut
trouver ainsi des serveurs de 64 processeurs, à des prix astronomiques
bien sûr.

La voie distribuée consiste au contraire à bâtir son architecture à base
d’un grand nombre de serveurs peu coûteux, relativement indépendants
les uns des autres.

On a vu la même scission se produire dans le calcul scientifique, où
l’approche « Cray » des années 90 a finalement été surpassée par
l’approche distribuée.

S’il peut subsister quelques domaines où le méga-serveur central a
encore un marché, il est rarement approprié dans les grandes
architectures web. Les plus grands acteurs (Google, Amazon, eBay, …)
montrent le chemin, et aucun d’entre eux ne choisit de s’appuyer sur
un ou plusieurs de ces méga-serveurs.

Nous ferons le même choix, et ne nous intéresserons pas à ce type
d’architectures dans cet ouvrage.

L’approche méga-serveur peut être la plus simple pour obtenir des
hautes-performances sans se préoccuper d’architecture. Mais c’est de
loin la démarche la plus coûteuse. Par ailleurs, ces configurations sont
trop rares pour être bien rôdées, et surtout les compétences pour les
exploiter sont trop rares, de sorte qu’elles peuvent amener des
difficultés spécifiques par suite d’une maîtrise insuffisante.

Les méga-serveurs ne sont pas véritablement extensible, ou du moins
ils ne le sont que dans la mesure des « slots » prévus pour ajouter des
processeurs. Au delà, on rencontre une limite, et c’est alors une limite
« dure », infranchissable.

Coûts

On ne peut pas traiter de l’architecture en faisant abstraction des
coûts : en général toute la réflexion est sous la contrainte du coût, c’est
à dire vise à optimiser le rapport capacité/prix global.

 Page 21

Architectures Hautes-Performances

© Smile – Open Source Solutions

w
w

w
.s

m
il
e
.f
r

L’analyse des coûts inclut en premier lieu :

� Les coûts matériel

� Les coûts d’hébergement

Mais aussi :

� Les coûts d’exploitation

� Le prix de l’indisponibilité ou plus largement de la moindre qualité
de service

� Les coûts de développement et de maintenance logicielle.

� Les prix de licences, le cas échéant.

Nous verrons plus loin que l’on privilégie le plus souvent les
architectures à base de composants ordinaires, peu coûteux. Mais
aussitôt qu’il y a arbitrage entre coût matériel et coût de prestation, le
prix du matériel devient vite négligeable.

Quelques principes
pour la haute
performance

Voyons quelques principes généraux de la haute-performance, que nous
retrouverons ensuite au travers des différents chapitres.

Share-Nothing

« Share nothing », signifie « ne rien
partager ». Ce que l’on pourrait
représenter schématiquement comme ci-
contre, où l’utilisateur internaute peut
obtenir le service attendu en s’adressant à
n’importe lequel de ces serveurs,
indifféremment, et sans que ceux-ci ne
partagent quoi que ce soit.

Le principe de share-nothing est un but théorique, pas toujours
atteignable. C’est la voie vers une extensibilité sans limite, ainsi que la
voie vers la très haute disponibilité à moindre coût.

 Page 22

Architectures Hautes-Performances

© Smile – Open Source Solutions

w
w

w
.s

m
il
e
.f
r

« Simple is beautiful »

« Le simple est beau », c’est à dire que l’on doit toujours rechercher les
solutions les plus simples, qui seront généralement les moins
coûteuses, mais aussi les plus fiables.

Pas de solution unique

L’architecte ne doit pas se rabattre toujours sur les mêmes recettes,
toujours utiliser les mêmes outils. Même s’il vise une certaine
uniformité de sa plateforme, il doit avoir une palette de solutions, et
savoir choisir la plus appropriée. Il ne doit pas, par exemple, utiliser
une base de données là où un système de gestion de fichiers
conviendrait mieux ou encore un transfert de fichier lorsque son besoin
est d’un vrai middleware.

Les outils évoluent

Les architectes doivent trouver un équilibre entre bonnes vieilles
recettes et solutions nouvelles. Certes, certaines solutions anciennes
sont encore appropriées, mais l’informatique bouge vite, et des outils
plus modernes arrivent rapidement à maturité, apportant de réels
progrès, de meilleures solutions.

Le méga-truc n’est pas la solution

Le méga-serveur avec des dizaines de processeurs, n’est pas la bonne
voie pour une plateforme web hautes-performances. De même que le
méga-switch, ou le méga-SAN. En règle générale, le méga-truc n’est
pas la bonne voie.

Le poste client est plein de ressources

Le poste client, c’est à dire le poste de l’utilisateur, avec son navigateur,
a beaucoup de possibilités mal exploitées. Il dispose de beaucoup de
CPU, de la mémoire, des possibilités de stockage, etc. Certaines des
choses que l’on fait côté serveur peuvent être déportées côté client, avec
quelques bénéfices.

L’open source apporte beaucoup de solutions

Dans le domaine de l’infrastructure, l’open source règne en maître.
Quand on exploite des milliers de serveurs, comme les plus grands
acteurs du web, on est évidemment sensible aux solutions open source,
au plan économique d’une part, mais aussi pour leur robustesse à toute
épreuve.

 Page 23

Architectures Hautes-Performances

© Smile – Open Source Solutions

w
w

w
.s

m
il
e
.f
r

URBANISME ET SOA

Urbanisme

L’urbanisme est une démarche d’architecture apparue dans les années
90, qui vise à mieux maîtriser un vaste système d’information (SI) en le
décomposant en sous-systèmes indépendants, échangeant par des
interfaces bien définies et stables.

L’objectif principal de l’urbanisme est donc de maîtriser la complexité et
l’immensité, et de rendre possibles des refontes partielles, portant sur
un sous-système à la fois.

En effet, les projets de refonte de grands systèmes d’information
échouent, non pas parfois, mais le plus souvent. Simplement parce que
ce sont des projets trop complexes et surtout trop longs. Pourtant, les
grands SI ne peuvent pas rester, tels de grands dinosaures, à l’écart de
l’évolution.

Certes, le rêve d’un architecte en systèmes d’information est toujours
d’atteindre la parfaite homogénéité technologique, en même temps
qu’une modélisation globale unifiée. Mais c’est un but impossible,
auquel il vaut mieux renoncer.

L’urbanisme consiste en somme à prendre de la hauteur, et à délimiter
des périmètres, des « quartiers », au sein desquels la complexité est
maîtrisable, et pour lesquels on peut viser une certaine homogénéité
locale.

Ce que l’on peut représenter comme suit :

 Page 24

Architectures Hautes-Performances

© Smile – Open Source Solutions

w
w

w
.s

m
il
e
.f
r

Ici, le système d’information monolithique, avec ses programmes et
bases d’information entremêlés, interfacés de manière croisée, tel un
plat de spaghettis. On ne peut refondre un programme ou changer la
modélisation d’une base d’information sans des impacts nombreux,
parfois mal définis, sur de multiples autres modules.

Ici, le système d’information urbanisé : on y distingue des sous-
systèmes indépendants, échangeant uniquement selon leurs interfaces.

Dans cette architecture, on peut envisager la refonte d’un sous-système
que ce soit pour adopter de nouvelles technologies ou pour répondre à
un besoin fonctionnel nouveau. Du moment que ses interfaces avec les
autres sous-systèmes sont préservées, le périmètre de la refonte est
maîtrisé.

Ce que l’on peut représenter comme suit, avec l’un des sous-systèmes
refondus :

 Page 25

Architectures Hautes-Performances

© Smile – Open Source Solutions

w
w

w
.s

m
il
e
.f
r

Encapsulation des
données

La base de données a longtemps été vue comme l’articulation, le moyen
de partage et même d’échange, entre sous-systèmes, ce que l’on peut
représenter comme suit :

Dans ce modèle, les interfaces entre les sous-
systèmes, ici SS1, SS2, SS3, transitent par la
base de données, qu’ils partagent, l’un y versant
des données, l’autre les lisant.

Ce modèle n’est pas bon, il crée des dépendances
bien trop fortes entre les sous-systèmes et la base
de données, donc entre les sous-systèmes eux-
mêmes.

Le langage SQL et les protocoles d’interrogation de
la base sont certes une forme d’interface, mais
une interface bien trop vaste, et trop dépendante
de l’implémentation et par ailleurs trop peu
standardisée.

Les architectures modernes retiennent au contraire le principe
d’encapsulation des données : les données, leur modélisation et leurs
outils de stockage sont purement internes à un sous-système,
totalement invisibles de l’extérieur, ce que l’on peut représenter comme
suit.

 Page 26

Architectures Hautes-Performances

© Smile – Open Source Solutions

w
w

w
.s

m
il
e
.f
r

Dans ce modèle, les données de chaque
sous-système ne peuvent pas être
manipulées ou accédées par d’autres
sous-systèmes autrement qu’au moyen
des interfaces, des services qui sont
exposés.

Il peut s’agir de services simples, de type
« CRUD », Create, Read, Update, Delete,
ou bien de services de plus haut niveau,
davantage orientés métier.

L’urbanisme et les
plateformes web

En général, les plateformes web sont plus simples que des systèmes
d’information d’entreprise. Certes, le SI de Amazon.com est plus vaste
que celui d’une PME, mais encore sensiblement moins que celui d’une
grande banque par exemple.

Par ailleurs, les plateformes web sont plus récentes, et donc plus
homogènes que la plupart des systèmes d’information. Elles ne
trainent pas un patrimoine historique de 10 ans d’âge et plus.

Ainsi, une plateforme web n’est pas confrontée aux mêmes problèmes
qu’un système d’information complet, et n’a pas l’usage des mêmes axes
de solutions. Néanmoins, après quelques années, une plateforme web
peut-être confrontée au même problème : on a construit une sorte de
Tour de Babel, et on ne parvient plus à la faire évoluer.

A partir d’une certaine dimension, la refonte d’un grand site web est un
projet de plus d’un an. Pendant la refonte, les affaires continuent, et
les évolutions continuent également, de sorte que l’on est tenu
d’avancer avec des spécifications mouvantes, et de faire bouger
simultanément l’ancien et le futur. Le résultat est que les refontes sont
difficiles, voire douloureuses, et il arrive souvent que l’on n’ose plus
engager une refonte, laissant son socle technologique vieillir peu à peu.

Notre conclusion est que les plateformes web ont un réel besoin des
principes d’urbanisme. De manière moins systématique ou moins
ambitieuse peut-être, mais construire une plateforme urbanisée est le
gage d’une réelle évolutivité.

A cela il faut ajouter que la frontière entre « Système d’Information » et
« Plateforme web » devient de moins en moins marquée. Dans une
logique d’extranets, ce sont tous les systèmes d’information d’une

 Page 27

Architectures Hautes-Performances

© Smile – Open Source Solutions

w
w

w
.s

m
il
e
.f
r

entreprise et de ses partenaires économiques qui travaillent en réseau,
et la plateforme web n’est alors qu’un sous-système parmi d’autres.

Service Oriented
Architecture

SOA ou « Service Oriented Architecture » est un modèle d’architecture
fondé sur la notion de service.

Un service est une fonction qui peut être invoquée à distance, par un
humain ou bien par un programme.

SOA et urbanisme sont indissociables, les services étant une
représentation des interfaces. SOA est une déclinaison des principes
d’urbanisme, à une échelle intermédiaire.

Comme l’urbanisme, l’approche SOA est souvent ignorée par les
plateformes web, et c’est regrettable. Le seul middleware mis en œuvre
est celui qui interface la base de données, et trop souvent on ne connaît
qu’appels de fonctions ou méthodes.

Pourtant, comme l’urbanisme, SOA est un modèle qui doit trouver sa
place dans une plateforme web un peu ambitieuse, apportant de réels
bénéfices, en particulier d’évolutivité, fonctionnelle et technologique.

Un Service

Qu’est-ce précisément qu’un service ?

Dans le contexte SOA, un service a les caractéristiques suivantes :

 Page 28

Architectures Hautes-Performances

© Smile – Open Source Solutions

w
w

w
.s

m
il
e
.f
r

� Il est d’une granularité moyenne : ce n’est pas une simple routine,
mais pas non plus un applicatif complet.

� Un service a vocation à être réutilisé, il n’est pas dédié à une
utilisation unique.

� Un service est technologiquement neutre, il peut être invoqué par
toutes sortes de programmes.

� Un service est potentiellement accessible depuis l’extérieur du
système d’information, depuis l’Internet. Cela sous réserve bien
sûr de permissions et contrôle d’accès.

Ce dernier point est particulièrement important au sein des plateformes
web :

Il faut partir du principe que l’on ne sait pas à l’avance quels services
devront être accessibles depuis l’extérieur de la plateforme, et donc
implémenter tous les services de manière à ce qu’ils puissent l’être.

Un service est défini par son contrat de service et d’interface, c'est-à-dire
ce qu’il promet au reste du monde. Le service masque totalement son
implémentation, il fonctionne en mode boîte noire. Il peut donc
changer son implémentation sans impact pour ses clients, tant que son
interface est inchangée.

Le service ne doit pas être vu uniquement comme « plus ou moins un
appel de fonction » ; en particulier il peut être synchrone ou
asynchrone, ou bien adopter d’autres modèles d’appel comme on le
verra plus loin.

Middleware

Le middleware est l’outil qui permet d’implémenter les interfaces de
manière standard.

Il est extraordinaire que beaucoup de plateformes web ne se
préoccupent pas de middleware, et ne connaissent que les appels à leur
base de données.

Pourtant, il est temps d’introduire du middleware dans les plateformes
web comme on l’a fait dans les SI.

L’une des exigences en matière de middleware est la neutralité
technologique. Au sein d’un unique environnement technologique, on
dispose d’outils spécifiques pour mettre en œuvre des appels distants,
par exemple le RMI dans le cas de l’environnement Java. Mais dans
une architecture SOA, les modalités d’appel doivent être

 Page 29

Architectures Hautes-Performances

© Smile – Open Source Solutions

w
w

w
.s

m
il
e
.f
r

technologiquement neutres, c'est-à-dire qu’un service doit pouvoir être
appelé depuis n’importe quel environnement (langage, système
d’exploitation, framework).

Par essence, le middleware doit être interfacé avec toute forme de
composants, c’est donc un domaine où les standards sont d’une
importance extrême. Un excellent middleware propriétaire, aux
interfaces non-standard, serait sans utilité. Le middleware est
nécessairement structurant vis à vis des programmes qui l’utiliseront,
mais s’il est respectueux de standards, il ne crée du moins pas de
dépendance vis à vis d’un vendeur ou d’un produit unique.

Par ailleurs, le middleware vise comme on l’a vu à permettre des
interfaces externes aussi bien qu’internes. Les interfaces externes ont
des exigences bien sûr en termes de sécurisation, mais aussi de
standardisation des formats, des représentations de l’information.

Les modes
d’interaction

Les développeurs, qui ont d’abord appris le bon vieil appel de fonction
ont tendance à raisonner uniquement en termes d’appels synchrones.
Mais l’architecte et le concepteur d’application doivent avoir à leur
disposition une diversité de logiques d’échange, et c’est ce que doit leur
offrir le middleware.

Passons en revue les principales possibilités.

Synchrone

En mode synchrone, l’appelant est bloqué en attente de la réponse à
son message, ce qui correspond à un appel de fonction à distance. Bien
sûr, on est généralement dans un contexte multi-process ou multi-
thread, de sorte qu’il y a toujours du travail pour occuper le processeur.
Mais du moins la logique de l’interaction est bien synchrone, bloquante.

Asynchrone, one-way (aller-seul)

Dans ce mode, l’appelant adresse son message de requête et poursuit
son traitement. Il peut demander un acheminement garanti ou non.
C’est par exemple le cas d’une notification vers un système de
supervision.

Asynchrone with callback

Ici, l’appelant adresse son message et poursuit son traitement sans
attendre, mais il spécifie un service à invoquer lorsque la réponse
parviendra, c’est ce service qu’on appelle « callback ». C’est donc un

 Page 30

Architectures Hautes-Performances

© Smile – Open Source Solutions

w
w

w
.s

m
il
e
.f
r

mode asynchrone aller-retour, qui permet de ne bloquer ni l’appelant ni
l’appelé.

Asynchrone, publish / subscribe (publication / abonnement)

Dans ce mode, un ou plusieurs services dits « consommateurs »
s’abonnent à un flux de messages et le service « producteur » publie ses
messages sur le flux. C’est en quelque sorte de l’asynchrone one-way,
mais à destinataires multiples. Mais ce n’est pas le service émetteur
qui désigne les destinataires, ce sont les destinataires qui s’inscrivent,
ce qui est très différent.

Les traitements
asynchrones

Dans le web, la tentation est de tout faire en synchrone, que ce soit par
souci de rendre compte à l’internaute, ou bien – plus encore – parce que
c’est plus simple pour le développeur.

Pourtant, une des voies vers la haute-performance consiste à accepter
un peu d’asynchronisme dans l’exécution.

Que ce soit avec ou sans middleware (mais on préfèrera avec), le
principe est simple :

� On met en place une file d’attente (FIFO, « First In, First Out ») des
tâches à exécuter

� Le traitement synchrone ajoute une tâche à la liste

� Un ou plusieurs programmes « dépilent » les tâches et les
exécutent.

� Selon les cas, il peut être nécessaire de gérer des compte-rendu
d’exécution, et de les présenter à l’utilisateur, que ce soit au sein
des interfaces web, ou bien par d’autres canaux, e-mail par
exemple.

 Page 31

Architectures Hautes-Performances

© Smile – Open Source Solutions

w
w

w
.s

m
il
e
.f
r

Ce que l’on peut représenter comme suit :

L’asynchronisme permet à la fois de rendre l’interface utilisateur plus
réactive, puisqu’on ne laisse jamais l’utilisateur en attente, et permet
également de lisser le travail, et donc de beaucoup mieux gérer des
pointes de charge, sans être obligé de surdimensionner l’architecture.

L’asynchronisme limite aussi les dépendances, et peut donc amener
une architecture plus robuste.

Bien sûr, si l’on a mis en place un middleware qui prend en charge cette
gestion, tout cela deviendra facile. Néanmoins, il arrive que l’on gère la
file d’attente au sein de la base de données, avec des process qui
écrivent dans une table des tâches, tandis que d’autres process lisent
les paramètres de la tâche, l’exécutent et la suppriment.

Un cas particulier classique d’une gestion qui ne doit pas être
synchrone est l’envoi de mail. Même si l’on dispose de fonctions
synchrones d’envoi de mail, très simples à utiliser, il n’est jamais bon de
les appeler en synchrone. C’est une règle d’or des plateformes web :
les mails doivent être émis par une tâche asynchrone.

MOM et
Message Queues

L’une des formes intéressantes de middleware est la famille des MOM,
Message-Oriented Middleware, middleware à base de messages donc.

Dans ce modèle, une application interagit avec une autre application en
lui adressant des messages, et le MOM se charge d’acheminer les
messages de l’une à l’autre.

 Page 32

Architectures Hautes-Performances

© Smile – Open Source Solutions

w
w

w
.s

m
il
e
.f
r

En fait, ce n’est pas tant l’aspect message qui caractérise le MOM, que
l’aspect asynchrone, et quelques autres possibilités, que nous verrons
plus loin.

Une caractéristique déterminante d’un MOM est la fiabilité, c’est à dire
la garantie d’acheminement. Pour l’application émettrice, c’est un
confort : elle remet le message au MOM, et elle passe à autre chose, en
ayant l’assurance que le message parviendra à son (ses) destinataire(s).
Les MOM ont donc presque toujours une forme de stockage persistant
sécurisé, qui peut être une base de données. Même si le serveur de
l’application émettrice s’arrête, les messages seront conservés jusqu’à ce
qu’ils puissent finalement être acheminés. Le dispositif a donc par
construction une bonne tolérance aux pannes.

La principale finalité du MOM est de permettre ce qu’on appelle un
couplage lâche, ou faible, entre les applications qui interagissent, c'est-
à-dire qu’elles dépendent peu les unes des autres. L’asynchronisme en
est un aspect, mais l’identification de la file d’attente est également
importante, elle crée une indirection dans la relation entre producteur
et consommateur de messages : l’un et l’autre identifient la file
d’attente, mais ni l’un ni l’autre n’a besoin de connaître son ‘partenaire’.

Il faut souligner aussi que même si dans le principe le message peut
mettre un temps indéfini à être remis, dans la pratique cela peut être
extrêmement rapide, quelques millisecondes à peine. Mais même si
l’aller-retour en MOM peut se faire de manière quasi-immédiate, on ne
doit jamais compter dessus, et par exemple laisser un internaute en
attente d’un aller-retour MOM.

Le MOM est un outil souvent méconnu et donc sous-utilisé au sein des
plateformes web.

Les messages ne transitent pas d’un MOM à un autre de manière
transparente. Il n’y a guère de standard en matière de MOM, de sorte
qu’il devient structurant pour une architecture. Par ailleurs,
contrairement à REST (que l’on évoquera plus loin), qui ne requiert
qu’un serveur web ordinaire, un MOM est un vrai produit, un
composant supplémentaire à déployer dans votre infrastructure.

 Page 33

Architectures Hautes-Performances

© Smile – Open Source Solutions

w
w

w
.s

m
il
e
.f
r

Des services sans
état

Un service sans état, stateless, est un service qui ne se souvient de rien
entre deux appels. C’est le cas du HTTP, nous y reviendrons plus loin.

Un fonctionnement sans état présente de nombreux avantages :

� Il n’implique pas de conserver de l’information, donc de réserver
des ressources, sur des durées indéterminées.

� Il n’est pas nécessaire de fermer une session, et donc il n’y a pas de
risque d’oublier de fermer une session qui devrait l’être.

� Chaque invocation du service étant totalement indépendante des
précédentes, on a une grande flexibilité dans la gestion du load-
balancing et du failover.

Ce sont des arguments forts, et l’on peut retenir qu’il faut toujours
privilégier un fonctionnement sans état.

Il y a malgré tout certains services qui, au plan fonctionnel, ne sont pas
compatibles avec un tel fonctionnement, mais ils sont très rares.

Trois protocoles
pour les services web

Il existe principalement trois protocoles standards pour mettre en
œuvre des services web : XML-RPC, REST et SOAP.

Soulignons tout d’abord qu’en matière de middleware – comme dans
d’autres domaines d’ailleurs – on recherche un compromis entre la
perfection théorique du protocole et sa simplicité. C’est ainsi que
CORBA, un middleware d’interopérabilité des années 90, n’a pas eu le
succès escompté, car manquant de légèreté. Les architectes du web, en
particulier, privilégient la simplicité et la performance (voir par exemple
la défense des Plain Old Java Objects sur les EJB) et il est fréquent que
le marché leur donne raison.

XML-RPC

XML-RPC est historiquement le premier des protocoles de services web,
défini dès 1998.

Il est construit sur HTTP, et s’appuie sur une mise en forme Xml de
tous les paramètres de l’invocation du service, et de la réponse, selon
une syntaxe générique très simple.

 Page 34

Architectures Hautes-Performances

© Smile – Open Source Solutions

w
w

w
.s

m
il
e
.f
r

Les variables supportent une dizaine de types, tels que int, float, double,
string, date-time, boolean, ainsi que des types plus complexes, matrices
et structures.

Considérons un exemple d’appel XML-RPC :

<?xml version="1.0"?>
<methodCall>
 <methodName>examples.getDeptName</methodName>
 <params>
 <param>
 <value><i4>27</i4></value>
 </param>
 </params>
</methodCall>

Ici, on appelle un service « getDeptName » qui retournera le nom d’un
département en fonction de son numéro. Ce service accepte un
paramètre unique : le numéro du département, ici le 27.

Et voyons sa réponse :

<?xml version="1.0"?>
<methodResponse>
 <params>
 <param>
 <value><string>Creuse</string></value>
 </param>
 </params>
</methodResponse>

Ici le service a fourni une réponse constituée d’une simple chaîne de
caractères : « Creuse ».

On constate sur cet exemple que, tant dans la requête que dans la
réponse, la modélisation de l’information est générique, n’utilisant que
des balises <param>, <value>, etc, et non pas une syntaxe adaptée à la
sémantique du service. C’est un choix simplifiant, mais limitant.
Typiquement, il n’est pas possible de valider la syntaxe d’une requête,
ou bien d’une réponse, autrement que dans le service lui-même.

REST

REST est un modèle d’échange basé également sur HTTP, le protocole
du web. Il n’utilise que les verbes standards du HTTP : GET, POST,
PUT, DELETE.

REST est un protocole sans état. Le fait qu’il soit basé sur HTTP le
rend très facile à mettre en œuvre dans une infrastructure web,
puisqu’il ne demande rien d’autre qu’un serveur web ordinaire.
Autrement dit : n’importe quelle application web, quel que soit le
langage, peut implémenter un service REST.

 Page 35

Architectures Hautes-Performances

© Smile – Open Source Solutions

w
w

w
.s

m
il
e
.f
r

Chaque service REST est accédé au moyen d’une URI, qui comprendra
l’indication du service et ses paramètres, par exemple :

HTTP://www.woozweb.com/lirecompte/account-id/8992871100

Ici, on invoque un service LireCompte de l’application « Woozweb.com »,
le service fournit des informations relatives à un compte utilisateur,
dont l’identifiant est spécifié.

Notons que la syntaxe du REST en lecture masque parfois l’aspect
« invocation d’une fonction », pour une logique davantage orientée
« accès à une ressource ». Dans cette voie, l’URI précédente pourra
devenir simplement :

HTTP://www.woozweb.com/accounts/8992871100

On voit que c’est sensiblement plus simple qu’un appel XML-RPC.

Cette simplicité, et la relative lisibilité des interfaces, le rend également
très simple à tester, que ce soit « à la main », en saisissant des URIs, ou
bien au moyen d’un outil de test ou d’un robot.

REST est un protocole qui vise la performance, et à ce titre il est plus
adapté aux plateformes web, en particulier par rapport à SOAP. C’est
par ailleurs un protocole « cachable », c'est-à-dire que le résultat d’un
GET (lecture) présentant les mêmes paramètres, donc la même URI,
pourra être considéré valable pendant la durée de vie spécifiée,
exactement à la manière d’une page web.

Voyons maintenant les formats de réponse.

En fait, REST ne donne pas de règle concernant le format de réponse.
Dans certains cas, un service REST peut fournir différentes
représentations possibles de sa réponse, et c’est le client qui spécifie la
représentation demandée, en renseignant l’attribut « accept » du header
HTTP, par exemple accept=text/html, ou bien accept=text/xml.

Mais ce n’est pas vraiment recommandé. Plutôt que de faire des
services multi-interfaces, on préfèrera construire des services purement
« orientés machines », pour lesquels on choisira évidemment une
représentation Xml, ou dans quelques cas JSON pour s’interfacer
directement à un client en Ajax. Et l’on pourra ensuite construire une
couche d’interface par-dessus ce service « orienté machine », couche
d’interface qui peut être en forme de service REST également (voir page
34).

Notons que ni REST ni XML-RPC n’exposent leurs interfaces, c'est-à-
dire ne fournissent un moyen, pour un programme client, de découvrir
les spécifications de l’interface. En interne à une plateforme, c’est une
limitation peu contraignante, les développeurs peuvent lire les spécs.
Mais il est vrai que dans une approche SOA généralisée, ouverte sur
l’extérieur, la publication du service et l’exposition de ses interfaces

 Page 36

Architectures Hautes-Performances

© Smile – Open Source Solutions

w
w

w
.s

m
il
e
.f
r

sont importantes. Dans les faits toutefois, il est pratiquement
impossible de construire un programme client qui ait l’intelligence
requise pour (a) découvrir les services proposés et leurs interfaces, (b)
choisir un service approprié, (c) construire une requête adaptée à
l’interface de ce service, et (d) analyser la réponse et utiliser les
informations fournies. L’exposition des interfaces n’est pas tant
tournée vers des programmes aussi intelligents, elle est plutôt destinée
à s’intégrer à des processus et outils de développement.

SOAP

Le protocole SOAP est le descendant de XML-RPC, auquel il ajoute
quelques qualités, en premier lieu la diversité des protocoles sous-
jacents, qui peuvent être SMTP, HTTP, ou bien des protocoles de type
MOM, Message Oriented Middleware. C’est donc le plus compatible avec
un fonctionnement asynchrone, même si on peut créer des interfaces
REST vers un MOM.

SOAP se distingue aussi de XML-RPC par la représentation des
données. Elle est aussi basée sur XML, mais peut utiliser des formats
plus complexes ainsi que des namespaces spécifiques, ce qui permet
une représentation sémantique des données, ainsi qu’un contrôle de
conformité intégré.

Un exemple de format de requête :

<?xml version="1.0"?>
<soap:Envelope
xmlns:soap="HTTP://www.w3.org/2001/12/soap-envelope"
soap:encodingStyle="HTTP://www.w3.org/2001/12/soap-encoding">
<soap:Body>
 <m:GetAvailability xmlns:m="http://www.smile.fr/xmlns/woozweb">
 <m:Ressource>www.voyages-sncf.com</m:Ressource>
 </m:GetAvailability>
</soap:Body>
</soap:Envelope>

On observera en particulier l’introduction d’un namespace spécifique à
l’application, ici « m : », dont la définition est donnée en référence,
http://www.smile.fr/xmlns/woozweb.

Et sa réponse:

<?xml version="1.0"?>
<soap:Envelope
xmlns:soap="HTTP://www.w3.org/2001/12/soap-envelope"
soap:encodingStyle="HTTP://www.w3.org/2001/12/soap-encoding">
<soap:Body>
 <m:GetAvailabilityResponse
 xmlns:m=" http://www.smile.fr/xmlns/woozweb ">

 <m:Availability>99.96</m:Availability>
 </m:GetAvailabilityResponse >

 Page 37

Architectures Hautes-Performances

© Smile – Open Source Solutions

w
w

w
.s

m
il
e
.f
r

</soap:Body>
</soap:Envelope>

De la même manière ici, le prix n’est pas juste un entier, c’est une
variable de type m:Availability.

On observe aussi, sur cet exemple, que tout cela est un peu verbeux,
mais c’est le prix à payer pour la flexibilité, l’extensibilité, et
l’interopérabilité.

Il faut souligner toutefois que cette syntaxe des messages n’est pas à
gérer par le programmeur lui-même. C’est le bénéfice de la
standardisation : les outils de développement prennent en charge le
plus gros du travail. Ainsi dans de très nombreux environnement,
transformer une méthode ordinaire en un service SOAP est
pratiquement immédiat et transparent.

SOAP est un protocole plus complet et plus complexe que les
précédents. Il requiert un serveur spécifique, par exemple AXIS de
Apache, et non un simple serveur web. Il est en général moins
performant que REST.

SOAP est en particulier peu approprié pour des échanges internes à une
plateforme, et convient davantage aux interfaces externes. Il est vrai –
on l’a souligné plus haut – que l’on ne sait pas toujours quelles
interfaces que l’on croyait internes seront un jour à exposer en externe.

Services et interfaces

Dans les débuts du web, on ne s’adressait pratiquement qu’aux
humains. Il arrivait parfois que des « machines », i.e. des programmes,
aient besoin de l’information fournie par des sites ou applications web.
Les machines se faisaient alors passer pour des humains, à la manière
de Kelkoo allant collecter des informations de prix dans les pages web
des sites marchands. Cette technique, de screen scraping, ou web
scraping, ce qui signifie « gratter les pages web » pour y trouver des
données, était laborieuse, instable et fragile. Le moindre changement
de charte graphique obligeait à reconfigurer la collecte.

Ce besoin d’utilisation du web par des machines et non par des
humains s’est étendu, et aujourd’hui, un principe de base des
architectures web est que n’importe quel service devrait pouvoir être
appelé par un programme.

Plutôt que de bricoler des interfaces « orientées machines » au dessus
d’interfaces natives « orientées humains », on préfère faire le contraire,
c'est-à-dire implémenter d’abord des interfaces nativement orientées
machines, et y ajouter si besoin des interfaces destinées aux humains.

 Page 38

Architectures Hautes-Performances

© Smile – Open Source Solutions

w
w

w
.s

m
il
e
.f
r

Ce qui peut se représenter sur le schéma suivant :

Dans le périmètre du bas, nous avons une application web, avec des
services internes REST, tous purement orientés machines (text/xml).
Et au dessus de ces services on construit une couche d’interface, avec
des services orientés humains.

L’application web moderne est donc construite en deux couches (au
moins) :

� Une couche services, aux interfaces « orientées machines »

� Une couche interfaces, habillant la couche services, à destination
des humains.

La couche service est généralement REST ou bien SOAP.

C’est en particulier le modèle retenu par les progiciels modernes, qui se
généralise depuis quelques années :

� Les progiciels encapsulent totalement leurs données – il est donc
interdit d’accéder à leur base de données.

� Ils fournissent des services

� Ils peuvent être utilisés aussi bien par des humains que par des
programmes.

 Page 39

Architectures Hautes-Performances

© Smile – Open Source Solutions

w
w

w
.s

m
il
e
.f
r

Il faut le souligner, c’est la condition d’une réelle capacité à intégrer ces
progiciels au reste du système d’information. S’il s’agit d’une
application de RH, elle exposera des services permettant d’accéder au
dossier d’un employé, de créer un employé, de modifier le poste ou le
salaire, etc.

C’est aussi ce qui permet de totalement refondre la couche interface
d’un progiciel, que ce soit pour une utilisation requérant une ergonomie
spécifique, ou bien simplement pour une harmonisation graphique.

MOM open source – Apache ActiveMQ

Il existe un petit nombre d’outils MOM de qualité en open source. On
peut citer ActiveMQ de Apache, JBoss Messaging, maintenant de
Redhat, ou encore Joram, de ObjectWeb, ou encore Glassfish Open
Message Queue, de SUN.

Lorsque Apache propose un bon produit, il s’impose souvent.
Intéressons nous donc plus particulièrement à ActiveMQ.

ActiveMQ présente des APIs pour pratiquement tous les langages et
environnements : C, C++, C# / .Net, Delphi, Flash / ActionScript,
JavaScript, Perl, PHP, Python, etc.

ActiveMQ offre aussi des interfaces REST pour l’émission et la réception
de messages, ce qui est facile à interfacer dans n’importe quel
environnement, mais n’offre pas la richesse d’une interface de type
JMS. La publication d’un message utilise un POST http, et la lecture
un GET ou un DELETE.

La persistance des messages peut s’appuyer sur n’importe quelle base
de données, accédée en JDBC, avec par défaut Apache Derby, qui est
une base full-java. Depuis la version 5, la persistance est assurée par
défaut sur un message store spécifique, AMQ Message Store, qui est
plus rapide qu’une base de données, car spécialisé sur sa mission plus
simple.

 Page 40

Architectures Hautes-Performances

© Smile – Open Source Solutions

w
w

w
.s

m
il
e
.f
r

PERFORMANCES HTTP

En matière d’architecture de plateforme web, on s’arrête généralement
aux frontières du datacenter. Il s’agit de servir des pages le plus
rapidement possible, et ce qu’il advient de ces pages passé le routeur ne
nous intéresse guère.

Pourtant c’est loin d’être négligeable, et c’est pourquoi nous accordons
un chapitre à la question des performances des échanges HTTP entre
plateforme web et navigateur, et même jusqu’à la restitution finale à
l’utilisateur.

Certaines de ces considérations ont uniquement un impact sur la
performance perçue, mais d’autres peuvent impacter aussi la capacité
d’accueil de la plateforme.

Chronologie de
chargement de page

C’est une chose généralement connue, mais dont les détails et les
implications ne sont pas toujours bien mesurés : une page web est
constituée de nombreux composants, qui sont chargés les uns après les
autres par le navigateur.

Au départ, le plus souvent, il y a une page faite de Html. Cette page
contient des références à d’autres objets, chacun identifié par son URI :
des images, des feuilles de style, des fichiers javascript, des objets
Flash, d’autres fichiers Html, ou encore des fichiers Xml utilisés par des
composants Ajax, et quelques autres genres de composants. Certains
de ces objets sont cherchés sur d’autres serveurs, typiquement les
bannières de publicité ou bien les invocation des services de mesure
d’audience.

Comment tous ces objets sont-ils cherchés et chargés ? La chronologie
exacte du chargement dépend du navigateur, et de sa configuration,
mais on peut citer quelques règles générales :

� En premier lieu, il y a des dépendances de références entre les
objets : ce n’est pas la page Html de départ qui inclut toutes les
références aux autres objets. Elle peut inclure une iframe Html,
qui inclut un Javascript, qui en s’exécutant va demander d’autres
objets. Dans ce cas bien sûr, la chronologie du téléchargement
épouse cette dépendance.

 Page 41

Architectures Hautes-Performances

© Smile – Open Source Solutions

w
w

w
.s

m
il
e
.f
r

� Le chargement des images est en partie parallélisé. Si une page
contient 10 images, elles ne seront pas chargées l’une après
l’autre. Mais elles ne seront pas non plus chargées toutes les 10
ensemble. Selon la version de navigateur et sa configuration, on
aura de l’ordre de 3 téléchargements simultanés par serveur cible.

� Le chargement des fichiers Javascript n’est pas du tout parallélisé :
pendant qu’un fichier Javascript est téléchargé, rien d’autre ne
l’est.

La perception de l’utilisateur dépend de cette chronologie de
chargement de la page. Selon les cas, l’utilisateur peut commencer à
lire la page de manière confortable avant la fin du chargement complet.
Dans d’autre cas au contraire, la page reste instable, et donc illisible.

Nous verrons qu’il y a beaucoup de moyens de rendre plus rapide ce
chargement global de la page, et donc d’améliorer le confort de
l’utilisateur, et dans certains cas les performances du serveur.

La figure précédente représente la chronologie d’un chargement de page
typique.

 Page 42

Architectures Hautes-Performances

© Smile – Open Source Solutions

w
w

w
.s

m
il
e
.f
r

Gestion du cache
navigateur

Nous accorderons plus loin un chapitre entier aux outils de cache côté
serveur. Les navigateurs web gèrent aussi leur propre cache.
L’utilisateur a quelques options pour configurer le fonctionnement de ce
cache, mais pour l’essentiel, le fonctionnement dépend des directives
fournies par le serveur, ou par l’application. Il s’agit principalement des
directives1 « expires » et « cache-control ».

Un très grand nombre d’applications ne gèrent pas bien ces directives,
et donc utilisent très mal les possibilités de cache des navigateurs.

Il peut y avoir deux stratégies dans cette gestion. La première consiste
à spécifier une durée de vie « raisonnable », c’est à dire correspondant
au délai pendant lequel on peut accepter que la ressource soit obsolète.
Ainsi, on peut spécifier un paramètre « expires » à T0+ 24h pour des
fichiers CSS, et accepter qu’un changement mette 24 heures à être
visible par tous les internautes.

Mais la stratégie la plus recommandée est de spécifier une durée de vie
quasi infinie (c’est à dire un expires à T0+ 10 ans), et à renommer le
fichier lorsqu’il vient à changer.

En effet, il faut se souvenir que tous ces fichiers auxiliaires, css, js ou
images, sont toujours spécifiés au sein de la page html, de manière
directe ou indirecte. Si chaque fichier porte en suffixe son numéro de
version, par exemple common_styles_3.2.css, alors le jour où ces styles
changent, on fera référence au fichier common_styles_3.3.css, qui bien
sûr ne pourra pas être en cache. Le petit inconvénient serait que le 3.2
va rester en cache à jamais. Mais ce n’est pas grave, tant qu’il y a de la
mémoire. Et s’il n’y en avait plus, alors il serait purgé en tant que
« Least Recently Used ».

Cette seconde stratégie est meilleure car elle n’implique pas un
compromis entre réactivité et performance. Autant un cache de niveau
serveur peut être efficace avec des durées de vie d’à peine un quart
d’heure, autant pour un cache de niveau navigateur, une durée de vie
de 24 heures n’est pas vraiment suffisante.

Il faut souligner qu’une bonne gestion des directives de cache bénéficie
au confort de l’utilisateur – sa page s’affiche beaucoup plus vite – mais
aussi à la capacité du serveur : il y a moins de composants à servir,
donc une économie tant de bande passante que de CPU.

1 Pour plus de précisions quant à leur utilisation : HTTP://www.w3.org/Protocols/rfc2616/rfc2616-
sec14.html

 Page 43

Architectures Hautes-Performances

© Smile – Open Source Solutions

w
w

w
.s

m
il
e
.f
r

Cette stratégie de gestion du cache navigateur se définit le plus souvent
au niveau du serveur Apache, et donc de manière transparente pour les
applications.

Compression du flux

Tout le monde connaît les outils de compression Zip, et la réduction de
volume qu’ils procurent, souvent de plus de 60%. Les fichiers Html,
Css et Javascript sont des fichiers texte particulièrement adaptés à une
bonne compression. Et les navigateurs supportent la compression
Gzip, c’est à dire qu’ils savent décompresser les flux.

La compression consomme de la CPU, en échange d’une économie de
bande passante. La CPU est consommée côté serveur, pour la somme
de tous les flux, et côté client, pour les flux d’un client seulement. Les
postes client d’aujourd’hui sont largement dimensionnés, et le
traitement de décompression est quasiment négligeable de ce côté.

Dans l’ensemble, le gain de temps sur les flux est très supérieur au
petit délai de compression, et il convient donc de mettre en place la
compression de manière systématique.

Du côté serveur, la compression est prise en charge de manière tout à
fait transparente, au niveau du serveur Apache, avec les modules
mod_gzip ou mod_deflate. La configuration permet de spécifier les types
de contenus (type de fichier ou bien type mime) qui sont à compresser.

Et bien sûr, il y a une économie globale de bande passante du côté du
datacenter.

Moins de
composants, moins

de requêtes

Une règle simple est qu’il faut réduire le nombre de composants
intervenant dans une page web.

On ne demande pas pour autant de revoir l’esthétique ou l’ergonomie
des sites. Non, l’idée c’est que pour le même rendu, il faut parvenir à
élaborer la page avec moins de composants.

Quelques statistiques

Etudions quelques statistiques des plus grands sites web français, sous
monitoring sur l’outil Woozweb, à partir d’un échantillon de 6000 sites :

 Page 44

Architectures Hautes-Performances

© Smile – Open Source Solutions

w
w

w
.s

m
il
e
.f
r

Composants de la page

Ici le pourcentage de sites ayant tel nombre de composants dans leur
home page. Par exemple 35% des sites ont entre 25 et 50 composants
sur leur page, et au total 30% des sites on plus de 50 composants.

Ces composants peuvent être, comme on l’a vu plus haut, des images,
des fichiers javascript, css, objets flash, etc.

Images dans la page

Sur la figure précédente, nous avons un focus sur les images au sein de
la page, toujours sur le même échantillon. Où l’on voit que 10% des
sites ont plus de 60 images dans leur page.

 Page 45

Architectures Hautes-Performances

© Smile – Open Source Solutions

w
w

w
.s

m
il
e
.f
r

Chargement de la page

La figure précédente représente le temps total de chargement de la
page, dans un navigateur à très haut débit. Le second graphe est une
courbe cumulé, où l’on peut lire par exemple que 72% des sites environ
chargent la totalité des composants de la page en moins de 4 secondes ;
Cela en laisse quand même 28% qui mettent plus de 3 secondes, ce qui
est trop.

Poids total de la page

 Page 46

Architectures Hautes-Performances

© Smile – Open Source Solutions

w
w

w
.s

m
il
e
.f
r

Enfin sur ces derniers graphes, nous avons représenté le poids total de
la page, tous composants compris. La moitié des sites ont un poids
total de plus de 250 kO.

Réduire le nombre de composants

Il faut bien comprendre que, au delà du volume total échangé, c’est
vraiment le nombre de requêtes, donc de composants, qui impacte le
plus les performances.

On cherchera donc à adresser les mêmes fichiers au navigateur en
moins de requêtes. Comment faire cela ? Plusieurs voies :

� Plusieurs fichiers Javascript ou bien CSS peuvent souvent être
réunis en un seul. On pourra également supprimer les
commentaires de ces fichiers lors de la mise en production.

� Fusionner les fichiers image également, selon la technique du
« CSS Sprite », qui consiste à former une image unique en
juxtaposant différentes petites images, puis à sélectionner la petite
image côté client, en indiquant le coin supérieur gauche et la
dimension. C’est un peu sophistiqué, mais il existe quelques
outils pour rendre cela facile.

Dans l’ensemble toutefois, ces techniques sont moins déterminantes si
l’on a par ailleurs une bonne configuration du cache. Sauf que, à la
différence du cache, elles fonctionnent au premier chargement et non
au second.

Infrastructures
Globales et CDN

Nous nous intéressons ici aux sites qui servent des internautes dans un
grand nombre de pays, qui s’adressent à toute la planète. Nous verrons
que ces sites requièrent des solutions spécifiques pour assurer une
qualité de service homogène sur tous les continents.

Un monde tout petit ?

On dit parfois que l’Internet supprime les distances, mais ce n’est pas
tout à fait exact. La distance physique, géographique, séparant un
serveur web et l’internaute a une réelle influence sur les performances
perçues, même si elle n’a aucune influence sur les performances du
serveur lui-même. Il arrive couramment que des sites qui s’ouvrent à
un public international se plaignent de la lenteur perçue par des
internautes chinois, australiens ou bien brésiliens, alors que tout allait
bien lorsqu’ils ne s’adressaient qu’aux européens.

 Page 47

Architectures Hautes-Performances

© Smile – Open Source Solutions

w
w

w
.s

m
il
e
.f
r

En matière de télécommunication, deux grandeurs essentielles sont à
distinguer : le débit et le temps de latence. Le débit, c’est le nombre de
bits ou d’octets par seconde que l’on peut transporter. Le temps de
latence c’est le temps que met le premier octet à arriver. Ou bien on
parle parfois de temps d’aller-retour (« RTT ou Round Trip Time »), le
temps que met un octet à faire un aller-retour, plus facile à mesurer par
un simple « ping » que le seul temps aller.

Or on s’intéresse le plus souvent au débit, en supposant le temps de
latence négligeable. Mais à l’échelle de la planète, ce n’est pas le cas.

La limite inférieure au temps de latence est liée à la vitesse de la
lumière. La vitesse de la lumière dans les fibres optiques est environ
2/3 de la vitesse de la lumière dans le vide, c’est à dire 0,66 x 300 x 106
m.s-1, soit 200 x 106 m.s-1 (200 000 km par seconde). C’est rapide,
mais la terre est grande. Il y a 9 000 km à vol d’oiseau entre Paris et la
Californie, ce qui représente un temps de latence minimal de 45 ms.
17 000 km entre Paris et Sidney, soit 85 ms au minimum.

De plus, les fibres optiques sont posées au fond des mers et non à vol
d’oiseau, et chaque routeur traversé ajoute un petit temps de latence,
de sorte que le temps de latence réel peut être facilement double du
minimum théorique. Et ce temps de latence croissant avec les
distances tend à faire baisser les débits également. Voici une
représentation de la capacité installée effective.

 Page 48

Architectures Hautes-Performances

© Smile – Open Source Solutions

w
w

w
.s

m
il
e
.f
r

L’image précédente, issue de www.woozweb.com, fait apparaître le
temps de réponse d’une page html de 380 ko, tel qu’il est perçu depuis
la France (courbe noire en bas) et depuis les Etats-Unis (courbe rouge
en haut). L’axe des x représente le temps en heures, avec une mesure
tous les ¼ d’heures. On constate que le temps de réponse perçu pour
ce seul fichier est environ double depuis les Etats-Unis, avec aussi une
moindre stabilité c’est à dire des pics plus importants.

En synthèse donc : la distance n’est pas négligeable sur Internet.

Les chinois devront-ils se résigner ?

La seule solution pour obtenir d’excellentes performances en tous
points du globe est de servir les contenus depuis différents serveurs, en
choisissant le serveur le plus proche de l’internaute. Lorsque le service
est lui-même localisé par nature, c’est à dire lorsque les chinois et les
européens n’accèdent pas aux mêmes pages, n’achètent pas les mêmes
produits, alors le plus simple est de prendre un hébergement dans
différentes zones géographiques, au minimum Amérique, Europe, Asie,

 Page 49

Architectures Hautes-Performances

© Smile – Open Source Solutions

w
w

w
.s

m
il
e
.f
r

avec des plateformes totalement distinctes, n’échangeant que quelques
flux de synthèse au niveau back-office (états des ventes, tables de
référence…).

Dans certains cas toutefois, cette approche ne convient pas. Soit le
service est intrinsèquement global et ne peut pas être découpé en sous-
domaines indépendants. Ce peut être le cas d’un FaceBook par
exemple. Soit au contraire le service n’est pas assez global pour
pouvoir se permettre un hébergement multiple.

Content Delivery Network

On appelle CDN, Content Delivery Network, un dispositif qui permet de
servir les mêmes contenus depuis différents serveurs, en sélectionnant
le serveur le plus proche de l’internaute. Les plus grands acteurs de
l’Internet ont construit leur propre CDN, mais les autres ont recours à
des prestataires commerciaux.

Un CDN maison pour pas cher

Prenons un cas très simple. Vous avez une plateforme web hébergée
en France, qui adresse des clients dans le monde entier. Vos pages,
comme celles d’un site moyen, se chargent en 3-5 secondes, dont
disons 4 pour les différents composants statiques, images et autres.
Depuis l’Asie, ces 4 secondes deviennent 8 ou 10.

Comment y remédier simplement ? Il suffit de louer un petit serveur
pas cher dans un bon datacenter local, par exemple en Corée du Sud, et
d’y servir tous vos fichiers statiques. Pour cela, on mettra en place un
serveur de cache de type Squid, qui conserve localement une copie des
fichiers. Ensuite, il faut encore que, pour vos internautes asiatiques,
les images soient servies depuis le serveur coréen. Soit vous gérez cet
aiguillage par vous mêmes, en détectant l’origine de l’internaute et en
insérant des images au lieu des
références d’images précédentes. Ca demande un peu de code, mais en
termes d’architecture c’est assez simple. L’alternative serait de
conserver le même nom de serveur www-static.smile.fr indépendamment
de la géolocalisation, mais de lui faire correspondre différentes IP, donc
différents serveurs, comme on le verra plus loin (cf « Répartition de
charge de niveau DNS », page 53).

Vous aurez alors construit votre propre CDN et amélioré sensiblement
les performances perçues par vos internautes chinois, pour un coût très
raisonnable.

 Page 50

Architectures Hautes-Performances

© Smile – Open Source Solutions

w
w

w
.s

m
il
e
.f
r

Prestataires CDN

On peut distinguer deux niveaux dans la mise en œuvre d’un CDN.
Soit le CDN ne distribue que certains types de composants,
typiquement les images, vidéos, css, etc. Soit le CDN va plus loin et
joue un rôle de cache sur des fragments de Html, produits par des
applications. Sur ce dernier aspect, on se reportera à « Cache par
fragments », page 133.

La mise en œuvre du CDN pour servir localement les composants
statiques seulement peut être transparente et très rapidement mise en
œuvre. Outre l’option « maison » évoquée ci-dessus, il existe quelques
prestataires proposant un CDN prêt à l’emploi. Dans une approche un
peu plus « pro », on ne bricolera pas les tags , on comptera plutôt
sur le DNS pour diriger les requêtes d’images vers le serveur le plus
proche. Outre la quasi-transparence de la mise en œuvre, les CDN
commerciaux ont bien sûr une couverture mondiale difficilement
égalable.

Ces dernières années, le marché avait été écrasé par l’acteur dominant
Akamai, qui avait de plus racheté quelques-uns de ses concurrents et
dont l’action a été multipliée par 4 en 2006. Mais l’arrivée massive des
vidéos a donné un nouvel élan à ce secteur, et fait apparaître de
nombreux concurrents, qui ont ouvert une guerre des prix sévère ; en
particulier Limelight Networks, Level 3, Internap, CDNetworks, ou
encore Panther Express.

Qu’on ne se trompe pas : l’approche CDN conserve une logique
fondamentale centralisée. Il y a une plateforme centrale, mais un
réseau global de distribution des contenus. Mais pour les applications
de la plateforme centrale, l’existence du CDN est pratiquement
transparente.

 Page 51

Architectures Hautes-Performances

© Smile – Open Source Solutions

w
w

w
.s

m
il
e
.f
r

REPARTITION DE CHARGE

Principe de
répartition de charge

Chaque serveur, chaque composant, ayant unitairement une capacité
de traitement limitée, il est évidemment nécessaire de mettre en œuvre
plusieurs serveurs pour dépasser cette limite, et cela implique d’être
capable de répartir le travail entre ces serveurs.

C’est l’objet de la répartition de charge. La répartition de charge
s’entend le plus souvent au niveau des serveurs HTTP, c’est à dire en
frontal sur une plateforme web. Mais le même principe peut
s’appliquer sur n’importe quel service. C’est à dire que l’on peut
répartir la charge entre plusieurs bases de données, entre plusieurs
serveurs de fichiers, entre plusieurs serveurs offrant un même service.

Ces invocations de services s’appuient sur différents protocoles, tous
intervenant au dessus de TCP/IP. C’est pourquoi on s’intéressera tout
particulièrement à la répartition de charge au niveau TCP/IP.

Mais il y a fondamentalement trois niveaux de répartition de charge
pertinents dans le monde du web :

� Le niveau DNS

� Le niveau HTTP, « applicatif »

� Le niveau TCP/IP.

Au delà de ces « niveaux », sur lesquels nous reviendrons, on peut
analyser la question selon différents axes :

� Quelle est la finalité de cette répartition, l’objectif visé ?

� Que répartit-on ? Des requêtes, des sessions, des internautes ?

� Selon quelle logique s’effectue cette répartition ?

� Et enfin, quels sont les techniques et outils de cette répartition ?

 Page 52

Architectures Hautes-Performances

© Smile – Open Source Solutions

w
w

w
.s

m
il
e
.f
r

Finalité et logique de
répartition

Nous voulons distinguer clairement les principes et logiques de
répartition des techniques et outils, qui seront traités plus loin.

Pourquoi veut-on répartir la charge ?

Augmenter la capacité

En premier lieu, on l’a dit, pour atteindre une plus grande capacité de
traitement, en mettant en œuvre plusieurs serveurs physiques.

Mais ceci avec quelques objectifs secondaires.

Equilibrer la charge

La logique de répartition de charge vise le plus souvent un équilibrage :
on souhaite que chaque serveur soit utilisé de manière optimale, qu’il
n’y en ait pas un surchargé tandis qu’un autre est sous-utilisé. Dans
cette finalité de répartition équilibrée, nous verrons qu’il y a différents
algorithmes possibles, depuis l’aléatoire jusqu’au plus « intelligent ».

Résister aux pannes

Nous verrons que l’objectif de répartition est souvent corrélé à celui de
haute disponibilité : on veut aussi répartir la charge entre des serveurs
parce que c’est un bon moyen de résister à la panne de l’un d’entre eux.
Ceci à condition que les dispositifs de répartition puissent détecter une
panne et exclure le serveur défaillant.

Spécialiser des serveurs

La répartition peut avoir d’autres logiques que celle de l’équilibre. Elle
peut viser aussi la spécialisation des serveurs, faisant traiter certaines
typologies de requêtes, ou bien d’internautes, par certains serveurs.

Faciliter l’exploitation

Différentes solutions de répartition de charge permettent d’agir à chaud
sur les paramètres de la répartition, et en particulier d’ajouter ou de
retirer un serveur. Il est possible ainsi d’arrêter un serveur en
douceur, en le retirant de la répartition, puis en attendant que les
connexions qui lui sont affectées soient fermées. C’est le moyen de
gérer une opération de maintenance en assurant une parfaite continuité
du service, et à cet égard, la flexibilité d’exploitation est aussi une des
finalités de la répartition de charge.

 Page 53

Architectures Hautes-Performances

© Smile – Open Source Solutions

w
w

w
.s

m
il
e
.f
r

Répartition de requêtes ou répartition de sessions ?

Un serveur web traite un très grand nombre de requêtes, adressées par
un très grand nombre d’internautes. On peut analyser la répartition de
charge en termes de granularité : répartir « la charge » est un peu
vague, que va-t-on répartir exactement ? La requête HTTP est ici
l’entité minimale, atomique. Le traitement complet d’une requête HTTP
est une petite tâche, qui demandera quelques centièmes ou quelques
dixièmes de secondes, et sera traitée par un même serveur.

Certaines techniques de développement obligent à traiter toutes les
requêtes constituant une même session, d’un même internaute, sur le
même serveur, ce qui présente des contraintes spécifiques quant à la
répartition.

Répartition entre des serveurs ou entre des datacenters ?

Enfin, on peut répartir la charge entre différents serveurs d’un même
datacenter, sur un même réseau LAN et partageant un ensemble de
ressources en amont (routeurs, switchs, load-balancer), et en aval (base
de données, serveur de fichiers, SAN, …), ou bien on peut répartir la
charge entre plusieurs datacenters, qui ne partagent rien.

Les techniques utilisées sont alors très différentes.

Répartition de
charge de niveau

DNS

Principe

La répartition de charge de niveau DNS intervient dans l’association
d’une adresse IP à un nom de serveur.

Lorsque le navigateur doit accéder à un serveur dont il connaît le nom,
par exemple www.smile.fr, il commence par rechercher l’adresse IP
correspondant à ce serveur www sur le domaine smile.fr, en adressant
une requête à son serveur DNS, qui lui-même, s’il ne dispose pas de
l’information, interrogera d’autres serveurs DNS, de manière récursive.
Une fois que le poste client a obtenu l’adresse IP, il la conserve en cache
selon différentes règles, généralement de l’ordre d’une demi-heure.

C’est dans cette phase d’association entre un nom de serveur et une
adresse IP, c’est à dire un serveur, qu’intervient la répartition de charge
de niveau DNS, simplement en fournissant différentes adresses IP pour
un même nom de serveur.

 Page 54

Architectures Hautes-Performances

© Smile – Open Source Solutions

w
w

w
.s

m
il
e
.f
r

On utilise assez peu cette technique pour répartir la charge entre
serveurs d’un même datacenter, simplement parce que les répartition
réseau, que nous verrons plus loin, sont plus flexibles et plus réactives.

La répartition de niveau DNS est donc plutôt utilisée pour répartir la
charge entre plusieurs datacenters.

Quelle en est la finalité ?

� La tolérance aux pannes : un datacenter peut se trouver
globalement indisponible, pour différentes raisons, et toutes les
mesures internes à la plateformes seront alors inopérantes.

� La proximité physique des internautes, dans une approche de type
« Content Delivery Network », telle que décrite plus haut (cf
« Infrastructures Globales et CDN », page 46.

� La recherche d’un point d’équilibre entre mesures de haute-
disponibilité internes à une plateforme, et haute-disponibilité
globale multi-plateformes, pour viser une haute-disponibilité
globale au moindre coût.

Nous passerons en revue trois types de solutions de répartition de
niveau DNS : DNS Round-Robin, GeoDNS et Anycast.

La première est la seule qui soit totalement standard, compatible avec
n’importe quel DNS ; les deux suivantes requièrent un serveur DNS
spécifique et sont donc sensiblement plus complexes à mettre en
œuvre.

DNS-Round-Robin

La technique de répartition DNS la plus simple et la plus couramment
utilisée est celle du DNS Round-Robin, ou DNS-RR.

Lorsqu’un serveur DNS répond à un client, il peut fournir non pas une
adresse IP, mais une liste d’adresses IP, dans un certain ordre. La
première adresse est celle qu’il faut utiliser en premier lieu, les autres
sont des adresses de secours. Si l’on dispose de trois serveurs S1, S2, S3
capables de traiter les requêtes, alors le serveur DNS pourra répondre {
S1, S2, S3 }, dans cet ordre. Rappelons qu’ici Si désigne l’adresse IP d’un
serveur. Le principe du DNS-RR consiste à répondre en indiquant les
serveurs en permutation circulaire : {S1, S2, S3 }, puis {S2, S3, S1 }, puis
{S3, S1, S2 } et ainsi de suite. Le premier client, s’adressera donc à S1, le
second à S2, le troisième à S3. Et si S1 ne répond pas, alors le premier
s’adressera à S2 en secours.

Cette technique a le mérite d’être très simple à mettre en œuvre, et ne
requiert pas un DNS spécifique, le Round-Robin est supporté par tous
les serveurs DNS de l’Internet, il n’y a qu’à demander. La solution peut

 Page 55

Architectures Hautes-Performances

© Smile – Open Source Solutions

w
w

w
.s

m
il
e
.f
r

convenir lorsqu’on dispose de 2 ou 3 datacenters d’une même région
géographique, d’un même continent. Elle convient beaucoup moins
bien au niveau global, avec des datacenters sur différents continents,
car elle peut amener l’internaute européen sur un datacenter asiatique,
l’internaute américain sur un datacenter européen, et ainsi dégrader la
qualité de service de tout le monde. On a vu déjà qu’à l’échelle de la
planète la proximité géographique a un impact important sur la qualité
de service.

La répartition par DNS-RR est assimilable au global à une répartition
aléatoire. En particulier, elle ne s’appuie sur aucune connaissance de
la charge respective des serveurs. Néanmoins, avec un trafic
important, l’aléatoire procure une répartition tout à fait satisfaisante,
avec des écarts en général de moins de 5% entre les serveurs.

On met en œuvre également le DNS-RR lorsqu’on vise un hébergement
low-cost, qui ne permet pas d’insérer de load-balancer.

GeoDNS

Au lieu de répondre en permutation circulaire, le serveur DNS peut
essayer de répondre intelligemment, en fournissant en premier le
serveur le plus proche de l’internaute (cf « Un monde tout petit ? », page
46), après avoir localisé l’internaute, au moyen de son adresse IP. C’est
l’objet de l’extension GeoDNS, qui ajoute cette fonctionnalité au serveur
BIND, le DNS plus utilisé sur l’Internet.

Bien entendu, cela suppose de gérer son propre DNS sur son domaine.

L’extension GeoDNS permet de définir, pays par pays, la réponse
spécifique du DNS à une demande de l’internaute, et donc de répondre {
SFR, SUS, SKR } a un internaute européen, et { SKR, SUS, SEU } à un
internaute chinois, où SFR, SUS, SKR sont les adresses des serveurs
hébergés respectivement en France, Etats-Unis et Corée du Sud.

C’est donc une solution qui convient bien au niveau global.

 Page 56

Architectures Hautes-Performances

© Smile – Open Source Solutions

w
w

w
.s

m
il
e
.f
r

Anycast

La dernière solution, utilisée par les plus grands sites globaux, s’appelle
« Anycast ». Elle consiste à utiliser la même adresse IP pour différents
serveurs DNS en charge du domaine, chaque serveur étant hébergé sur
le même datacenter que l’une des plateformes web. Ainsi si l’on dispose
de trois plateformes dans trois datacenters, en Europe, Asie et
Amérique, on mettra en place trois DNS pour mondomaine.com, sur ces
mêmes plateformes.

Comme ces trois serveurs DNS partagent la même adresse IP, on
compte sur les algorithmes de routage IP pour trouver automatiquement
le serveur DNS le plus proche de l’internaute. Chaque DNS répond à la
requête de nom de domaine de manière légèrement différente, en
plaçant l’IP de son propre datacenter en tête de liste.

Le génie de cette solution, c’est de trouver de manière naturelle le
serveur le plus proche, au sens de la topologie de l’Internet, et non au
sens géographique, en utilisant les mécanismes standards du réseau.

Partager une adresse IP est en général hasardeux, et effectivement,
dans une connexion TCP/IP, il se pourrait que certains paquets arrivent
à un serveur et d’autres à un autre serveur, ce qui rendrait la
communication impossible. Mais l’interrogation DNS n’utilise que le
protocole UDP, qui est sans session, de sorte qu’il est compatible avec le
mode Anycast.

Avantages et limites de la répartition DNS

Comme on l’a vu, la répartition de niveau DNS, quel qu’en soit l’outil,
est pratiquement la seule qui permette de répartir sur différents
datacenters, ce qui permet à la fois une meilleure tolérance aux pannes,
et dans certains cas une moindre latence donc une meilleure qualité de
service.

 Page 57

Architectures Hautes-Performances

© Smile – Open Source Solutions

w
w

w
.s

m
il
e
.f
r

Dans le mode Round-Robin, elle est très facile à mettre en place, et peu
coûteuse, pour autant que l’application soit compatible, c’est à dire
qu’elle ne suppose aucune ressource partagée, un « share nothing » de
niveau datacenter.

Elle présente toutefois les limitations suivantes :

� La gestion de la détection de panne et du secours est laissée à la
charge du navigateur. Si le serveur HTTP répond une erreur 500,
par exemple, le navigateur ne passe pas sur la seconde adresse.

� L’équilibrage de la charge n’est pas géré de manière fine,
typiquement avec des capacités d’accueil différentes selon les
plateformes, ou bien l’affectation au datacenter le moins chargé.

� Elle ne permet pas de mettre en œuvre l’affinité de serveur de
manière satisfaisante.

A la différence des solutions de répartition de charge réseau, que l’on
verra plus loin, la répartition de niveau DNS ne met pas en œuvre une
surveillance des plateformes, et n’adapte pas la répartition à la
disponibilité ou à la charge.

Notons qu’il existe malgré tout quelques solutions gérant la haute-
disponibilité au travers d’une reconfiguration DNS : on met en œuvre
un monitoring des différents serveurs, et si l’un d’entre eux ne répond
pas, on met à jour les DNS pour exclure ce serveur.

Tant qu’on utilise les DNS de manière standard, c’est le cas pour le
mode round-robin, la tolérance aux pannes du dispositif de répartition
lui-même est excellente. En revanche, pour les deux autres modes, qui
demandent un DNS spécifique, c’est à vous d’assurer son secours et sa
disponibilité.

Redirection applicative

Il faut évoquer aussi la possibilité de redirection applicative, vers un
serveur ou un datacenter proche de l’internaute. C’est une version très
rustique du GeoDNS : l’internaute se connecte à un premier serveur
www.smile.fr, l’application localise l’internaute, en déduit le serveur le
plus approprié, et adresse un redirect HTTP vers ce serveur, par exemple
www-us.smile.fr, qui assurera la suite de la session.

 Page 58

Architectures Hautes-Performances

© Smile – Open Source Solutions

w
w

w
.s

m
il
e
.f
r

Répartition de
charge de niveau

TCP

Quelques rappels

On l’a vu, presque tous les échanges sur une plateforme web s’appuient
sur des protocoles construits sur IP et le plus souvent sur TCP/IP.

TCP est un protocole de niveau 4, de niveau transport. Il implique
l’établissement d’une connexion entre deux serveurs, puis l’échange
bidirectionnel de messages sur cette connexion, puis la fermeture de la
connexion. Chacun des message est ensuite décomposé en paquets IP,
et chaque paquet est routé indépendamment. TCP se charge de
réémettre les paquets perdus, le cas échéant, et de les remettre dans
l’ordre à l’arrivée si besoin.

Le protocole HTTP est construit au dessus de TCP. C’est à dire que les
requêtes et réponses HTTP sont échangées sur une connexion TCP. Le
navigateur ouvre une connexion TCP, envoie une requête, par exemple
une requête GET portant sur une URL donnée, puis attend la réponse
sur la même connexion. Avec HTTP 1.0, la connexion TCP est fermée
une fois la réponse reçue. Avec HTTP 1.1, la connexion peut être
maintenue ouverte pour une autre requête.

Le protocole HTTP est, à la base, un protocole sans état, c’est à dire qu’il
n’y a pas d’information conservée relativement aux échanges
précédents, chaque couple requête/réponse est indépendant des
précédents. Cela du moins du point de vue du protocole, car le besoin
de gérer des sessions conduit parfois à construire une notion d’état au
dessus du protocole, au niveau applicatif.

Répartition de charge TCP

La répartition de charge TCP, ou encore « de niveau 4 », permet de faire
apparaître N serveurs comme une seule adresse IP vue de l’extérieur.
La répartition de charge est associée à une translation d’adresse (NAT),
qui permet de totalement décorréler les adresses IP internes de celles
qui sont vues de l’extérieur. Sur le réseau interne, chaque serveur
dispose de sa propre adresse IP.

La répartition de charge de niveau TCP intervient dans la phase
d’établissement de la connexion. Une demande de connexion est
adressée par un serveur ; elle parvient à l’équipement de répartition de
charge, qui détermine le serveur auquel il va affecter la connexion,
parmi les serveurs disponibles. Une fois la connexion TCP établie,
l’équipement de répartition de charge devient pratiquement
transparent : il pousse les paquets IP de la connexion vers le serveur

 Page 59

Architectures Hautes-Performances

© Smile – Open Source Solutions

w
w

w
.s

m
il
e
.f
r

sélectionné, dans un sens et dans l’autre. Ceci jusqu’à fermeture de la
connexion.

Les algorithmes de répartition

Il existe une variété d’algorithmes pour gérer la répartition de charge,
c’est à dire choisir le serveur lorsqu’une nouvelle connexion est à
affecter.

� Round-robin. L’expression signifie une ronde, une permutation
circulaire. Il s’agit d’une affectation cyclique : A puis B puis C
puis A puis B puis C, ...

� Weighed round-robin. Une affectation cyclique avec pondération.
La pondération permet de prendre en compte la capacité différente
des serveurs. Si un serveur a une capacité 1,5 par rapport aux
autres, il est sélectionné 1,5 fois plus souvent. Les plateformes
ne sont pas toujours mises en place d’un seul coup, et il est donc
courant que des serveurs de puissance différentes soient utilisés.

� Least-connection. Affectation au serveur qui a le moins de
connexions ouvertes, c’est à dire donc en équilibrant le nombre de
connexions entre les serveurs.

� Weighed-least-connection. Même principe, mais avec
pondération selon la capacité du serveur.

� Priority activation. Une logique selon laquelle certains serveurs
ne sont utilisés que si les serveurs principaux dépassent une
charge définie comme seuil.

� Algorithmes basés sur l’IP source. Un algorithme de hashage est
appliqué à l‘IP source pour déterminer le serveur cible. Une même
IP est toujours connecté au même serveur. On pourrait penser
que cela procure une répartition de charge avec affinité de serveurs
(cf. « Répartition avec affinité de serveur », page 60) , mais il existe
des cas où un internaute peut changer d’adresse IP.

� Aléatoire. Une répartition purement aléatoire, qui peut donner un
équilibrage satisfaisant, sur des volumes importants.

Notons que le round-robin, comme le weighed-round-robin, a le mérite de
la simplicité, mais peut en théorie répartir médiocrement la charge car
la durée de vie des connexions TCP peut être très variable, entre
quelques centièmes de secondes et plusieurs heures. Si le hasard fait
que l’un des serveurs reçoit plusieurs connexions de longue durée, il se
retrouve avec un bien plus grand nombre de connexions ouvertes.
Mais ce n’est pas tout, sur une connexion ouverte, il peut y avoir plus

 Page 60

Architectures Hautes-Performances

© Smile – Open Source Solutions

w
w

w
.s

m
il
e
.f
r

ou moins de trafic, de messages échangés, de sorte que même
l’équilibrage des connexions peut être imparfait. Et enfin, les requêtes
peuvent solliciter plus ou moins les ressources du serveur.

Néanmoins, sur un serveur web, ces subtilités théoriques sont le plus
souvent balayées par la loi des grands nombres et la relative
homogénéité du trafic, de sorte que les algorithmes les plus simples
conviennent.

Si l’on cherchait à amener chaque serveur au plus près de sa capacité,
alors le parfait équilibre pourrait être important. Mais ce n’est pas le
cas. Il faut garder à l’esprit que, sur une plateforme bien dimensionnée,
les serveurs ne dépassent pratiquement jamais 30% de leur capacité,
avec de très brèves crêtes à 70-80%, lors de phénomènes transitoires
planifiés (redémarrage, vidage de cache, opération d’exploitation), ou
non planifiés. On ne cherche jamais à utiliser les serveurs au
maximum en les chargeant au delà de 50-70% car alors la moindre
crête transitoire se traduirait par une saturation et donc indisponibilité.

C’est pourquoi, si un phénomène transitoire dans la répartition amène
un serveur à 25% et l’autre à 35% pendant quelques secondes ou
minutes, cela ne pose aucun problème.

Répartition de
charge de niveau 7

Répartition avec affinité de serveur

Les échanges sur une même connexion TCP, une fois établie, sont bien
sûr avec le même serveur. Mais le protocole HTTP utilise de
nombreuses connexions TCP pour la session d’un même internaute.
De sorte que, avec la répartition TCP décrite plus haut, les requêtes
d’un même internaute sont réparties entre les différents serveurs.

Certaines applications sont construites de telle manière qu’elles exigent
que les requêtes d’un même utilisateur soient adressées à un même
serveur. Généralement parce que les applications conservent en
mémoire des informations relatives à la session, par exemple le contenu
du panier dans un site de e-commerce. Pour construire des plateformes
à très haute capacité d’accueil, c’est une pratique qui est à éviter, mais
il arrive souvent que la conception des applications ne prenne pas en
compte les exigences d’architecture.

On appelle « répartition avec affinité de serveur », une répartition de
charge qui dirige toutes les requêtes d’une même session d’un
internaute, à un même serveur. On parle parfois de « sticky sessions »,
des sessions « collantes ».

 Page 61

Architectures Hautes-Performances

© Smile – Open Source Solutions

w
w

w
.s

m
il
e
.f
r

La solution la plus utilisée pour parvenir à une répartition de ce type
consiste à utiliser un identifiant de session placé dans un cookie. Soit
l’application a placé un cookie identifiant la session applicative et
l’équipement de répartition lit ce cookie, puis affecte toutes les requêtes
portant ce cookie au même serveur. Soit l’équipement insère lui-même
son cookie pour reconnaître les requêtes de la même session.

Nous étudierons ceci de manière plus spécifique au chapitre « Gestion
des sessions », page 63.

Principe de la répartition niveau 7

« Niveau 7 » signifie niveau « application » en référence au modèle OSI.
En fait, dans la pile TCP/IP on distingue moins de niveaux que dans le
modèle OSI, et donc on passe directement du niveau 4, transport, au
niveau 7, application. HTTP, comme SMTP, POP, SSH, Telnet et bien
d’autres sont donc des protocoles de niveau 7.

La répartition de niveau 7 est une répartition dont les mécanismes
impliquent l’analyse des requêtes HTTP. On a vu plus haut que le
niveau 4 n’intervenait pratiquement qu’à l’établissement de la
connexion TCP. Une fois la connexion établie, il suffit de transférer les
paquets.

Dans un mécanisme de répartition de niveau 7, on analyse le contenu
de chaque requête, pour décider du routage. En pratique, deux choses
sont recherchées et analysées :

� Les cookies, qui figurent dans l’entête HTTP.

� L’URI, c’est à dire l’URL et l’ensemble de ses paramètres.

L’analyse de l’URI permet de mettre en place une répartition avec
spécialisation des serveurs ; nous y reviendrons. Elle permet aussi
d’assurer l’affinité de serveur, dans le cas où un jeton de session est
inséré dans l’URI.

Notons que la différence entre niveau 4 et niveau 7 n’est pas
négligeable. Pour intervenir au niveau 7, on doit scruter tout le
contenu des échanges, et analyser chaque message pour identifier les
requêtes HTTP, puis analyser encore la requête pour trouver le cookie.
C’est un travail bien plus important que d’aiguiller des paquets. Et ce
n’est pas tout, s’il ne peut pas aiguiller la requête avant de savoir ce que
contient le cookie, il induit forcément un délai supplémentaire.

En résumé, la répartition de charge de niveau 7, qui permet l’affinité de
serveur, est parfois rendue nécessaire par les applications, mais ne doit
pas être vue comme le nec plus ultra de la répartition.

 Page 62

Architectures Hautes-Performances

© Smile – Open Source Solutions

w
w

w
.s

m
il
e
.f
r

Spécialisation des serveurs

L’affinité de serveur n’est pas la seule raison de gérer la répartition de
charge au niveau 7. Une utilisation courante consiste à répartir la
charge au moyen d’une analyse de l’URL, de manière à ce que les
requêtes portant sur les mêmes ressources soient adressées aux mêmes
serveurs. Cette affectation peut être définie soit de manière explicite,
par des expressions régulières portant sur l’URL, soit de manière
automatisée, en utilisant un hashage sur l’URL. Dans le premier cas,
l’administrateur maîtrise la répartition, dans le second, la répartition est
indifférente, mais elle est stable, un même serveur reçoit toujours les
mêmes URLs.

A quoi sert ce type de répartition ? Dans le cas d’une répartition
explicite, on peut définir une spécialisation des serveurs, correspondant
à des configurations spécifiques. Par exemple les serveurs délivrant les
images ou autres petits fichiers statiques pourront avoir une
configuration parfaitement dédiée à cet usage. Mais la spécialisation
des serveurs a aussi des inconvénients, et complique en particulier la
question de la tolérance aux pannes.

Dans une répartition automatique par hashage, chaque serveur doit
pouvoir répondre à toute forme de requête, mais les requêtes
semblables tendent malgré tout à être adressées aux mêmes serveurs.
On a donc une bonne flexibilité et une gestion satisfaisante de la
tolérance aux pannes. A quoi bon cette affinité ? Principalement pour
permettre aux caches des serveurs de se spécialiser. Si l’on dispose de
5 serveurs ayant chacun un cache d’une capacité de 2 GO, mais un
volume total de contenus de 10 GO pour 80% des pages, alors on aura
un hit-ratio trop faible sur chacun des serveurs. Si on parvient à
séparer le trafic en 5 sous-ensembles de 2 GO chacun, on obtiendra au
contraire un excellent hit-ratio sur chacun d’entre eux. C’est un peu
comme si l’on avait mis en commun les 5 fois 2 GO au lieu de les laisser
se disperser.

Répartition de charge et SSL

Lorsque la session est sécurisé, en HTTP-S ou SSL, alors le contenu des
échanges HTTP est totalement crypté. Il est impossible de gérer une
répartition de charge de niveau 7 sur une session cryptée, alors que l’on
peut gérer une répartition au niveau 4.

Il est donc nécessaire de commencer par terminer la session SSL, en
amont du load-balancer. Quitte le cas échéant à établir une nouvelle
session sécurisée en aval, mais en général on considère que au sein du
datacenter le besoin de sécurisation est moindre.

Dans ce cas, on combine généralement les deux fonctions, terminaison
SSL et load-balancing, sur le même équipement frontal. En outre, cela
décharge un peu de la CPU du serveur.

 Page 63

Architectures Hautes-Performances

© Smile – Open Source Solutions

w
w

w
.s

m
il
e
.f
r

Gestion des sessions

La question de la gestion des sessions mérite une attention particulière.
Nous avons dit plus haut que, lorsqu’une application a besoin de
retrouver en mémoire des informations de contexte, relatives aux
échanges précédents de l’internaute, de la même session, cela amène
souvent à mettre en œuvre une répartition de charge avec affinité de
serveur.

C’est un mode de fonctionnement qui est souvent retenu, non pas par
choix, mais parce que la conception de l’application n’a pas pris en
compte le besoin d’extensibilité.

Un fonctionnement sans affinité de serveur est supérieur en termes
d’équilibre de charge, de flexibilité, de haute-disponibilité. Lorsqu’on
le peut, c’est ce fonctionnement qui doit être visé.

Voyons quelles sont les alternatives à une gestion de contexte.

La première chose à dire est que le contexte de session doit être réduit
au maximum. Et en particulier il doit comporter de vraies informations
de session et non des informations de transaction. Si l’internaute est
en train de réserver un billet d’avion dans un processus à plusieurs
étapes, les saisies précédentes relèvent du contexte de transaction. Il
est préférable que les informations de transaction ne soient pas en
session. L’alternative est de les intégrer, soit dans les paramètres
d’URL, soit éventuellement dans des champs cachés des formulaires.

Le second point est qu’il existe différentes solutions permettant une
gestion de contextes de session sans affinité de serveur. Passons-les
en revue.

Partage de sessions par cookies

Principes de fonctionnement

Comme on le sait, le cookie est une donnée conservée sur le navigateur,
à la demande du serveur. Le cookie est retourné au serveur avec
chacune des requêtes HTTP. Les cookies ont une durée de vie, ou
plutôt une date d’expiration, comme les objets en cache. Si la date
d’expiration n’est pas indiquée, le cookie est « volatile », il est purgé à la
fin de la session, c’est à dire à la fermeture du navigateur. Au contraire
les cookies qui restent jusqu’à une certaine date sont des cookies
persistants.

Le cookie est retourné soit au serveur qui l’a envoyé (on parle ici de
serveur virtuel : en cas de répartition de charge, le cookie est retourné
à n’importe lequel des serveurs physiques), soit éventuellement à tous

 Page 64

Architectures Hautes-Performances

© Smile – Open Source Solutions

w
w

w
.s

m
il
e
.f
r

les serveurs du domaine. Mais en aucun cas à un serveur hors du
domaine.

Chaque cookie a un identifiant, choisi par le serveur, et tous les couples
(identifiant, valeur) de tous les cookies existants pour ce serveur ou son
domaine, sont envoyés à chaque requête. Notons enfin qu’il y une
limite de taille de 4 Ko pour un cookie. Sur Internet Explorer, la limite
est de 4 Ko pour tout un domaine.

Maintenant que l’on a rappelé les grands principes des cookies, voyons
comment les utiliser dans le contexte d’architectures hautes
performances.

Mauvaise réputation

Les cookies ont mauvaise réputation. D’abord parce qu’ils sont utilisés
par différents sites et régies publicitaires pour consolider l’information
recueillie sur le comportement et les préférences des internautes. Du
coup, certains peuvent même choisir de désactiver ou restreindre la
gestion des cookies sur leur navigateur, mais c’est encore une faible
proportion des internautes.

La mauvaise réputation des cookies est aussi liée à des questions de
sécurité : confidentialité, intégrité, possibilité de vol de cookie. Nous
reviendrons sur ces questions plus loin.

Cookie identifiant de session

La plupart des dispositifs de gestion de sessions reposent sur un cookie
qui ne porte qu’un identifiant de session. Cet identifiant est la clé
permettant de retrouver un contexte de session, conservé côté serveur.
Si ce contexte est en mémoire de l’application, il faut que les requêtes
d’un même internaute parviennent au même serveur, c’est à dire qu’il
faut une répartition de charge « avec affinité de serveur » ou avec « sticky
sessions ».

Eviter l’affinité de serveur

Les sites à très forte audience évitent, le plus souvent, d’utiliser des
sticky sessions. Pour plusieurs raisons : en premier lieu, la
répartition est imparfaite, car gérée sur des durées trop longue, mais
surtout la tolérance aux pannes est médiocre puisque si un serveur
tombe les sessions qu’il gérait sont perdues, c’est à dire que les
utilisateurs sont brutalement ramenés à la phase d’identification.

 Page 65

Architectures Hautes-Performances

© Smile – Open Source Solutions

w
w

w
.s

m
il
e
.f
r

Sessions et outils de développement

Très souvent, ces questions ne sont pas étudiées en tant que telles :
c’est l’environnement de développement qui dicte sa loi. Il gère les
contextes de cette manière, et dicte ses contraintes pour l’architecture.
Architecture et scalabilité sont vus, trop souvent, comme des
problématiques aval : j’ai développé mon application, maintenant
quelle architecture vais-je donc choisir ?! C’est la manière de procéder
la plus usuelle. Elle convient pour du bas et du milieu de gamme, mais
elle ne convient plus pour des plateformes à très haute performance.

Gérer des données applicatives en cookie

Au lieu de stocker un identifiant seulement, les cookies peuvent être
utilisés comme gestionnaire de données de session. D’une certaine
manière les cookies peuvent aussi un rôle de cache, dans la mesure où
l’on y stocke des données issues des bases de données, afin de ne pas
avoir à les rechercher lors d’une prochaine requête.

Le cookie en tant que gestionnaire de données a plusieurs avantages :

� Il est intrinsèquement extensible : que vous ayez 100 utilisateurs
ou 1 million, vous ne rencontrerez aucune limite de ce côté-ci.

� Il ne pose aucune contrainte sur les techniques de répartition de
charge, y compris de niveau DNS. Et si l’on utilise un cookie de
domaine, alors tous les serveurs du domaine partagent
l’information du cookie.

� L’information placée dans le cookie peut être utilisée aussi bien
côté serveur que côté client, puisqu’un petit programme Javascript
peut accéder à ces informations.

� Enfin, il peut être persistant, au delà d’une session, c’est à dire que
c’est une sorte de cache que l’on peut retrouver une semaine plus
tard, pour autant bien sûr que l’utilisateur utilise le même poste.

A l’inverse il a quelques inconvénients :

� Il induit un petit poids sur le trafic réseau, quelques kilo-octets par
requête. C’est peu de chose comparé aux poids de pages usuels,
mais il faut se souvenir que la bande passante dans le sens client
vers serveur est sensiblement moindre en ADSL.

� Il faut analyser la question de la cohérence : lorsqu’une
application reçoit des données stockées en cookie sur un poste,
elle ne sait pas s’il s’agit de la dernière version de ces données.

 Page 66

Architectures Hautes-Performances

© Smile – Open Source Solutions

w
w

w
.s

m
il
e
.f
r

� Différents problèmes de sécurité sont à traiter enfin, pour garantir
l’intégrité, voire la confidentialité du cookie, ainsi que
l’impossibilité de voler un cookie.

� Il existe des risques d’incohérence, par exemple si l’utilisateur fait
un ‘back’ (précédent) sur son navigateur, le cookie reste inchangé.

Revenons sur ces difficultés. La question de la cohérence se règle
partiellement en se limitant à des durées de vie réduites. C’est à dire
que l’utilisation du cookie persistant pour stocker de l’information est
rarement possible car on ne sait pas dans quelle mesure cette
information est valide une semaine plus tard, et donc le serveur ne peut
rien en faire avant d’avoir récupéré l’information de référence, sans
doutes auprès d’une base de données.

Les différents problèmes de sécurité peuvent être résolus par un peu de
cryptographie. Typiquement, on ajoutera aux données un horodatage,
et on cryptera le tout avec un simple algorithme symétrique, ou bien un
algorithme de scellement tel que SHA-5 portant sur le contenu du
cookie PLUS une clé secrète uniquement connue côté serveur.

Partage de contexte côté serveur

Nous avons vu que l’une des voies pour éviter de conserver un contexte
de session au niveau des frontaux web est d’en transférer la gestion
côté client, aux navigateurs, via les cookies. L’autre possibilité est de
la transférer côté serveurs, à l’étage de la gestion des données, qui est
l’étage naturellement dédié au partage de données.

Si le contexte de session est conservé en base de données, il peut être
accédé et mis à jour à partir de n’importe quel serveur frontal. C’est
donc une voie qui permet à la fois une répartition de charge sans
affinité, et néanmoins un partage de contexte. Et différents outils de
développements permettent de rendre cela transparent pour le
développeur.

L’inconvénient est un petit impact en performances : un accès à la base
de données, même très simple, est beaucoup plus coûteux qu’une
lecture en mémoire.

Partage de contexte en cache global

Une autre alternative consiste à partager les contextes de sessions au
moyen d’un outil de cache global, tel que memcached (cf. page 145).
Comme on le verra ce type d’outil, bien que distribué sur un ensemble
de serveurs, maintient une copie unique de chaque objet qui lui est
confié. N’importe quel serveur frontal peut donc récupérer le contexte
de session et le mettre à jour. L’accès est distant, mais purement en

 Page 67

Architectures Hautes-Performances

© Smile – Open Source Solutions

w
w

w
.s

m
il
e
.f
r

mémoire, avec donc des performances à mi-chemin entre celles d’une
gestion locale, et celles d’une gestion en base.

Synthèse

La figure suivante fait apparaître les différentes solutions de gestion de
session évoquées :

Configuration réseau

Niveau 4, niveau 7, même configuration

Du point de vue de l’architecture réseau, la répartition de charge de
niveau 7 est très semblable à celle au niveau 4 : un équipement est
placé en amont des serveurs, analyse le flux, et répartit les connexions.
Et d’ailleurs, ce sont souvent les mêmes équipements qui peuvent
répartir au niveau 4 ou au niveau 7.

Le schéma de principe de la répartition de charge est donc comme suit :

 Page 68

Architectures Hautes-Performances

© Smile – Open Source Solutions

w
w

w
.s

m
il
e
.f
r

On représente ici un petit nombre de serveurs, mais on peut en intégrer
plusieurs dizaines sans difficulté.

Répartition de charge inter-datacenter

Les dispositifs cités ici n’impliquent pas que tous les serveurs soient
dans un même datacenter. Rien n’interdit de ressortir sur l’Internet
pour trouver un serveur ailleurs. Mais bien sûr, cela impliquerait une
forte consommation de bande passante, essentiellement inutile.

C’est pourquoi pour des répartitions intercentres, on préfère
généralement les dispositifs de niveau DNS, cités plus haut.

Néanmoins, dans certains cas on peut disposer d’un débit dédié sur
fibre optique entre deux centres. Du moins jusqu’à des distances de
quelques dizaines de kilomètres, car à l’échelle des continents, le très
haut débit coûte très cher, et induit inévitablement un temps de latence
important. Si un internaute est d’abord dirigé sur un datacenter DCA,
et que toutes ses requêtes transitent ensuite par ce datacenter A pour
atteindre un datacenter DCB situé dans un autre pays, alors la qualité
de service ne pourra être que médiocre. Et la tolérance aux pannes
sera médiocre aussi, puisque DCA reste point de passage obligé.

 Page 69

Architectures Hautes-Performances

© Smile – Open Source Solutions

w
w

w
.s

m
il
e
.f
r

Ici, typiquement, le load-balancer du datacenter DCA serait configuré en
mode « priority activation », de sorte qu’il commence par charger ses
propres serveurs, puis au delà d’un certain seuil, il part en
débordement sur le second datacenter.

Configuration réseau et tolérance aux pannes de l’équipement

Etant seul, en frontal de tous les serveurs de la plateforme,
l’équipement de répartition de charge est un point de fragilité de
l’architecture, un « Single Point of Failure ». Il est donc nécessaire qu’il
soit secouru, avec un dispositif transparent de bascule en secours.

Toutes les solutions de répartition de charge intègrent un tel
mécanisme, y compris celles basées sur OpenBSD ou Linux, citées plus
loin (cf « Solutions logicielles », page 71).

On met classiquement en place deux équipements en parallèle, dont
l’un est actif et l’autre est passif, en standby. Les deux équipements
sont interconnectés, soit par le switch, soit par un câble croisé, soit par
une liaison série dédiée. Sur ce lien, le serveur passif surveille le
serveur actif par un échange de « heartbeat », de battements de cœur.
S’il détecte une panne, le serveur passif devient actif, et reprend
l’adresse IP à son compte.

En fait, pour un passage en secours réellement transparent, les deux
équipements doivent échanger plus qu’un simple heartbeat, ils doivent
partager la table d’allocation des connexions, de sorte que même les
connexions TCP/IP ne soient pas cassées lors du passage en secours.

 Page 70

Architectures Hautes-Performances

© Smile – Open Source Solutions

w
w

w
.s

m
il
e
.f
r

On a fait figurer ici un switch en
amont et un autre en aval.

Ici, la configuration avec un switch
unique.

Pour une réelle tolérance à la panne d’un équipement, on aura la
configuration suivante :

Ou encore :

 Page 71

Architectures Hautes-Performances

© Smile – Open Source Solutions

w
w

w
.s

m
il
e
.f
r

Enfin, dans le cas de load-balancer logiciels, on peut aisément combiner
plusieurs fonctions sur les mêmes serveurs, typiquement routeur,
firewall et load-balancer, comme suit :

Les solutions et
outils

Il y a deux types de solutions pour mettre en œuvre une répartition de
charge de niveau 4 ou 7 : solutions logicielles et solutions matérielles.

Les solutions logicielles tournent sur de l’infrastructure de serveur
standard, soit sur une base OpenBSD, soit sur une base Linux. On les
met en œuvre sur du matériel dédié et peu coûteux.

Les solutions dites matérielles sont des boîtiers dédiés, prêts à l’emploi.
Bien sûr, ils incluent du logiciel, mais les boîtiers haut de gamme ne
sont pas des serveurs standards, ils utilisent des circuits intégrés
spécialisés pour de plus hautes performances.

Solutions logicielles

Des solutions logicielles de grande qualité et d’une robustesse extrême
sont disponibles en open source.

Au niveau 4, deux solutions dominent le paysage :

� OpenBSD avec relayd

� Linux avec IPVS

 Page 72

Architectures Hautes-Performances

© Smile – Open Source Solutions

w
w

w
.s

m
il
e
.f
r

La répartition de charge au niveau 4 appliquant des algorithmes très
simples, et uniquement pour la phase de connexion, elle ne requiert que
très peu de ressources CPU, et donc un matériel peu coûteux.

A partir des produits cités, on met en place un boîtier de répartition de
charge en prenant un hardware relativement bas de gamme mais très
fiable, sans disque dur, ni ventilateur, un équipement à moins de 500€.

IPVS

IPVS est une des composantes du projet LVS, Linux Virtual Server, qui
réunit différentes fonctionnalités autour du load balancing, afin de
construire des serveurs virtuels sur un ensemble de serveurs
physiques.

IPVS est intégré au noyau Linux, depuis la version 2.5, et assure une
répartition de charge au niveau 4 seulement. Rappelons que la
répartition de niveau 4 est compatible avec une diversité de protocoles
et donc d’applications au-delà du web.

Il est associé à d’autres outils tels que mon pour tester la disponibilité
des serveurs et services sous-jacents, ldirectord ou heartbeat pour tester
le load-balancer (director) homologue.

LVS supporte tous les algorithmes de répartition évoqués plus haut :
round-robin, weighted round-robin, least-connection scheduling,
weighted least-connection, locality-based least-connection, locality-
based least-connection with replication, destination hashing, source
hashing, shortest expected delay, never queue.

Le load-balancer fournit un certain nombre de compteurs statistiques
en temps réel, et peut être reconfiguré à chaud.

Deux load-balancer IPVS en normal/secours synchronisent les
informations d’état associées aux connexions, de manière à offrir un
passage en secours réellement transparent, sans nécessité de ré-établir
les connexions en cours.

LVS offre aussi des outils de protections contre les attaques DoS.

Relayd

Si OpenBSD est un Unix moins répandu que Linux sur les serveurs
applicatifs, il est très populaire pour construire des boîtiers appliance,
du fait de sa grande robustesse et d’excellents outils de networking.

Relayd en fait partie. C’est un outil de routage et de load-balancing de
niveau 4 et 7.

 Page 73

Architectures Hautes-Performances

© Smile – Open Source Solutions

w
w

w
.s

m
il
e
.f
r

Pour le niveau 4, il s’appuie en fait sur un autre outil BSD : pf, packet
filter, qui prend en charge le routage au niveau du noyau.

Relayd permet de définir des pools de serveurs, des « tables », qui sont
surveillés.

Quelques fonctionnalités :

� Il permet différents modes de répartition : round-robin, équilibrage
des connexions, hashage sur des paramètres de la requête Http.

� Il permet différents modes de test des serveurs : ICMP, simple
connexion TCP, requête-réponse sur port TCP, requête HTTP.
Possibilité de timeout sur les requêtes de tests.

� Il peut adresser des alertes SNMP à un système de supervision.

HAProxy

HAProxy est l’une des solutions logicielles les plus utilisées au niveau 7.
Solution très complète au plan fonctionnel, extrêmement robuste et
performante, c’est de surcroît un projet particulièrement dynamique.

HAProxy peut fonctionner aussi au niveau 4, mais on l’utilise plutôt au
niveau 7.

Quelques fonctionnalités :

� Répartition sur la base d’un cookie existant, ou bien insertion de
son propre cookie pour gérer l’affinité de serveur.

� HAProxy peut tester la disponibilité des serveurs, soit en
établissant une connexion TCP, soit en adressant une requête
HTTP. En mode HTTP, la vérification peut porter sur une URI
particulière, qui teste tous les composants requis au bon
fonctionnement.

� Le seul mode de répartition possible pour l’instant est le mode
round-robin (permutation circulaire), avec toutefois la possibilité de
permutation et de limitation du nombre de connexions par serveur.

� La reconfiguration est possible à chaud.

� Des statistiques sont disponibles en temps-réel.

� La version 1.3, en développement apportera d’autres logiques de
répartition et des fonctionnalités complémentaires telles que le
content-switching, aiguillage basé sur l’analyse des URI.

 Page 74

Architectures Hautes-Performances

© Smile – Open Source Solutions

w
w

w
.s

m
il
e
.f
r

HAProxy est généralement mis en œuvre couplé à heartbeat, un
composant du projet Linux-HA, qui permet d’associer un HAProxy de
secours, qui surveille le load-balancer principal, et reprend sa fonction,
par son adresse IP, s’il détecte une défaillance.

Apache mod_proxy

L’extension Apache mod_proxy_balancer est aussi couramment utilisée
dans une fonction de load balancer.

Il s’agit bien sûr d’une répartition de niveau 7, et il est possible en
particulier de maintenir les sessions sur la base des cookies placés par
les applications, de type JSesssionId ou PHPSESSIONID.

Il permet différents modes de répartition :

� Répartition simple des requêtes entre les serveurs, avec
pondération.

� Répartition vers le serveur qui a le moins de requêtes en cours
(pending request counting)

� Répartition visant à équilibrer le flux traité en termes de nombre
d’octets en requête/réponse, avec pondération éventuelle. Ce type
de répartition équilibre la bande passante, mais pas
nécessairement la charge.

Dans l’ensemble, la répartition de niveau Apache est moins performante
que celle d’un outil spécialisé tel que HAProxy. Mais si l’on dispose
déjà d’un serveur Apache, par exemple pour servir les contenus
statiques, alors on peut choisir de lui confier aussi la répartition de
charge.

Les boîtiers dédiés

Les boîtiers dédiés sont plus robustes, ils peuvent atteindre de
meilleures performances et offrir quelques fonctionnalités
supplémentaires.

L’offre du marché est assez vaste (Foundry ServerIron, F5 BigIP, Citrix
Netscaler, Cisco ACE, Nortel Alteon), mais ce sont des équipements très
coûteux, par exemple de l’ordre de 15 k$ pour un boîtier Foundry
ServerIron 4G-SSL.

La performance n’est pas le critère de choix premier, car les solutions
logicielles ont déjà des performances satisfaisantes. La question est un
peu différente pour une répartition de niveau 7, qui consomme plus de
CPU.

 Page 75

Architectures Hautes-Performances

© Smile – Open Source Solutions

w
w

w
.s

m
il
e
.f
r

Les boîtiers dédiés ont aussi en général une meilleure interface de
configuration et de gestion.

Les boîtiers de répartition de charge tels que BigIP offrent quelques
possibilités supplémentaires, telles que la sélection du serveur dont le
temps de réponse observé est le plus bas, ce qui est interprété comme
une moindre charge réelle (il s’agit d’une analyse de niveau 7). Mais là
aussi, il peut y avoir des anomalies dans la mesure, un cas de plantage
classique est celui où le temps de réponse d’un serveur est très faible
parce que l’application est plantée et répond immédiatement par une
page d’erreur. Ainsi, si le load-balancer est mal configuré, il dirige tout
le trafic vers le serveur en panne, de sorte qu’une panne locale devient
globale.

Fonctionnalités associées

En plus de sa fonction de répartition de charge, le composant de load
balancing, qu’il soit logiciel ou boîtier, de par son positionnement en
coupure du trafic HTTP, peut assurer quelques autres fonctions, et
décharger du même coup le serveur web. Typiquement il s’agit des
fonctionnalités de :

� Cryptage SSL, qui est assez consommateur de CPU. On a vu qu’il
était obligatoire pour répartir au niveau 7.

� Cache. La gestion du cache fait l’objet d’un chapitre dédié (cf.
page 123). Côté serveur, elle peut être mise en œuvre au même
niveau que la répartition de charge.

� GZip. Nous avons décrit déjà l’intérêt de compresser les flux
jusqu’au navigateur (cf. « Compression du flux », page 43). C’est
aussi une tâche qui consomme un peu de CPU et qui peut être
prise en charge à un niveau frontal.

� Maintien des connexions. Enfin, les boîtiers frontaux gèrent
parfois le partage des connexions, en particulier pour les clients
utilisant du HTTP 1.0. Dans ce cas, plusieurs requêtes HTTP,
parvenant sur des connexions TCP distinctes, sont multiplexées
sur une même connexion à destination du serveur web.

� Protection contre les attaques « DOS », déni de service, en limitant
le nombre de connexions autorisées.

Répartition peer-
based

Il existe un dernier mécanisme de répartition, moins couramment
déployé, mais qui présente des caractéristiques uniques, que l’on

 Page 76

Architectures Hautes-Performances

© Smile – Open Source Solutions

w
w

w
.s

m
il
e
.f
r

appelle le peer-based load-balancing, c’est à dire de la répartition de
charge entre pairs, entre homologues.

Une de ses caractéristiques est de ne pas faire intervenir d’équipement
spécifique pour gérer la répartition, ce qui procure une excellente
résistance aux pannes.

En fait, le mécanisme est indissociable d’un premier niveau de
répartition en DNS round-robin. On a vu que le DNS round-robin était
satisfaisant pour ce qui est de la répartition, mais moins pour ce qui est
de la tolérance aux pannes. Le peer-based load-balancing ajoute la
tolérance aux pannes.

L’une des caractéristiques de ce mode est de nécessiter un noyau d’OS
spécifique, c’est probablement ce qui en a limité l’utilisation. La
solution implémentant le peer-based load-balancing est Wakamole2.

Selon le principe du DNS-Round-Robin, le nom du serveur est mis en
correspondance avec différentes adresses IP, de manière cyclique. Sur
la masse des internautes, cela crée donc une répartition de charge
équilibrée entre les N adresses IP. Ce nombre N d’adresses n’est pas
égal au nombre P de serveurs physiques. On peut utiliser ainsi par
exemple 20 adresses pour 5 serveurs.

Les P serveurs physiques échangent des messages entre eux pour se
surveiller et négocier la répartition des N adresses IP sur les P serveurs
physiques. A priori, chaque serveur prend en charge N/P adresses.
Mais si l’un des serveurs est indisponible, la répartition est redéfinie
entre les P-1 serveurs restants.

C’est donc un mécanisme qui ressemble un peu à celui utilisé pour la
gestion du secours, dans lequel un serveur surveille l’autre et reprend
son adresse IP, donc sa fonction, en cas de panne. Ici, le principe est le
même, mais au lieu d’être un jeu à 2, c’est un jeu à N serveurs.

2 HTTP://www.backhand.org/wackamole/

 Page 77

Architectures Hautes-Performances

© Smile – Open Source Solutions

w
w

w
.s

m
il
e
.f
r

Dans le cas d’une panne du serveur de droite, l’IP 87 est réaffectée sur
l’un des autres serveurs :

Ici, on a du coup une charge double sur le troisième serveur, ce qui
n’est pas bon. Il faut en fait brasser un nombre plus important d’IPs
pour avoir plus de flexibilité dans la réaffectation : si chaque serveur
avait initialement 5 IPs, alors on aurait réparti les 20 adresses sur 3
serveurs en 7, 7 et 6.

Le principe du peer-based va dans le sens du share-nothing, ce qui est
particulièrement intéressant, mais il faut reconnaître que sa mise en
œuvre est restée plutôt confidentielle.

 Page 78

Architectures Hautes-Performances

© Smile – Open Source Solutions

w
w

w
.s

m
il
e
.f
r

Load-balancing sur
des services internes

Nous avons beaucoup parlé du load-balancing sur l’étage frontal HTTP,
mais le même principe peut s’appliquer en interne d’une plateforme
web.

Les interfaces de type REST, que nous avons décrites plus haut, sont
particulièrement adaptées à ce type de répartition, puisqu’elles sont
sans état et construites sur du HTTP, et donc peuvent bénéficier
exactement des mêmes mécanismes.

Imaginons ainsi une plateforme web qui utilise un service web interne,
par exemple pour la recherche. On a donc mis en place un service
REST de recherche, auquel on passe une série de mots-clés, et qui
répond par une liste d’objets. Dans un premier temps ce service
interne a pu être implémenté sur un unique serveur. Mais l’audience
grimpe, et voilà que la recherche devient le maillon critique de la
plateforme.

Rien n’est plus facile alors que de répartir le service de recherche REST
sur différents serveurs ; on obtiendra alors à la fois une capacité
accrue, et une bonne tolérance aux pannes.

Ce que l’on peut représenter ainsi :

Bien sûr, c’est une vision fonctionnelle, du point de vue réseau, les trois
domaines fonctionnels peuvent partager le même équipement de load-
balancing.

 Page 79

Architectures Hautes-Performances

© Smile – Open Source Solutions

w
w

w
.s

m
il
e
.f
r

MapReduce et
Hadoop

Nous avons parlé jusqu’ici de la répartition de charge temps-réel, c'est-
à-dire portant sur le traitement synchrone de requêtes. Mais certains
travaux batch, portant sur des téraoctets de données, doivent également
être partitionnés.

MapReduce est un mécanisme de partitionnement de tâches en vue
d’une exécution distribuée sur un grand nombre de serveurs. Le
principe est simple : il s’agit de décomposer une tâche en tâches plus
petites, ou plus précisément découper une tâche portant sur de très
gros volumes de données en tâches identiques portant sur des sous-
ensembles de ces données. Les tâches (et leurs données) sont ensuite
dispatchées vers différents serveurs, puis les résultats sont récupérés et
consolidés. La phase amont, de décomposition des tâches, est la
partie map, tandis que la phase aval, la consolidation des résultats est
la partie reduce.

Le principe est simple donc, mais l’apport de l’algorithme MapReduce
est de bien conceptualiser, en vue de de normaliser les opérations
d’intendance de sorte qu’un même framework puisse prendre en charge
une diversité de tâches partitionnables, ce qui permettra aux
développeurs de se concentrer sur les traitements proprement dits,
tandis que le framework prend en charge la logistique de la répartition.

La normalisation autour de ces principes s’appuie sur la manipulation
de couples (clé, valeur). La tâche initiale est un couple (clé, valeur), et
chacune des tâches intermédiaires également. Chaque tâche
intermédiaire retourne un résultat sous la forme d’un couple (clé,
valeur), et la fonction reduce combine tous ces résultats en un couple
(clé, valeur) unique.

L’algorithme MapReduce est principalement destiné à des tâches de
type batch, de très grande ampleur, portant sur de très grands volumes
de données. La décomposition typique consiste à découper le volume
de données initial en N volumes plus petits, qui peuvent être traités
séparément. L’exemple souvent pris pour illustration est le comptage
du nombre d’occurrence de chaque mot d’un très grand fichier. Le
grand fichier est décomposé en plus petits fichiers, et les occurrences
sont comptées sur chacun d’eux. La fonction reduce additionne les
décomptes obtenus sur chaque fichier intermédiaire.

La modélisation a été proposée initialement (2004) par des
informaticiens de Google pour mieux gérer les gigantesques tâches
portant sur des téra- ou péta-octets de données, et les distribuer sur
des dizaines de milliers de serveurs. Puis Doug Cutting, le créateur de
Lucene, s’en saisit et lance le projet Hadoop, dans le cadre de la
fondation Apache. Cutting sera ensuite embauché par Yahoo pour

 Page 80

Architectures Hautes-Performances

© Smile – Open Source Solutions

w
w

w
.s

m
il
e
.f
r

refondre toute la technologie de recherche du portail, en intégrant
Hadoop et HDFS, qui restera intégralement open source tout en
intégrant l’essentiel des développements financés par Yahoo.

Dans Hadoop, toutes les entités manipulées, les couples (clé, valeur),
doivent être sérialisables, de sorte que l’on puisse les transmettre d’un
serveur à un autre. Mais, puisqu’on a dit qu’il s’agissait de très gros
volumes, il faut aussi optimiser l’utilisation de la bande passante sur le
réseau. C’est pourquoi MapReduce est généralement utilisé en
combinaison avec un système de gestion de fichiers distribué, dans le
cas de Hadoop il s’agit de HDFS. Dans cette logique, chaque serveur
est à la fois un outil de calcul et un outil de stockage. La fonction de
mapping cherchera alors à attribuer chaque tâche à un serveur qui
stocke déjà les données correspondantes.

Enfin, puisqu’il est destiné à fonctionner sur des milliers de serveurs,
Hadoop gère également la tolérance aux pannes, c'est-à-dire qu’il
réaffecte les tâches de manière transparente en cas de panne d’un
serveur.

 Page 81

Architectures Hautes-Performances

© Smile – Open Source Solutions

w
w

w
.s

m
il
e
.f
r

HAUTE DISPONIBILITE

Haute disponibilité

La disponibilité qui compte n’est pas celle de tel ou tel équipement,
mais celle vécue par l’utilisateur utilisant le service, indépendamment
des moyens mis en œuvre pour l’obtenir.

Tous les sites rencontrent des pannes … Même les plus grands. Rien
qu’en 2008, Amazon.com ou bien Voyages-Sncf ont connu des
interruptions importantes. Est-ce une fatalité ?

Les plateformes web ont en général des exigences de disponibilité très
supérieures à celles des applications d’entreprise, même critiques.
D’une part parce qu’à toute heure il reste quelques internautes
connectés. D’autre part, et surtout, parce que c’est la réputation de
l’entreprise qui est en jeu. Sur une application d’entreprise, un arrêt
d’un quart d’heure est généralement toléré, surtout s’il a pu être
anticipé. Sur un portail de l’Internet, la moindre indisponibilité est
perçue comme une forme d’incompétence : « Si ma banque ne sait pas
offrir un service web qui tourne parfaitement, alors comment saura-t-elle

gérer mon argent ?! ».

Tolérance aux
pannes

A tous les niveaux

Bien sûr, l’une des causes d’indisponibilité est la panne d’un
composant, qu’il soit matériel ou bien logiciel. Et c’est pourquoi on
parle souvent de tolérance aux pannes, c’est à dire de la capacité d’une
plateforme à continuer de fonctionner en présence d’une panne.

La tolérance aux pannes peut être gérée à différents niveaux :

� Composants élémentaires : disques, mémoire, etc.

� Serveur, routeur, autres équipements de type appliance.

� Ressources partagées de niveau datacenter

 Page 82

Architectures Hautes-Performances

© Smile – Open Source Solutions

w
w

w
.s

m
il
e
.f
r

Pour la meilleure disponibilité, il faut en pratique combiner la tolérance
aux pannes sur ces différents niveaux, en visant le meilleur rapport
disponibilité / prix global.

Typiquement, vaut-il mieux généraliser des disques RAID sur tous ses
frontaux pour en réduire la probabilité de panne unitaire, ou bien
accepter la panne disque et traiter la redondance au niveau des
serveurs ?

Bonnes pratiques

Quelques bonnes pratiques de la haute disponibilité

Une première règle en matière de haute disponibilité est de ne jamais
compter sur le support du fabricant, quel que soit le délai d’intervention
garanti.

Un technicien sera peut être là sous 4 heures, mais 4 heures c’est très
long, et de plus il est probable qu’il ne pourra réparer immédiatement.

Il faut donc a minima disposer de tous les composants de secours sur
place. On peut en revanche, compter sur un certain niveau de
mutualisation des composants de secours, et à ce titre, plus la
plateforme est grande, moins le secours coûte cher.

Il convient également de disposer d’une gestion de configurations
virtualisées, permettant d’installer n’importe quel serveur sur n’importe
quel hardware en quelques minutes.

Enfin, on peut considérer que, à partir d’une dizaine de serveurs, la
panne doit être considérée comme un événement anodin, avec un
secours totalement transparent.

Pannes logicielles

Il faut bien garder à l’esprit que les pannes dues au logiciel sont bien
plus nombreuses que celles dues au matériel défaillant.

Et pourtant il est courant que l’on investisse davantage sur la
redondance matérielle que sur les process assurant la qualité du
logiciel. Typiquement, on prévoira un serveur de secours, mais on
trouvera trop coûteux de disposer d’une plateforme de préproduction.
De sorte que les nouvelles versions d’applications ne seront pas testées
dans un environnement suffisamment représentatif, ce qui causera des
anomalies et indisponibilités. Redisons-le : il est souvent plus
important d’investir pour se prémunir des défauts logiciels que des
pannes matérielles. D’autant que lorsqu’une panne logicielle survient,

 Page 83

Architectures Hautes-Performances

© Smile – Open Source Solutions

w
w

w
.s

m
il
e
.f
r

la redondance le plus souvent ne sert à rien car le même logiciel est
déployé sur les composants de secours.

La haute disponibilité est affaire de process, bien plus que
d’infrastructure : process de développement et de déploiement, mais
aussi process de supervision et d’exploitation.

Enfin, en matière de haute disponibilité comme ailleurs, la simplicité
doit prévaloir. Il arrive couramment qu’une configuration visant la
disponibilité au prix d’une complexité trop grande subisse des arrêts à
cause même de cette complexité ou mauvaise maîtrise.

C’est pourquoi il faut le redire, le marteler : 9 fois sur 10 les
interruptions de service proviennent du logiciel et non du matériel.
Certes, à l’intérieur de ces 9 fois, une bonne part correspondra à une
mauvaise réaction du logiciel à un incident d’origine matérielle ou un
événement extérieur exceptionnel. Ce pourra être typiquement un
fichier de log devenu trop gros, ou un administrateur qui lance un job,
disons de purge par exemple, qui va bloquer la base de données.

Exploitation

Beaucoup d’organisations ont des processus d’exploitation qui portent
encore la marque d’une époque ancienne, où l’on pouvait arrêter le
service, la nuit vers 3 heures du matin, de manière à mettre en place
différents travaux batch, et à l’occasion, relancer les serveurs. A
l’évidence, le web a changé la donne. Non seulement parce qu’il y a
toujours des internautes en ligne, à toute heure de la nuit, mais aussi
parce que la plateforme web sert des internautes du monde entier, y
compris des internautes pour lesquels il est 9h du matin. Tout cela
semble évident, et pourtant on rencontre encore trop souvent des sites
qui ferment une demi-heure chaque nuit, ou bien une fois par semaine.

C’est en fait dès la conception des applications qu’il faut intégrer
l’exigence d’une exploitation 24/7.

Changements de version

La règle générale en informatique est que ce qui a marché continue de
marcher, du moins tant qu’on ne touche à rien, et qu’il n’y a pas
d’événement extérieur nouveau.

Une grande majorité des interruptions de service se produit à l’occasion
d’un changement de version.

Il est extrêmement difficile de valider une version pour le monde réel.
Les scénarios de test, même si l’investissement est important, n’auront
parcouru que quelques centaines de cas de figure, et d’un seul coup

 Page 84

Architectures Hautes-Performances

© Smile – Open Source Solutions

w
w

w
.s

m
il
e
.f
r

l’application sera confrontée à quelques centaines de milliers, voire
millions de cas de figure. Il y a là un saut quantique auquel peu
d’applications résistent.

Nous ne pouvons pas donner ici toutes les bonnes pratiques de
validation du logiciel, mais trois points essentiels seulement :

� Pour une plateforme qui est vivante, et reçoit régulièrement de
nouvelles versions, la pratique de l’intégration continue et des tests
automatisés est déterminante pour assurer la non-régression.

� La validation n’étant jamais assez complète, une bonne pratique
est la mise en service progressive, que ce soit sur une typologie
d’utilisateurs, sur une région, sur une courte période.

� Il faut pour cela concevoir des mises en service avec possibilité de
retour arrière, et si possible faire une distinction entre les

changements techniques et les changements visibles.

Redondance et
secours

D’une manière générale, la tolérance aux pannes consiste à mettre en
œuvre, pour assurer une fonction, N équipements dont P suffisent.

On peut parler soit :

� De secours actif, dans le cas où les N équipements sont
opérationnels en nominal

� De secours passif, lorsque P équipements sont opérationnels, et N-
P sont en réserve, en secours, en « spare ».

Les questions clés sont bien sûr : Quel process, quel délai, pour que le
secours intervienne, et quel impact visible l’événement a-t-il en termes
de disponibilité ?

Surveillance et passage en secours

La première étape est la détection de la panne et l’activation du secours.
On peut distinguer :

� La surveillance par l’équipement homologue, et la reprise de la
fonction par l’homologue.

� La surveillance par l’étage amont, par l’appelant, et la réaffectation
de la fonction à un homologue, qu’il soit actif ou passif.

 Page 85

Architectures Hautes-Performances

© Smile – Open Source Solutions

w
w

w
.s

m
il
e
.f
r

� La surveillance par la supervision, et la réaction prise en charge à
ce niveau.

Surveillance par l’homologue et heartbeat

C’est le cas de deux équipements placés en parallèle, que ce soit avec
un secours actif ou passif.

Typiquement, avec secours passif, on a un équipement de secours qui
teste en permanence l’équipement principal pour vérifier son bon
fonctionnement. Ce test est l’appel périodique d’un service qui
témoigne du bon fonctionnement. On parle alors de heartbeat, c’est à
dire de battement de cœur : tant qu’on entend battre son cœur, c’est
qu’il va bien.

Pour plus de robustesse, l’échange de heartbeat peut se faire hors du
réseau local, sur un câble Ethernet croisé, ou une liaison série.

S’il détecte la panne de l’équipement actif, l’équipement de secours
reprend la fonction, en reprenant l’adresse IP. Il s’affecte l’adresse IP,
puis envoie en broadcast un message d’effacement du cache ARP, afin
que les switchs puissent associer son adresse physique (MAC) à
l’adresse IP.

Dans certains cas, l’échange entre les équipements peut porter sur
davantage qu’un simple signe de vie, et inclure une vraie
synchronisation de données, afin de reprendre la fonction avec son
contexte, et donc de manière transparente pour les clients.

Surveillance par l’étage amont

C’est typiquement le cas où l’on a un load-balancer en amont, affectant
les requêtes à différents serveurs.

Le load-balancer teste lui-même le bon fonctionnement des serveurs.
Cela peut se faire à différents niveaux : ICMP, test de connexion TCP,
test au niveau HTTP, ou bien appel d’un service spécifique de
surveillance.

Lorsqu’il détecte un équipement défaillant, le load-balancer le sort de la
répartition, et peut adresser une alerte à la supervision.

Soulignons que la qualité de ce test est primordiale. Un cas d’effet de
bord très classique est celui où un serveur en panne répond plus vite
que tous les autres, précisément parce qu’il est en panne. Il répond au
niveau HTTP, mais répond une erreur, ou pire encore une page bien
formée mais comportant un message d’erreur. Dans certains cas, le
load-balancer dirigera les requêtes de manière privilégiée vers ce serveur
défaillant, transformant une panne partielle en indisponibilité globale.

 Page 86

Architectures Hautes-Performances

© Smile – Open Source Solutions

w
w

w
.s

m
il
e
.f
r

Secours passif

Sur une plateforme web, on vise le plus souvent un secours transparent
(« transparent failover »), c’est à dire s’opérant de manière automatique.

Le secours à froid, le secours passif, échoue très souvent.

Il échoue pour différentes raisons :

� La configuration du secours est obsolète ou erronée

� Le mode opératoire du passage en secours est mal maîtrisé

� La bonne personne n’est pas là.

On privilégie donc un secours transparent, mais il doit aussi être
revalidé très régulièrement, et l’on préfère un secours actif, c’est à dire
qui participait au travail en temps normal.

Secours actif

Dans un principe de secours actif, le composant de secours est déjà
opérationnel avant d’être requis. Il est en surnombre, mais assure
malgré tout une part de la fonction. Le secours actif est associé aussi à
un dispositif de passage en mode secours transparent ou automatisé.
On parle d’un secours « à chaud ». Les disques RAID, typiquement,
fonctionnent selon un principe de secours actif.

En règle générale, le secours actif a beaucoup d’avantages :

� Il réduit considérablement les risques. Risque que le composant
de secours lui-même soit défaillant ou bien mal configuré, risque
d’une procédure de passage en secours mal maîtrisée.

� Il permet de tirer parti du surplus de matériel pour disposer d’une
meilleure qualité de service même en l’absence de secours.

� Et bien sûr, le passage en secours automatisé réduit la durée des
incidents, et limite les besoins humains, pour autant que tout se
passe comme prévu.

Aux rangs des inconvénients, on peut citer :

� Une moindre flexibilité, et donc un coût matériel potentiellement
supérieur : chaque plateforme d’un datacenter doit avoir son
serveur de secours, (voire même un pour chaque grande fonction
de la plateforme) alors qu’un hébergeur pourrait choisir de
mutualiser un petit nombre de serveurs de secours pour différents
clients.

 Page 87

Architectures Hautes-Performances

© Smile – Open Source Solutions

w
w

w
.s

m
il
e
.f
r

Gestion mutualisée du secours

Une gestion mutualisée du secours consiste à disposer d’un ensemble
(« pool ») de serveurs en spare, qui peuvent être utilisés pour remplacer
différentes fonctions de la plateforme.

C’est une voie qui peut être nécessaire lorsqu’on a spécialisé les
serveurs, que ce soit une spécialisation fonctionnelle, ou une
spécialisation par partitionnement des données.

Bien sûr, cela suppose que la même configuration hardware puisse
convenir aux différentes fonctions. Et cela implique aussi un process
de passage en secours plus long, puisqu’il implique l’installation de la
configuration spécifique à la fonction secourue.

La généralisation de la virtualisation des serveurs facilite grandement
cette installation rapide du secours : il convient de disposer des VMs
correspondant à toutes les fonctions de la plateforme, prêtes à l’emploi.

C’est un secours qui pourra être rendu automatique, mais ne sera pas
instantané. A moins de disposer d’un SAN qui permette de faire
repartir immédiatement un nouveau serveur sur une VM déjà installée
sur une partition disque.

Single Point of Failure

« SPOF », c’est un acronyme célèbre en matière de disponibilité : le
Single Point Of Failure, Point Unique de Panne, est un composant critique
qui n’est pas secouru, un point de fragilité de la plateforme.

Dans une architecture, il est essentiel évidemment de l’avoir
parfaitement analysé. Pour autant, cette analyse doit faire intervenir
les probabilités de panne très différentes des composants : câble,
switch, routeur, cpu, alimentation, disque, …

Il faut garder à l’esprit aussi que même si un composant est secouru, il
devient critique dès la première panne, et jusqu’à réparation. Le temps
moyen de réparation (MTTR Mean Time To Repair) est donc un facteur
essentiel.

MTBF et probabilité de panne

On appelle MTBF, Mean Time Between Failures, le temps moyen entre
pannes. C’est une caractéristique essentielle exprimant la fiabilité d’un
composant. Ce n’est pas tout à fait la durée de vie moyenne, qui est
une autre notion. L’idée est que à l‘intérieur de la durée de vie de
l’équipement, le MTBF exprime la probabilité de panne. Précisément, le
MTBF est l’inverse de l’espérance de panne. Par exemple, si le MTBF

 Page 88

Architectures Hautes-Performances

© Smile – Open Source Solutions

w
w

w
.s

m
il
e
.f
r

est de 10 ans, l’espérance de panne sur un an est de 0,1 : il y aura en
moyenne 0,1 panne par an.

Les opérateurs qui exploitent plusieurs milliers de serveurs disposent
de bonnes statistiques quant aux pannes. Le MTBF d’un serveur se
situe entre 5 et 10 ans. 10 ans, cela signifie que si vous exploitez 10
serveurs, il vous faut compter sur une panne par an. Si vous exploitez
100 serveurs, environ une panne par mois. On voit bien qu’à partir de
cette dimension, la panne est totalement banalisée. Et c’est lorsqu’elle
est banalisée que l’on atteint la meilleure disponibilité.

Il existe différentes formules statistiques pour brasser les MTBF et les
probabilités de panne. Sous Excel, vous disposez d’une fonction
LOI.POISSON, qui vous donne la probabilité de N pannes pour une
espérance donnée.

Il est intéressant par exemple de calculer ainsi la probabilité de double
panne, comme sur le tableau suivant :

MTBF (ans) 3
Espérance de panne sur 1 an 0,333
Probabilité de zéro panne sur 1 an 0,717
Probabilité d'une panne ou plus sur 1 an 0,283
Temps pour réparer, en jours 2 7 31
Espérance de panne unitaire sur ce délai 0,002 0,006 0,028
Probabilité de zéro panne sur ce délai 0,998 0,994 0,972
Probabilité d'une panne ou plus sur ce délai 0,002 0,006 0,028
Probabilité de double panne sur l'année 0,0005 0,0018 0,0079
Probabilité de double panne sur l'année (%) 0,052% 0,181% 0,791%
Disponibilité sur l'année 0,9995 0,9937 0,8774

Si l’espérance d’occurrence d’un événement sur une période donnée est de E, alors la

probabilité de N occurrence est LOI.POISSON(N, E, FAUX), et la probabilité de N

occurrences ou moins est de LOI.POISSON(N, E, VRAI).

On voit ici que, pour un MTBF de 3 ans, la disponibilité malgré la
redondance tombe en dessous de 0.995 pour un temps de réparation de
7 jours ce qui n’est pas négligeable, et en dessous de 0,9 s’il faut un
mois pour réparer.

La brique de base, le serveur élémentaire

Supposons que les mesures de dimensionnement conduisent à une
capacité de 100 pages par seconde sur un serveur, et que votre
audience maximum à l’heure de pointe correspond à 150 pages par
seconde. Il vous faut donc idéalement 1,5 serveurs, ce que
raisonnablement on arrondit à 2 serveurs. Mais pour résister à une
panne, on doit donc mettre en place 3 serveurs, c’est à dire deux fois la
capacité nécessaire.

 Page 89

Architectures Hautes-Performances

© Smile – Open Source Solutions

w
w

w
.s

m
il
e
.f
r

Si l’on pouvait disposer de serveurs ayant la moitié de cette capacité,
pour la moitié du prix, alors on mettrait trois serveurs pour tenir 150
pages par seconde, un quatrième pour le secours. Soit au final 4
serveurs, mais pour les 2/3 du prix.

D’une manière plus générale, en matière de disponibilité, plus les
unités élémentaires sont petites, moins la tolérance aux pannes est
coûteuse, puisque le coût relatif de l’équipement de secours est de 1/N,
où N est le nombre de serveurs en nominal.

Par ailleurs le meilleur rapport performance/prix est généralement
obtenu vers le bas de la gamme.

C’est une analyse que nous avons déjà citée en introduction (cf. « Quelle
cellule élémentaire, quelle brique de base ? », page 15).

Monitoring et alertes

Service complet, scénarios applicatifs.

Les internautes s’énervent, pestent, maugréent, et vont voir ailleurs,
mais très rares sont ceux qui se donneront le mal de vous remonter les
problèmes qu’ils rencontrent, et encore moins leurs vagues
insatisfactions. Lorsqu’un internaute proteste, il faut bien comprendre
qu’il est le porte-parole de 1000 internautes silencieux. On ne peut
donc pas balayer sa critique en se disant « les autres ne semblent pas
avoir de problème… ». Il faut au contraire saisir l’occasion de chaque
remontée des internautes, dysfonctionnement ou simple critique
d’ergonomie.

On ne s’intéresse pas ici à la qualité générale de votre service ni à son
ergonomie, mais à sa disponibilité seulement. Si votre serveur ne
répond pas, vous pouvez être certains que personne ne va vous appeler,
d’autant que même le numéro de téléphone ne sera sans doutes pas
disponible.

Il est donc impératif de mettre en place un dispositif de surveillance.

Nous parlerons ailleurs de la supervision de plateforme, qui est un sujet
un peu différent. Nous traitons ici de la surveillance du service au
niveau fonctionnel, c’est à dire tel qu’il est vu par ses utilisateurs. On
parle parfois de surveillance fonctionnelle versus surveillance
organique. La surveillance organique s’intéresse aux organes, c’est à
dire aux composants, à différentes échelles : un simple disque ou bien
une base de données. La surveillance fonctionnelle s’intéresse à la
fonction, au service rendu.

 Page 90

Architectures Hautes-Performances

© Smile – Open Source Solutions

w
w

w
.s

m
il
e
.f
r

Monitoring Http

Il existe différentes solutions de surveillance, ou monitoring. Les plus
simples consistent à demander périodiquement la page correspondant à
une URL donnée. Il convient de vérifier ensuite si le serveur répond,
s’il n’y a pas de code d’erreur, mais aussi si la page retournée est
conforme, et enfin si le temps de réponse est acceptable. Dans tous les
cas d’erreur, le service de monitoring pourra alerter un exploitant, que
ce soit par email ou bien par SMS.

Pour surveiller avec un minimum de profondeur, on évite généralement
de demander une page d’accueil, ou bien de simple menu, ou bien une
page qui sera servie depuis le cache. On s’attache au contraire à
demander une page qui va solliciter toutes les ressources de la
plateforme. Ce peut être un résultat de recherche par exemple, mais
on choisit parfois de réaliser une page spécifique, qui teste un ensemble
de composants, et affiche un compte rendu global.

Pour des services de haut niveau, la surveillance fonctionnelle ne se
satisfait pas d’une page unique, même complexe. Il faut valider
l’ensemble du service au moyen de scénarios d’utilisation : l’achat d’un
billet d’avion, le passage d’un virement, l’inscription, la saisie d’une
contribution, etc. Des processus qui impliquent une suite de requêtes
exécutées dans le cadre d’une session. Ce genre de scénarios ne peut
être exécuté qu’au moyen d’un vrai navigateur. En effet, il y a trop de
choses dans un site web moderne qui peuvent échouer et ne relèvent
pas du Html pur : javascript, cookies, ajax, flash, etc. On utilisera
pour cela des outils tels que Selenium, intégré aux navigateur Firefox.

 Page 91

Architectures Hautes-Performances

© Smile – Open Source Solutions

w
w

w
.s

m
il
e
.f
r

Woozweb

Woozweb est un outil de monitoring gratuit, qui permet :

� De surveiller un ou plusieurs sites, c'est-à-dire plus précisémment
des URLs.

� D’alerter en cas d’indisponibilité, de temps de réponse excessif ou
de page non-conforme (non-présence d’un mot clé attendu dans la
page).

� De suivre la qualité de service dans le temps par différents
graphes : temps de réponse, disponibilité, par jour / par mois.

� De recevoir des états de synthèse.

Woozweb teste les sites depuis deux serveurs sondes, l’un en France,
l’autre aux Etats-Unis. Chaque sonde teste chaque site une fois toutes
les 15 minutes.

Il existe d’autres services de monitoring, mais Woozweb est celui qui
offre le service le plus complet, et la surveillance la plus rapprochée,
parmi les outils gratuits.

 Page 92

Architectures Hautes-Performances

© Smile – Open Source Solutions

w
w

w
.s

m
il
e
.f
r

LA GESTION DES DONNEES

Gestion des données

Un problème difficile

Nous avons vu que la gestion des traitements était finalement assez
facile à partitionner, et donc à rendre extensible. Simplement parce
que dans un paradigme (traitement, données), c’est à l’étage données
que se situe le besoin de partage, d’interaction et de synchronisation.

Nous éviterons de parler trop vite de base de données, pour mieux
analyser les problématiques relevant plus largement de la gestion des
données.

Pensée unique ?

En matière d’architectures hautement extensibles, il faut en premier
lieu cesser de considérer la base de données comme solution unique à
toutes formes de besoins.

Les SGBD sont des outils très complets et robustes, dont l’usage s’est
généralisé au fil des années, à tel point que, pour beaucoup
d’architectes, la question ne se pose même plus : les données doivent
être gérées dans un SGBD relationnel. Et une fois ce postulat posé, on
réfléchit au moyen de rendre cette gestion extensible.

De nombreux architectes ont critiqué cette approche dite du « one size
fits all » (une taille unique convient à tout le monde), qu’on pourrait
traduire en français branché par pensée unique.

Car rendre une base de données extensible est complexe, moyennement
performant, et finit toujours par buter sur une limite.

Ainsi, les très grandes plateformes de l’Internet ont toutes renoncé non
pas aux bases de données en général, mais au principe d’une base
centralisée tournant sur un méga-cluster.

Modélisation objet et programmes

Par rapport aux années 90, un changement fondamental est intervenu
dans le développement d’applications. L’application des années 90
construisait une requête SQL, qu’elle adressait à un SGBD. Ou bien
dans certains cas, elle invoquait une procédure stockée du SGBD.

 Page 93

Architectures Hautes-Performances

© Smile – Open Source Solutions

w
w

w
.s

m
il
e
.f
r

Au sein de l’application, la modélisation d’entités en forme d’objets
métier s’est répandue. Dans un premier temps, cette approche était
gênée par la nécessité de convertir les interfaces relationnelles
ensemblistes de la base de données vers les objets de l’application, et
réciproquement. Rapidement sont apparus des frameworks qui ont
pris en charge ce travail. Et la généralisation de ces couches ORM
(object-relationnal mapping), a modifié en profondeur la relation entre
une application et son SGBD. L’application ne prépare plus des
requêtes SQL ensemblistes, l’application n’a plus une approche
ensembliste de la gestion des données, elle est focalisée sur son
paradigme objet.

Ainsi, les couches ORM telles que Hibernate, ont beaucoup réduit le
spectre de fonctionnalités SGBD effectivement utilisées. A la fois parce
que le paradigme objet n’a pas grand usage des possibilités
ensemblistes, et également parce que ces couches visaient une totale
indépendance par rapport à la base de données, et devaient donc se
satisfaire du plus petit dénominateur commun aux différents SGBD.

C’est ainsi par exemple que les langages de procédures stockées, qui
étaient un must dans les années 90 pour un SGBD sérieux, sont tombés
en désuétude, à la fois par manque de standard, et par incompatibilité
avec le développement objet.

Les propriétés ACID

Pour une gestion sûre et cohérente des données, en présence de
multiples processus effectuant des mises à jour de manière
concurrente, un système de gestion des données doit respecter les
propriétés dites « ACID » :

� Atomicité. Dans une séquence d’opérations liées, une transaction,
on doit avoir l’assurance que toutes les opérations ont été
exécutées, ou qu’aucune n’a été exécutée.

� Cohérence. Les données sont toujours dans un état cohérent, il
n’y a pas d’états transitoires incohérents qui soit visible.

� Isolation. Les autres processus ne voient que l’état avant et l’état
après une transaction, ils sont isolés des états intermédiaires.

� Durabilité. Une fois la transaction terminée avec succès, elle est
irréversible.

Bien entendu, ces propriétés doivent être vérifiées en toutes
circonstances, c'est-à-dire :

� Quels que soient le nombre de processus concurrents et la
chronologie de leurs transactions ;

 Page 94

Architectures Hautes-Performances

© Smile – Open Source Solutions

w
w

w
.s

m
il
e
.f
r

� Y compris en cas de panne soudaine d’un composant

Les bonnes bases de données savent assurer les propriétés ACID. Cela
inclut MySql, avec le moteur InnoDB.

Pour bien fixer les idées, il est utile de considérer un exemple typique de
transaction. Il s’agit d’enregistrer un virement d’un montant M d’un
compte S vers un compte D, qui implique la suite d’opérations
suivante :

� Vérifier que le solde du compte S est supérieur ou égal à M.

� Soustraire M du solde du compte S.

� Ajouter une ligne dans la table des mouvements associés à S.

� Ajouter M au solde du compte D.

� Ajouter une ligne dans la table des mouvements associés à D.

On voit aisément les problèmes qui surviendraient en l’absence de
propriétés ACID. Par exemple si la transaction est interrompue après
avoir soustrait et avant d’avoir additionné…

La mauvaise nouvelle, c’est qu’il est très difficile de réaliser une gestion
de données assurant les propriétés ACID et qui soit par ailleurs
extensible sans limite.

Nous verrons qu’il faut en général accepter quelques compromis, et bien
mesurer le risque d’une gestion non-ACID. Bien sûr, s’il s’agit d’argent
ou de sécurité, le compromis n’est pas possible. Mais s’il s’agit des
commentaires ajoutés à un blog, on peut se passer de ces propriétés, et
accepter des états transitoires incohérents, ou d’une manière plus large,
négliger les cas exceptionnels, y compris même la perte de quelques
commentaires dans le cas d’une panne disque, si elle est rare.

Pour autant, on ne peut y renoncer à la légère. Une base de forte
volumétrie qui se retrouve dans un état incohérent peut être un problème

très difficile à résoudre.

Le cluster

Le cluster de base de données est la seule solution qui garantisse la
cohérence des données et les propriétés ACID entre plusieurs serveurs.
Cela implique des échanges relativement complexes entre les serveurs,
c’est ce qu’on appelle le commit à deux phases, ou two-phase commit
(2PC) : avant de valider (« commiter ») une transaction, chaque serveur
doit vérifier que tous les autres pourront la valider également. Entre
cette première vérification et la confirmation de validation, les autres

 Page 95

Architectures Hautes-Performances

© Smile – Open Source Solutions

w
w

w
.s

m
il
e
.f
r

serveurs ne doivent évidemment rien faire qui puisse interdire la
transaction.

Ce que l’on peut représenter schématiquement comme suit :

Ces échanges ont un impact sur les performances, de sorte que le
mécanisme n’est pas très extensible.

Et en cas d’arrêt brutal au milieu de ces échanges, il faut encore des
échanges complexes pour « démêler » les serveurs, débloquer les verrous
et s’assurer de la cohérence.

Le cluster de base de données forme un tout, incluant son load-
balancing, de sorte qu’il est vu du reste de la plateforme comme un
serveur unique. Les deux bases sont à tout instant identiques et une
transaction n’est validée sur l’une que si elle peut l’être également sur
l’autre. En cas de panne de l’un des serveurs, aucune donnée n’est
perdue, le second traite immédiatement toutes les requêtes.

Pour une vraie haute-disponibilité, chaque serveur doit donc avoir une
capacité suffisante pour traiter toutes les requêtes. Avec deux serveurs,
on ne peut donc pas avoir simultanément haute-disponibilité et
extensibilité. C’est à partir de trois serveurs que l’on pourrait avoir à la
fois une capacité nominale double et la tolérance à une simple panne.
Mais on met assez rarement en œuvre un cluster au-delà de deux
serveurs, et donc plus souvent dans une finalité de haute disponibilité
que de haute capacité.

En conclusion, il faut retenir que le cluster n’est pas le nec-plus-ultra
de la gestion de données dans une plateforme web hautes-
performances.

 Page 96

Architectures Hautes-Performances

© Smile – Open Source Solutions

w
w

w
.s

m
il
e
.f
r

Lecture seule, extensibilité

Beaucoup de plateformes web sont, sinon en lecture seule, du moins en
lecture majoritaire.

Or en lecture, l’extensibilité est facile à obtenir :

� On copie les données à l’identique sur un grand nombre de
serveurs équivalents

� On lit les données sur n’importe lequel de ces serveurs.

C’est un principe de réplication, que l’on peut représenter comme ceci :

Où M est une base Maître, et E sont des bases Esclaves. Toutes les
bases esclaves sont ici en lecture seule.

On peut également mettre en œuvre cette réplication en cascade, de la
manière suivante :

Lorsqu’une modification est opérée sur la base maître, elle doit être
propagée sur les bases esclaves. Nous verrons plus loin les outils de
cette propagation.

La réplication est extensible, simplement et sans limite, mais elle
implique un délai, et donc des états transitoires incohérents, aussi bien
entre la base maître et une base esclave, mais aussi entre deux bases
esclaves.

 Page 97

Architectures Hautes-Performances

© Smile – Open Source Solutions

w
w

w
.s

m
il
e
.f
r

Ainsi, si un même utilisateur est amené à lire des données depuis une
base E1 d’abord, puis depuis une base E2, il est possible qu’il lise des
choses différentes, du moins en présence d’écritures exécutées sur M,
et en cours de réplication.

En présence d’un flux d’écriture réduit, ces états transitoires peuvent
souvent être négligés, mais ils doivent malgré tout être analysés, afin de
bien en mesurer les conséquences possibles au plan fonctionnel.

Ecriture seule, extensibilité

Le cas de l’écriture seule est beaucoup plus rare sur des plateformes
web, mais peut arriver. C’est typiquement le cas de l’écriture d’un
fichier de log : chaque serveur écrit sa propre log, qu’il ne lit jamais.
Les fichiers de log sont acheminés de manière asynchrone sur un
serveur où ils sont consolidés en une log unique.

Ce que l’on peut représenter comme ceci :

Le partitionnement des données

Principe du partitionnement

Un autre cas de figure qui permet une gestion extensible des données
est le partitionnement.

Partitionner, c’est répartir les données sur N serveurs, de sorte que :

� Chaque entité partitionnée est gérée sur un serveur et un seul

� Elle emmène avec elle différentes entités liées, au regard du modèle
des données

� Certaines entités de référence peuvent être répliquées sur les
différents serveurs.

 Page 98

Architectures Hautes-Performances

© Smile – Open Source Solutions

w
w

w
.s

m
il
e
.f
r

Ce qu’on peut représenter symboliquement comme ceci :

Bien entendu, en présence d’une gestion de données partitionnée, les
applications doivent savoir facilement sur quel serveur chercher une
entité. Elles pourraient adresser des requêtes en parallèle à tous les
serveurs, mais dans ce cas la charge ne serait pas partagée, et l’on
n’aurait obtenu qu’une extensibilité en termes de volumétrie, non
d’accès.

Quelle logique de répartition ?

Dans une gestion de données partitionnée, il faut absolument éviter les
règles de partitionnement fonctionnelles, telles que segmentation
alphabétique (A-F sur le serveur S1, G-N sur le serveur S2, …) ou encore
chronologique.

Ce type de répartition manque beaucoup trop de flexibilité. En effet,
comment réagencer ces gros volumes de données en cas de saturation
d’un serveur, ou bien pour introduire un nouveau serveur ? On voit
qu’il est difficile d’accompagner ainsi une montée en charge progressive.

La bonne pratique est donc plutôt d’adopter un partitionnement
arbitraire, sans autre critère que le taux de remplissage. Une entité est
gérée sur un serveur non pas parce qu’elle vérifie telle ou telle propriété,
mais simplement parce qu’on en a décidé ainsi, parce qu’il y avait de la
place.

Cela requiert bien sûr une table d’allocation, qui gère la correspondance
(entité � serveur), et cette table doit être mise à disposition des
applications, et tenue scrupuleusement à jour. Mais en échange de
cela, on obtient une réelle flexibilité dans le remplissage, même si les
opérations de réagencement général restent difficiles.

 Page 99

Architectures Hautes-Performances

© Smile – Open Source Solutions

w
w

w
.s

m
il
e
.f
r

Requêtes transverses et datawarehouse

En présence d’une gestion de données partitionnée, il demeure presque
toujours quelques besoins de requêtes transverses, des requêtes qui ne
peuvent pas être traitées par un seul serveur. Par exemple, rechercher
tous les internautes inscrits qui habitent en région parisienne.

Il y a deux voies pour obtenir cela :

� Soit des requêtes adressées en parallèle à tous les serveurs, et un
traitement de consolidation des réponses ;

� Soit la création d’une base consolidée permanente, à la manière
d’un datawarehouse.

C’est en général plutôt cette seconde voie que nous préconisons. En
effet une fois le datawarehouse central mis en place, toutes sortes de
requêtes, d’extractions ou de traitements statistiques de type
décisionnel pourront y être opérés. Alors que dans le cas de la
parallélisation / consolidation, il faut explicitement réaliser chaque type
de traitement.

Le datawarehouse et le partitionnement sont donc complémentaires.

En voyant cette figure, on pourrait se dire : à quoi bon partitionner,
pour ensuite consolider ? Mais en fait :

� Le datawarehouse ne consolide que l’information utile en

transverse, le plus gros de l’information reste purement
partitionné ;

� Le datawarehouse peut gérer de gros volumes, mais avec un taux
d’accès faible, il est utilisé pour des requêtes occasionnelles,
relevant le plus souvent de l’administration de la plateforme ;

 Page 100

Architectures Hautes-Performances

© Smile – Open Source Solutions

w
w

w
.s

m
il
e
.f
r

� Le datawarehouse peut avoir une modélisation et des outils
différents, plus adaptés à sa fonction et typologie d’accès.

� Enfin, puisqu’on a dit qu’il nous fallait une table d’allocation à
jour, le datawarehouse est le lieu naturel d’élaboration de cette
table.

Partitionnement par user

Dans une plateforme web, l’entité appropriée pour le partitionnement
est généralement l’utilisateur, pour autant qu’il soit identifié. C’est bien
souvent l’entité autour de laquelle gravitent les données : l’utilisateur
est inscrit, ou « membre », et différentes données lui sont rattachées :
son profil, ses préférences, ses commandes, etc.

Ce que l’on peut représenter comme suit :

Si l’entité de partitionnement est l’utilisateur, alors on peut envisager de
répartir dès le niveau frontal :

� Un même internaute est alors géré sur un même frontal, non pas
l’espace d’une session, mais toujours, pour toutes ses visites.

� Le frontal est en relation avec l’une des partitions de base, gérant
les données de l’utilisateur.

 Page 101

Architectures Hautes-Performances

© Smile – Open Source Solutions

w
w

w
.s

m
il
e
.f
r

� Dans ce cas, on gèrera le load-balancing sur la base de
l’identification.

L’un des avantages est une certaine transparence dans l’accès aux
données : les applications n’ont pas à connaître le partitionnement. C’est
en particulier approprié lorsque l’application est un progiciel.

En revanche, ce type de partitionnement rend plus difficile la gestion du
secours : chaque frontal, chaque partition de base, doit disposer de son
propre secours, ou alors il faut mettre en œuvre un secours sur du
matériel mutualisé, mais cela implique un processus d’activation du
secours qui installe la bonne configuration et la bonne sauvegarde.

En constituant ainsi des plateformes indépendantes, assurant chacune
sa haute disponibilité, on obtient une architecture de ce type :

On a fait figurer un lien entre la base consolidée, qui porte la table
d’allocation, et le dispositif de load-balancing, pour signifier une
répartition fonction de l’utilisateur. Dans ce cas de figure, chacun des
frontaux ne voit qu’une seule base de données, la sienne, correspondant
à la partition qui porte ses utilisateurs.

 Page 102

Architectures Hautes-Performances

© Smile – Open Source Solutions

w
w

w
.s

m
il
e
.f
r

L’alternative est de gérer l’aiguillage vers la bonne partition en aval des
frontaux web, au niveau de l’accès aux données. C’est plus naturel,
plus flexible, et plus robuste, et le load-balancing en amont plus simple.
Mais le partitionnement n’est alors pas transparent, il doit être géré par

l’application.

On peut représenter cette configuration comme suit :

Ici, le load-balancer répartit la charge sans se préoccuper des
utilisateurs, et pas même des sessions. C’est au niveau des frontaux
qu’intervient la table d’allocation qui définit le partitionnement, et qui
peut être répliquée ou cachée sur les frontaux. Et chaque frontal
adresse ses requêtes aux différentes partitions selon le besoin. Le
secours à l’étage frontal est simplifié puisque les frontaux sont tous
équivalents. Il n’y a pas d’ailleurs de relation entre le nombre de
frontaux et le nombre de partitions.

En général, comme toute forme de spécialisation des ressources, le
partitionnement rend plus difficile la gestion du secours, puisque
chaque partition doit bénéficier d’un secours.

En résumé, le partitionnement est souvent la voie la plus extensible
dans la gestion des données. Il présente quelques contraintes, mais
couplé à une consolidation au sein d’un datawarehouse, c’est une
configuration qui répond à un grand nombre de besoins.

 Page 103

Architectures Hautes-Performances

© Smile – Open Source Solutions

w
w

w
.s

m
il
e
.f
r

Synthèse

Nous avons passé en revue 4 variantes de gestion de données visant
l’extensibilité :

� Gestion ACID centralisée ou en cluster, pour les données critiques.

� Réplication pour les données en lecture seule, ou en lecture
majoritaire.

� Consolidation asynchrone pour les données en écriture seule.

� Partitionnement, pour les données partitionnables, associé le cas
échéant à un datawarehouse.

Ces quatre voies peuvent évidemment être combinées, pour couvrir le
besoin d’une plateforme web.

Base de données

La grosse base centrale

Le chapitre précédent donnait des axes de solution vers une
extensibilité à peu près sans limite au plan théorique.

Dans la pratique toutefois, il faut garder à l’esprit que la base de
données centrale, unique, convient encore à une majorité des sites.

Elle est difficilement contournable lorsqu’on déploie un progiciel : les
architectures extensibles sur la gestion des données sont rarement
transparentes, et l’on ne peut pas prendre un ERP quelconque par
exemple, et lui coller une gestion de données extensible.

En matière de base de données, avant d’être aux limites, on peut
trouver de très importants facteurs de gain dans l’optimisation des
requêtes, des index, des paramètres généraux ou du cache. Une fois la
base optimisée, on peut encore trouver un gain important dans la
configuration matérielle : disques rapides, processeurs, mémoire.

Au total, il faut retenir qu’une base de données bien conçue et bien
« tunée », sur un serveur puissant, peut servir une très grosse
plateforme web. A titre d’exemple, le site cadremploi.fr, qui reçoit 3,2
millions de visites par mois, sur des processus de consultation
relativement complexes, s’appuie sur une base Oracle unique tournant
sur un bi-processeur qui a quelques années déjà, une base qui est loin
d’être surchargée. Avec des applications bien conçues pour la
performance, une base centrale peut aller très loin.

 Page 104

Architectures Hautes-Performances

© Smile – Open Source Solutions

w
w

w
.s

m
il
e
.f
r

L’approche classique

L’approche traditionnelle est un modèle à deux étages : frontal / sgbd,
qui se représente comme suit :

Pour augmenter la capacité d’accueil, on ajoute des
frontaux. Niveau SGBD, on peut construire un cluster de
deux serveurs, mais chacun doit être en mesure de traiter
la totalité de la charge. Ce qui donne ceci :

Mais on ne peut pas ajouter indéfiniment des frontaux, il vient un stade
où la base de données sature, elle est le point de contention :

La réplication SGBD simple

L’un des outils puissants à notre disposition pour étendre la capacité de
la gestion de données est la réplication.

Voyons d’abord le cas de la réplication maître-esclave.

 Page 105

Architectures Hautes-Performances

© Smile – Open Source Solutions

w
w

w
.s

m
il
e
.f
r

Le principe est simple : toutes les écritures appliquées sur la base
maître sont propagées et exécutées sur la ou les bases esclaves. Il peut
y avoir un grand nombre de bases esclaves. La base maître est la seule
qui accepte les écritures, les autres bases sont en lecture seule.

La réplication maître-esclave est offerte par la plupart des SGBD, et
facile à mettre en œuvre.

La réplication est transactionnelle, c’est à dire que seules les
transactions commitées sur la base maître sont répliquées sur la base
esclave, et elles sont alors répliquées totalement.

La réplication est fiable : aucune transaction ne peut être perdue, même
en présence d’incidents, que ce soit sur le réseau ou bien sur l’une des
bases esclaves. Si la base esclave est indisponible, par exemple arrêtée
pour maintenance, alors les transactions s’accumulent en file d’attente,
et seront jouées lorsque la base esclave redeviendra disponible. Cette
fiabilité théorique est toutefois dépendante de la configuration
matérielle dans la pratique : si la file d’attente est sur un disque non
secouru qui vient à crasher, les transactions non transmises seront
perdues.

La réplication est asynchrone : la base esclave peut être en retard de
quelques transactions par rapport à la base maître. Ce retard dépend
de la configuration, et peut être réduit à quelques secondes. Mais au
plan théorique, il faut compter sur la possibilité d’un décalage plus
grand.

Enfin, le couple formé de la base maître et d’une base esclave en lecture
ne respecte pas les propriétés ACID, comme vues plus haut.

Comme pour tout dispositif incrémental, fonctionnant par « deltas » c’est
à dire ne portant que sur la propagation des changements, la fiabilité
est absolument critique. Un taux même très faible de transactions
perdues engendrerait une divergence entre les bases qui ne pourrait
aller qu’en s’accentuant. Et une fois que les bases ont divergé, les
resynchroniser peut être particulièrement délicat.

On peut distinguer deux modes d’utilisation de la réplication :

 Page 106

Architectures Hautes-Performances

© Smile – Open Source Solutions

w
w

w
.s

m
il
e
.f
r

� En mode secours seul. La base esclave est une copie, légèrement
décalée, de la base maître. En cas de panne de la base maître, on
passe l’esclave en maître.

� En mode partage de charge. Dans ce mode, la base esclave est
utilisée en lecture. Les requêtes en lecture peuvent être réparties
entre la base maître et la base esclave ou plusieurs bases esclaves.
C’est un schéma que nous avons déjà évoqué.

Il faut garder à l’esprit que, dans tous les cas, l’activité en écriture sur la
base esclave, ou bien les bases esclaves, est la même que sur la base
maître. C’est donc une configuration qui n’apporte rien si la base
maître est saturée en écriture.

Réplication « manuelle »

La réplication suppose des modèles de données très proche, sinon
identiques. Elle crée donc une forte dépendance entre les sous-
systèmes concernés. Lorsqu’il s’agit de sous-systèmes homologues,
comme dans le cas d’une répartition de charge, la dépendance ne pose
pas de problème : quoi qu’il en soit on souhaite que les bases soient
identiques.

Mais on peut aussi mettre en œuvre la réplication entre sous-systèmes
distincts, qui doivent échanger des données. Dans ce cas, la
dépendance n’est pas bonne, et viole le principe d’encapsulation des
données. C’est à dire que la réplication est utilisée à la manière d’un
middleware, ce qu’elle n’est pas. Il convient plutôt :

� Soit d’utiliser un vrai middleware de type MOM, asynchrone et
fiable (cf. « MOM et Message Queues », page 31).

� Soit de mettre en place un dispositif de collecte applicatif, qui
pourra passer par l’invocation d’un webservice de collecte.

Réplication croisée, multi-maîtres

La réplication multi-maîtres consiste « simplement » à croiser deux
réplications maître-esclave, comme on peut le représenter sur le
schéma suivant :

 Page 107

Architectures Hautes-Performances

© Smile – Open Source Solutions

w
w

w
.s

m
il
e
.f
r

Dans cette configuration, les deux bases sont en lecture-écriture. Elles
sont identiques à un délai près, c’est à dire qu’en l’absence d’écriture,
elles redeviennent identiques.

La réplication multi-maîtres est d’une mise en œuvre délicate, non pas
tant au plan technique, mais au plan fonctionnel :

� Des cas d’incohérences transitoires entre les deux bases doivent
être analysés, et parfois traités par des règles de gestion
spécifiques.

� Une même transaction étant exécutée sur une même base, chaque
base a un comportement ACID, mais ce n’est pas le cas du couple
de bases, ce n’est pas un cluster.

Par ailleurs, comme le cluster, c’est une configuration qui dans la
pratique peut aller jusqu’à 3 serveurs, mais guère au delà.

Si les requêtes à la base de données sont réparties unitairement entre
les bases, alors le risque est fort de souffrir d’incohérences. Un même
internaute pourrait avoir demandé une modification de ses données,
traitée sur l’un des serveurs, et immédiatement accéder en lecture sur
l’autre serveur et ne pas voir ses changements. On voit que pour
assurer qu’un même internaute a une vision cohérente et stable des
données, il faut faire en sorte qu’il n’accède qu’à une seule des bases.

Pour cela, on peut envisager :

� Soit une répartition statique des frontaux vers les bases de
données, associée à une répartition de charge avec affinité de
serveurs, ce qui peut se représenter comme suit :

 Page 108

Architectures Hautes-Performances

© Smile – Open Source Solutions

w
w

w
.s

m
il
e
.f
r

� Soit une répartition sans affinité à l’étage frontal, mais une
mémoire du serveur affecté à une session. Ce qui a le bénéfice
d’un load-balancing plus flexible en amont, mais oblige malgré tout
à une gestion de données de session, qui bien sûr ne pourra pas ici
être en base de données, mais pourrait être conservée dans un
cookie par exemple.

Notons qu’ici aussi, comme pour le cluster, si une des bases est
indisponible, la capacité globale est divisée par deux

 Page 109

Architectures Hautes-Performances

© Smile – Open Source Solutions

w
w

w
.s

m
il
e
.f
r

RAIDb et Sequoia

En matière d’extensibilité de la gestion des données, il faut citer aussi le
concept relativement récent de RAIDb, « Redundant Array of Inexpensive
Databases », inspiré évidemment du RAID pour les disques.

Le concept est issu des laboratoires de l’INRIA, exposé dans un article
de 2003, et implémenté d’abord sous la forme d’un middleware
initialement nommé C-JDBC, repris ensuite par Continuent et renommé
Sequoia.

Comme pour le RAID disque, le principe de Sequoia est l’utilisation de
multiples bases de données, de dimension et de niveau de
fonctionnalités ordinaires, pour construire un cluster de bases de
données, visant à la fois la haute disponibilité de l’ensemble et
l’extensibilité en capacité. Sequoia implémente une « base de données
virtuelle », appuyée sur des bases de données effectives, qui peuvent être
hétérogènes, appelées ici « backend ».

Pour les applications, l’utilisation d’un cluster Sequoia au lieu d’une
base de données ordinaire est totalement transparente. Les
applications adressent la base de données par le middleware standard
JDBC, pour les applications Java, mais des APIs sont maintenant
disponibles également pour les applications PHP ou d’autres
environnements.

Il y a plusieurs configurations possibles de Sequoia, mais la plus utile
est celle qui gère N bases de données identiques, entre lesquelles les
requêtes sont distribuées. Les requêtes d’écriture sont adressées en
parallèle à toutes les bases, tandis que les requêtes de lecture sont
load-balancées. On n’obtient donc un bénéfice réel que s’il y a
relativement moins d’écritures que de lectures, ce qui est courant.

 Page 110

Architectures Hautes-Performances

© Smile – Open Source Solutions

w
w

w
.s

m
il
e
.f
r

Cette configuration apporte des bénéfices semblables à ceux de la
réplication, mais avec une différence essentielle : les écritures sont
exécutées de manière synchrone sur toutes les bases, de sorte qu’il n’y
a plus de problème lié aux incohérences transitoires.

Sequoia traite également de la tolérance aux pannes, puisque les bases
de données indisponibles sont automatiquement sorties de la
répartition. Bien entendu, le composant middleware lui-même ne doit
pas devenir « SPOF », point de fragilité. C’est pourquoi la configuration
type met en œuvre deux ou plusieurs contrôleurs Sequoia, et les
connecteurs (du côté des applications clientes), gèrent une répartition
de charge (random, round-robin, séquentielle), entre les contrôleurs,
sachant eux-mêmes éliminer un contrôleur défaillant.

Une même connexion applicative est stable, sur le même contrôleur,
mais le contrôleur répartit ensuite les requêtes entre les différentes
bases. Il utilise lui-même différents algorithmes : least-pending-requests
(la base qui a le moins de requêtes en attente), round-robin (permutation
circulaire), weighed-round-robin (idem avec pondération selon la
capacité).

Une fonctionnalité importante est la gestion d’une log des transactions
au niveau du contrôleur Sequoia lui-même, indépendamment des bases
backend. Ainsi Sequoia permet également de désactiver l’une base de
données backend pour une opération de maintenance. Dans ce cas, le
contrôleur définit un point de contrôle dans sa log, de manière à
pouvoir rejouer les transactions manquantes lorsque la base sera
réinsérée.

En conclusion, Sequoia et le concept du RAIDb est une voie
particulièrement intéressante vers l’extensibilité de la gestion des
données, respectant le principe que nous avons posé en introduction,
de faire appel à des composants ordinaires et peu coûteux. Son

 Page 111

Architectures Hautes-Performances

© Smile – Open Source Solutions

w
w

w
.s

m
il
e
.f
r

caractère transparent pour l’application le rend en particulier
compatible avec des progiciels standards.

On a dit plus haut à quel point la gestion des données était difficilement
extensible. A cet égard, Sequoia est l’une des voies les plus
intéressantes. Sequoia est une solution open source, qui a déjà
suffisamment de références opérationnelles pour avoir démontré sa
stabilité.

Le moteur
d’indexation-

recherche

Il existe des moteurs d’indexation-recherche uniquement consacrés aux
pages web ; ils ne nous intéressent pas beaucoup en termes
d’architecture.

Il existe aussi des moteurs d’indexation-recherche plus génériques, qui
peuvent indexer n’importe quoi. Le plus célèbre, et sans doutes le plus
puissant, est le moteur Lucene, de la fondation Apache, qui a été adopté
par pratiquement tous les produits de gestion de contenus et de gestion
de documents, qu’ils soient open source ou non.

Ce qui nous intéresse ici, c’est l’utilisation d’un moteur tel que Lucene
dans la gestion des données d’une plateforme web. Un tel moteur a de
nombreux atouts :

� Il est plus performant qu’un SGBD sur certaines typologies de
requêtes complexes ;

� En particulier, il excelle dans des requêtes qui réunissent contenus
structurés et contenus non-structurés. Par « contenus non-
structurés », on entend les textes et documents.

� Il supporte de très gros volumes sans dégradation des
performances. Typiquement plusieurs dizaines de millions d’items
sont monnaie courante.

� Sa fonction n’est pas de stocker, ni de gérer l’information, il donne
juste un moyen de la retrouver par la recherche.

Intégrer un moteur de recherche en complément du SGBD est dans la
logique que nous citions plus haut, de ne pas s’appuyer
systématiquement sur la même petite panoplie d’outils, mais d’utiliser
au contraire le meilleur outil pour chaque fonction.

Sur plusieurs grands sites d’annonces, nous avons ainsi intégré des
moteurs de recherche tels que Lucene. La base de données reste le

 Page 112

Architectures Hautes-Performances

© Smile – Open Source Solutions

w
w

w
.s

m
il
e
.f
r

lieu de référence de gestion de l’information, mais les objets à
rechercher sont passés au moteur pour indexation. Ils peuvent être
par exemple exportés au format Xml, et analysés dans cette forme par
l’indexation. Ou bien les APIs d’indexation peuvent être appelées
directement par un traitement batch lisant dans la base. Mais on
préfèrera nettement considérer la base de données et la fonction
d’indexation-recherche comme deux sous-systèmes disjoints, qui
doivent interagir uniquement au travers du middleware ou bien par des
APIs bien définies, et non un traitement batch « à cheval » sur les deux.

Gestion de fichiers

Une problématique différente

S’il y a des similitudes entre le partage de données gérées en base, et le
partage de fichiers, il faut garder à l’esprit aussi les différences
essentielles :

� Un serveur de base de données est à la fois une unité de stockage
et une unité de traitement. Pour répondre à une requête, il doit
effectuer des traitements, qui peuvent être complexes et longs.

� Au contraire, un serveur de fichiers n’a que des traitements très
simples à effectuer pour savoir quels blocs il doit accéder sur quels
disques. Il a donc une plus grande capacité à servir des requêtes,
et il est plus souvent limité soit par le débit de ses disques, soit par
le débit de son interface réseau.

Il est assez aisé d’augmenter les capacités d’un serveur de fichiers, en
premier lieu avec des disques plus rapides, puis avec une configuration
RAID avec stripping et des interfaces réseau Gigabit.

Malgré tout, comme tout composant central, le serveur de fichiers finira
par devenir facteur limitant de l’architecture.

Etudions donc les différents moyens de gérer des fichiers partagés entre
différents serveurs. On va d’ailleurs retrouver finalement les différentes
voies étudiées pour les bases de données, en particulier la réplication, le
partage et le partitionnement.

Des fichiers en base

Les bases de données acceptent des objets binaires (BLOB) de grande
taille, qui peuvent stocker des fichiers. Gérer des fichiers en base de
données peut être une option, lorsque la volumétrie est faible.

Il y a quelques bénéfices à en attendre :

 Page 113

Architectures Hautes-Performances

© Smile – Open Source Solutions

w
w

w
.s

m
il
e
.f
r

� L’homogénéité des accès : données structurées et fichiers sont
gérés de la même manière.

� La cohérence, et le bénéfice des propriétés ACID des bases de
données. Typiquement, aussitôt qu’une application manipule à la
fois une référence à un fichier, dans la base de données, et le
fichier proprement dit, il y a des risques d’incohérences entre l’un
et l’autre.

� L’homogénéité et la cohérence des sauvegardes : en une seule
opération, on sauvegarde l’état courant de la base et des fichiers
associés.

C’est par exemple la solution retenue par différents outils CMS ou GED
pour adopter un fonctionnement dit en cluster.

L’un des inconvénients est que le fonctionnement n’est pas transparent
pour les applications, qui n’accèdent pas aux fichiers en base par les
APIs ordinaires, et ne peuvent pas faire de l’accès direct.

Par ailleurs, dès que la volumétrie grandit, c’est un mauvais choix :

� La base de données devient énorme et les opérations d’exploitation
deviennent difficiles.

� Les performances sont inférieures à celles d’un file system.

� Il y a une certaine opacité du dispositif pour les exploitants

La réplication

Comme pour les bases de données, lorsque des fichiers sont très
majoritairement en lecture, le plus simple et le plus efficace est de les
répliquer vers les différents serveurs qui en ont usage.

L’important, comme toujours, est de bien identifier quelle est la version
maître des fichiers, celle qui est à jour à un instant donné. C’est à
partir de cette version maître que l’on organisera la réplication.

La réplication est une solution fiable, extensible sans limite, tolérante
aux pannes et simple à déployer.

L’outil magique de la réplication de fichiers s’appelle Rsync. Il existe
depuis une douzaine d’années, et s’est bonifié avec le temps, atteignant
aujourd’hui une robustesse à toute épreuve.

Rsync ne réalise pas une copie massive des fichiers, de la source vers la
destination. Au contraire, il commence par analyser les différences
entre destination et source, afin de réduire les échanges au strict
minimum requis. Non seulement les fichiers inchangés ne sont pas

 Page 114

Architectures Hautes-Performances

© Smile – Open Source Solutions

w
w

w
.s

m
il
e
.f
r

envoyés, mais Rsync peut aussi découper les fichiers en morceaux, et
ne renvoyer que les morceaux modifiés.

Du fait de cette économie de moyens, Rsync peut être lancé
périodiquement, de manière assez fréquente, sans mémoire de son
exécution précédente. Si rien n’a été modifié depuis la dernière
synchronisation, Rsync ne transfère rien.

Notons que dans les environnements locaux, on utilise RSync en mode
« -W » pour « whole file » (fichier entier) car le débit n’est pas contraint et
cette technique utilise moins de CPU.

Gestion de contenus et réplication

Considérons le cas d’un site web entièrement statique, constitué d’une
arborescence de fichiers Html et autres composants. Si ce site doit
supporter une charge très importante, le moyen le plus efficace pour en
assurer l’extensibilité, est de simplement répliquer l’arborescence de
fichiers vers N serveurs, à partir d’un serveur maître.

Lorsque des modifications sont requises, elles sont opérées sur le
serveur maître. Lorsque le RSync est lancé par l’ordonnanceur, il
détecte les changements et synchronise chacun des serveurs. Cette
synchronisation peut intervenir toutes les 15 minutes, de sorte que les
modifications sont rapidement visibles.

Certes, durant la synchronisation, différentes petites incohérences
transitoires peuvent intervenir. Les différents serveurs peuvent ne pas
être exactement au même niveau, de sorte que si on a un load-
balancing sans sessions, un même internaute pourrait apercevoir des
pages différentes sur une même URL. Et sur un même serveur, une
page de sommaire peut avoir été mise à jour avant une page référencée,
de sorte que l’on courrait le risque d’un lien cassé. Ce sont de vrais
problèmes, mais ces incohérences sont extrêmement transitoires, de
sorte que la probabilité d’anomalie est faible, et les conséquences non
critiques. En général, il suffira à l’internaute de rafraîchir la page pour
voir disparaître l’anomalie.

Si l’on veut malgré tout éviter cela, alors il suffit de mettre en place un
script un peu plus sophistiqué, qui prépare la nouvelle arborescence à
côté de la précédente, puis bascule le serveur une fois synchronisé.

Cette forme de réplication est représenté sur le schéma suivant :

 Page 115

Architectures Hautes-Performances

© Smile – Open Source Solutions

w
w

w
.s

m
il
e
.f
r

A gauche on distingue un « contributeur », celui qui est susceptible de
modifier les fichiers, par l’intermédiaire d’une application. Les fichiers
sont répliqués sur N frontaux, ici W1, W2, W3, W4.

On a là une architecture réellement, totalement, extensible. En fait
non seulement on pourra aisément ajouter autant de frontaux que l’on
souhaite, mais de plus la capacité de chacun, servant des fichiers
statiques, est extrêmement élevée, typiquement de plusieurs milliers de
pages par seconde. Et ces frontaux peuvent aussi être répartis dans
différents datacenters.

Il faut souligner aussi que ce n’est pas parce que l’on parle de pages
statiques, de fichiers, que l’on ne peut pas bénéficier d’outils de gestion
de contenus. Il est possible en effet de mettre en place un CMS sur le
serveur de contribution, et donc de générer les pages à base de gabarits
comme sait le faire un CMS. On exportera ensuite les pages produites
dynamiquement par le CMS, sous la forme de fichiers statiques. Cet
export peut être plus ou moins facile à réaliser selon les outils, mais il
est généralement possible.

Quels sont les inconvénients de cette architecture sublime ?

� Un peu de latence dans la mise en ligne de modifications, mais elle
peut être réduite à quelques minutes ;

� Un site qui est strictement en lecture seule, ce qui va à l’encontre
des tendances actuelles web 2.0, où les aspects participatifs et de
contributions communautaires deviennent prépondérants, sans
parler des aspects véritablement applicatifs.

 Page 116

Architectures Hautes-Performances

© Smile – Open Source Solutions

w
w

w
.s

m
il
e
.f
r

La réplication de contenus, de pages Html ou autres composants, sur
des serveurs n’est toutefois qu’un des cas de figure de la réplication de
fichiers.

On peut avoir à répliquer de simples fichiers de configuration, ou encore
des programmes, ou des ressources utilisées par les applications.

Les outils de gestion de contenus manipulent également un grand
nombre de fichiers : images, sons, flash, css, javascript, etc, mais aussi
fichiers à usage interne : configuration ou templates, ou parfois fichiers
de cache. Selon les outils, et selon les choix de configuration, ces
fichiers peuvent être gérés en base de données ou sur le file system.

SAN

La technologie SAN (Storage Area Network) permet le partage d’un
système de disques – mais non pas de fichiers – entre différents
serveurs.

Pour bien comprendre son positionnement, il faut rappeler les trois
couches intervenant dans l’accès aux données :

L’application, qui est le « client ».

Le file system, système de gestion de fichiers, qui reçoit
des requêtes des applications, les traite et leur répond.
Le file system tient à jour une table d’allocation des
fichiers, qui définit de quels blocs sur quels disques
chaque fichier est constitué.

Le contrôleur disque, qui reçoit des requêtes du file
system, les traite en accédant aux disques et répond. Le
contrôleur disque ne connaît pas les notions d’utilisateur
ni même de fichier. Il ne connaît que des disques et des
blocs.

 Page 117

Architectures Hautes-Performances

© Smile – Open Source Solutions

w
w

w
.s

m
il
e
.f
r

Une configuration SAN intervient en aval
du contrôleur disque et du file system, de
la manière figurée ci-contre.

Les disques sont empilés dans une baie,
raccordés le plus souvent par une liaison
fiber channel à haut débit, sinon iSCSI,
par l’intermédiaire d’un switch, qui
permet de redéfinir à la demande la
connexion des disques aux serveurs.
Parce que les configurations disques sont
gérées de manière globale et mutualisée,
l’investissement est réparti, et l’on peut
viser des configurations de très hautes
performances, en termes de capacité, de
débit et de tolérance aux pannes.

Le principe général est que tous les
disques d’une plateforme, ou d’un
datacenter, sont gérés de manière
globalisée, ce que l’on peut représenter
comme ci-contre.

Le SAN ne permet pas le partage de données.

En effet, on ne peut pas partager des disques en aval de la table
d’allocation, c'est-à-dire du file system. Autrement dit, deux file

 Page 118

Architectures Hautes-Performances

© Smile – Open Source Solutions

w
w

w
.s

m
il
e
.f
r

systems, gérant chacun sa table d’allocation, ne peuvent pas partager
un disque.

Le SAN n’a donc pas une finalité de partage, mais plutôt de
mutualisation de ressources, visant :

� Une meilleure flexibilité dans l’allocation des ressource disque

� De très hauts débits IO obtenus par stripping, répartition des bits
de chaque octet en parallèle sur N disques.

� Haute-sécurisation des données par RAID, répartition sur
différents disques avec redondance permettant de tolérer une
panne.

� Gestion centralisée des sauvegardes.

� Gestion rapide du secours, avec la possibilité de redémarrer un
nouveau serveur sur la même unité logique. Ce qui est
particulièrement efficace dans une architecture totalement
virtualisée.

� Et finalement, allègement de la configuration des serveurs, qui
peuvent être sans disque.

Dans les plateformes web, le SAN est d’un usage réduit. C’est plutôt
un outil au service de grandes infrastructures diversifiées, telles qu’un
datacenter dans sa globalité. Dans ce contexte, la mutualisation peut
compenser le prix élevé.

Le SAN est parfois incontournable, dans des domaines d’application qui
requièrent de très hauts débits, et de très gros volumes, typiquement le
brassage de flux vidéo.

Mais en conclusion, le SAN n’est pas la clé de l’extensibilité.

Architecture NAS

Un principe de partage

Au contraire du SAN, le NAS (Network-Attached Storage) est fait pour le
partage de données entre différentes applications clientes.

Dans le cas du NAS, le file system est unique, et les questions de cache,
synchronisation et cohérence sont donc traitées de manière centrale.

 Page 119

Architectures Hautes-Performances

© Smile – Open Source Solutions

w
w

w
.s

m
il
e
.f
r

On le représente comme ceci :

Les applications accèdent au file system
réseau sur du TCP/IP, qui peut donc
traverser des routeurs et switchs
ordinaires. Les unités de stockage
réseau peuvent être montées dans le file
system local des serveurs clients, et
donc être accédées de manière
transparente par les applications,
comme des données locales.

Bénéfices et limites

L’accès à un serveur de fichier de type NAS, typiquement NFS, est le
moyen de partager des ressources fichiers entre différents serveurs, par
exemple entre des frontaux web.

� Il est approprié pour des ressources relativement statiques, mais
dans ce cas la réplication peut être une alternative également.

� Il convient moins à des ressources partagées en écriture/lecture de
manière intensive. Dans ces cas d’utilisation, les problèmes de
verrouillage peuvent provoquer des ralentissements importants.

� Le débit IO est souvent limité par le réseau.

� Les requêtes d’IO disques des différentes applications sont bien sûr
additionnées sur le serveur NAS. L’extensibilité atteindra donc
une limite.

� Enfin, on voit que le serveur NAS est un point de fragilité (« SPOF »)
de l’architecture, et nécessite donc un dispositif de failover.

 Page 120

Architectures Hautes-Performances

© Smile – Open Source Solutions

w
w

w
.s

m
il
e
.f
r

NAS et SAN combinés

Servant, comme on l’a vu, des finalités très différentes, NAS et SAN
peuvent tout à fait se compléter, avec une architecture de ce type :

NFS

En matière de serveur de fichier réseau, une solution domine : le
Network File System de SUN, NFS.

NFS est un protocole d’accès aux fichiers sur le réseau introduit par
SUN au début des années 90, et devenu un standard de fait dans le
monde Unix puis Linux. Il passe sur TCP/IP en 93, ce qui le rend
compatible avec des réseaux de type WAN, mais malgré tout l’accès à un
serveur de fichiers requiert des débits sensiblement plus élevés que
l’accès à un serveur HTTP.

NFS est particulièrement approprié pour gérer le déploiement
d’applications ou assurer l’unicité des données partagées. Mais il peut
rapidement devenir point de contention de l’architecture en termes d’IO.
Un partage NFS (ou CIFS dans le monde Windows) est en général peu
approprié au-delà de 4 à 8 serveurs clients, selon le taux d’accès.

 Page 121

Architectures Hautes-Performances

© Smile – Open Source Solutions

w
w

w
.s

m
il
e
.f
r

Un serveur NFS sera généralement doublé avec un spare, synchronisé
par DRBD (voir plus loin), avec heartbeat et secours automatique

DRBD

DRBD est un outil de réplication disque qui s’insère entre le file system
et le contrôleur disque, de la manière suivante :

Il assure une réplication disque transparente, vers un serveur de
secours passif.

Il supporte deux modes de fonctionnement :

� Synchrone : chaque opération d’IO ne se termine qu’après double
écriture

� Asynchrone : l’écriture répliquée est légèrement différée.

Le mode synchrone assure une parfaite cohérence des deux disques,
même en cas d’arrêt brutal, tandis que le mode asynchrone assure de
meilleures performances.

Il faut souligner que le file system de secours est totalement inutilisable,
il ne peut pas être monté, même en lecture seule. C’est donc une
configuration exclusivement réservée au secours.

L’accès concurrent aux fichiers

Les systèmes de gestion de fichiers réseau gèrent les accès concurrents
et le verrouillage de fichiers, et même de blocs au sein d’un même
fichier.

 Page 122

Architectures Hautes-Performances

© Smile – Open Source Solutions

w
w

w
.s

m
il
e
.f
r

En fait, les applications modernes utilisent de moins en moins les
fichiers, et encore moins en accès direct, ou en accès concurrents.
Dans tous les cas, l’absence de transactions dans l’accès aux fichiers
présente des risques d’incohérences. On ne peut pas englober 3
écritures sur 3 fichiers en une transaction insécable qui sera soit
totalement exécutée, soit nullement exécutée.

L’utilisation typique est plus souvent du type : lecture globale du
fichier, modification, écriture globale. C’est ce qui se passe lorsque le
fichier représente un objet, sérialisé, ou bien stocké en Xml.

Lustre

Beaucoup croient que la problématique du file system est un sujet clos,
une question réglée depuis 20 ans. On ouvre un fichier, on lit, on écrit,
on ferme… rien de bien complexe là-dedans.

Mais il n’en est rien. Comme les SGBD, les gestionnaires de fichiers
n’ont pas réglé tous leurs problèmes, et restent un domaine de
recherche très actif. Parmi leurs problèmes figure, précisément, la
question de l’extensibilité.

Lustre est un système de gestion de fichiers distribué, conçu pour une
extensibilité maximale. Porté par une startup, il a été repris en 2007
par SUN, qui en a fait un produit stratégique dans son offre.

Lustre est un produit haut de gamme, open source, parfaitement
robuste et « production ready », prêt pour une utilisation en production.
Il est utilisé par plus de la moitié des 30 plus grands centres de calcul
parallèle du monde. C’est d’ailleurs le domaine d’application favori.

Lustre peut gérer littéralement plusieurs peta-octets de fichiers, avec
des débits globaux de plusieurs centaines de Gbps. Lustre traite en
premier lieu d’extensibilité, la haute-disponibilité quant à elle, est
traitée au niveau de chaque nœud de l’architecture.

Les principes généraux de Lustre sont les suivants :

� Une gestion centrale des métadonnées. Les métadonnées, c’est
tout ce qui caractérise le fichier : son nom, son répertoire, ses
droits, dates de modification, … mais aussi sa répartition sur
différents serveurs. Dans Lustre cette gestion des métadonnées
est centralisée sur le MDS, MetaData Server.

� Chaque fichier est réparti sur un ou plusieurs Object Storage
Targets (OST), chacun composé de plusieurs Object Storage Server
(OSS).

 Page 123

Architectures Hautes-Performances

© Smile – Open Source Solutions

w
w

w
.s

m
il
e
.f
r

� Une fois que le client (l’application accédant au fichier) a obtenu la
table d’allocation du fichier sur le MDS, elle adresse des requêtes
aux OST concernés.

Le caractère centralisé du MDS n’est pas un blocage pour l’extensibilité,
puisqu’il y a un facteur 1000 ou plus entre les volumétries de fichiers et
celles des métadonnées. Nous avons vu (cf « Le partitionnement des
données », page 97) que d’une manière générale, le principe d’un
partitionnement couplé à une forme d’annuaire global est une voie
classique de la haute extensibilité.

Lustre met donc en œuvre un principe de partitionnement /
consolidation, comme on l’a évoqué plus haut, mais ceci de manière
totalement transparente pour les applications, qui ne voient que des
APIs POSIX d’accès aux fichiers.

� Si vous avez de très fortes volumétries de données au sein de votre
plateforme web, alors Lustre est une solution à considérer.

On voit sur le schéma
ci-contre une variété
de cas de figure, un
serveur simple OSS-1,
deux serveurs OSS-2
et 3, avec un DRBD
croisé, leur permettant
d’être en secours
réciproque, et
finalement un
ensemble de serveurs
partageant une baie
SAN.

MogileFS

Dans la catégorie des systèmes de gestion de fichiers distribués et à
tolérance de panne, il faut citer également MogileFS, qui a certes moins
de références gigantesques, mais est d’une mise en œuvre plus simple,
et constitue donc une bonne alternative pour une architecture web.
MogileFS est un projet de Danga Interactive, les créateurs de

 Page 124

Architectures Hautes-Performances

© Smile – Open Source Solutions

w
w

w
.s

m
il
e
.f
r

LiveJournal, qui ont également apporté le gestionnaire de cache
distribué MemCached.

Hadoop HDFS

Parmi les principaux systèmes de gestion de fichier distribués il faut
citer également HDFS, associé au projet Apache Hadoop, dont nous
avons parlé plua haut.

 Page 125

Architectures Hautes-Performances

© Smile – Open Source Solutions

w
w

w
.s

m
il
e
.f
r

LE CACHE

Principes du cache

Le cache est l’outil miracle en informatique, omniprésent au service des
performances. On le rencontre à tous niveaux, tant dans le matériel
que dans le logiciel, tant dans l’accès aux données que dans l’accès aux
pages Html.

Lorsque l’accès à une ressource est trop lent, le principe du cache
consiste à lui substituer un accès plus rapide, à une copie de cette
ressource.

L’accès à la copie est plus rapide, mais ce n’est qu’une copie, et il
convient de la mettre à jour si l’original est modifié. C’est là toute la
problématique du cache.

Selon les cas, on peut tolérer un délai plus ou moins grand entre la
modification de l’original, la donnée de référence, et la modification de la
copie.

Le cache est avant tout un outil au service des performances. Il n’est
pas particulièrement utile à l’extensibilité. Au contraire, même, il rend
parfois l’extensibilité plus difficile. On pourrait ranger le cache dans la
famille des techniques d’optimisation, indépendante des questions
d’architecture. Mais ce n’est pas tout à fait le cas ; dans les faits, le
cache est très lié à l’architecture, comme on le verra.

Actif / Passif,
Pull /Push

On peut distinguer deux types de cache, en fonction de la manière de
rafraîchir les données :

� Soit c’est le dispositif de cache qui va chercher une copie de
l’original auprès de sa source (disque, réseau, serveur, …)

� Soit c’est la source qui pousse une copie vers le dispositif de cache.

On appellera le premier mode pull (tirer), et le second push (pousser).
Pour certains l’appellation cache évoque implicitement le mode pull,
tandis qu’un mode push est assimilé plutôt à de la réplication. Mais il
est intéressant d’étudier les deux conjointement.

 Page 126

Architectures Hautes-Performances

© Smile – Open Source Solutions

w
w

w
.s

m
il
e
.f
r

Le cache en mode pull est parfois aussi appelé passif, tandis que le
mode push peut être appelé actif.

Cache en mode pull

Dans le mode pull, le cache va chercher les objets lorsqu’il en a besoin.
Un « consommateur » demande une « ressource » au cache, le cache
demande la ressource au « producteur », puis la conserve pour pouvoir
la fournir à nouveau sans la redemander, et donc beaucoup plus
rapidement.

C’est ce qui est représenté sur les schémas suivants, avec tout d’abord
le cas où l’objet n’était pas trouvé dans le cache, et doit être obtenu
auprès de son producteur, son serveur :

 Page 127

Architectures Hautes-Performances

© Smile – Open Source Solutions

w
w

w
.s

m
il
e
.f
r

Et sur la figure suivante, le cas d’un appel suivant, où l’objet est trouvé
en cache, et où il n’y a donc aucune sollicitation du serveur :

Durée de vie

Le mode pull est indissociable de la notion de durée de vie, ou de
validité, en anglais « time to live » (TTL).

En effet, dans le schéma précédent, la ressource peut être modifiée à
tout instant du côté du producteur. Dans le mode pull, le cache n’en
est pas averti. En revanche, chaque ressource qui lui a été confiée est
caractérisée par une durée de validité, durée pendant laquelle on peut
faire l’hypothèse qu’elle n’a pas changé, ou plutôt que si elle a changé,
on peut malgré tout utiliser la valeur précédente sans dommage.

Sur certains outils de cache, on configure aussi le « time to idle », le
temps maxi écoulé depuis la dernière utilisation de l’objet.

On peut distinguer trois modes de gestion de la durée de vie des objets :

� Durée de vie illimitée, on changera le nom de l’objet lorsqu’il sera
modifié

� Durée de vie unique : c’est un paramètre du cache, transparent
pour le fournisseur

 Page 128

Architectures Hautes-Performances

© Smile – Open Source Solutions

w
w

w
.s

m
il
e
.f
r

� Durée de vie différenciée, spécifiée par le fournisseur

Le fonctionnement « MRU »

Le gestionnaire de cache n’a pas toujours une mémoire suffisante pour
tout conserver, et il doit alors trouver une stratégie pour garder en
mémoire ce qui a le plus de chances d’être demandé à nouveau.

Un dispositif de cache fonctionne le plus souvent selon un principe de
MRU, « Most Recently Used », c’est à dire que les contenus les plus
récemment utilisés sont conservés en mémoire. Si la mémoire allouée
ne suffit plus, alors on laisse tomber les contenus qui n’ont pas été
utilisés depuis longtemps, les « Least Recently Used ». Le principe est
bien sûr que les contenus les plus souvent utilisés seront toujours
statistiquement dans les plus récemment utilisés, et resteront donc
presque toujours en cache. Cette gestion MRU permet d’allouer une
certaine quantité de mémoire à la gestion du cache, et d’obtenir le
meilleur taux de succès, c’est à dire le pourcentage des pages qui
peuvent être servies depuis le cache, que l’on appelle « hit ratio ». Bien
entendu, plus la mémoire allouée augmente, plus le hit ratio augmente,
ceci jusqu’à ce que la mémoire allouée au cache atteigne la somme
totale de tous les contenus, et donc un hit ratio de 100%.

Certains dispositifs de cache introduisent une notion de « Most
Frequently Used », potentiellement supérieure, mais bien plus difficile à
gérer.

Le cache HTTP

En grande majorité, les sites servent les mêmes pages à tout le monde,
et en grande majorité, ces pages sont construites par un CMS ou une
application dédiée, au moyen d’un gabarit, dans lequel sont insérés les
contenus extraits d’une base de données. L’élaboration des pages est un
travail important, qui consomme beaucoup de ressources, et peut
prendre jusqu’à 0,1 seconde, voire 1 seconde. Mais puisque la page a
déjà été construite quelques secondes plus tôt pour un autre
internaute, inutile de tout recommencer, il suffit de l’avoir conservée en
mémoire, prête à l’emploi.

C’est donc là le principe du cache HTTP, qui peut multiplier par 100,
voire 1000, la capacité d’accueil d’une plateforme Internet, et il existe
depuis longtemps d’excellents outils open source pour mettre en place
un cache, ceci quel que soit le CMS, ou bien l’application en général,
qui construit les pages.

Le gestionnaire de cache est placé devant le serveur HTTP, c’est lui qui
reçoit les requêtes des internautes. Si la page demandée est dans son
cache, il la sert directement, sinon, il la demande au serveur, puis la

 Page 129

Architectures Hautes-Performances

© Smile – Open Source Solutions

w
w

w
.s

m
il
e
.f
r

range dans son cache, pour un éventuel usage futur. Dans ce dispositif,
chaque page peut comporter sa propre indication de durée de vie, durée
pendant laquelle elle peut être servie à partir du cache, avant d’être
rafraîchie.

Cache du navigateur

Nous l’avons évoqué déjà, les navigateurs web intègrent tous une
gestion du cache sur les pages html et les composants qu’elles
intègrent. Le protocole HTTP comporte différentes directives
permettant de contrôler cette gestion du cache, et la bonne gestion de
ces directives, souvent négligée, peut améliorer très sensiblement les
performances d’un site. Cf. « Performances HTTP », page 40.

Le principe général est le même et repose également sur la
bonne indication de durée de vie.

Pourquoi mettre en place un cache Html/HTTP côté
serveur puisqu’on peut compter déjà sur un cache côté
navigateurs ?

C’est très simple : le cache du navigateur ne peut servir
que si un même internaute demande deux fois la même
ressource. Un cache côté serveur est utile aussitôt que
deux internautes différents demandent la même ressource.
Et ce n’est pas tout : le cache côté serveur est parfaitement
maîtrisable, configuré précisément pour nos besoins,
tandis que le cache des navigateurs a une configuration
que nous ne maîtrisons pas.

Comme représenté sur la figure ci-contre, le cache HTTP
du côté serveur est partagé par tous les internautes, son
efficacité potentielle est donc plus grande.

En revanche, le cache côté client soulage toute la plateforme, y compris
sa bande passante et ses routeurs.

Un peu de mémoire suffit

Sur un site, il est courant que la home page représente jusqu’à 30% des
accès, et une vingtaine de pages peut concentrer plus de 50% des accès,
de sorte qu’un peu de mémoire suffit pour un cache efficace.

 Page 130

Architectures Hautes-Performances

© Smile – Open Source Solutions

w
w

w
.s

m
il
e
.f
r

La figure précédente représente l’évolution typique du hit-ratio, le taux
de page servies à partir du cache, en fonction du pourcentage de pages
que peut contenir le cache. Où l’on voit qu’avec 10% des pages en
cache, on peut déjà espérer plus de 50% de succès.

La mémoire ne coûte pas cher

En fait la mémoire ne coûte pas cher aujourd’hui, et il est souvent
possible de disposer de la totalité des contenus en mémoire.

Considérons un site qui comporte 10 000 pages, chaque page ayant un
poids de 100 ko, pour la partie Html du moins. Ce sont des chiffres
assez représentatifs d’un site plutôt haut de gamme. Est-il possible de
mettre tout cela en cache ? 10 000 x 100 ko = 1 Go. Un giga-octet de
mémoire, c’est très peu de chose aujourd’hui. Noter qu’on ne parle pas
ici des images, qui ne seront guère plus volumineuses, et moins
changeantes et sont donc particulièrement prédisposées à une bonne
gestion de cache.

Lorsque tout peut tenir en mémoire, il n'est plus question de MRU, on
garde tout. Ce qui limitera le hit ratio, malgré tout, c’est la durée de vie
des contenus. Si elle est suffisamment longue, par exemple une
journée, alors effectivement, chaque contenu ne sera produit qu’une
seule fois par jour, puis servi uniquement depuis le cache. Mais si l’on
considère que les contenus doivent être rafraîchis toutes les 10
minutes, alors il est possible que certains contenus ne soient jamais
resservis depuis le cache.

En supposant la capacité du cache suffisante pour la totalité des
contenus, on peut se livrer à un calcul simple, faisant intervenir deux
paramètres : le nombre de pages servies par seconde et la durée de vie
des pages.

 Page 131

Architectures Hautes-Performances

© Smile – Open Source Solutions

w
w

w
.s

m
il
e
.f
r

Soit D, la durée de vie des pages en cache ; P, le nombre de pages
servies par seconde à l’heure de pointe ; N le nombre total de pages.

Faisons l’hypothèse typique que 80% des requêtes portent sur 20% des
pages.

Pour que le cache commence à être utile, il faut que sur la durée de vie
D, on ait servi plus de pages que N x 0,2, les 20% de pages les plus
utilisées.

C’est à dire :
 P x D x 0,8 > N x 0,2

et donc :
 D > (N x 0,2) / (P x 0,8)

ou encore :
 D > N / 4P.

Attention, on calcule ici le seuil à partir duquel le cache commencerait à
être utile. Ce n’est pas par cette formule qu’il faut calibrer la durée de
vie en cache des contenus. Plus la durée de vie est importante, plus le
bénéfice du cache est grand. En fait le réglage est d’ordre fonctionnel et
non technique : quelle est la durée de validité d’un contenu, quelle est
la réactivité requise en cas de changement ? C’est affaire de
compromis entre efficacité du cache et réactivité face aux changements.

Application numérique typique : N = 10 000 pages, P = 10 pages par
seconde : D = 3 minutes environ. 10 pages par seconde, c’est environ 40
000 visites par jour, c’est donc un site moyen en termes d’audience. Si
l’on prend P = 50 pages par seconde, on est au niveau d’un site plus
sérieux, à 200 kv/j, et le cache commence à être utile à partir de 0,5
minutes. Le calcul est simplifié, évidemment, car on pourrait
s'intéresser aussi aux 10 pages qui représentent peut-être 20% du trafic
total. Pour ces pages-ci, on trouverait D > 10 / (P x 0,2), c'est à dire que
le cache serait utile encore plus tôt.

On en déduit plusieurs choses :

� Plus l'audience est forte plus le bénéfice du cache est important,
c'est assez évident.

� Mais surtout: pour un site à forte audience, même un cache de
courte durée de vie commence à être utile, c’est à dire que le bénéfice
du cache n’est pas incompatible avec une haute fréquence de mise
à jour.

 Page 132

Architectures Hautes-Performances

© Smile – Open Source Solutions

w
w

w
.s

m
il
e
.f
r

Mise en œuvre d’un cache HTTP

Nous avons traité des différents aspects théorique du cache, voyons-en
les aspects plus pratiques.

Le gestionnaire de cache (en mode pull), est une application, un outil,
qui se place devant l’application web. Ce peut être sur le même serveur
physique, ou bien sur un serveur physique (ou virtuel) dédié. Le
gestionnaire de cache demande peu de ressources, si ce n’est de la
mémoire, de sorte qu’il peut souvent être placé sur le même serveur que
l’application web.

Pour une application web complexe, par exemple une gestion
commerciale, ou bien un ERP, ou encore le back-office d’un outil CMS,
le degré de variation des pages est en général trop important pour qu’il y
ait beaucoup à gagner avec un gestionnaire de cache. Du moins pour
les parties applicatives des pages, car on peut toujours gagner sur les
composants auxiliaires tels que images, css ou bien javascript. Mais
s’il ne s’agit que de ces composants, le cache natif du serveur Apache
suffira en général. On veillera simplement à ce que ces composants
soient servis directement par le serveur Apache, et non par le serveur
d’application.

Dans beaucoup de cas, la mise en place du cache devant un CMS est
pratiquement transparente, c’est à dire qu’on ne change rien du côté
du CMS, et que l’on bénéficie immédiatement de performances
décuplées. Pourquoi s’en priver ?

La transparence n’est pas toujours totale. La première adhérence
réside dans la bonne gestion des durées de vie, et de durées de vie
différenciées selon les composants, comme on l’a vu plus haut. Comme
on l’a vu plus haut, la durée de vie d’une page (ou plus largement d’une
« ressource ») est spécifiée par le producteur, dans l’entête HTTP. Or il
est fréquent que les CMS ne laissent pas une maîtrise fine des
paramètres de l’entête HTTP.

La seconde difficulté est la personnalisation des pages qui, comme on l’a
dit, est de plus en plus importante sur les sites modernes. Ici deux
approches sont pratiquées :

� Soit une distinction globale entre pages génériques et pages
personnalisées, les premières étant gérées en cache, et les
secondes non.

� Soit une gestion de cache par fragment, comme on le verra (cf
« Cache par fragments », page 133), mais qui présente
l’inconvénient de ne pas être transparente.

 Page 133

Architectures Hautes-Performances

© Smile – Open Source Solutions

w
w

w
.s

m
il
e
.f
r

Les outils du cache HTTP

L’outil de cache le plus célèbre est Squid, un serveur proxy utilisé le
plus souvent en mode « reverse proxy » c’est à dire en tant que serveur
de cache. Squid remonte aux débuts du web, avec une version 1 qui
date de 1996. C’est un projet qui a peu évolué, pendant pas mal
d’années, mais qui s’est réveillé depuis 2008.

Squid permet de configurer la quantité de mémoire allouée au cache ;
elle est gérée en MRU, mais les objets évacués du cache sont écrits sur
disque, d’où ils peuvent être réutilisés dans les limites de leur durée de
vie. De plus lorsqu’on arrête un Squid, il écrit sur disque tous les
objets qui étaient en mémoire, et qui seront rechargés lors de la relance,
ce qui est important car le redémarrage avec un cache vide peut amener
une très forte sollicitation initiale du serveur source.

La gestion des durées de vie est essentiellement dictée par les consignes
des entêtes HTTP, c'est-à-dire par l’application source. C’est au niveau
de la source que se fait la configuration, qui permet donc de distinguer
différentes typologies d’objet, aux durées de vie différentes.

Notons que dans sa version 3, Squid annonce le support ESI, mais il est
encore en rodage pour l’instant.

Varnish est un outil plus récent, également open source, qui cible
directement la fonction de cache, et annonce des performances
supérieures.

Un cache HTTP est souvent mis en œuvre seulement pour les objets
média, ou composants relativement statiques : images, css, flash, etc.
Dans cette configuration, sa mise en œuvre est réellement transparente.
Il peut apporter beaucoup sur les pages elles-mêmes, mais à condition
de bien maîtriser les durées de vie de côté de l’application.

Cache par fragments

Sites personnalisés et contenus temps-réel

Un bon outil de cache peut servir quelques milliers de pages à la
seconde, sur un unique serveur. Et ce n’est pas tout : le cache
contribue aussi à la haute disponibilité puisque si l’application ne
répond pas, le cache peut toujours fournir une page, peut être un peu
ancienne, mais c’est mieux que rien.

Tout cela est magique, du moins tant que l’on sert les mêmes pages à
tout le monde, au moins pour quelques temps. C’est le cas de beaucoup
de sites, mais depuis quelques années déjà, on observe une tendance
puissante vers la personnalisation des sites : chaque internaute est

 Page 134

Architectures Hautes-Performances

© Smile – Open Source Solutions

w
w

w
.s

m
il
e
.f
r

identifié, et reçoit une page spéciale, dépendant de ses préférences et
options.

Si chacun reçoit une page unique, c’en est fini du cache et de ses
milliers de pages par seconde. Faut-il en rester là ? Soit renoncer à des
sites personnalisés, soit empiler une trentaine de serveurs pour tenir la
charge ?

Non, heureusement, il nous reste quelques armes.

Introduction au cache par fragments

A bien y regarder, même si chaque page est unique, de nombreux
morceaux de la page sont les mêmes pour différents internautes. A
défaut de mettre la page entière en cache, on peut donc tenter de mettre
des morceaux de pages en cache, des fragments. Typiquement,
beaucoup d’éléments de navigation, mais aussi des blocs entiers de
contenus, seront intégrés à l’identique dans les pages de tels et tels
internautes, même si c’est éventuellement à des emplacements
différents.

Cette réflexion amène à la notion de cache par fragments : on ne gère
plus en cache des pages web entières mais des fragments de pages. Et
le principe est que chaque fragment peut avoir une durée de vie
particulière : des parties fixes de la page, un empied par exemple, ne
seront rafraîchies que toutes les 4 heures, tandis que des actualités
récentes seront rafraîchies tous les ¼ d’heure, et certains fragments,
eux, ne seront pas du tout mis en cache, ils seront systématiquement
demandés au serveur.

 Page 135

Architectures Hautes-Performances

© Smile – Open Source Solutions

w
w

w
.s

m
il
e
.f
r

La figure précédente compare le cache de pages, à gauche, et le cache
de fragments, à droite. Le cache de fragments implique une phase
d’assemblage, d’agrégation, en aval du cache. Mais il permet de
produire une variété de pages à partir d’un ensemble de blocs, de
fragments, qui ont des durées de vies variées.

Agrégation de fragments et portails J2EE

La gestion d’un cache par fragment combine donc deux fonctions
distinctes : la fonction d’agrégation et la fonction de cache. La fonction
d’agrégation consiste à produire une page à partir de différents
fragments.

C’est une fonction qui correspond à un besoin usuel, indépendamment
de la problématique du cache, puisque c’est la fonction principale des
outils de portail, des outils tels que Jetspeed, Liferay, Uportal, ou
encore Websphere Application Portal. Ce sont les portails du monde
J2EE, les portails répondant à la norme JSR168-JSR286. Cette norme
définit des APIs entre le portail agrégateur et les applications
fournissant les contenus agrégés. Ces APIs sont définies en Java, et
donc ne conviennent que pour cet environnement, elles ne sont pas
technologiquement neutres.

C’est là une limitation intrinsèque des portails J2EE : ils sont faits pour
agréger des contenus fournis par des applications Java. Et ce n’est pas
tout : des applications Java écrites pour supporter les APIs du portail.
C’est beaucoup demander et dans la pratique, le besoin est très souvent

 Page 136

Architectures Hautes-Performances

© Smile – Open Source Solutions

w
w

w
.s

m
il
e
.f
r

d’agréger des contenus issus d’applications d’une part hétérogènes,
d’autre part pré-existantes, et pas uniquement Java. En d’autres mots :
il faut prendre les applications comme elles sont.

Or la fonction du cache agrégateur de fragments reprend, pour partie,
cette mission d’agrégation du portail, de manière à la fois plus simple et
technologiquement neutre.

Edge Side Include (ESI)

Akamai a défini le Edge Side Include (ESI), devenu une norme du W3C,
et adopté par quelques autres grands acteurs. ESI permet d’inclure
dans une page web des fragments html obtenus en HTTP, en
interrogeant différents serveurs. Pour spécifier cela, on inclut dans la
page principale des tags de la forme

 <esi:include src= "HTTP://www.mysite.com/fragment01" />

Cette balise signifie qu’à cet endroit de la page doit être inséré le
fragment obtenu à l’adresse indiquée. Il appartient alors au dispositif
ESI d’aller chercher cette ressource à l’adresse HTTP indiquée, et de
l’insérer à l’endroit du tag <esi/>.

Un point important est que pour le fournisseur de la ressource, aucune
interface spécifique n’est requise, il s’agit simplement de servir un
morceau de html sur le protocole HTTP.

Dans un système de cache par fragment, le gestionnaire de cache est
donc en charge d’élaborer la page, en insérant tous les fragments à la
position appropriée. Lorsque tous les fragments sont en cache, c’est
immédiat, et cela ne requiert aucun accès au serveur HTTP. Si un
fragment n’est pas dans le cache, ou bien si la version en cache est
périmée, trop ancienne, alors ce fragment seulement est obtenu auprès
du serveur.

Un tel dispositif de cache par fragments permet donc de faire cohabiter
dans les pages, des parties stables et des parties dynamiques, des
parties identiques pour tous et des parties personnalisées, chacune
bénéficiant d’un cache conforme à son besoin.

L’un des inconvénients du cache par fragment, qu’il s’appuie sur ESI ou
non, est qu’il n’est pas transparent pour les applications. La
structure même de l’application est impactée : au lieu de servir des
pages, elle doit servir des fragments. Ce n’est pas anodin car toutes les
applications, tous les outils de développement, sont conçus pour
élaborer des pages web. A commencer par les outils de gestion de
contenus, qui sont derrière la plupart des sites.

Sur ce thème, voir également « Infrastructures Globales et CDN », page
46.

 Page 137

Architectures Hautes-Performances

© Smile – Open Source Solutions

w
w

w
.s

m
il
e
.f
r

Web-scraping, web-clipping

Un cache ESI est donc un bel outil, mais il implique en général de
recevoir des fragments élaborés spécifiquement à cet usage. Dans
certains cas, on souhaite plutôt manipuler des fragments directement
récupérés d’applications existantes, c’est à dire des morceaux extraits
de pages entières, typiquement un bloc <div/> au sein de la page.

La technique que l’on appelle web scraping, ou web-clipping, consiste à
récolter des données au sein de pages html. On peut pratiquer le web
scraping avec une participation de l’application producteur, ou bien à
son insu. Lorsque l’on maîtrise l’application qui produit la page, alors
on pourra soit lui demander de fournir ses contenus d’une manière plus
structurée que sur du simple Html (par exemple une interface de type
REST/XML), ou bien lui demander plus simplement encore de placer
des balises particulières au sein du Html, qui permettront au
consommateur de repérer à coup sûr la partie utile. Lorsqu’on ne
maîtrise pas l’application producteur, alors on ne peut qu’essayer de se
repérer par rapport aux balises du Html, typiquement rechercher un
« div » particulier, puis prendre le second tableau, la troisième ligne, etc.
C’est cela qu’on appelle le plus souvent web scraping, et l’on voit bien
que c’est une technique assez fragile, car le moindre changement de
montage html casser l’identification des fragments.

Caches ESI Open Source

Malheureusement, il n’existe pas d’outil open source solide pour la
gestion d’un cache ESI. C’est une fonctionnalité prévue de longue date
dans Squid v3, mais Squid v3 n’est pas « production ready » à ce jour,
selon l’aveu même de ses développeurs : « la plupart des bugs restant de
Squid v3 concernent le ESI ».

Varnish en est à peu près au même stade, avec une implémentation
d’un sous-ensemble de la norme ESI, mais ici aussi, l’avertissement est
« attendez-vous à des bugs » !

Notons que l’on peut obtenir un service d’agrégation semblable en
utilisant le module Server Side Include (SSI), de Apache, mais il faut
encore y ajouter une gestion de cache ordinaire par Squid.

Le Web Assembling Toolkit

Pour d’autres types de projets, Smile a mis au point le Web Assembling
Toolkit (WAT). Il s’agit d’un ensemble de taglib JSP, qui permettent de
constituer des pages en insérant du contenu obtenu en HTTP à partir
d’autres serveurs. Et même si l’agrégation est sa mission première, WAT
gère aussi un cache, sur chacun des fragments ainsi obtenus.

 Page 138

Architectures Hautes-Performances

© Smile – Open Source Solutions

w
w

w
.s

m
il
e
.f
r

Comme on l’a vu, la clé de la haute performance c’est de réunir cache et
agrégation. WAT combine ainsi les deux rôles : outil d’agrégation, et
outil de cache par fragments.

Un fonctionnement général que l’on peut représenter comme suit :

Et WAT a une autre caractéristique : lorsqu’il appelle un serveur pour
obtenir un fragment, il est capable d’extraire un petit morceau de la
page obtenu. C’est du web-clipping : on obtient une page, et on découpe
le morceau qui nous intéresse, qui constituera le fragment. Cette
technique permet en particulier d’obtenir des fragments à partir
d’applications existantes, qui n’auraient pas été conçues spécifiquement
pour être agrégées ainsi au sein d’un portail. Pour certains, le web-
clipping est une solution un peu rustique, du bricolage presque. Ne
vaudrait-il pas mieux invoquer un superbe web-service ? C’est
discutable. Le bénéfice essentiel du web-clipping est le caractère non-
structurant : il ne demande rien de particulier aux applications
intégrées.

Placé en frontal des applications, WAT joue en quelque sorte le rôle d’un
portail. Mais dans certains cas, il est en fait combiné à un véritable
portail, par exemple Jahia. C’est le cas du nouveau site d’assurance
idmacif.com, de la Macif, ou du portail de Bouygues Immobilier.

WAT est également utilisé par Editions Francis Lefebvre, Bluestar
Silicones, La Poste, et le Conseil Supérieur du Notariat. C’est un projet

 Page 139

Architectures Hautes-Performances

© Smile – Open Source Solutions

w
w

w
.s

m
il
e
.f
r

open source sous licence Apache3. Et depuis debut 2009, WAT
supporte les tags ESI les plus importants.

Agrégation de fragments côté client

Si l’on parle d’agrégation de fragments, il est important de citer aussi la
pratique d’une agrégation « côté client », c’est à dire sur le navigateur de
l’internaute.

Il existe différentes techniques pour cela : iframes, inclusion de
javascript générant des fragments Html au sein de la page, et enfin
véritable Ajax.

L’agrégation côté client a de multiples avantages :

� Elle permet d’agréger des contenus venant de différents serveurs

� Le traitement ne demande aucun outil spécifique côté serveur

� Le traitement ne consomme aucune ressource côté serveur

C’est en particulier une excellente technique lorsqu’un site produit des
pages partiellement personnalisées. Typiquement avec un bloc
personnalisé de type « mon profil », « mes préférences », etc. Dans ce
cas, on peut bénéficier pleinement de la gestion de cache serveur (et
client), en ne traitant de manière dynamique que le bloc considéré.

Cache en mode push

Nous avons défini plus haut le principe du cache en mode push : c’est
le producteur qui pousse les objets, les ressources, vers le cache.

A la différence du consommateur, le producteur, qui gère la version
originale de l’information, sait quand l’information a changé. Ainsi à la
manière des dispositifs de réplication des bases de données, on peut
faire en sorte que ce soit l’événement de changement qui déclenche
l’envoi de l’information aux différents caches. Cela suppose une forme
d’inscription, d’abonnement, du cache auprès de la source de données.
Et cela implique aussi une phase d’initialisation. Dans un cache en
mode push, on suppose généralement que le cache possède une copie
de l’ensemble des données et non un sous-ensemble particulier.

C’est ce que l’on peut représenter comme suit :

3 WAT : http://sourceforge.net/projects/webassembletool

 Page 140

Architectures Hautes-Performances

© Smile – Open Source Solutions

w
w

w
.s

m
il
e
.f
r

On voit sur ce schéma que le point de départ du processus est cette
fois-ci le serveur producteur de l’information, qui dépose, pousse, les
objets sur le cache.

On peut aussi mettre en place des modes mixtes, où le producteur ne
pousse pas la ressource vers le cache, mais déclenche son invalidation,
de sorte qu’elle sera rafraîchie à la prochaine utilisation. C’est ce que
permet Squid par exemple, avec un service d’invalidation, qui peut être
appelé par simple invocation d’une URL.

Génération de pages statiques

La génération de pages statiques est un cas particulier du cache en
mode push.

A l’origine du web, il y avait des fichiers html posés dans les répertoires
d’un serveur. Le serveur HTTP a été initialement conçu pour analyser
les requêtes des internautes et servir ces pages. On les a appelées
pages statiques plus tard, par opposition aux pages dynamiques
élaborées par des applications.

Aujourd’hui encore, rien n’est plus efficace que de servir des pages
statiques. Le serveur Apache gère nativement un cache pour ce type de
pages, et peut en servir plusieurs milliers à la seconde, pour autant
qu’on lui donne la mémoire qu’il lui faut.

 Page 141

Architectures Hautes-Performances

© Smile – Open Source Solutions

w
w

w
.s

m
il
e
.f
r

Les pages statiques, ce n’est pas juste plus rapide, c’est aussi plus
fiable, bien sûr.

Mais le tout-statique a aussi beaucoup d’inconvénients, en particulier le
manque de flexibilité, la difficulté à traiter chaque internaute de
manière spécifique, et à gérer de l’information changeante. Et la
difficulté à assurer une parfaite cohérence des liens en présence de
déplacements ou renommages de rubriques, et à assurer une parfaite
cohérence graphique.

C’est pourquoi le web est passé en mode dynamique. Avec un niveau
de service très supérieur, mais aussi de moindres performances.

Ne peut-on pas avoir à la fois les hautes performances et l’aspect
dynamique ?

Dans certains cas, on le peut. C’est le propre de la génération de pages
statiques. Le principe est celui d’une génération de page dynamique,
mais la page une fois générée est écrite sur disque en un fichier Html, et
c’est ce fichier qui est servi par le serveur HTTP.

Beaucoup de sites ont un taux de changement très faible. Il s’écoule
souvent plusieurs jours, voire une semaine entière sans le moindre
changement. A quoi bon regénérer des pages toujours identiques ?

Bien sûr, les dispositifs de cache, déjà évoqués, répondent aussi à cette
problématique : éviter de recalculer une page qui n’a pas changé. Et
effectivement, génération statique et solution de cache ont la même
finalité. Mais des atouts spécifiques.

Une solution de cache en mode pull, invoque son application moins
souvent, mais l’invoque quand même régulièrement. Si l’application
est en dysfonctionnement, l’impact est retardé, mais demeure.

Par rapport à un dispositif de cache, la génération de pages statiques
permet de découpler bien plus fortement le système d’édition, le back-
office, et le système de publication, le front-office. Cela permet de
mettre en place des architectures dans lesquelles la plateforme de
production est minimaliste et simplifiée au maximum. Servir des pages
statiques est non seulement ultra-performant, mais aussi ultra-
extensible.

Mais s’il y a plusieurs dizaines de milliers de pages, voire centaines de
milliers, la regénération peut être un processus de plusieurs heures. La
solution serait une regénération partielle, qui ne porterait que sur ce
qui a changé. Mais l’analyse des impacts peut être un problème
complexe. Certains petits changements peuvent impacter un très
grand nombre de pages, voire toutes les pages ;

 Page 142

Architectures Hautes-Performances

© Smile – Open Source Solutions

w
w

w
.s

m
il
e
.f
r

Il n’y a pas d’outil standard de génération statique, c’est à dire que c’est
une technique encore assez artisanale, mais les bénéfices peuvent être
énormes. Smile a été amené à mettre en place un principe de
génération de pages statiques à partir d’un CMS à de nombreuses
reprises. Citons les cas de la plateforme voyages-sncf.com, de
Bouygues Telecom, ou encore de Sport24.com.

A la base de ces techniques, il y a un principe semblable à celui de l’
« aspiration » de site : un petit programme externe au CMS va demander
une page, et la stocker sur le disque. La commande wget est
généralement utilisée à cet effet. Il est possible de procéder vraiment
comme un aspirateur de sites, c’est à dire de rechercher les liens dans
la page obtenue, et de requêter ensuite les pages correspondant à ces
liens. Mais c’est une technique trop grossière, qui ne permet pas de
corréler la génération de page avec les changements effectifs, et oblige
donc à tout regénérer périodiquement.

Pour ne regénérer que le minimum, et pouvoir donc opérer en quasi
temps-réel, il faut d’une part déclencher l’export statique sur
l’événement de changement d’un contenu et d’autre part bien identifier
les impacts d’un changement.

Cache de données

Cache de données

Nous avons dit plus haut que les mécanismes de cache se retrouvaient
à tous les niveaux. Nous avons consacré un chapitre au cache de
pages, mais le cache positionné entre application et gestion des données
est essentiel également, particulièrement dans les architectures les plus
modernes.

Approche ensembliste ou clé/valeur

Le cache de données n’est pas juste une gestion de données en
mémoire, il fonctionne selon un paradigme différent, infiniment plus
simple et donc plus performant. A l’inverse bien sûr, il lui manque
énormément de fonctionnalités, à commencer par les propriétés ACID.

Le concept du SGBD est de nature ensembliste, c’est à dire que les
requêtes que l’on adresse au SGBD sont en référence à un ensemble
d’entités, défini par la clause WHERE, ou bien par une jointure.

C’est la force et la puissance des SGBD, qui permet en quelques mots,
d’exprimer une sélection ou une mise à jour qui correspondraient à un
traitement complexe.

Mais cette approche ensembliste présente aussi des inconvénients.

 Page 143

Architectures Hautes-Performances

© Smile – Open Source Solutions

w
w

w
.s

m
il
e
.f
r

D’une part, elle est d’un maniement délicat. Les requêtes complexes
sont pratiquement imprévisibles en termes de performances, et doivent
subir un tuning spécifique pour être utilisables en production.

Plus important, l’approche ensembliste est difficilement compatible avec
un partitionnement. Or le partitionnement est l’une des meilleures
voies vers l’extensibilité.

Dans la pratique, il est fréquent qu’un SGBD ne soit pas utilisé de
manière ensembliste, mais selon un paradigme clé-valeur, moins
puissant, mais beaucoup plus simple. Et la programmation objet a
accentué cette tendance.

Fondamentalement, le paradigme clé-valeur tient en deux primitives :

� Lire valeur correspondant à clé : value=get(key);

� Ecrire valeur correspondant à clé : set(key,value);

Pour ce type d’utilisations, le SGBD n’est parfois pas le bon outil.

Le cache gestionnaire de données

Comme on l’a vu en introduction, la vision traditionnelle est que la
mémoire est certes très rapide, mais (1) trop chère donc trop rare et (2)
non persistante donc trop fragile. Le modèle classique du cache part
de ces deux hypothèses, supposant que (1) on ne peut pas compter
avoir toutes les données en mémoire et (2) même si on le pouvait ce
serait trop volatile.

Donc le dispositif de référence pour stocker les données est le disque,
que ce soit géré par un SGBD ou directement en fichiers. Et on utilise
le peu de mémoire dont on dispose en mode cache MRU.

Aujourd'hui, la mémoire est toujours aussi peu persistante, mais elle
n'est plus rare. Elle peut donc devenir le moyen de stockage primaire,
le gestionnaire de données. Non pas des données les plus utilisées,
mais de toutes les données.

Si on a un millions de membres inscrits et 50 KO de données sur
chacun d'eux, ça ne fait finalement que 50 GO de RAM à prévoir, ce qui
n'est pas une grosse dépense. Surtout si c'est pour servir 200 000
requêtes par seconde. Donc on peut dire: la totalité de mes données
sont en mémoire, tout le temps. Même si un utilisateur n'est pas venu
depuis une semaine ou un mois, ses données sont en mémoire, comme
les autres.

Malgré tout, la mémoire reste fragile, et il faut donc une sauvegarde
persistante. C'est là qu'intervient le disque. Autrement dit, le disque
joue dans ces architectures le rôle que jouaient les bandes auparavant:

 Page 144

Architectures Hautes-Performances

© Smile – Open Source Solutions

w
w

w
.s

m
il
e
.f
r

c'est l'ultime recours, mais en temps ordinaire on n'en a pas besoin.
Avec quelques différences tout de même. La « sauvegarde » sur le
disque s’effectue en temps-réel, à chaque modification. Le disque reste
en fait le lieu « de référence » pour l’information, mais non le lieu « de
gestion ordinaire ».

Dans ce modèle, la gestion MRU demeure, mais elle n’est plus d’une
grande importance. En revanche, le principe de l’alimentation du
cache en mode pull, reste essentiel, car le principe continue d’être que
l’on peut perdre tout ou partie du cache sans dommage. Dans ce cas,
le cache sera reconstitué au fur et à mesure de la demande.

C’est une réflexion que l’on a représenté sur le schéma suivant :

A gauche, l’ancien modèle, disons des années 90 : l’application
s’adresse au SGBD qui stocke ses données sur disque, avec une
certaine utilisation du cache, que nous n’avons pas représentée.

Au milieu, le modèle aujourd’hui classique. L’application manipule des
objets, ces objets sont construits par la couche ORM à partir des

 Page 145

Architectures Hautes-Performances

© Smile – Open Source Solutions

w
w

w
.s

m
il
e
.f
r

données gérées toujours dans le SGBD, avec un dispositif de cache
entre les deux.

Dans les deux cas, le stockage disque est secouru sur des supports
magnétiques offline.

A droite, le nouveau modèle, à la fois de très hautes performances et
très haute extensibilité. On a placé ici le SGBD au niveau « secours »,
en même temps que ses disques. Il peut y avoir encore un secours
offline de second niveau, mais la tendance est plutôt à gérer la totalité
de l’archivage sur disque.

Dans les couches supérieure, on retrouve la modélisation objet, mais le
cache prend une place nouvelle, il est le gestionnaire principal des
données. A tout instant, toutes les données sont en mémoire quelque
part dans le cache, sauf du moins dans quelques états transitoires.

Memcached

Memcached est un outil de cache open source, qui a la particularité
d’être un cache distribué. C’est un cache générique, c’est à dire qu’il
peut stocker n’importe quels objets, de 1 octet à 1 méga-octets environ.

Memcached fonctionne comme un serveur, au sens applicatif du terme.
C’est à dire que, à la manière d’une base de données, les applications
adressent des requêtes (sur TCP/IP) à memcached, qui leur répond.

Memcached fonctionne selon le paradigme du dictionnaire, c’est à dire
une correspondance clé-valeur, à la manière des hashtable.

Les requêtes que les applications adressent à memcached sont très
simples : lire valeur correspondant à clé, écrire valeur correspondant à
clé.

Puisque memcached fonctionne pratiquement comme une hashtable,
une simple fonction d’association (clé, valeur), pourquoi ne pas utiliser
celle-ci ?

C’est là qu’intervient le caractère distribué. On peut lancer autant
d’instances de memcached, sur autant de serveurs que l’on veut, elles
se répartiront le travail, et le stockage, de manière totalement
automatique et transparente.

Chaque paire clé-valeur ne sera stockée que dans une seule des
instances de memcached. Le fonctionnement est d’une simplicité
superbe. Lors de chaque accès, la clé est hashée, c’est à dire qu’on lui
applique un petit algorithme très rapide, qui aboutit à un nombre, et à
ce nombre on applique un modulo N, où N est le nombre d’instances.
Le résultat de ce calcul indique l’instance à laquelle s’adresser. Une
fois que la requête parvient à la bonne instance, le reste n’est qu’un

 Page 146

Architectures Hautes-Performances

© Smile – Open Source Solutions

w
w

w
.s

m
il
e
.f
r

accès hashtable ordinaire. On voit bien que ce fonctionnement est
extensible à l’infini.

Pour autant, avant de multiplier les instances, il faut analyser le
besoin : tant qu’une instance unique n’est pas saturée, on n’a pas
besoin de plus.

Comme tous les dispositifs de cache partiels, le cache distribué de
memcached est naturellement robuste, tout simplement parce que si
une donnée n’est plus disponible, on va la chercher à la source. Le
cache ne porte aucune donnée de référence.

Du moins, c’est la manière recommandée de l’utiliser, mais rien
n’interdit d’utiliser memcached comme seul gestionnaire des données,
du moment que l’on a analysé les conséquences d’une perte.

Memcached est utilisé en particulier par Facebook, qui gère 800
serveurs de cache, totalisant 28 tera-octets de mémoire. Avec quelques
optimisations de memcached, Facebook annonce des performances de
200 000 requêtes par seconde par serveur.

EhCache

Ehcache fonctionne également en mode serveur ; il n’est pas distribué,
mais plutôt répliqué.

Avec Ehcache, chaque objet en mémoire est répliqué sur les différentes
instances Ehcache, contrairement au principe de memcached. Cette
réplication présente nécessairement des limites en termes de
scalabilité : le nombre de messages à échanger entre les instances
croît plus ou moins avec le carré du nombre d’instances.

Pour cette réplication, Ehcache peut utiliser différents modes : lors de la
modification d’un objet, les autres instances peuvent seulement
invalider l’objet en cache, ou bien en recevoir la copie. C’est dans ce
second cas que l’on peut réellement parler de réplication.

De même, la réplication peut être synchrone ou bien asynchrone.

Ehcache peut s’utiliser en temps que librairie simple, pour une
application unique en environnement J2EE donc, ou bien en temps que
serveur de cache, partagé par plusieurs applications.

Une nouvelle instance de Ehcache peut initialiser son cache auprès du
cluster d’instances actives.

Ehcache supporte la persistance, c’est à dire qu’il peut conserver ses
données sur disque lors de l’arrêt, et les reprendre à la relance.

 Page 147

Architectures Hautes-Performances

© Smile – Open Source Solutions

w
w

w
.s

m
il
e
.f
r

Il supporte l’API java JSR107, JCache, mais peut également être utilisé
en tant que serveur, sur des APIs REST ou SOAP. Le mode serveur le
rend accessible à des applications de tous environnements techniques.

Les valeurs de time to live et time to idle peuvent être définies pour
chaque instance, mais des valeurs par objet peuvent aussi être
spécifiées, qui prévalent.

Il est capable d’avoir une stratégie d’éviction des moins fréquemment
utilisés, et non simplement des moins récemment utilisés. Il y a une
petite nuance : un objet peut avoir été utilisé 100 fois à un instant T0,
puis plus du tout pendant 10 secondes. Sa fréquence d’utilisation sur
les 10 dernières secondes reste de 10 fois par seconde. Un second
objet peut n’avoir été utilisé que 2 fois sur ces 10 secondes, mais la
dernière fois était à la dixième seconde. S’il faut en purger un, alors la
politique LRU purge le premier, tandis que la politique LFU purge le
second.

 Page 148

Architectures Hautes-Performances

© Smile – Open Source Solutions

w
w

w
.s

m
il
e
.f
r

QUELQUES CAS D’ECOLE

Une montée en
puissance ordinaire

Le problème posé

Prenons un petit site web ordinaire, qui tourne sur un serveur unique.
Peu importe le système d’exploitation, les outils de développement et
frameworks ou le SGBD retenu, nous ne parlons ici que d’architecture.

On peut le schématiser comme suit :

Un serveur HTTP, Apache sur le schéma, une application
frontale web et une base de données. Le bloc « Appli Front
Web » pourrait, selon les cas, se décomposer en différentes
couches, en particulier un serveur d’application tel que
Tomcat ou JBoss, ou encore un interpréteur de langage tel
que PHP ou Perl. Mais ce découpage ne nous est pas utile
ici.

Il n’y a aucune métrique pour nous dire combien de pages par seconde
cette application pourra servir, cela dépend de trop de paramètres, liés
tant à la manière dont elle est codée qu’à son utilisation de la base de
données.

Néanmoins, le service tournait de manière satisfaisante. Le site est un
succès, l’audience augmente, et petit à petit les performances se
dégradent. En général, le premier signal n’est pas juste un temps de
réponse qui augmente légèrement. La première alerte vient sur des
heures de pointes où le temps de réponse augmente non pas un peu,
mais énormément. Cela dure quelques minutes, puis le trafic retombe
et tout semble rentrer dans l’ordre. La sollicitation est auto-régulée,
c’est à dire que le ralentissement dégoûte une partie des internautes.

A ce stade, il est essentiel d’avoir mis en place un monitoring qui nous
permettra d’identifier ces crêtes mal supportées.

Optimisation

On peut hésiter souvent entre une démarche d’optimisation et une
augmentation des ressources. D’un point de vue écologique,

 Page 149

Architectures Hautes-Performances

© Smile – Open Source Solutions

w
w

w
.s

m
il
e
.f
r

l’augmentation des ressources sans optimisation est une aberration,
comparable à monter le chauffage au lieu d’isoler les fenêtres.

Néanmoins l’optimisation peut être coûteuse, et de plus, ses résultats
ne sont pas garantis, de sorte que d’un point de vue économique, un
simple changement de serveur peut être une meilleure voie.

Extension cellulaire

Une première étape donc, souvent la plus simple, consiste à basculer
sur un serveur plus puissant. Il y a quantité de manière d’être plus
puissant, et cet upgrade requiert une analyse : processeur multi-coeurs,
disques plus rapides, mémoire augmentée, bi-processeur, … Pour que
l’opération soit justifiée, il faut qu’il y ait au moins un facteur 2 à
gagner, c'est-à-dire que – selon la fameuse loi de Moore – le serveur
précédent ait environ 18 mois d’âge.

L’upgrade ne relèvent pas de l’architecture, néanmoins, pour mémoire,
représentons le ainsi :

Bien, maintenant on arrive à un bi-processeurs de dernière génération,
le succès croît toujours, et ça rame de nouveau.

Extension verticale

L’étape suivante la plus simple est l’extension verticale, ou encore
fonctionnelle. Nous avons identifié deux fonctions principales dans
cette architecture, l’application frontale et la base de données.
L’extension fonctionnelle consiste à affecter des serveurs spécialisés sur
chacune de ces fonctions. Ce qui donne le schéma suivant :

 Page 150

Architectures Hautes-Performances

© Smile – Open Source Solutions

w
w

w
.s

m
il
e
.f
r

L’avantage du découpage fonctionnel c’est qu’il est
presque toujours transparent pour les applications.

Ainsi la base de données est déjà accédée par des
protocoles réseau, qu’elle soit sur le même serveur ou
bien sur un autre. Le fait de la déporter est totalement
transparent pour l’application.

On a maintenant globalement deux fois plus de ressources physiques
(CPU, Mémoire, Disques), au service de notre site, ce qui ne peut faire
que du bien.

Avant d’aller plus loin, analysons un peu mieux cette configuration.

En premier lieu, on remarque que si n’importe lequel des deux serveurs
tombe en panne, le site est arrêté. La probabilité de panne a doublé, et
donc le taux d’indisponibilité a doublé. Ce n’est pas bon, mais pas
forcément éliminatoire. On peut toujours envisager un secours à froid,
disponible sur la plateforme.

Une autre remarque. La consommation de ressources, disons par
exemple de CPU, par chacune des fonctions, par chacun des « étages »
de l’architecture, est tout à fait corrélée. Une requête typique va
induire une charge CF sur le fontal, et une charge CDB sur la base, et
l’on peut définir un coefficient k= CF / CDB, sans présager de sa valeur.

Où veut-on en venir ? Supposons maintenant que k=0,5, c’est à dire
que le trafic induit une charge deux fois plus forte sur la base de
données que sur le frontal. La base de données arrivera à saturation
alors que le frontal sera à la moitié de sa capacité. Mais si k=2, alors
c’est le contraire, le frontal est saturé longtemps avant la base. D’une
manière ou d’une autre, il y a de la ressource gaspillée. Cette
architecture manque de flexibilité.

On voit parfois des plateformes allant plus loin encore dans le
découpage fonctionnel, en détachant l’étage Apache :

 Page 151

Architectures Hautes-Performances

© Smile – Open Source Solutions

w
w

w
.s

m
il
e
.f
r

On est content alors d’annoncer une architecture vraiment
multi-tiers, comme si le but était d’avoir le plus de « tiers »,
de couches, possible ! Pourtant, cette architecture est
souvent peu intéressante, car d’une part la tolérance aux
pannes doit être gérée sur chacun des trois niveaux, et
d’autre part chacun des niveaux doit être dimensionné
séparément, comme évoqué plus haut.

Clairement, si l’on a un dimensionnement 1-1 entre l’étage HTTP frontal
et l’étage applicatif, alors on gaspille de la ressource : l’étage Apache n’a
presque rien à faire. A la rigueur, on peut lui faire servir les pages et
composants statiques, et donc le configurer de manière optimisée pour
cette tâche. On peut aussi positionner un outil de cache frontal sur ce
serveur, ou lui faire jouer un rôle de load-balancer de niveau 7.

Extension horizontale

Une étape intermédiaire possible également, est une extension
horizontale d’abord, de la manière suivante :

On voit apparaître le « Load Balancer » (LB), qui assure la répartition de
charge. On se réfèrera au chapitre traitant des techniques et
algorithmes de la répartition de charge.

La base de données présente une contrainte particulière : elle doit le
plus souvent être centralisée, afin d’assurer la cohérence des données.

En restant sur une seule « couche », on peut tout à fait partager la base
de données, placée sur l’un des serveurs :

 Page 152

Architectures Hautes-Performances

© Smile – Open Source Solutions

w
w

w
.s

m
il
e
.f
r

Ce serveur S1 a davantage de travail pour servir une requête, on peut
donc configurer le load-balancer pour lui attribuer un peu moins de
requêtes.

Et, pour ne pas ajouter un serveur supplémentaire si l’on peut s’en
passer, on utilisera S2 comme secours du SGBD, avec une réplication
entre S1 et S2.

En général, la réplication sollicite peu le serveur cible, de sorte qu’il
conserve malgré tout une capacité supérieure.

Une alternative à cette réplication de niveau SGBD est une réplication
de niveau disque, avec DRBD, déjà vu plus haut.

Dans cette configuration, on choisira de préférence de placer la base de
données dans une VM distincte, dans une architecture virtualisée.
Ainsi, il sera facile de la déplacer plus tard.

La capacité d’accueil est pratiquement doublée, en temps normal, mais
en cas de panne d’un serveur elle revient à ce qu’elle était : on n’a pas

 Page 153

Architectures Hautes-Performances

© Smile – Open Source Solutions

w
w

w
.s

m
il
e
.f
r

simultanément tolérance aux pannes et capacité doublée. Malgré tout,
cette configuration horizontale est supérieure à la configuration
verticale précédente, qui au contraire dégradait la disponibilité.

Extension en 2D

L’étape suivante, maintenant, consiste à avoir plus de frontaux, tout en
détachant l’étage SGBD.

On pourra, ici aussi, répliquer la base de données sur l’un des serveurs
disponibles, de manière à disposer d’un secours, ou au minimum d’une
sauvegarde en continu.

 Page 154

Architectures Hautes-Performances

© Smile – Open Source Solutions

w
w

w
.s

m
il
e
.f
r

Ici, on est encore à un stade « modeste », ou « low-cost », où l’on essaye
de calibrer le nombre de serveur au plus juste.

Et bien sûr, une fois à 2 frontaux, on peut passer à 3, 4, … N frontaux
pour une même base de données, selon le même principe de
répartition :

Nous avons là un grand classique des architectures web ordinaires.

On en voit bien les limites : la base de données unique et centrale finira
tôt ou tard par être le goulot d’étranglement. A quel stade ? Combien
de frontaux pour une base ? Il n’y a aucune règle en la matière. La
sollicitation de la base de données, et donc le ratio k cité plus haut,
dépend entièrement de la typologie de l’application, de sa bonne
utilisation de la base, des couches d’abstraction type Hibernate, d’un
cache sur les données, et bien sûr du bon tuning des requêtes. On
peut rencontrer des architectures mettant en œuvre une dizaine de
frontaux partageant une base de données.

Comme évoqué plus haut, la base est ici aussi point de fragilité,
« SPOF » comme on dit. Sur une architecture d’envergure, on
n’utilisera pas un frontal comme secours, ce qui est un peu mesquin,
on préfèrera privilégier l’homogénéité des configurations et des
fonctions.

On met donc en place, a minima, un secours par réplication, comme
suit :

 Page 155

Architectures Hautes-Performances

© Smile – Open Source Solutions

w
w

w
.s

m
il
e
.f
r

Le passage en secours, dans une architecture de ce type, peut être
rendu pratiquement transparent. Il faut quelques secondes pour que
la base de secours prenne la fonction et les applications doivent se
reconnecter sur cette base. Les connexions SGBD en cours sont
perdues, mais certains pools de connexions savent gérer une
reconnexion automatique, dans un mode « test on borrow ». Lorsque
l’application redemandera une connexion, elle obtiendra une connexion
valide, sur la nouvelle base.

Spécialisation en écriture / lecture

Mais le succès ne se dément pas, et bien que nous ayons ajouté de
nombreux frontaux, ce qui devait arriver arrive : nous avons maintenant
8 frontaux et le serveur de base de données ne tient plus la charge. On
a gonflé la configuration au max, on est passé sur un bi-pro, puis un
quadri-pro, rajouté des disques, de la mémoire, mais ça ne suffit plus…

Pourra-t-on aller plus loin ?

Nous avons vu que beaucoup de plateformes web ont un taux
d’écritures base bien plus faible que de lectures. Dans ce cas, il est
intéressant, de répartir les lectures sur différents serveurs, tout en
concentrant les écritures sur un serveur unique.

 Page 156

Architectures Hautes-Performances

© Smile – Open Source Solutions

w
w

w
.s

m
il
e
.f
r

Ici, les frontaux répartissent les lectures sur les différentes bases, mais
les écritures ne sont adressées que sur la base de gauche. Les
transactions sont répliquées depuis celle-ci, vers toutes les autres
bases.

Il y a quelques inconvénients à cette configuration :

� Elle n’est pas transparente pour les applications, qui doivent
distinguer explicitement leurs écritures et leurs lectures.

� Il y a un petit de propagation avant qu’une écriture ne soit visible
sur les autres bases, ce qui peut engendrer des incohérences
transitoires.

 Page 157

Architectures Hautes-Performances

© Smile – Open Source Solutions

w
w

w
.s

m
il
e
.f
r

Bases multiples en réplication croisée

Dans l’architecture précédente, nous avons deux bases de données, qui
se partagent la charge, certainement par l’intermédiaire d’un double
pool de connexions. Ici les deux bases sont actives, il n’y a pas une
base principale et une base de secours.

C’est l’architecture que nous avons mise en place pour un des plus
grands sites français autour de 2004, et qui a parfaitement répondu à
des charges de plus de 150 000 visites par jour.

Néanmoins, elle présente quelques inconvénients encore :

� Elle a des impacts fonctionnels, liés au petit décalage entre les
serveurs ;

� Elle a des impacts également dans le modèle des données,
l’utilisation des séquences (valeur auto-incrémentée) par exemple.

� Elle peut faire apparaître des incohérences, dans le cas où deux
mises à jour de la même entité sont demandées de part et d’autre.

� Elle n’est pas transparente pour les applications, qui doivent se
préoccuper du bon choix de serveur et du passage en secours ;

� La tolérance aux pannes de l’étage base de données est imparfaite.
On a intégré deux serveurs parce qu’il en fallait deux, mais si l’un
tombe en panne, le serveur restant est insuffisant pour satisfaire le
besoin. Il faut donc prévoir également un secours tiède de ces
serveurs.

 Page 158

Architectures Hautes-Performances

© Smile – Open Source Solutions

w
w

w
.s

m
il
e
.f
r

� Et finalement, elle n’est pas extensible à l’infini. Même s’il n’est
pas impossible de passer à trois serveurs, les mécanismes et flux
de réplication croissent selon le carré du nombre de serveurs.

Serveur dédié à la contribution

Il est assez courant que les mises à jour soient réservées à des
internautes identifiés. Dans ce cas, la règle d’affectation est assez
simple : les internautes identifiés sont gérés sur la base maître.

Un cas particulier usuel est celui d’un site utilisant un outil de gestion
de contenus. On distingue alors des contributeurs et de simples
lecteurs. Les contributeurs agissent alors sur la base maître, tandis
que les internautes lecteurs accèdent à l’une des bases répliquées.

Dans certains cas, on trouvera même plus simple de dédier un couple
frontal / base de données pour les contributions :

Bien sûr, cela pose à nouveau le problème de la tolérance aux pannes,
tout particulièrement pour la contribution. Mais on peut admettre
parfois que la disponibilité de la contribution est moins critique que
celle de la lecture.

A vrai dire, dans le schéma précédent, la flexibilité de l’aiguillage entre
frontaux et bases, pour la partie lecture n’est pas fondamentale. Pour
le même nombre de serveurs, on pourra envisager de réunir à nouveau
étages frontal et base de données.

 Page 159

Architectures Hautes-Performances

© Smile – Open Source Solutions

w
w

w
.s

m
il
e
.f
r

En rassemblant les étages, on obtient une répartition de ressources
transparente entre frontal et SGBD.

L’inconvénient majeur de ce type d’architecture, c’est la prise en compte
des « User Generated Content » (UGC) de toutes formes : commentaires,
notation, participation à des forums, etc. Les UGC sont une tendance
majeure du web moderne, et il n’est plus possible de distinguer aussi
clairement contribution et publication.

Partitionnement des données

Enfin, le nec plus ultra de l’extensibilité sera atteint avec le
partitionnement des données, que l’on a évoqué déjà. Comme on l’a
dit, le partitionnement n’est pas compatible avec toutes les typologies
d’application. On l’évoquera davantage dans notre cas d’école suivant,
traitant d’une plateforme de blog.

Architecture type
Facebook

Nous avons évoqué plus haut l’usage généralisé de memcached sur la
plateforme Facebook, et nous avons vu également les principes d’une
architecture urbanisée, dans laquelle chaque domaine fonctionnel
échange avec les autres en invoquant des services, et chaque domaine
est totalement extensible, de manière indépendante.

 Page 160

Architectures Hautes-Performances

© Smile – Open Source Solutions

w
w

w
.s

m
il
e
.f
r

C’est ce que l’on peut représenter typiquement de la manière suivante :

En référence au schéma de la page 143, le sous-système bleu
représente le gestionnaire de données principal, entièrement géré en
mémoire et entièrement distribué, au moyen de l’outil Memcached.
C'est-à-dire que les applications viennent accéder la totalité de leurs
données en invoquant le service de ce sous-système.
Occasionnellement, une donnée peut ne pas y figurer, et dans ce cas
elle est obtenue sur le sous-système vert, qui met en œuvre une gestion
sécurisée et permanente des données, que ce soit au moyen d’une base
de données partitionnée sur différentes instances, ou bien au moyen
d’un système de gestion de fichiers extensible tel que MogileFS ou
HDFS, comme mentionné page 124.

 Page 161

Architectures Hautes-Performances

© Smile – Open Source Solutions

w
w

w
.s

m
il
e
.f
r

Sur ce même principe d’architecture, on peut aisément ajouter d’autres
sous-systèmes accédés par web services, ainsi :

On veillera à ce que chacun de ces services soit accessible autant que
possible en mode REST, sans session, et éventuellement de manière
cachable.

Une plateforme de
blogs de très forte

capacité

Le problème posé

Considérons un autre cas d’école : nous avons à mettre en place une
plateforme de blog de très forte capacité, capable d’accueillir plus d’un
million de blogueurs. En fait, nous disons « plus d’un million », mais la
véritable exigence est plutôt « un nombre illimité de blogueurs », que ce
soit un million, 20 millions ou 200 millions.

 Page 162

Architectures Hautes-Performances

© Smile – Open Source Solutions

w
w

w
.s

m
il
e
.f
r

Les internautes peuvent s’inscrire pour devenir blogueurs, et une fois
passées les quelques formalités d’inscription, ils peuvent commencer
leur blog. Chaque blogueur poste des articles sur son blog, qui sont
mis en ligne a priori avec ou sans modération. Les autres internautes,
lisant un article, peuvent eux-mêmes y poster des commentaires, qui
seront ou non modérés par l’auteur du blog.

On ne s’attardera pas ici sur les fonctionnalités cosmétiques ou sans
impact sur l’architecture. En revanche, il faut bien analyser les
besoins en matière d’administration. Un administrateur de la
plateforme doit avoir une vision globale des blogs. Autant du point de
vue des fonctions liées à la gestion des blogs que du point de vue des
statistiques (nombre de blogueurs inscrits, nombre d’inscriptions du
jour, de la semaine, du mois, nombre d’articles nouveaux écrits, de
commentaires postés, etc.). L’administrateur doit pouvoir retrouver
n’importe quel blogueur, sur différents critères de recherche, et modifier
ou bien supprimer son compte. L’administrateur doit avoir des
interfaces de modération centralisées, qui lui présentent par exemple
les derniers articles, ou bien les derniers articles comportant tels et tels
mots à surveiller. Et cette tâche de modération doit également pouvoir
être répartie entre différents intervenants.

Quelles options d’architecture ?

Si le problème était d’entrée de jeu posé avec des limites de volumétrie
définitives, on pourrait sauter sur l’architecture classique « deux tiers »,
incluant quelques frontaux et une base de données. Il est certain que
ce choix impliquerait une limite sur la capacité globale de la plateforme.
Si 100 000 blogueurs et lecteurs sont connectés et postent leurs
articles, à raison disons de une contribution toutes les 5 minutes, alors
nous avons 300 insertions par seconde dans la base de données, sans
compter bien sûr toutes les mises à jours périphériques. On aura
beaucoup de mal à soutenir ce rythme, même sur une configuration
matérielle haut de gamme. Et quand bien même on y parviendrait, on
ne tiendra pas un million de blogueurs en ligne.

 Page 163

Architectures Hautes-Performances

© Smile – Open Source Solutions

w
w

w
.s

m
il
e
.f
r

On peut dire : peu importe où se situera exactement la limite, l’essentiel
est qu’il y aura une limite, et c’est ce que ne voulons pas. Car lorsque
la limite sera atteinte, ce sera une limite « dure », très difficile à franchir,
nécessitant une révision d’ensemble de l’architecture.

Un problème partitionnable

Un blogueur n’agit que dans le périmètre de son blog. En première
analyse, le problème posé est naturellement partitionnable. Si l’on sait
mettre en place une plateforme relativement simple pour accueillir
disons 10 000 blogueurs, alors qu’est-ce qui nous empêchera d’aligner
autant de ces plateformes qu’il faudra, 10 pour 100 000 blogueurs, 100
pour un million ?

Faisons la liste de ce qui nous poserait problème dans cette simple
juxtaposition de petites plateformes.

� La répartition des internautes blogueurs : faudrait-il dire à
certains d’accéder à www-01.mesblogs.fr, d’autres à www-02,
d’autres finalement à www-10 ? Ce n’est pas très élégant
assurément.

� La gestion administrative des blogueurs : lorsqu’un administrateur
recherche un blogueur, devra-t-il adresser une requête à chacune
des N plateformes ?

� De même pour la gestion de la modération : les modérateurs
devront-ils se connecter à chacune des N plateformes ?

� A ces problèmes d’organisation on pourrait ajouter des problèmes
de coût. On sait que plus la tolérance aux pannes est gérée à
grande échelle, moins elle est coûteuse. Faudra-t-il ici que
chacune des petites plateformes élémentaires assure sa haute
disponibilité de manière totalement autonome ?

Malgré ces questions à traiter, la remarque initiale reste
prépondérante : il y a dans cette problématique, une capacité assez
naturelle à diviser le problème, diviser pour régner. Ce sera donc bien
le principe de base de notre architecture. Les problèmes cités ne sont
pas suffisants pour remettre en question ce principe, nous leur
trouverons des solutions.

 Page 164

Architectures Hautes-Performances

© Smile – Open Source Solutions

w
w

w
.s

m
il
e
.f
r

Répartition arbitraire

Nous avons expliqué (cf. « Quelle logique de répartition ? », page 98), que
dans un partitionnement, la répartition ne doit pas être basée sur des
règles fonctionnelles. Elle doit être arbitraire, ou plutôt, fondée
uniquement sur des critères techniques : un blogueur nouveau est
affecté à tel serveur parce que ce serveur a de la capacité disponible.

Cela implique, comme on l’a vu, de tenir à jour une table d’affectation,
qui sera utilisée pour la répartition des internautes.

Cette logique de remplissage des serveurs permet d’étendre la
plateforme au fur et à mesure du besoin. Lorsque les serveurs en place
manquant de capacité, on en ajoute quelques-uns. Des blogs peuvent
aussi être supprimés, de sorte que de la capacité peut apparaître sur
des serveurs anciens, qui sera utilisée par de nouvelles affectations.

Fonctions centrales via webservices

Pour les fonctions centrales, en particulier d’administration, une
première voie consiste à s’appuyer une application d’administration
globale échangeant avec chacune des plateformes de blog
indépendantes en invoquant des webservices. Ce peut être aussi bien
pour collecter de l’information de manière centralisée que pour adresser
des commandes.

Ce qui est représenté ci-après :

Si notre application de blogs est moderne et bien conçue, elle aura déjà
implémenté des interfaces REST pour chacune de ses fonctionnalités.
Sinon, dans le cas d’un progiciel en général, mettre en place ces
webservices pourrait être difficile, mais pour un produit open source, on
y parviendra généralement.

Malgré tout, dans ce mode, l’administration ne sait pas quel blog est sur
quel serveur, de sorte qu’elle doit fréquemment adresser sa requête en
parallèle à la totalité des serveurs, alors qu’un seul est concerné.

 Page 165

Architectures Hautes-Performances

© Smile – Open Source Solutions

w
w

w
.s

m
il
e
.f
r

Lorsque le nombre de ces serveurs augmente, ces invocations pèsent de
plus en plus lourd, et deviennent un réel frein à l’extensibilité.

Fonctions centrales via datawarehouse

On a dit déjà que le datawarehouse est le complément naturel du
partitionnement.

Ici, il s’agit de constituer une base centrale consolidant une partie des
données portées par chacun des serveurs, les données utiles à
l’administration.

Cette base consolidée est utilisée :

� Pour faire des recherches transverses, multi-critères, sans solliciter
tous les serveurs.

� Pour construire la table d’affectation, qui permettra ensuite
d’aiguiller les requêtes.

� Pour disposer de statistiques globales.

Ce que l’on représente comme suit :

Les outils de cette consolidation peuvent varier. On a dit déjà que la
réplication de base de données devait être utilisée seulement entre
systèmes homologues, ce qui n’est pas le cas ici. On préfèrera donc
appuyer cette collecte sur un middleware, que ce soit en mode push sur
une message queue, ou bien en mode pull, par interrogation d’un
webservice spécifique.

Webservices + datawarehouse

En fait, nous avons besoin de combiner les deux approches :

 Page 166

Architectures Hautes-Performances

© Smile – Open Source Solutions

w
w

w
.s

m
il
e
.f
r

� La base consolidée, afin de ne pas invoquer tous les serveurs pour
la moindre interrogation, et pour tenir à jour la table d’allocation ;

� Les webservices afin d’agir sur les serveurs.

Ce que l’on représentera comme ceci :

On a ici un dispositif extrêmement extensible, qui s’accommodera d’une
centaine de serveurs si besoin.

Répartition de charge

Dans cette architecture partitionnée, chaque entité, chaque sous-
plateforme est à la fois une entité de stockage et une entité de traitement.
En tant qu’entité de stockage, elle a la charge d’un certain nombre de
blogueurs et de toutes les informations associées : leur
personnalisation, leurs articles, les commentaires, etc. En tant
qu’entité de traitement, elle a la charge de gérer toutes les interactions
avec ces blogueurs, de présenter les articles en lecture aux internautes,
et d’accepter leurs contributions. Ce double rôle, stockage et
traitement, implique une bonne analyse du dimensionnement selon ces
deux besoins.

Dans cette architecture, la répartition des internautes ne se gère pas
selon la charge, mais selon la cible. Imaginons que le blog du blogueur
Jean-Paul soit publié à l’adresse http://www.mesblogs.fr/blog-de-jean-
paul/. On mettra en place une répartition de niveau 7 qui, après
analyse de l’URL et consultation de la table d’affectation, dirigera toutes
les requêtes du type /blog-de-jean-paul/* vers le serveur approprié.

Pas d’autre axe d’extensibilité

Une fois qu’on a retenu le principe de partitionnement, est-il utile de le
combiner avec d’autres axes d’extensibilité ?

 Page 167

Architectures Hautes-Performances

© Smile – Open Source Solutions

w
w

w
.s

m
il
e
.f
r

On pourrait en effet augmenter la capacité de chacune des plateformes
élémentaires, que ce soit verticalement, en séparant application et base,
ou horizontalement, en disposant plusieurs frontaux.

Du point de vue de l’extensibilité, ce n’est pas nécessaire : le
partitionnement nous apporte toute l’extensibilité désirée, et il sera plus
simple d’avoir 100 petits serveurs de blog autonomes, plutôt que 20
plateformes de 5 serveurs.

Mais il reste la question du secours.

Secours

Nous avions signalé déjà que le partitionnement rendait le secours plus
difficile.

Si nous alignons 100 serveurs de blog autonomes, comment offrir de la
haute disponibilité pour chacun d’eux ? En le dupliquant ?

Clairement, doubler tous nos serveurs serait extrêmement coûteux.

Il nous reste deux voies :

� Soit construire, comme on l’a évoqué ci-avant, 20 petites
plateformes de 5 serveurs (ou une autre combinaison), chacune
disposant des solutions classiques de haute disponibilité, déjà
recensées.

� Soit mettre en œuvre un secours mutualisé pour les 100 serveurs :
on dispose d’un petit lot de serveurs de secours, en spare, qui
peuvent servir à remplacer n’importe lequel des serveurs
défaillants. Si l’infrastructure est totalement virtualisée, on
pourra restaurer l’ensemble de la VM au dernier point de
sauvegarde, en quelques secondes.

SAN

Nous avons dit plus haut que le SAN n’était en général pas la solution
pour construire une plateforme de très haute capacité. Néanmoins, ici,
ce pourrait être une voie intéressante.

En disposant d’un système de stockage qui soit à la fois :

� De très haute disponibilité, car intrinsèquement redondant

� Et qui puisse être associé à n’importe quel serveur

On peut gérer un secours mutualisé pour l’ensemble de la plateforme.
En cas de panne d’un serveur, on alloue un serveur parmi le pool de
spare, et on lui associe le système disque du serveur qu’il remplace.

 Page 168

Architectures Hautes-Performances

© Smile – Open Source Solutions

w
w

w
.s

m
il
e
.f
r

Sport 24 et
01 Informatique

Le problème posé

Nous étudions ici deux sites différents, réalisés par Smile, qui mettent
en œuvre des principes d’architecture semblables.

Le contexte est le suivant :

� Ces sites ont une large part de gestion de contenus : des
journalistes écrivent des articles, qui sont mis en forme au moyen
de templates, puis mis en ligne. Il existe d’excellents outils open
source prêts à l’emploi qui couvrent toutes les fonctionnalités
requises à cet égard.

� Ces sites ont une forte audience. Dans le cas du site Sport24, on
est à 5 millions de visites sur le mois de septembre 2008. Mais
plus important encore : le site observe de très forts pics de trafic à
l’occasion des événements sportifs.

� Ces sites ont une part de contenus personnalisés, c'est-à-dire qui
changent selon les préférences de l’internaute.

� Ces sites n’intègrent pas que de la gestion de contenu, mais de
nombreuses fonctionnalités périphériques relevant d’une
dimension communautaire : blogs, forums, chat, etc., ainsi que des
commentaires utilisateurs, qui plus largement sont dans la
catégorie des « UGC », « User Generated Content », contenus
produits par les utilisateurs.

� Enfin, dans le cas de Sport24, on a également une fonctionnalité
de match en temps réel, où l’historique du match est rafraîchi de
manière très rapide.

 Page 169

Architectures Hautes-Performances

© Smile – Open Source Solutions

w
w

w
.s

m
il
e
.f
r

Axes de solution

Pour de tels sites, le socle est obligatoirement un outil de gestion de
contenus, couvrant pour au moins les 2/3 les fonctionnalités
attendues.

Il existe une offre très diversifiée de bons outils CMS, « Content
Management System », et l’open source domine clairement ce marché.
On ne va pas détailler ici l’analyse du choix de solution, sur la base des
qualités ou contraintes propres de chaque produit. Pour ces deux
sites, le choix s’est porté sur le produit eZ Publish, un excellent CMS en
environnement PHP.

eZ Publish offre une configuration dite « en cluster », qui a les
caractéristiques suivantes :

� Les contextes de session sont partagés en base de données, ce qui
permet une répartition de charge sans affinité de serveur.

� Les fichiers média sont également conservés en base de données,
donc peuvent être partagés par N frontaux.

eZ Publish présente des performances assez bonnes, mais en présence
de pages personnalisées, le cache ne peut pas être très efficace, et l’on
peut descendre jusqu’à une dizaine de pages par processeur seulement.

Dans le cas de Sport24, on veut tenir des charges en crête de quelques
milliers de pages servies par seconde. On voit qu’en configuration

 Page 170

Architectures Hautes-Performances

© Smile – Open Source Solutions

w
w

w
.s

m
il
e
.f
r

ordinaire, il faudrait plusieurs centaines de serveurs pour y parvenir !
Il va donc falloir travailler un peu l’architecture.

Agrégation côté client

Pour gérer la personnalisation, ces sites utilisent le mécanisme
d’agrégation côté client, c'est-à-dire que certains morceaux de la page
sont inséré dans la page coté navigateur par un peu de javascript.

Il s’agit des blocs personnalisés, qui ne peuvent être gérés en cache.
Ainsi la plus grande partie de la page bénéficie du cache – comme on le
verra plus loin – et seuls les blocs personnalisés sont constitués
dynamiquement.

De même, les matchs en temps réel sont rafraîchis à une fréquence
élevée en javascript, sans recharger la page.

Agrégation côté serveur

Pour l’agrégation côté serveur, nous avons utilisé le module Server-Side
Include (SSI), de Apache, qui précisément permet de constituer des
pages en insérant différents fragments aux positions indiquées. C’est
finalement une sorte de dispositif de templating, rudimentaire.

Cache Squid en frontal

Bien entendu, nous avons positionné un serveur de cache, ici Squid, en
frontal du serveur Apache. Pratiquement toute plateforme web doit
avoir un serveur de cache en frontal.

Un unique Squid permet de servir plus de 2000 pages par seconde.

Comme on l’a vu plus haut, la gestion des durées de vie en cache (TTL)
peut soit être configurée globalement, soit plutôt spécifiée par le serveur
lui-même.

On compte en particulier sur le Squid pour servir tous les fichiers de
ressources autres que Html, qui varient peu.

Génération de pages statiques

C’est l’originalité de ces deux plateformes : le CMS ne sert pas
directement les pages aux visiteurs, on lui fait générer des pages Html
statiques, des fichiers, qui sont ensuite servis par Apache.

C’est un moyen de bénéficier à la fois de toutes les fonctionnalités d’un
CMS – et elles sont très nombreuses – et de l’extraordinaire robustesse
et performance du statique.

 Page 171

Architectures Hautes-Performances

© Smile – Open Source Solutions

w
w

w
.s

m
il
e
.f
r

Les journalistes contributeurs utilisent le back-office du CMS pour
créer et modifier leurs articles, et gérer les médias.

De manière assez fréquente, un petit script provoque la regénération
des pages, ou des fragments Html.

Obtenir des pages statiques, des fichiers Html, à partir d’un CMS est
assez facile : il suffit de se faire passer pour un navigateur web, et
demander la page en http, puis écrire sur disque le fichier ainsi obtenu.
Il faut veiller bien sûr à ce que les liens hypertexte restent corrects dans
un contexte statique.

La principale difficulté est ailleurs : on ne peut pas regénérer, par une
sorte d’aspiration, l’ensemble du site à haute fréquence. Il faut donc
déterminer qu’est-ce qui a changé. Ce n’est pas chose facile, car dans
un CMS sophistiqué, il n’y a pas correspondance entre un contenu et
une page : le journaliste modifie un article, mais cet article peut
apparaître dans différentes pages, sous différents formats. On peut
même modifier un pied de page par exemple, qui impactera la totalité
des pages.

Nous avons donc réalisé un job qui analyse les impacts des derniers
changements, afin de ne regénérer que ce qui est requis.

Diffusion des pages vers les frontaux

Une fois générés les fichiers statiques, fragments de pages Html, on
peut les mettre à disposition des frontaux soit par un partage NFS, soit
par une réplication RSync. Pour Sport24, nous avons utilisé un NFS,
pour 01Informatique, nous avons préféré la réplication.

Schéma d’ensemble

 Page 172

Architectures Hautes-Performances

© Smile – Open Source Solutions

w
w

w
.s

m
il
e
.f
r

Sur le schéma précédent, on distingue :

� A gauche, la plateforme de contribution destinée aux journalistes

� Au centre, le serveur de publication, sur lequel un job spécifique
vient analyser les changements et aspirer les pages ou fragments
Html.

� A droite, la plateforme de publication, sur laquelle on distingue :

• Le cache Squid en frontal

• Apache bien sûr

• Le module SSI, qui va réaliser l’agrégation des fragments
Html obtenus depuis le serveur NFS.

On a fait figurer également un CMS en production, qui est en charge
des blocs personnalisés, insérés dans les pages du côté navigateur.

 Page 173

Architectures Hautes-Performances

© Smile – Open Source Solutions

w
w

w
.s

m
il
e
.f
r

Sur la figure précédente, on distingue :

� Tout à fait à droite, l’agrégation côté client, insérant un bloc de
contenu au sein d’une page, en invoquant le CMS, qui accède à la
même base que les serveurs de contribution.

� Les contenus média servis directement depuis le Squid.

Enfin, la figure suivante représente la variante 01 Informatique

 Page 174

Architectures Hautes-Performances

© Smile – Open Source Solutions

w
w

w
.s

m
il
e
.f
r

Outre la réplication RSync qui remplace le partage NFS pour un résultat
équivalent, on a aussi intégré ici la plateforme de Forum PHP-BB, qui
elle est en direct.

Woozweb

Nous avons évoqué Woozweb en tant qu’outil de monitoring et
d’observatoire du web, mais il peut être aussi un cas d’école pour
étudier l’extensibilité d’une plateforme.

Car Woozweb est une plateforme que l’on a voulue extensible à l’infini.

La problématique Woozweb

En quelques mots, les grandes fonctionnalités de Woozweb :

� Woozweb surveille des « ressources » du web. Une « ressource » est
caractérisée par son URI.

� Des serveurs spécifiques, appelés « Sondes », adressent des
requêtes afin de tester les ressources.

� On distingue deux types de sondes : des sondes haute-fréquence
(HF), qui testent chaque ressource toutes les 15 minutes, et des
sondes basses-fréquence (LF), qui testent chaque ressource toutes
les semaines.

 Page 175

Architectures Hautes-Performances

© Smile – Open Source Solutions

w
w

w
.s

m
il
e
.f
r

� Les sondes HF ne font que charger la page Html correspondant à
l’URI, et vérifier la conformité de la page, le code retour Http, et le
temps de réponse observé.

� Les sondes LF, elles, effectuent un chargement complet de la page,
et de toutes ses ressources, au moyen d’un vrai navigateur,
exécutant aussi bien le javascript que le Flash, ou tous autres
objets embarqués. Elles relèvent donc une information différente,
qui va au delà de la seule disponibilité ou qualité de service.

� Toutes les informations relevées par les sondes sont conservées et
mises à disposition au travers d’interfaces web.

Partitionnement et consolidation

Woozweb a recours au principe déjà évoqué, combinant partitionnement
et consolidation :

� On découpe la plateforme Woozweb en sous-systèmes que l’on
appelle nœuds, ou « nodes », parfois abrévié en « NOD ». Un NOD
est un sous-système qui est en charge de N ressources. Le NOD
est constitué de plusieurs serveurs, nous y reviendrons plus loin.
Le NOD assure à la fois le monitoring LF et HF des ressources dont
il a la charge, le stockage et la restitution de ces données.

� Nous avons besoin de requêtes transverses, pour deux raisons.
D’une part Woozweb autorise des recherches multi-critères sur
l’ensemble des ressources. Indépendamment donc, de quel NOD
en a la charge. D’autre part Woozweb met à disposition des
statistiques transverses, portant sur la totalité des ressources.
Par exemple quelle est la part des sites qui utilisent du PHP.
Comme on l’a vu plus haut, les fonctionnalités de se type sont
mieux mises en œuvre sur un datawarehouse consolidant les
données.

Dans l’architecture Woozweb, le datawarehouse est appelé « WDR »,
Woozweb Data Repository.

Rappelons que le datawarehouse n’est pas la somme de toutes les
données de tous les NODs : il ne consolide qu’un petit échantillon de
données, celles utiles aux fonctionnalités transverses.

 Page 176

Architectures Hautes-Performances

© Smile – Open Source Solutions

w
w

w
.s

m
il
e
.f
r

On a donc le schéma global classique :

Architecture de chaque « NOD »

Chaque NOD assure à la fois les fonctionnalités :

� De monitoring, par les sondes LF et HF adressant des requêtes aux
ressources sous surveillance.

� De stockage de l’information de monitoring recueillie, qui peut être
volumineuse.

� D’interface de consultation, elle peut accueillir un visiteur et gérer
les interfaces web de sa session.

Chaque sous-système NOD a l’architecture suivante :

Où M1 est un serveur dit « Manager », noté « MGR », qui porte la base de
données du NOD. M2 est le secours de M1, en réplication.

P1 et P2 sont des sondes, que ce soit LF ou HF. Un même MGR peut
être configuré pour gérer plusieurs sondes, selon la capacité unitaire
d’une sonde.

 Page 177

Architectures Hautes-Performances

© Smile – Open Source Solutions

w
w

w
.s

m
il
e
.f
r

W1 et W2 sont des frontaux web associés au NOD, utilisés en
répartition de charge, partageant la base de MGR.

Architecture globale

On peut donc représenter l’architecture globale, combinant un certain
nombre de NODs, et un WDR, comme suit :

On note que le sous-système WDR peut lui-même être constitué de N
serveurs en cluster. WDR n’utilise pas de base de données, il utilise
seulement un moteur de recherche, qui est Lucene/SolR. SolR peut
fonctionner en cluster, et gérer de très gros volumes et de très fortes
capacité d’accueil.

Répartition de charge

Pour Woozweb, nous avons adopté les principes suivants :

� Il n’y a pas de contexte de session, et donc pas d’affinité de
serveur ; n’importe quel internaute peut être traité par n’importe
quel frontal web, et il peut changer de frontal au cours d’une même
session.

� Cela nous permet de retenir un principe de load-balancing par
DNS round-robin, qui est économique en infrastructure, et
compatible avec de l’hébergement peu coûteux et multi-
datacenters.

 Page 178

Architectures Hautes-Performances

© Smile – Open Source Solutions

w
w

w
.s

m
il
e
.f
r

� Malgré tout, certains internautes membres sont identifiés. Leur
session est alors gérée dans un cookie de domaine, qui est adressé
à n’importe quel frontal avec chacune des requêtes. Le cookie
porte un cryptogramme qui permet de valider l’authentification et
la durée de vie de la session.

Agrégation de contenus

Il n’y a pas d’affectation des users aux NODs, mais comme on l’a vu
chaque ressource est affectée à un NOD. Ainsi les ressources préférées
ou privées d’un utilisateur peuvent être réparties sur différents NODs.
Néanmoins, il faut être en mesure de lui présenter un tableau de bord
consolidé, qui réunisse des informations relatives à différentes
ressources.

Pour élaborer ces pages « tableau de bord », il faut donc réunir des
fragments d’informations issues de différents serveurs.

Nous avons vu plus haut les différentes options qui se présentent pour
réaliser cela. L’une des plus simples est l’agrégation côté client, c’est à
dire réalisée sur le poste client, au sein du navigateur.

C’est la voie qui a été retenue pour Woozweb, que l’on peut représenter
comme ceci :

 Page 179

Architectures Hautes-Performances

© Smile – Open Source Solutions

w
w

w
.s

m
il
e
.f
r

A gauche, on distingue une page tableau de bord vue par un utilisateur
de Woozweb. On voit qu’elle réunit des fragmentes d’information
correspondant à différentes ressources. Ces ressources sont gérées par
différents NODs.

C’est au niveau du navigateur, sur le poste de l’utilisateur, que les
différents frontaux sont invoqués pour obtenir les fragments
correspondant à chacune des ressources, afin de constituer la page
finale.

Synthèse

Woozweb est un cas d’école intéressant, car il réunit une diversité de
techniques que nous avons passées en revue :

� Partitionnement et consolidation

� Découpage fonctionnel

� Absence de contextes

� Répartition par DNS-RR

� Agrégation de fragments côté client.

Au final, nous avons une plateforme réellement extensible, qui pourra
monitorer plusieurs millions de ressources.

 Page 180

Architectures Hautes-Performances

© Smile – Open Source Solutions

w
w

w
.s

m
il
e
.f
r

CONCLUSION

Au travers de ce petit ouvrage, nous vous avons présenté les
fondements architecturaux des plateformes web hautes-performances,
en même temps que les outils intervenant dans leur mise en œuvre.

L’open source tient une place toute particulière dans ces
infrastructures, tant du fait de l’extrême robustesse de ses outils, que
par le moindre coût de possession, en particulier à grande échelle.

Chaque plateforme est une problématique unique, mais comme on l’a
vu, on retrouve souvent le même ensemble de bons principes, de
bonnes pratiques et de bons outils.

Ayant mis en œuvre un très grand nombre de plateformes web, dont
beaucoup accueillent plusieurs millions de visiteurs par mois, et dont
certaines comptent jusqu’à 50 serveurs, Smile possède un réel savoir-
faire dans la conception de ces plateformes, leur mise en œuvre et leur
exploitation. Ceci, qu’elles soient issues de développement
d’applications spécifiques, conçues pour l’extensibilité, ou bien
construites à base de progiciels.

Nous espérons que cette présentation vous aura été utile, et sommes à
votre disposition pour passer à la phase pratique !

