

Windows PowerShell 3.0
First Steps

Ed Wilson

Published with the authorization of Microsoft Corporation by:
O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, California 95472

Copyright © 2013 by Ed Wilson
All rights reserved. No part of the contents of this book may be reproduced or transmitted in any form or by any
means without the written permission of the publisher.

ISBN: 978-0-7356-8100-2

1 2 3 4 5 6 7 8 9 LSI 8 7 6 5 4 3

Printed and bound in the United States of America.

Microsoft Press books are available through booksellers and distributors worldwide. If you need support related
to this book, email Microsoft Press Book Support at mspinput@microsoft.com. Please tell us what you think of
this book at http://www.microsoft.com/learning/booksurvey.

Microsoft and the trademarks listed at http://www.microsoft.com/about/legal/en/us/IntellectualProperty/
Trademarks/EN-US.aspx are trademarks of the Microsoft group of companies. All other marks are property of
their respective owners.

The example companies, organizations, products, domain names, email addresses, logos, people, places, and
events depicted herein are fictitious. No association with any real company, organization, product, domain name,
email address, logo, person, place, or event is intended or should be inferred.

This book expresses the author’s views and opinions. The information contained in this book is provided without
any express, statutory, or implied warranties. Neither the authors, O’Reilly Media, Inc., Microsoft Corporation,
nor its resellers, or distributors will be held liable for any damages caused or alleged to be caused either directly
or indirectly by this book.

Acquisitions and Developmental Editor: Michael Bolinger

Production Editor: Melanie Yarbrough

Editorial Production: Box Twelve Communications

Technical Reviewer: Brian Wilhite

Indexer: Box Twelve Communications

Cover Design: Twist Creative • Seattle

Cover Composition: Ellie Volckhausen

Illustrator: Rebecca Demarest

To Teresa, my soul mate.
—Ed Wilson

Contents at a glance

Foreword xv

Introduction xvii

ChAPTER 1 Overview of Windows PowerShell 3.0 1

ChAPTER 2 Using Windows PowerShell cmdlets 21

ChAPTER 3 Filtering, grouping, and sorting 41

ChAPTER 4 Formatting output 53

ChAPTER 5 Storing output 69

ChAPTER 6 Leveraging Windows PowerShell providers 79

ChAPTER 7 Using Windows PowerShell remoting 99

ChAPTER 8 Using WMI 113

ChAPTER 9 Using CIM 127

ChAPTER 10 Using the Windows PowerShell ISE 141

ChAPTER 11 Using Windows PowerShell scripts 153

ChAPTER 12 Working with functions 183

ChAPTER 13 Debugging scripts 203

ChAPTER 14 Handling errors 217

APPEnDIx A Windows PowerShell FAQ 229

APPEnDIx B Windows PowerShell 3.0 coding conventions 239

Index 247

vii

What do you think of this book? We want to hear from you!
Microsoft is interested in hearing your feedback so we can continually improve our
books and learning resources for you. To participate in a brief online survey, please visit:

www.microsoft.com/learning/booksurvey/

Contents

Foreword	 xv

Introduction	 xvii

Chapter 1	 Overview of Windows PowerShell 3.0	 1
Understanding Windows PowerShell . 1

Working with Windows PowerShell. 2

Security issues with Windows PowerShell	 4

Using Windows PowerShell cmdlets. 6

The most common verb: Get	 6

Supplying options for cmdlets. 12

Using single parameters	 13

Introduction to parameter sets	 16

Using command-line utilities	 18

Working with Help options. 19

Summary. 20

Chapter 2	 Using Windows PowerShell cmdlets	 21
Understanding the basics of cmdlets . 22

Common Windows PowerShell parameters	 22

Starting the Windows PowerShell transcript	 24

Stopping and reviewing the Windows PowerShell transcript	 25

Searching the Help topics. 26

Using the Get-Help cmdlet	 26

Using the About conceptual Help topics 	 29

viii Contents

Using the Get-Command to find cmdlets. 30

Using the Get-Member cmdlet. 33

Exploring property members	 34

Using the Show-Command cmdlet . 34

Setting the Script Execution Policy . 36

Creating a basic Windows PowerShell profile. 37

Determining if a Windows PowerShell profile exists	 38

Creating a new Windows PowerShell profile	 38

Summary. 39

Chapter 3	 Filtering, grouping, and sorting	 41
Introduction to the pipeline. 41

Sorting output from a cmdlet. 42

Grouping output after sorting. 44

Grouping information without element data	 45

Filtering output from one cmdlet . 46

Filtering by date	 47

Filtering to the left	 49

Filtering output from one cmdlet before sorting. 50

Summary. 51

Chapter 4	 Formatting output	 53
Creating a table. 53

Choosing specific properties in a specific order	 54

Controlling the way the table displays	 55

Creating a list. 58

Choosing properties by name	 59

Choosing properties by wildcard	 59

Creating a wide display. 61

Using the -AutoSize parameter to configure the output	 61

Customizing the Format-Wide output	 62

ixContents

Creating an output grid. 63

Sorting output by using the column buttons	 64

Filtering output by using the filter box	 66

Summary. 67

Chapter 5	 Storing output	 69
Storing data in text files. 69

Redirect and append	 70

Redirect and overwrite	 71

Controlling the text file	 72

Storing data in .csv files. 73

No type information	 73

Using type information 	 75

Storing data in XML. 76

The problem with complex objects	 76

Using XML to store complex objects	 76

Summary. 78

Chapter 6	 Leveraging Windows PowerShell providers	 79
Understanding Windows PowerShell providers . 80

Understanding the Alias provider	 80

Understanding the Certificate provider	 82

Understanding the Environment provider	 85

Understanding the File System provider	 86

Understanding the Function provider	 88

Understanding the Registry provider	 89

Understanding the Variable provider	 96

Summary. 97

Chapter 7	 Using Windows PowerShell remoting	 99
Using Windows PowerShell remoting. 99

Classic remoting	 99

x Contents

Configuring Windows PowerShell remoting. 101

Running commands	 103

Creating a persisted connection	 107

Troubleshooting Windows PowerShell remoting. 110

Summary. 111

Chapter 8	 Using WMI	 113
Understanding the WMI Model. 113

Working with objects and namespaces	 114

Listing WMI providers	 114

Working with WMI classes	 115

Querying WMI: The basics. 117

Tell me everything about everything	 120

Tell me selected things about everything	 122

Tell me everything about some things	 123

Tell me selected things about some things	 125

Summary. 125

Chapter 9	 Using CIM	 127
Using CIM cmdlets to explore WMI classes. 127

Using the classname parameter	 128

Finding WMI class methods	 128

Filtering classes by qualifier	 130

Reducing returned properties and instances	 133

Cleaning up output from the command	 134

Working with associations. 134

Summary. 140

Chapter 10	 Using the Windows PowerShell ISE	 141
Running the Windows PowerShell ISE. 141

Navigating the Windows PowerShell ISE	 142

Working with the Script pane	 145

Tab expansion and Intellisense	 146

xiContents

Working with Windows PowerShell ISE snippets . 148

Using Windows PowerShell ISE snippets to create code	 148

Creating new Windows PowerShell ISE snippets	 149

Removing user-defined Windows PowerShell ISE snippets	 150

Summary. 151

Chapter 11	 Using Windows PowerShell scripts	 153
Why write Windows PowerShell scripts?. 153

Scripting fundamentals. 155

Running Windows PowerShell scripts	 155

Enabling Windows PowerShell scripting support	 156

Transitioning from command line to script	 157

Running Windows PowerShell scripts	 159

Understanding variables and constants	 160

Using the While statement. 162

Constructing the While statement	 162

A practical example of using the While statement	 164

Using special features of Windows PowerShell	 164

Using the Do…While statement. 165

Using the range operator	 166

Operating over an array	 166

Casting to ASCII values	 167

Using the Do…Until statement. 168

Using the Windows PowerShell Do…Loop statement	 168

Using the For statement . 170

Creating a For…Loop	 170

Using the ForEach statement	 172

Exiting the ForEach statement early	 174

Using the If statement. 175

Using assignment and comparison operators	 177

Evaluating multiple conditions	 178

xii Contents

Using the Switch statement . 179

Using the basic Switch statement 180

Controlling matching behavior 182

Summary. 182

Chapter 12 Working with functions 183
Understanding functions . 183

Using a type constraint 190

Using multiple input parameters . 192

Using functions to encapsulate business logic . 194

Using functions to provide ease of modification . 196

Summary. 201

Chapter 13 Debugging scripts 203
Understanding debugging in Windows PowerShell 203

Debugging the script . 203

Setting breakpoints 204

Setting a breakpoint on a line number 204

Setting a breakpoint on a variable 206

Setting a breakpoint on a command 209

Responding to breakpoints 211

Listing breakpoints 213

Enabling and disabling breakpoints 215

Deleting breakpoints 215

Summary. 216

Chapter 14 handling errors 217
Handling missing parameters . 217

Creating a default value for the parameter 218

Making the parameter mandatory 219

xiiiContents

Limiting choices. 220

Using PromptForChoice to limit selections	 220

Using Test-Connection to identify accessible computers	 222

Using the contains operator to examine contents of an array	 223

Handling missing rights. 225

Attempting and failing	 226

Checking for rights and exiting gracefully	 226

Using Try/Catch/Finally. 227

Summary. 228

Appendix A	 Windows PowerShell FAQ	 229

Appendix B	 Windows PowerShell 3.0 coding conventions	 239
General script construction. 239

Include functions in the script that uses the functions	 239

Use full cmdlet names and full parameter names	 240

Use Get-Item to convert path strings to rich types	 241

General script readability. 241

Formatting your code . 242

Working with functions	 244

Creating template files	 244

Writing your own functions	 245

Variables, constants, and naming	 245

Index	 247

What do you think of this book? We want to hear from you!
Microsoft is interested in hearing your feedback so we can continually improve our
books and learning resources for you. To participate in a brief online survey, please visit:

www.microsoft.com/learning/booksurvey/

xv

Foreword

There are many reasons to get started with automation. For me it was a little turtle from a
program called LOGO. Of course, at the time I had no idea I was learning programming.

I was just a kid in elementary school having fun, drawing little pictures. Years later, I became
an IT administrator and developed an aversion to tedious tasks, such as manually copying a
file to 100 remote servers. I started automating because I just couldn’t stand the thought of
repeating monotonous tasks over and over again. It took a while before I connected the dots
and realized that the little turtle had paved the way for a career focused on using and teach-
ing automation.

Windows PowerShell has really hit a sweet spot with automation in the Windows universe,
balancing powerful and far-reaching capabilities while remaining simple enough that some-
one without deep technical expertise can start taking advantage of it quickly. Though Win-
dows PowerShell can be a simple automation environment, it has nuances that can make it a
bit tricky to really master, akin to driving a car with a manual transmission. It might be tricky
to get started, but once the car is moving in first gear, the rest comes pretty easily. Ed Wilson
has done a wonderful job in this book getting you started in Windows PowerShell, providing
simple, prescriptive guidance to get you into first gear quickly.

As a Senior Premier Field Engineer and a Windows PowerShell Technology Lead for Micro-
soft Services, I spend most of my days in front of Microsoft’s customers trying to teach them
Windows PowerShell and hopefully getting them to love Windows PowerShell as much as I
do. In every class I teach, I can’t stress enough the return on investment (ROI) you get from
learning Windows PowerShell. It never ceases to amaze me how once you grasp the core
concepts of Windows PowerShell, you can apply them over and over again to get so much
business value and personal satisfaction.

One point I try to make during every class I teach is that the words “Windows PowerShell” and
“scripting” can most definitely be mutually exclusive. Technically speaking, Windows PowerShell
one-liners are still “scripts,” but to me they strike a nice balance between the creation of solutions
and the need for developer-oriented skills. One-liners are usually very task-oriented and logically
simple, yet they can accomplish a staggering amount of automation. Those who are just getting
started with Windows PowerShell will find that they can become great at Windows Power-
Shell without writing scripts. Throughout much of this book, Ed has focused on the concepts
and simplicity of Windows PowerShell. He doesn’t talk directly about scripting until late in the
book. Ultimately, scripting and tool-making become parts of the advanced user’s skill set, but
you can go a long way before that needs to happen.

No matter how diverse the skill set of my students, there is something for everyone in my
classroom. Windows PowerShell has been created in such a way that it can be fun and effec-
tive for everyone from the IT novice to the expert developer. For example, the fact that it is

xvi Foreword

fully object-based and sits on top of the .NET Framework is a detail that pure beginners might
have no knowledge of. They can go about their Windows PowerShell days simply running
commands, never really digging into the object model, but still implement valuable automa-
tion. The day they learn about objects, they can start to unlock so much more. The fact that
Windows PowerShell can appeal to such diverse skills levels simultaneously is amazing to me.

When I really think about the value of Windows PowerShell and why someone new to it
should dive right in, I think about the fundamental comparison of “creation” vs. “operation.”
By over-simplifying the roles in IT, you can see a dividing line between developers and ad-
ministrators. Developers are creating solutions, and administrators are managing the design,
deployment, and operation of the systems used in the process. Windows PowerShell can
bridge the dividing gap to link it all together. It also allows administrators to create automa-
tion solutions without needing a true developer. There are enough elements in the Windows
PowerShell language that hide and simplify the true complexity that lurks under the surface,
allowing IT pros to be more effective and valuable in the workplace. Learning Windows Pow-
erShell is an incredibly powerful tool that will truly make you more valuable to your business
and often make your life easier in the process.

Ed “The Scripting Guy” Wilson is what some people call a “PowerShellebrity.” He’s a su-
perstar in the Windows PowerShell world, has extensive scripting experience, and is one of
the most energetic and passionate people I have ever met. I am grateful that Ed writes these
books because it allows so many people access to his extensive experience and knowledge.
This book is such a concise and easy way to get started with Windows PowerShell, I can’t
imagine putting it down if I were a beginner. Whether you have already started your Win-
dows PowerShell journey or are just getting started, this book will help define your next steps
with Windows PowerShell.

—Gary Siepsert
Senior Premier Field Engineer (PFE)
Microsoft Corporation

xvii

Introduction

Gary said nearly everything I wanted to include in the Introduction. I designed this book
for the complete beginner, and you should therefore read the book from beginning to

end. If you want a more reference oriented book, you should check out my PowerShell Best
Practices books, or even PowerShell 3.0 Step by Step. Actually, the Step by Step book is not
really a reference, but a hands-on learning guide. It is, ideally, the book you graduate to once
you have completed this one. For your daily dose of PowerShell, you should check out my Hey
Scripting Guy blog at www.ScriptingGuys.com/blog. I post new content there twice a day.

System Requirements

Hardware Requirements
Your computer should meet the following minimum hardware requirements:

■■ 2.0 GB of RAM (more is recommended)

■■ 80 GB of available hard disk space

■■ Internet connectivity

Software Requirements
To complete the exercises in this book, you should have Windows PowerShell 3.0 installed:

■■ You can obtain Windows PowerShell 3.0 from the Microsoft Download Center by
downloading the Windows Management Framework and installing it on either Win-
dows 7 Service Pack 1, Windows Server 2008 R2 SP1, or Windows Server 2008 Service
Pack 2.

■■ Windows PowerShell 3.0 is already installed on Windows 8 and on Windows Server
2012. You can obtain evaulation versions of those operating systems from TechNet:

http://technet.microsoft.com/en-US/evalcenter/hh699156.aspx?ocid=wc-tn-wctc

http://technet.microsoft.com/en-US/evalcenter/hh670538.aspx?wt.mc_id=TEC_108_1_4

■■ The section on Active Directory requires access to Active Directory Domain Services.
For those examples, ensure you have access to Windows Server 2012.

■■ For the chapter on Exchange server, you need access to a server running Microsoft
Exchange Server 2013. You can obtain an evaluation version of that from TechNet:

http://technet.microsoft.com/en-us/evalcenter/hh973395.aspx

xviii Introduction

Acknowledgments

Many people contributed the success of this book. The first person is Teresa Wilson, aka "The
Scripting Wife." She is always my first reader, and nothing leaves the house without her ap-
proval. Second, I must mention my tech reviewer, Brian Wilhite, who did a great job of catching
bugs, errors, and things that are misleading. I also want to thank the Charlotte PowerShell User
Group whose questions, comments, and the like contributed in a significant way to the book.
I kept them in mind as I wrote. I also want to thank Michael Bolinger and Melanie Yarbrough
from O'Reilly for doing a great job seeing this project to completion.

Support & Feedback

The following sections provide information on errata, book support, feedback, and contact
information.

Errata
We have made every effort to ensure the accuracy of this book and its companion content.
Any errors that have been reported since this book was published are listed on our Microsoft
Press site at oreilly.com:

http://aka.ms/WinPS3FS/errata

If you find an error that is not already listed, you can report it to us through the same
page.

If you need additional support, please email Microsoft Press Book Support at
mspinput@microsoft.com.

Please note that product support for Microsoft software is not offered through the ad-
dresses above.

We Want to Hear from You
At Microsoft Press, your satisfaction is our top priority, and your feedback our most valuable
asset. Please tell us what you think of this book at:

http://www.microsoft.com/learning/booksurvey

The survey is short, and we read every one of your comments and ideas. Thanks in ad-
vance for your input!

Stay in Touch
Let us keep the conversation going! We are on Twitter: http://twitter.com/MicrosoftPress

		 	 1

C H A P T E R 1

Overview of Windows
PowerShell 3.0

■■ Understanding Windows PowerShell

■■ Working with Windows PowerShell

■■ Using Windows PowerShell cmdlets

■■ Supplying options for cmdlets

■■ Working with Help options

When you first start Windows PowerShell, whether it is the Windows PowerShell con-
sole or the Windows PowerShell Integrated Scripting Environment (ISE), the blank

screen simply waits for your command. The problem is there are no hints as to what that
command might be. There are no wizards or other Windows types of features to guide you
in using the shell.

The name is Windows PowerShell for two reasons: It is a shell, and it is powerful. It is a
mistake to think that Windows PowerShell is simply a scripting language because it is much
more than that. In the same way, it is a mistake to think that Windows PowerShell is limited
to running only a few cmdlets. Through scripting, it gains access to the entire realm of man-
agement technology available in the Windows world.

This chapter introduces you to Windows PowerShell and illustrates the incredible power
available to you from this flexible and useful management tool.

Understanding Windows PowerShell

Windows PowerShell comes in two flavors. The first is an interactive console (similar to
a KORN or BASH console in the UNIX world) built into the Windows command prompt.
The Windows PowerShell console makes it simple to type short commands and to receive
sorted, filtered, and formatted results. These results easily display to the console but also
can redirect to .xml, .csv, or text files. The Windows PowerShell console offers several advan-
tages such as speed, low memory overhead, and a comprehensive transcription service that
records all commands and command output.

	 2	 CHAPTER 1	 Overview of Windows PowerShell 3.0

The other flavor of Windows PowerShell is the Windows PowerShell ISE. The Windows
PowerShell ISE is an Integrated Scripting Environment, but this does not mean you must use
it to write scripts. In fact, many Windows PowerShell users like to write their code in the Win-
dows PowerShell ISE to take advantage of syntax coloring, drop-down lists, and automatic
parameter revelation features.

In addition, the Windows PowerShell ISE has a feature called Show Command Add-On
that allows you to use a mouse to create Windows PowerShell commands from a graphical
environment. Once you create the command, the command either runs directly or is added
to the Script pane. The choice is up to you. For more information about using the Windows
PowerShell ISE, see Chapter 10, “Using the Windows PowerShell ISE.”

NOTE  When I work with single commands, for simplicity I show the command and results
from within the Windows PowerShell console. But keep in mind that all commands also
run from within the Windows PowerShell ISE. Whether the command runs in the Windows
PowerShell console, in the Windows PowerShell ISE, as a scheduled task, or as a filter for
Group Policy, Windows PowerShell is Windows PowerShell is Windows PowerShell. In its
most basic form, a Windows PowerShell script is simply a collection of Windows PowerShell
commands.

Working with Windows PowerShell

Windows PowerShell 3.0 is included on Windows 8 and Windows Server 2012. On Windows
8, you need only type the first few letters of the word PowerShell in the Start window before
Windows PowerShell appears as an option. Figure 1-1 illustrates this point. I typed only pow
in the Search box before the Start window offered Windows PowerShell as an option.

	 Working with Windows PowerShell	 CHAPTER 1	 3

FIGURE 1-1  Typing in the Start window opens the Search window highlighting the Windows PowerShell
console.

Because navigating to the Start window and typing pow each time I want to launch Win-
dows PowerShell is a bit cumbersome, I prefer to pin shortcuts to the Windows PowerShell
console (and the Windows PowerShell ISE) to both the Start window and the Windows task-
bar. This technique of pinning shortcuts to the applications, as shown in Figure 1-2, provides
single-click access to Windows PowerShell from wherever I might be working.

FIGURE 1-2  By right-clicking the Windows PowerShell icon in the Search results box, the Pin to Start and
the Pin to taskbar options appear.

	 4	 CHAPTER 1	 Overview of Windows PowerShell 3.0

On Windows Server 2012, it is unnecessary to find the icon by using the Search box on the
Start window because an icon for the Windows PowerShell console exists by default on the
taskbar of the desktop.

NOTE  The Windows PowerShell ISE (the script editor) does not exist by default on Win-
dows Server 2012. You need to add the Windows PowerShell ISE as a feature. I show how to
use the Windows PowerShell ISE in Chapter 10, “Using the Windows Powershell ISE.”

Security issues with Windows PowerShell
There are two ways to launch Windows PowerShell: as an administrator or as a normal, or
non-elevated, user. As a best practice, start Windows PowerShell with minimum rights. On
Windows 7 and Windows 8, this means simply clicking on the Windows PowerShell icon. It
opens as a non-elevated user, even if you are logged on with administrator rights. On Win-
dows Server 2012, Windows PowerShell automatically launches with the rights of the current
user. Therefore, if you are logged on as a domain administrator, the Windows PowerShell con-
sole launches with domain administrator rights.

Running as a non-elevated user
Because Windows PowerShell adheres to Windows security constraints, a user of Windows
PowerShell cannot do anything the user account does not have permission to do. Therefore, if
you are a non-elevated user, you do not have rights to perform tasks such as installing printer
drivers, reading from the Security Log, or changing the system time.

If you are an administrator on a local Windows 7 or Windows 8 computer and you do not
launch Windows PowerShell with administrator rights, you will get errors when you attempt
to take certain actions, such as viewing the configuration of your disk drives. The following
example shows the command and associated error:

PS C:\> get-disk
get-disk : Access to a CIM resource was not available to the client.
At line:1 char:1
+ get-disk
+ ~~~~~~~~
 + CategoryInfo : PermissionDenied: (MSFT_Disk:ROOT/Microsoft/Windows/S
 torage/MSFT_Disk) [Get-Disk], CimException
 + FullyQualifiedErrorId : MI RESULT 2,Get-Disk

	 Working with Windows PowerShell	 CHAPTER 1	 5

TIP  If you attempt to run cmdlets that require elevated rights, you will encounter incon-
sistencies with errors. For example, in a non-elevated Windows PowerShell console, the
error from the Get-Disk cmdlet is Access To A CIM Resource Was Not Available To The Cli-
ent. The error from the Stop-Service cmdlet is Cannot Open XXX Service On Computer. The
Get-VM cmdlet simply returns no information and no error. Therefore, check for console
rights as a first step in troubleshooting.

Launching Windows PowerShell with administrator rights
To perform tasks that require administrator rights, you must start the Windows PowerShell
console with administrator rights. To do this, right-click the Windows PowerShell icon (the one
pinned to the taskbar, the one on the Start window, or the one found by using the Search box
in the Start window) and select the Run As Administrator option from the Action menu. The
great advantage of this technique is that you can launch either the Windows PowerShell con-
sole (the first item on the menu) as an administrator, or from the same screen you can launch
the Windows PowerShell ISE as an administrator. Figure 1-3 shows these options.

FIGURE 1-3  Right-click the Windows PowerShell icon to bring up the option to Run as Administrator.

Once you launch the Windows PowerShell console with administrator rights, the User Ac-
count Control (UAC) dialog box appears, requesting permission to allow Windows PowerShell
to make changes to the computer. In reality, Windows PowerShell is not making changes to
the computer, at least not yet. But using Windows PowerShell, you can certainly make chang-
es to the computer if you have the rights. This is what the dialog box is prompting you for.

NOTE  It is possible to avoid this prompt by turning off UAC. However, UAC is a signifi-
cant security feature, so I do not recommend disabling it. The UAC has been fine-tuned on
Windows 7 and Windows 8. The number of UAC prompts has been greatly reduced from
the number that used to exist with the introduction of UAC on Windows Vista.

	 6	 CHAPTER 1	 Overview of Windows PowerShell 3.0

Now that you are running Windows PowerShell with administrator rights, you can do any-
thing your account has permission to do. For example, if you run the Get-Disk cmdlets, you
will see information similar to the following:

PS C:\> get-disk

Number Friendly Name Operational Total Size Partition
 status Style
------ ------------- ------------ ---------- -----------
0 INTEL SSDSA2BW160G3L Online 149.05 GB MBR

Using Windows PowerShell cmdlets

Windows PowerShell cmdlets all work in a similar fashion. This simplifies their use. All Win-
dows PowerShell cmdlets have a two-part name. The first part is a verb, although the verb
is not always strictly grammatical. The verb indicates the action for the command to take.
Examples of verbs include Get, Set, Add, Remove, and Format. The noun is the thing to which
the action will apply. Examples of nouns include Process, Service, Disk, and NetAdapter. A dash
combines the verb with the noun to complete the Windows PowerShell command. Windows
PowerShell commands are named cmdlets (pronounced command let) because they behave
like small commands or programs that are used standalone or pieced together through
a mechanism called the pipeline. For more information about the pipeline, see Chapter 2,
“Using Windows PowerShell Cmdlets.”

The most common verb: Get
Out of nearly 2,000 cmdlets (and functions) on Windows 8, over 25 percent of them use the
verb Get. The verb Get retrieves information. The noun portion of the cmdlet specifies the
information retrieved. To obtain information about the processes on your system, open the
Windows PowerShell console by either clicking the Windows PowerShell icon on the taskbar
or typing PowerShell on the Start window of Windows 8 to bring up the search results for
Windows PowerShell, as discussed in a preceding section, “Launching Windows PowerShell
with administrator rights.”

Once the Windows PowerShell console appears, run the Get-Process cmdlet. To do this,
use the Windows PowerShell Tab Completion feature to complete the cmdlet name. Once the
cmdlet name appears, press the Enter key to cause the command to execute.

	 Using Windows PowerShell cmdlets	 CHAPTER 1	 7

NOTE  The Windows PowerShell Tab Completion feature is a great time saver. It not only
saves time by reducing the need for typing, but it also helps to ensure accuracy because
tab completion accurately resolves cmdlet names. It is like a spelling checker for cmdlet
names. For example, attempting to type a lengthy cmdlet name such as Get-NetAdapter-
EncapsulatedPacketTaskOffload accurately could be an exercise in frustration. But if you
use tab completion, you have to type only Get-Net and press the Tab key about six times
before the correctly spelled cmdlet name appears in the Windows PowerShell console.
Learning how to quickly and efficiently use tab completion is one of the keys to success for
using Windows PowerShell.

Finding process information
To use the Windows PowerShell Tab Completion feature to enter the Get-Process cmdlet
name at the Windows PowerShell console command prompt, type the following on the first
line of the Windows PowerShell console, then press the Tab key followed by Enter:

Get-Pro

This order of commands—command followed by Tab and Enter—is called tab expansion.
Figure 1-4 shows the Get-Process command and associated output.

FIGURE 1-4  The Windows PowerShell Get-Process cmdlet returns detailed Windows process information.

 8 ChAPTER 1 Overview of Windows PowerShell 3.0

To find information about Windows services, use the verb Get and the noun Service. In the
Windows PowerShell console, type the following, then press the Tab key followed by Enter:

Get-Servi

NOTE It is a Windows PowerShell convention to use singular nouns. While not universally
applied (my computer has about 50 plural nouns), it is a good place to start. So if you are
not sure if a noun (or parameter) is singular or plural, choose the singular. Most of the time
you will be correct.

Identifying installed Windows hotfixes
To find a listing of Windows hotfixes applied to the current Windows installation, use the
Get-Hotfix cmdlet. The verb is Get and the noun is Hotfix. In the Windows PowerShell console,
type the following, then press the Tab key followed by Enter:

Get-Hotf

Figure 1-5 shows the Get-Hotfix command and associated output.

FIGURE 1-5 Use the Get-Hotfix cmdlet to obtain a detailed listing of all applied Windows hotfixes.

	 Using Windows PowerShell cmdlets	 CHAPTER 1	 9

Getting detailed service information
To find information about services on the system, use the Get-Service cmdlet. Once again, it
is not necessary to type the entire command. The following command uses tab expansion to
complete the Get-Service command and execute it:

Get-Servi

NOTE  The efficiency of tab expansion depends upon the number of cmdlets, functions, or
modules installed on the computer. As more commands become available, the efficiency of
tab expansion reduces correspondingly.

The following (truncated) output appears following the Get-Service cmdlet:

PS C:\> Get-Service

Status Name DisplayName
------ ---- -----------
Running AdobeActiveFile... Adobe Active File Monitor V6
Stopped AeLookupSvc Application Experience
Stopped ALG Application Layer Gateway Service
Stopped AllUserInstallA... Windows All-User Install Agent
<TRUNCATED OUTPUT>

Identifying installed network adapters
To find information about network adapters on your Windows 8 or Windows Server 2012
machine, use the Get-NetAdapter cmdlet. Using tab expansion, type the following then press
Tab, followed by Enter:

Get-NetA

The following example shows the command and associated output:

PS C:\> Get-NetAdapter

Name InterfaceDescription ifIndex Status
---- -------------------- ------- ------
Network Bridge Microsoft Network Adapter Multiplexo... 29 Up
Ethernet Intel(R) 82579LM Gigabit Network Con... 13 Not Pre...
vEthernet (WirelessSwi... Hyper-V Virtual Ethernet Adapter #4 31 Up
vEthernet (External Sw... Hyper-V Virtual Ethernet Adapter #3 23 Not Pre...
vEthernet (InternalSwi... Hyper-V Virtual Ethernet Adapter #2 19 Up
Bluetooth Network Conn... Bluetooth Device (Personal Area Netw... 15 Disconn...
Wi-Fi Intel(R) Centrino(R) Ultimate-N 6300... 12 Up

	10	 CHAPTER 1	 Overview of Windows PowerShell 3.0

Retrieving detected network connection profiles
If you want to see the network connection profile that Windows 8 or Windows Server 2012
detected for each interface, use the Get-NetConnectionProfile cmdlet. To run this command,
use the following command with tab expansion:

Get-NetC

The following example shows the command and associated output:

PS C:\> Get-NetConnectionProfile

Name : Unidentified network
InterfaceAlias : vEthernet (InternalSwitch)
InterfaceIndex : 19
NetworkCategory : Public
IPv4Connectivity : NoTraffic
IPv6Connectivity : NoTraffic

Name : Network 10
InterfaceAlias : vEthernet (WirelessSwitch)
InterfaceIndex : 31
NetworkCategory : Public
IPv4Connectivity : Internet
IPv6Connectivity : NoTraffic

NOTE  Windows PowerShell is not case sensitive. There are a few instances where case
sensitivity is an issue (for example, when using regular expressions) but cmdlet names, pa-
rameters, and values are not case sensitive. Windows PowerShell convention uses a combi-
nation of uppercase and lowercase letters, generally at syllable breaks in long noun names
such as NetConnectionProfile. However, this is not a requirement for Windows PowerShell
to interpret the command accurately. This combination of uppercase and lowercase letters
is for readability. If you use tab expansion, Windows PowerShell automatically converts the
commands to this format.

Getting the current culture settings
A typical Windows computer has two categories of culture settings. The first category con-
tains the culture settings for the current culture settings, which includes information about
the keyboard layout and the display format of items such as numbers, currency, and dates. To
find the value of these cultural settings, use the Get-Culture cmdlet. To call the Get-Culture
cmdlet using tab expansion to complete the command, type the following at the command
prompt of the Windows PowerShell console, then press the Tab key followed by Enter:

Get-Cu

When the command runs basic information such as the Language Code ID number (LCID),
the name of the culture settings, in addition to the display name of the culture settings,

	 Using Windows PowerShell cmdlets	 CHAPTER 1	 11

return to the Windows PowerShell console. The following example shows the command and
associated output:

PS C:\> Get-Culture

LCID Name DisplayName
---- ---- -----------
1033 en-US English (United States)

The second category is the current user interface (UI) settings for Windows. The UI culture
settings determine which text strings appear in user interface elements such as menus and
error messages. To determine the current UI culture settings that are active, use the Get-UI-
Culture cmdlet. Using tab expansion to call the Get-UICulture cmdlet, type the following, then
press the Tab key followed by Enter:

Get-Ui

The following example shows the command and associated output:

PS C:\> Get-UICulture

LCID Name DisplayName
---- ---- -----------
1033 en-US English (United States)

NOTE  On my computer, both the current culture and the current UI culture are the same.
This is not always the case, and at times I have seen a computer have issues when the user
interface is set for a localized language while the computer itself is set for U.S. English. This
is especially problematic when using virtual machines created in other countries. In this
case, even a simple task such as typing in a password becomes very frustrating. To fix these
types of situations, you can use the Set-Culture cmdlet.

Finding the current date and time
To find the current date or time on the local computer, use the Get-Date cmdlet. Tab expan-
sion does not help much for this cmdlet because there are 15 cmdlets (on my computer) that
have a cmdlet name that begins with the letters Get-Da. This includes all the Direct Access
cmdlets as well as the Remote Access cmdlets. Therefore, using tab expansion to get the date
requires me to type the following before pressing the Tab key followed by the Enter key:

Get-Dat

The preceding command syntax is the same number of keys to press as the following
combined with the Enter key:

Get-Date

	12	 CHAPTER 1	 Overview of Windows PowerShell 3.0

The following example shows the command and associated output:

PS C:\> Get-Date

Tuesday, November 20, 2012 9:54:21 AM

Generating a random number
Windows PowerShell 2.0 introduced the Get-Random cmdlet, and when I saw it I was not too
impressed at first because I already knew how to generate a random number. As shown in
the following example, I can use the .NET Framework System.Random class to create a new
instance of the System.Random object and call the next method:

PS C:\> (New-Object system.random).next()
225513766

Needless to say, I did not create many random numbers. Who wants to do all that typing?
But once I had the Get-Random cmdlet, I actually began using random numbers for all sorts
of actions. For example, I have used the Get-Random cmdlet to do the following:

■■ Pick prize winners for the Scripting Games.

■■ Pick prize winners for Windows PowerShell user group meetings.

■■ Connect to remote servers in a random way for load-balancing purposes.

■■ Create random folder names.

■■ Create temporary users in Active Directory with random names.

■■ Wait a random amount of time prior to starting or stopping processes and services
(great for performance testing).

The Get-Random cmdlet has turned out to be one of the more useful cmdlets. To generate
a random number in the Windows PowerShell console using tab expansion, type the follow-
ing on the first line in the console, then press the Tab key followed by the Enter key:

Get-R

The following example shows the command and associated output:

PS C:\> Get-Random
248797593

Supplying options for cmdlets

The easiest Windows PowerShell cmdlets to use require no options. Unfortunately, that is only
a fraction of the total number of cmdlets (and functions) available in Windows PowerShell 3.0
as it exists on either Windows 8 or Windows Server 2012. Fortunately, the same tab expansion
technique used to create the cmdlet names on the Windows PowerShell console works with
parameters as well.

	 Supplying options for cmdlets	 CHAPTER 1	 13

Using single parameters
When working with Windows PowerShell cmdlets, often the cmdlet requires only a single
parameter to filter out the results. If a parameter is the default parameter, you do not have to
specify the parameter name; you can use the parameter positionally. This means that the first
value appearing after the cmdlet name is assumed to be a value for the default (or position 1)
parameter. On the other hand, if a parameter is a named parameter, the parameter name (or
parameter alias or partial parameter name) is always required when using the parameter.

Finding specific types of hotfixes
To find all the Windows Update hotfixes, use the Get-HotFix cmdlet with the -Description
parameter and supply a value of update to the -Description parameter. This is actually easier
than it sounds. Once you type Get-Hot and press the Tab key, you have the Get-Hotfix por-
tion of the command. Then a space and -D + Tab completes the Get-HotFix -Description por-
tion of the command. Now you need to type Update and press Enter. With a little practice,
using tab expansion becomes second nature.

Figure 1-6 shows the Get-Hotfix command and associated output.

FIGURE 1-6  Add the -Description parameter to the Get-HotFix cmdlet to see specific hotfixes such as
updates in a filtered list.

If you attempt to find only update types of hotfixes by supplying the value update in the
first position, an error appears. The following example shows the offending command and
associated error:

PS C:\> Get-HotFix update
Get-HotFix : Cannot find the requested hotfix on the ‘localhost’ computer. Verify
the input and run the command again.
At line:1 char:1
+ Get-HotFix update
+ ~~~~~~~~~~~~~~~~~
 + CategoryInfo : ObjectNotFound: (:) [Get-HotFix], ArgumentException
 + FullyQualifiedErrorId : GetHotFixNoEntriesFound,Microsoft.PowerShell.Commands
 .GetHotFixCommand

	14	 CHAPTER 1	 Overview of Windows PowerShell 3.0

The error, while not really clear, seems to indicate that the Get-HotFix cmdlet attempts to
find a hotfix named update. This is, in fact, the attempted behavior. The Help file information
for the Get-HotFix cmdlet reveals that -ID is position 1, as shown in the following example:

 -Id <String[]>
 Gets only hotfixes with the specified hotfix IDs. The default is all
 hotfixes on the computer.

 Required? false
 Position? 1
 Default value All hotfixes
 Accept pipeline input? false
 Accept wildcard characters? False

You might ask, “What about using the -Description parameter?” The Help file states that
the -Description parameter is a named parameter. This means you can use the -Description
parameter only if you specify the parameter name, as shown earlier in this section. Following
is the applicable portion of the Help file for the -Description parameter:

 -Description <String[]>
 Gets only hotfixes with the specified descriptions. Wildcards are
 permitted. The default is all hotfixes on the computer.

 Required? false
 Position? named
 Default value All hotfixes
 Accept pipeline input? false
 Accept wildcard characters? True

Finding specific processes
To find process information about a single process, I use the -Name parameter. Because the
-Name parameter is the default (position 1) parameter for the Get-Process cmdlet, you do not
have to specify the -Name parameter when calling Get-Process if you do not want to do so.
For example, to find information about the Windows PowerShell process by using the Get-
Process cmdlet, perform the following command at the command prompt of the Windows
PowerShell console by using tab expansion:

Get-Pro + <TAB> + <SPACE> + Po + <TAB> + <ENTER>

The following example shows the command and associated output:

PS C:\> Get-Process powershell

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName
------- ------ ----- ----- ----- ------ -- -----------
 607 39 144552 164652 718 5.58 4860 powershell

	 Supplying options for cmdlets	 CHAPTER 1	 15

You can tell the Get-Process cmdlet accepts the -Name parameter in a positional manner
because the Help file states it is in position 1. The following example shows this position:

 -Name <String[]>
 Specifies one or more processes by process name. You can type multiple
 process names (separated by commas) and use wildcard characters. The
 parameter name (“Name”) is optional.

 Required? false
 Position? 1
 Default value
 Accept pipeline input? true (ByPropertyName)
 Accept wildcard characters? True

NOTE  Be careful using positional parameters because they can be confusing. For example,
the first parameter for the Get-Process cmdlet is the –Name parameter, but the first posi-
tion parameter for the Stop-Parameter is the –ID parameter. As a best practice, always refer
to the Help files to see what the parameters actually are called and the position in which
they are expected. This is even more important when using a cmdlet with multiple param-
eters, such as the Get-Random cmdlet discussed in the following section.

Generating random numbers in a range
When used without any parameters, the Get-Random cmdlet returns a number that is in the
range of 0 to 2,147,483,647. We have never had a Windows PowerShell user group meeting
in which there were either 0 people in attendance or 2,147,483,647 people in attendance.
Therefore, if you use the Get-Random cmdlet to select winners so you can hand out prizes at
the end of the day, it is important to set a different minimum and maximum number.

NOTE  When you use the -Maximum parameter for the Get-Random cmdlet, keep in mind
that the maximum number never appears. Therefore, if you have 15 people attending your
Windows PowerShell user group meeting, you should set the -Maximum parameter to 16
(unless you do not like the number 15 person and do not want him to win any prizes).

The default parameter for the Get-Random cmdlet is the -Maximum parameter. This means
you can use the Get-Random cmdlet to generate a random number in the range of 0 to 20 by
using tab expansion on the first line of the Windows PowerShell console. Remember that Get-
Random never reaches the maximum number, so always use a number that is 1 greater than
the desired upper number. Perform the following:

Get-R + <TAB> + <SPACE> + 21

	16	 CHAPTER 1	 Overview of Windows PowerShell 3.0

If you want to generate a random number between 1 and 20, you might think you could
use Get-Random 1 21, but that generates an error. The following example shows the com-
mand and error:

PS C:\> Get-Random 1 21
Get-Random : A positional parameter cannot be found that accepts argument ‘21’.
At line:1 char:1
+ Get-Random 1 21
+ ~~~~~~~~~~~~~~~
 + CategoryInfo : InvalidArgument: (:) [Get-Random], ParameterBindingEx
 ception
 + FullyQualifiedErrorId : PositionalParameterNotFound,Microsoft.PowerShell.Comm
 ands.GetRandomCommand

The error states that a positional parameter cannot be found that accepts argument 21.
This is because Get-Random has only one positional parameter, the -Maximum parameter.
The -Minimum parameter is a named parameter. This parameter appears in the Help file for
the Get-Random cmdlet. I show you how to use the Help files in Chapter 2, “Using Windows
PowerShell cmdlets.”

To generate a random number in the range of 1 to 20, use named parameters. For as-
sistance in creating the command, use tab expansion for the cmdlet name as well as for the
parameter names. Perform the following at the command prompt to create the command
using tab expansion:

Get-R + <TAB> + -M + <TAB> + <SPACE> + 21 + -M + <TAB> + <SPACE> + 1 + <ENTER>

The following example shows the command and associated output:

PS C:\> Get-Random -Maximum 21 -Minimum 1
19

Introduction to parameter sets
One potentially confusing characteristic of Windows PowerShell cmdlets is that there are
often different ways of using the same cmdlet. For example, you can specify the -Minimum
and -Maximum parameters, but you cannot also specify the -Count parameter. This is a bit
unfortunate because it would seem that using the -Minimum and -Maximum parameters to
specify the minimum and maximum numbers for random numbers makes sense. When the
Windows PowerShell user group has five prizes to give away, it is inefficient to write a script to
generate the five random numbers or run the same command five times.

This is where command sets come into play. The -Minimum and -Maximum parameters
specify the range within which to pick a single random number. To generate more than one
random number, use the -Count parameter. The following example shows the two parameter
sets:

Get-Random [[-Maximum] <Object>] [-Minimum <Object>] [-SetSeed <Int32>]
[<CommonParameters>]

Get-Random [-InputObject] <Object[]> [-Count <Int32>] [-SetSeed <Int32>]
[<CommonParameters>]

	 Supplying options for cmdlets	 CHAPTER 1	 17

The first parameter set accepts -Maximum, -Minimum, and -SetSeed. The second param-
eter set accepts -InputObject, -Count, and -SetSeed. Therefore, you cannot use -Count with
-Minimum or -Maximum because they are in two different groups of parameters (called
parameter sets).

NOTE  It is quite common for Windows PowerShell cmdlets to have multiple parameter
sets. Tab expansion offers only parameters from one parameter set. Therefore, when you
choose a parameter such as –Count from Get-Random, the non-compatible parameters do
not appear in tab expansion. This feature keeps you from creating invalid commands. For
an overview of cmdlets parameter sets, use the Get-Help cmdlet.

Generating a certain number of random numbers
The Get-Random cmdlet, when used with the -Count parameter, accepts an -InputObject
parameter. The -InputObject parameter is quite powerful. The following excerpt from the
Help file states that it accepts a collection of objects:

-InputObject <Object[]>
 Specifies a collection of objects. Get-Random gets randomly selected
 objects in random order from the collection. Enter the objects, a variable
 that contains the objects, or a command or expression that gets the
 objects. You can also pipe a collection of objects to Get-Random.

 Required? true
 Position? 1
 Default value
 Accept pipeline input? true (ByValue)
 Accept wildcard characters? False

An array (or a range) of numbers just happens to also be a collection of objects. The easi-
est way to generate a range (or an array) of numbers is to use the range operator. The range
operator is two dots (periods) between two numbers. As shown in the following example, the
range operator does not require spaces between the numbers and dots:

PS C:\> 1..5
1
2
3
4
5

Now, to pick five random numbers from the range of 1 to 10 requires only the command
to appear here. The parentheses are required around the range of 1 to 10 numbers to ensure
the range of numbers is created prior to selecting five from the collection:

Get-Random -InputObject (1..10) -Count 5

	18	 CHAPTER 1	 Overview of Windows PowerShell 3.0

The following example shows the command and associated output:

PS C:\> Get-Random -InputObject (1..10) -Count 5
7
5
10
1
8

Using command-line utilities
As easy as Windows PowerShell is to use, there are times when it is easier to find informa-
tion by using a command-line utility. For example, to find IP configuration information, you
need only use the Ipconfig.exe utility. You can type this directly into the Windows PowerShell
console and read the output in the console. The following example shows the command and
associated output in truncated form:

PS C:\> ipconfig

Windows IP Configuration

Wireless LAN adapter Local Area Connection* 14:

 Media State : Media disconnected

 Connection-specific DNS Suffix . :

Ethernet adapter vEthernet (WirelessSwitch):

 Connection-specific DNS Suffix . : quadriga.com

 Link-local IPv6 Address : fe80::915e:d324:aa0f:a54b%31

 IPv4 Address. : 192.168.13.220

 Subnet Mask : 255.255.248.0

 Default Gateway : 192.168.15.254

Wireless LAN adapter Local Area Connection* 12:

 Media State : Media disconnected

 Connection-specific DNS Suffix . :

Ethernet adapter vEthernet (InternalSwitch):

 Connection-specific DNS Suffix . :

 Link-local IPv6 Address : fe80::bd2d:5283:5572:5e77%19

 IPv4 Address. : 192.168.3.228

	 Working with Help options	 CHAPTER 1	 19

 Subnet Mask : 255.255.255.0

 Default Gateway : 192.168.3.100

<OUTPUT TRUNCATED>

To obtain the same information using Windows PowerShell, you need a more complex
command. The command to obtain IP information is Get-NetIPAddress. But there are several
advantages. For one thing, the output from the IpConfig.exe command is text, whereas the
output from Windows PowerShell is an object. This means you can group, sort, filter, and
format the output in an easy way.

The big benefit is that with the Windows PowerShell console, you have not only the
simplicity of the command prompt, but you also have the powerful Windows PowerShell
language built in. Therefore, if you need to refresh Group Policy three times and wait for five
minutes between refreshes, you can use the command shown in the following example (loop-
ing is covered in Chapter 11, “Using Windows PowerShell Scripts”):

1..3 | % {gpupdate ; sleep 300}

Working with Help options

To use Help files effectively, the first thing you need to do is update them on your system.
This is because Windows PowerShell 3.0 introduces a new model in which Help files update
on a regular basis.

To update Help on your system, you must open the Windows PowerShell console with
administrator rights. This is because Windows PowerShell Help files reside in the protected
Windows\System32\WindowsPowerShell directory. Once you have launched the Windows
PowerShell console with administrator rights, you need to ensure your computer has Inter-
net access so it can download and install the updated files. If your computer does not have
Internet connectivity, it will take several minutes before the command times out because
Windows PowerShell tries really hard to obtain the updated files. If you run the Update-Help
cmdlet with no parameters, Windows PowerShell attempts to download updated Help for all
modules stored in the default Windows PowerShell modules locations that support updatable
Help. To run Update-Help more than once a day, use the -Force parameter, as shown in the
following example:

Update-Help -Force

Even without downloading updated Windows PowerShell Help, the Help subsystem dis-
plays the syntax of the cmdlet and other rudimentary information about the cmdlet.

To display Help information from the Internet, use the -Online switch. When used in this
way, Windows PowerShell causes the default browser to open to the appropriate page from
the Microsoft TechNet website.

	20	 CHAPTER 1	 Overview of Windows PowerShell 3.0

In an enterprise, network administrators might want to use the Save-Help cmdlet to down-
load Help from the Internet. Once downloaded, the Update-Help cmdlet can point to the
network share for the files. This is an easy task to automate and can run as a scheduled task.

Summary

This chapter began with an overview of Windows PowerShell. In particular, it contrasted some
of the differences and similarities between the Windows PowerShell console and the Windows
PowerShell ISE. It explained that, regardless of where a Windows PowerShell command runs,
the results are the same.

Windows PowerShell uses a verb and noun naming convention. To retrieve information,
use the Get verb. To specify the type of information to obtain, use the appropriate noun. An
example of this convention is the Get-HotFix cmdlet that returns hotfix information from the
local system.

One of the most important concepts to understand about Windows PowerShell is that it
allows a user to perform an action only if the security model permits it. For example, if a user
has permission to stop a service by using the Services.MSC tool, the user will have permis-
sion to stop a service from within Windows PowerShell. But if a user is not permitted to stop
a service elsewhere, Windows PowerShell does not permit the service to stop. Windows
PowerShell also respects UAC. By default on Windows 7 and Windows 8, Windows PowerShell
opens in least privilege mode. To perform actions requiring administrator rights, you must
start Windows PowerShell as an administrator.

Many Windows PowerShell cmdlets run without any options and return valid data. This
includes cmdlets such as Get-Process or Get-Service. However, most Windows PowerShell
cmdlets require additional information to work properly. For example, the Get-EventLog
cmdlet requires the name of a particular event log to return information.

The first thing you should do when logging onto the Windows PowerShell console is to
run the Update-Help cmdlet. Note that this requires administrator rights and an Internet
connection.

 21

C h A P T E R 2

Using Windows PowerShell
cmdlets

■■ Understanding the basics of cmdlets

■■ Searching the Help topics

■■ Using the Get-Command to find cmdlets

■■ Using the Get-Member cmdlet

■■ Using the Show-Command cmdlet

■■ Setting the Script Execution Policy

■■ Creating a basic Windows PowerShell profile

Once you have an understanding of Windows PowerShell cmdlet naming conventions
and how to use Windows PowerShell cmdlets, it is time to expand upon that knowl-

edge by looking at the use of Windows PowerShell common parameters. One of the great
things about Windows PowerShell is the way it is both intuitive and self-describing. Once
you begin to get a feel for the way that Windows PowerShell cmdlets work, you will be able
to sense (or feel) how Windows PowerShell cmdlets should behave. This intuitive design
of Windows PowerShell is integral, and permits you to leverage knowledge of Windows
PowerShell across multiple platforms. For example, if you learn how to use Windows Power-
Shell to manage a Windows 8 computer, you will be able to figure out how to use Windows
Server 2012 cmdlets because Windows PowerShell cmdlets should always behave in the
same manner.

To assist you in your quest to learn Windows PowerShell, you will need four basic tools:
Get-Help, Get-Command, Get-Member, and Show-Command. These four Windows Power-
Shell cmdlets form the foundation upon which you will build your tower of Windows Power-
Shell knowledge. As you are beginning to work more and more with Windows PowerShell,
you will want to customize the Windows PowerShell console. To do this, you will need to
first modify the Windows PowerShell Script Execution Policy. This is likely to be your first
major change to the Windows PowerShell defaults and is not something to take lightly.

	22	 CHAPTER 2	 Using Windows PowerShell cmdlets

Understanding the basics of cmdlets

All Windows PowerShell cmdlets behave basically the same way. There are some idiosyncra-
sies between cmdlets from different vendors or different teams at Microsoft, but in general,
once you understand the way that Windows PowerShell cmdlets work, you can transfer the
knowledge to other cmdlets, platforms, and applications. To call a Windows PowerShell cmd-
let, type it on a line at the command prompt in the Windows PowerShell console. To modify
the way the cmdlet retrieves or displays information, supply options for parameters that
modify the cmdlet. Many of these parameters are unique and apply only to certain cmdlets.
However, some parameters are applicable to all Windows PowerShell cmdlets. In fact, these
cmdlets are part of the strength of the Windows PowerShell design. Called common parame-
ters, the parameters supported by all Windows PowerShell cmdlets appear in the next section.

Common Windows PowerShell parameters
All Windows PowerShell cmdlets support common parameters. The following list shows the
common parameters. Each of the common parameters also permits the use of an alias for the
parameter. The alias for each parameter appears in parentheses:

■■ Verbose (vb)

■■ Debug (db)

■■ WarningAction (wa)

■■ WarningVariable (wv)

■■ ErrorAction (ea)

■■ ErrorVariable (ev)

■■ OutVariable (ov)

■■ OutBuffer (ob)

If a Windows PowerShell cmdlet changes system state (such as stopping a process or
changing the start-up value of a service), two additional parameters become available:

■■ WhatIf (wi)

■■ Confirm (cf)

Using the Verbose parameter to provide additional information
As an example of how to use common parameters in Windows PowerShell, you can use
the -Verbose parameter to obtain additional information about the action a cmdlet performs.

The following command stops all instances of the Notepad.exe process running on the lo-
cal system (there is no output from the command):

PS C:\> Stop-Process -Name notepad
PS C:\>

	 Understanding the basics of cmdlets	 CHAPTER 2	 23

To see what processes stop in response to the Stop-Process cmdlet, use the -Verbose
common parameter. In the following example, two separate Notepad.exe processes stop in
response to the Stop-Process cmdlet. Because the cmdlet uses the -Verbose common param-
eter, detailed information about each process appears in the output:

PS C:\> Stop-Process -Name notepad -Verbose
VERBOSE: Performing operation “Stop-Process” on Target “notepad (5564)”.
VERBOSE: Performing operation “Stop-Process” on Target “notepad (5924)”.
PS C:\>

Using the ErrorAction parameter to hide errors
When you use the Stop-Process cmdlet to stop a process, a nasty error displays on the
Windows PowerShell console if there is no instance of the specified process running. In the
following example, the Stop-Process cmdlet attempts to stop a process named Notepad.exe,
but there are no instances of the Notepad.exe process running. Therefore, the following error
displays:

PS C:\> Get-Process -Name notepad
Get-Process : Cannot find a process with the name “notepad”. Verify the process
name and call the cmdlet again.
At line:1 char:1
+ Get-Process -Name notepad
+ ~~~~~~~~~~~~~~~~~~~~~~~~~
 + CategoryInfo : ObjectNotFound: (notepad:String) [Get-Process], Proce
 ssCommandException
 + FullyQualifiedErrorId : NoProcessFoundForGivenName,Microsoft.PowerShell.Comma
 nds.GetProcessCommand

PS C:\>

If you know, or at least suspect, that a process is not running, but you would like to verify
this, you might want to use the -ErrorAction common parameter. To hide error messages
arising from the Get-Process cmdlet, supply a value of SilentlyContinue for the -ErrorAction
parameter prior to running the cmdlet. The following example shows this technique:

PS C:\> Get-Process -Name notepad -ErrorAction SilentlyContinue
PS C:\>

NOTE  The preceding command appears to be really long, but keep in mind that tab
expansion makes this easy to type correctly. In fact, the previous command is Get-
Pro<tab><space>-n<tab><space>notepad<space>-e<tab><space>s<tab>.

You can use the parameter alias -EA instead of typing -ErrorAction (although with tab
expansion it is exactly the same number of keystrokes, whether -E<tab> or -EA) to shorten
the command. In addition, when you work with the Get-Process cmdlet, the default parameter
set is Name. This means that the -Name parameter from Get-Process is the default parameter,

	24	 CHAPTER 2	 Using Windows PowerShell cmdlets

and therefore Get-Process interprets any string in the first position as the name of a process.
The following example shows the revised command:

PS C:\> Get-Process notepad -ea SilentlyContinue

PS C:\>

If you are uncertain of valid values for the -ErrorAction parameter, you can supply anything
to the parameter and then carefully read the resulting error message. In the text of the error
message, the first two lines state that Windows PowerShell is unable to convert the value to
the System.Management.Automation.ActionPreference type. The fourth line of the error mes-
sage lists allowed values for the -ErrorAction parameter. The allowed values are SilentlyCon-
tinue, Stop, Continue, Inquire, and Ignore. Figure 2-1 shows this technique of forcing an error.

FIGURE 2-1  Forcing an intentional error reveals permissible values for Windows PowerShell parameters.

Starting the Windows PowerShell transcript
One of the great features of the Windows PowerShell console is the Start-Transcript cmdlet.
To start a Windows PowerShell transcript, type Start-Transcript on a blank line in the Windows
PowerShell console. The following example shows the command and associated output:

PS C:\> Start-Transcript
Transcript started, output file is C:\Users\ed.IAMMRED\Documents\PowerShell_transcri
pt.20121120142251.txt

Once you start the Windows PowerShell transcript, all commands, command output, and
even error messages appear in the transcript file. The transcript file is useful for several rea-
sons. The following list shows some of these reasons:

■■ As a troubleshooting tool  The transcript becomes a valuable troubleshooting tool
showing commands and specific error messages arising from the commands.

■■ As a learning tool  When you explore a variety of Windows PowerShell commands
and you find useful commands, you already have a record of the commands and as-
sociated output from the commands.

	 Understanding the basics of cmdlets	 CHAPTER 2	 25

■■ As an audit tool  The transcript provides the user name, the time, and a record of all
commands and output from those commands.

Stopping and reviewing the Windows PowerShell transcript
The Windows PowerShell transcript contains all commands and output from the commands,
including errors. To view the Windows PowerShell transcript, you must stop the transcript
first. To do this, use the Stop-Transcript cmdlet. Once the transcript stops, the path to the tran-
script file appears in the Windows PowerShell console, as shown in the following example:

PS C:\> Stop-Transcript

Transcript stopped, output file is C:\Users\ed.IAMMRED\Documents\PowerShell_transcri
pt.20121122074731.txt

PS C:\>

You can use Windows PowerShell to parse the transcript file (it is plain text) or you can
open it in Notepad. Figure 2-2 shows the Windows PowerShell transcript log file in Notepad.

FIGURE 2-2  The Windows PowerShell transcript file opens easily in Notepad and shows both commands
and errors.

	26	 CHAPTER 2	 Using Windows PowerShell cmdlets

Searching the Help topics

There are two types of Help topics available from within Windows PowerShell. The first type
of topic describes cmdlets and how to use the cmdlets. The cmdlet Help topics typically
contain a basic description of the cmdlet, the syntax, an explanation of the parameters, and
examples of using the cmdlet. The examples typically range from extremely simple to mod-
erately complex examples involving more than one cmdlet. You access all the cmdlet Help
topics through the Get-Help cmdlet (or the Help function) when you supply a cmdlet name.

The second type of Help topic is the conceptual topic. The conceptual Help topics do not
contain multiple sections (such as description, syntax, or examples); instead, they are single
text files. These files do not describe single cmdlets, but rather provide detailed explanations
of fundamental Windows PowerShell concepts. For example, there are Help files that cover
the WMI Query Language (WQL), Windows PowerShell remoting, workflow, and even error
handling. You access all the conceptual topics through the Get-Help cmdlet (or the Help func-
tion) when you supply a phrase beginning with “About_”. You can use the Get-Help cmdlet
and tab expansion to cycle through the conceptual Help topics. To do this, perform the fol-
lowing at the command prompt:

Get-Help About_ + <TAB> + <ENTER>

On my Windows 8 computer, there are currently 110 About_ conceptual topics comprising
47,190 words of information.

NOTE  Before you use Windows PowerShell Help, you must run the Update-Help cmdlet to
download the latest Help files. This command requires administrator rights (see Chapter 1,
“Overview of Windows PowerShell 3.0”) and an Internet connection to run.

Using the Get-Help cmdlet
To find Help information about using a specific Windows PowerShell cmdlet, use the Get-Help
cmdlet and supply the name of the cmdlet to the -Name parameter. When the Get-Help cmd-
let runs in this mode, it provides basic Help information, including the following elements:
Name, Synopsis, Syntax, Description, Related Links, and Remarks. The following example
shows this type of command:

Get-Help -Name Get-Process

The default parameter for the Get-Help cmdlet is the -Name parameter, and therefore it
is not necessary to specify the -Name parameter each time you want to find cmdlet Help.
For example, the following command also displays Help information about the Get-Process
cmdlet:

Get-Help Get-Process

	 Searching the Help topics	 CHAPTER 2	 27

After you are familiar with the basics of how a particular cmdlet works, you will need only
a quick reminder of how to use the cmdlet. On these occasions, using the -Examples switch
does the trick. When run with the -Examples parameter, the Get-Help cmdlet returns the fol-
lowing elements: Name, Synopsis, and the Examples portion from the Help topic. The follow-
ing example shows this command:

Get-help -name Get-Service -Examples

Once you begin to explore some of the more powerful features of Windows PowerShell
cmdlets, or you need complete Windows PowerShell cmdlet information, use the -Full switch.
The -Full switch forces Windows PowerShell to return all available Help information. This in-
formation includes the following elements: Name, Synopsis, Syntax, Description, Parameters,
Inputs, Outputs, Notes, Examples, Related Links, and Remarks. In addition, the Parameters
section includes information as to whether or not a parameter is required, its position, default
values, and if it accepts pipelined input or wildcards.

Paging the Help output
When you use the Get-Help cmdlet to display all the cmdlet Help information by using the
-Full parameter, you will get several pages of information. By default, the Help information
scrolls to the Windows PowerShell console. As long as the amount of information does not
exceed the console buffer, you can scroll back to the beginning of the Help output and read
through the data. But if the information exceeds the console buffer, you will need to either
change the buffer settings or send the output to a pager. To cause the output to display a
single page of information and halt until you press either the spacebar or Enter, use the Help
function. The Help function works similarly to the Get-Help cmdlet because it accepts the
same parameters and switches. The difference is that instead of dumping all the information
directly to the Windows PowerShell console, it sends the data through a pager that displays
one page of information at a time. This pager is sophisticated and detects the size of the Win-
dows PowerShell console prior to figuring out the amount of information to display at a time.
Therefore, if you have a small Windows PowerShell console window, then only a few lines at
a time display. If you have a large Windows PowerShell console window, it displays more lines
of output. The following command displays complete cmdlet Help information one page at a
time for the Get-WinEvent cmdlet:

Help -Full -Name Get-WinEvent

Figure 2-3 illustrates using the Help function to display paged information for the Get-
WinEvent cmdlet.

	28	 CHAPTER 2	 Using Windows PowerShell cmdlets

FIGURE 2-3  Use the Help function to display complete cmdlet Help information one page at a time.

Using the Get-Help cmdlet to search for Windows PowerShell cmdlets
Because the Get-Help cmdlet accepts wildcard characters, you can use Get-Help to find
cmdlets related to a specific topic. For example, to use Get-Help to find cmdlets related to
processes, use a command such as the one in the following example:

Get-Help *process

The benefit is that because you use wildcard characters you can target specific types of
cmdlets with minimal typing. The following example shows this technique:

PS C:\> get-help *P*ce?s

Name Category Module Synopsis
---- -------- ------ --------
Debug-Process Cmdlet Microsoft.PowerShell.M... Debugs one ...
Get-Process Cmdlet Microsoft.PowerShell.M... Gets the pr...
Start-Process Cmdlet Microsoft.PowerShell.M... Starts one ...
Stop-Process Cmdlet Microsoft.PowerShell.M... Stops one o...
Wait-Process Cmdlet Microsoft.PowerShell.M... Waits for t...

If you are specifically interested in cmdlet Help, specify the cmdlet category when you use
the Get-Help cmdlet, as shown in the following example:

Get-Help process -Category cmdlet

	 Searching the Help topics	 CHAPTER 2	 29

Using the About conceptual Help topics
It is possible to use the Get-Help cmdlet and the -Name parameter to search for About_
conceptual Help topics. But using wildcards is extra work and can also lead to missing topics.
Following is an example of using wildcards:

PS C:\> Get-Help -Name about*wmi*

Name Category Module Synopsis
---- -------- ------ --------
about_WMI HelpFile

about_WMI_Cmdlets HelpFile Provides ba...

Without the trailing wildcard character, the command returns only the about_WMI topic.
A better way of searching the About_ conceptual Help topics is to specify the HelpFile
-Category. This makes for a cleaner command and is actually easier to type. The following
example shows the command and associated output:

PS C:\> Get-Help -Name wmi -Category HelpFile

Name Category Module Synopsis
---- -------- ------ --------
about_WMI HelpFile

about_WMI_Cmdlets HelpFile Provides ba...

NOTE  The preceding command appears to be a longer command. However, when you
use tab expansion for cmdlet name, parameter name, and the permitted values for the
parameters, the command actually takes fewer keystrokes than the one using wildcard
characters.

To find conceptual Help topics related to common parameters, use the Get-Help cmdlet
and specify the word common while choosing the HelpFile category, as shown in the follow-
ing example:

PS C:\> Get-Help common -Category HelpFile

Name Category Module Synopsis
---- -------- ------ --------
about_CommonParameters HelpFile Describes t...
about_ActivityCommonParameters HelpFile Describes t...
about_WorkflowCommonParameters HelpFile This topic ...

	30	 CHAPTER 2	 Using Windows PowerShell cmdlets

Because some of the conceptual Help topics are rather long, you might want to use the
Help function instead of using the Get-Help cmdlet. You can use the same technique. For
example, to find conceptual Help files related to operators, you need to type only a portion
of the keyword operator while supplying the HelpFile value to the -Category parameter, as
shown in the following example:

PS C:\> Help oper -Category HelpFile

Name Category Module Synopsis
---- -------- ------ --------
about_Arithmetic_Operators HelpFile Describes t...
about_Assignment_Operators HelpFile Describes h...
about_Comparison_Operators HelpFile Describes t...
about_Logical_Operators HelpFile Describes t...
about_Operators HelpFile Describes t...
about_Operator_Precedence HelpFile Lists the W...
about_Properties HelpFile Describes h...
about_Type_Operators HelpFile Describes t...

Using the Get-Command to find cmdlets

There are several different ways to use the Get-Command cmdlet to find Windows PowerShell
cmdlets. The most basic way to use the Get-Command cmdlet is to use it to find cmdlets that
use a verb such as Get, as shown in the following example:

Get-Command -Verb Get

There are 98 authorized verbs in Windows PowerShell 3.0. The listing of permissible verbs
appears when you use the Get-Verb function. Figure 2-4 shows the use of the Get-Verb func-
tion as well as a portion of the associated output.

	 Using the Get-Command to find cmdlets	 CHAPTER 2	 31

FIGURE 2-4  Use the Get-Verb cmdlet to display the listing of approved Windows PowerShell verbs.

If you want to retrieve, gather, or collect information, you probably should use the Get
verb. To do this, use the Get-Command cmdlet while supplying the value get to the -Verb
parameter, as shown in the following example:

Get-Command -Verb get

On my Windows 8 computer with the Windows Server 2012 Remote Server Administra-
tion Tools (RSAT) installed, I have 577 cmdlets (and functions) returned that use the verb Get.
Because of the large number of Get cmdlets (and functions), you probably should also use
the -Noun parameter to reduce the number of items to sort through. Because most of the
Windows PowerShell cmdlet names are related to the feature of technology they manage, it is
possible to use the -Noun parameter to aid in cmdlet discovery. The following example shows
how to use the -Noun parameter to find cmdlets that contain the letters TCP:

PS C:\> Get-Command -Verb get -Noun *tcp*

CommandType Name ModuleName
----------- ---- ----------
Function Get-NetTCPConnection NetTCPIP
Function Get-NetTCPSetting NetTCPIP

PS C:\>

	32	 CHAPTER 2	 Using Windows PowerShell cmdlets

If you are interested in cmdlets related to IP, however, the results from a wildcard search
will be somewhat disappointing. This is because the letter pattern *ip* appears in many cmd-
let (and function) names. Figure 2-5 shows the command and associated results.

FIGURE 2-5  When a short letter pattern appears in the cmdlet name, wildcard patterns are ineffective.

When you want to find cmdlets related specifically to a certain technology, use the
-Module parameter. This is because Windows PowerShell cmdlets (and functions) reside in
modules, and the modules group management functionality around specific technology.
Therefore, to accomplish TCP/IP management, use cmdlets from the NetTCPIP module, as
shown in the following example:

PS C:\> Get-Command -Verb get -Noun *ip* -Module NetTcpIp

CommandType Name ModuleName
----------- ---- ----------
Function Get-NetIPAddress NetTCPIP
Function Get-NetIPConfiguration NetTCPIP
Function Get-NetIPInterface NetTCPIP
Function Get-NetIPv4Protocol NetTCPIP
Function Get-NetIPv6Protocol NetTCPIP

To find all the cmdlets (functions) contained in the NetTCPIP module, use the w cmdlet and
specify only the -Module parameter. In this way, all nouns and all verbs appear in the output.
The following example shows the command:

Get-Command -Module NetTcpIp

 Using the Get-Member cmdlet ChAPTER 2 33

Keep in mind you can use tab expansion to complete the module name. You can also use
wildcard characters.

If you are specifically interested in configuring objects, typically the verb to use is the Set
verb. The following example shows the Windows PowerShell functions using the Set verb
from the NetTCPIP module:

PS C:\> Get-Command -Module NetTCPIP -Verb set

CommandType Name ModuleName
----------- ---- ----------
Function Set-NetIPAddress NetTCPIP
Function Set-NetIPInterface NetTCPIP
Function Set-NetIPv4Protocol NetTCPIP
Function Set-NetIPv6Protocol NetTCPIP
Function Set-NetNeighbor NetTCPIP
Function Set-NetOffloadGlobalSetting NetTCPIP
Function Set-NetRoute NetTCPIP
Function Set-NetTCPSetting NetTCPIP
Function Set-NetUDPSetting NetTCPIP

Using the Get-Member cmdlet

To find the properties, methods, or events of an object in Windows PowerShell, use the Get-
Member cmdlet. Properties of an object describe the object. For example, an automobile
has properties such as color, body style, miles per gallon (MPG), and cost. Methods perform
actions. For example, an automobile has the “drive down the road” method and the “stop at a
stop sign” method, and probably the “play music” method as well.

Everything in Windows PowerShell is an object. In fact, one of the characteristics that
makes Windows PowerShell unique among shell and scripting environments is that it returns
objects and pipelines objects. Most other shells and scripting environments are text-based.
With text-based shells, you have to use a separate tool to parse the text to find the informa-
tion. This is one problem with running old commands (such as ping, ipconfig, and tracert)
inside Windows PowerShell: The commands return text, and picking out a specific piece of
information is difficult.

There are many different ways of using the Get-Member cmdlet. The cmdlet has param-
eters for filtering out results and for searching for specific parameters. To see all the different
ways to use the Get-Member cmdlet, use the Get-Help cmdlet discussed earlier in this chapter.
The following example shows how the command returns basic information about using the
Get-Member cmdlet:

Get-Help Get-Member

To see only the examples of using the Get-Member cmdlet, use the command in the fol-
lowing example:

Get-Help Get-Member -Examples

	34	 CHAPTER 2	 Using Windows PowerShell cmdlets

To see the complete Help information, use the following command:

Get-Help Get-Member -Full

Exploring property members
To explore the property members of an object, use the Get-Member cmdlet and use the
-MemberType parameter to choose the member type of Property. In addition, you need to
supply a value for the InputObject parameter. The InputObject parameter accepts the object
whose property members you want to display. To ensure the object is created prior to the dis-
playing property members, you must use a pair of parentheses and place the cmdlet produc-
ing the objects inside.

The following command creates the System.Datetime object by executing the Get-Date
cmdlet. It then uses the Get-Member cmdlet to display property members:

PS C:\> Get-Member -InputObject (get-date) -MemberType Property

 TypeName: System.DateTime

Name MemberType Definition
---- ---------- ----------
Date Property datetime Date {get;}
Day Property int Day {get;}
DayOfWeek Property System.DayOfWeek DayOfWeek {get;}
DayOfYear Property int DayOfYear {get;}
Hour Property int Hour {get;}
Kind Property System.DateTimeKind Kind {get;}
Millisecond Property int Millisecond {get;}
Minute Property int Minute {get;}
Month Property int Month {get;}
Second Property int Second {get;}
Ticks Property long Ticks {get;}
TimeOfDay Property timespan TimeOfDay {get;}
Year Property int Year {get;}

NOTE  There is a difference in the –MemberType of Property and the –MemberType of
Properties. The former only lists properties of an object. The latter lists properties of an
object, but additionally lists ScriptProperty, NoteProperty, CodeProperty, and others.

Using the Show-Command cmdlet

The Show-Command cmdlet displays a graphical input control for the cmdlet specified to the
-Name parameter. The following command displays the graphical input control for the Get-
Process cmdlet:

Show-Command -Name Get-Process

	 Using the Show-Command cmdlet	 CHAPTER 2	 35

Because the -Name parameter is the default parameter for the Show-Command cmdlet,
you do not need to always specify the -Name parameter. Therefore, the following command,
which omits the -Name parameter, also works:

Show-Command Get-Process

Once the command runs, it displays a graphical input control. Each control is specific to
the cmdlet specified at run time. The input control for the Get-Process cmdlet shows the three
different parameter sets, one on each tab. The default parameter set (Name) appears on
the first tab. By using the Show-Command cmdlet, you can create a command by using the
mouse or the keyboard to select and supply the options for a specific command. Once cre-
ated, you have the option to copy the command to the Clipboard or run the command. When
you choose to run the command, the complete Windows PowerShell command first displays
to the Windows PowerShell console command line. Next, it executes and displays the results
on subsequent lines. Figure 2-6 shows the input control for the Get-Process cmdlet.

FIGURE 2-6  The graphical control for the Get-Process cmdlet created by the Show-Command cmdlet.

	36	 CHAPTER 2	 Using Windows PowerShell cmdlets

Setting the Script Execution Policy

By default, Windows PowerShell disallows the execution of scripts. Typically, Group Policy
controls script support. If it does not, and if you have administrator rights on your computer,
you can use the Windows PowerShell Set-ExecutionPolicy cmdlet to turn on script support.
You can enable one of six levels by using the Set-ExecutionPolicy cmdlet. (The discussion of
Windows PowerShell scripts begins in Chapter 10). The following list shows the options:

■■ Restricted  Does not load configuration files or run scripts. Restricted is the default.

■■ AllSigned  Requires that a trusted publisher sign all scripts and configuration files,
including scripts that you write on the local computer.

■■ RemoteSigned  Requires that a trusted publisher sign all scripts and configuration
files downloaded from the Internet.

■■ Unrestricted  Loads all configuration files and runs all scripts. If you run an unsigned
script that was downloaded from the Internet, you are prompted for permission before
it runs.

■■ Bypass  Nothing is blocked and there are no warnings or prompts.

■■ Undefined  Removes the currently assigned execution policy from the current scope.
This parameter does not remove an execution policy that is set in a Group Policy
scope.

NOTE  If the script execution policy is set through Group Policy, you cannot change it,
even with administrator rights on the local machine.

In addition to six levels of execution policy, there are three different scopes for the execu-
tion policies:

■■ Process  The execution policy affects only the current PowerShell process.

■■ CurrentUser  The execution policy affects only the current user.

■■ LocalMachine  The execution policy affects all users of the computer.

To set the LocalMachine execution policy, you must have administrator rights on the local
computer. The following command shows a local administrator changing the script execution
policy to unrestricted:

Set-ExecutionPolicy -Scope LocalMachine -ExecutionPolicy unrestricted

By default, non-elevated users have rights to set the script execution policy for the Cur-
rentUser user scope that affects their own execution policy. The following command shows a
non-elevated user setting the script execution policy to remotesigned:

PS C:\> Set-ExecutionPolicy -Scope CurrentUser -ExecutionPolicy remotesigned

	 Creating a basic Windows PowerShell profile	 CHAPTER 2	 37

Execution Policy Change
The execution policy helps protect you from scripts that you do not trust. Changing
the execution policy might expose you to the security risks described in the
about_Execution_Policies help topic at
http://go.microsoft.com/fwlink/?LinkID=135170. Do you want to change the execution
policy?
[Y] Yes [N] No [S] Suspend [?] Help (default is “Y”): y

With so many choices available to you for a script execution policy, you might wonder
which one is appropriate for you. The Windows PowerShell team recommends the Remo-
teSigned setting, stating that it is appropriate for most circumstances. Remember that even
though descriptions of the various policy settings use the term Internet, this might not always
refer to the World Wide Web or even to locations outside your own firewall. This is because
Windows PowerShell obtains its script origin information by using the Windows Internet Ex-
plorer zone settings. This means anything that comes from a computer other than your own
is in the Internet zone. You can change the Internet Explorer zone settings by using Internet
Explorer, the registry, or Group Policy.

If you do not want to see the confirmation message when you change the script execution
policy in Windows PowerShell 3.0, use the -Force parameter.

To view the execution policy for all scopes, use the list parameter when calling the Get-
ExecutionPolicy cmdlet, as shown in the following example:

PS C:\> Get-ExecutionPolicy -List

 Scope ExecutionPolicy
 ----- ---------------
 MachinePolicy Undefined
 UserPolicy Undefined
 Process Undefined
 CurrentUser RemoteSigned
 LocalMachine Restricted

Creating a basic Windows PowerShell profile

The reason to learn about setting the Windows PowerShell script execution policy, as dis-
cussed in the preceding section, is that a Windows PowerShell profile is a script. In fact, it is
a special script because it has a specific name and resides in a specific place. In this way, the
Windows PowerShell profile is similar to the old-fashioned Autoexec.bat file: It has a special
name, resides in a special location, and contains commands to customize the environment.

There are actually six different Windows PowerShell profiles, but for now you can cre-
ate a Windows PowerShell profile for the current user and the current Windows PowerShell
environment. The $profile automatic variable always points to the current user and current
Windows PowerShell environment Windows PowerShell profile.

	38	 CHAPTER 2	 Using Windows PowerShell cmdlets

Determining if a Windows PowerShell profile exists
To see if a Windows PowerShell profile exists, use the Test-Path cmdlet. You can supply the
$profile automatic variable to the Test-Path cmdlet when you check for the profile. If the
profile exists, the Test-Path cmdlet returns True. If the profile does not exist, it returns False, as
shown in the following example:

PS C:\> Test-Path $PROFILE
False

If a profile exists, you might want to back it up (for example, prior to creating a new one).
To back up the profile, use the Copy-Item cmdlet and specify the $profile variable (containing
the complete path to the profile) and the destination path. In the following example, the cur-
rent user profile copies to a back-up file in the C:\fso directory.

Copy-Item $profile c:\fso\mycurrentbackupprofile.ps1

Creating a new Windows PowerShell profile
To create a new Windows PowerShell profile, use the New-Item cmdlet and specify the $pro-
file automatic variable. Because the Windows PowerShell profile is a file (a script file), specify
the -ItemType of file. The -Force parameter forces the cmdlet to create the file. The following
example shows this technique:

PS C:\> New-Item $profile -ItemType file -Force

 Directory: C:\Users\ed.IAMMRED\Documents\WindowsPowerShell

Mode LastWriteTime Length Name
---- ------------- ------ ----
-a--- 11/22/2012 12:57 PM 0 Microsoft.PowerShell_profile.ps1

To edit the Windows PowerShell profile, open it in the Windows PowerShell ISE and add
the Start-Transcript to the top of the Windows PowerShell profile. Click the Save icon and
close the ISE. The following command opens the Windows PowerShell profile in the Windows
PowerShell ISE:

PS C:\> ise $PROFILE
PS C:\>

Figure 2-7 shows the Windows PowerShell ISE and the Start-Transcript cmdlet on the first
line.

	 Summary	 CHAPTER 2	 39

FIGURE 2-7  When you add the Start-Transcript cmdlet to the Windows PowerShell profile, a transcript of
all commands and output from commands writes to the transcript log automatically.

Summary

This chapter focused on the basics of cmdlets. We reviewed how to search the Help topics,
how to use the Get-Command cmdlet to find cmdlets, and how to use the Get-Member cmd-
let to explore Windows PowerShell objects. We also reviewed how to set the Script Execution
Policy and how to create a basic Windows PowerShell profile.

		 	 41

C H A P T E R 3

Filtering, grouping, and
sorting

■■ Introduction to the pipeline

■■ Sorting output from a cmdlet

■■ Grouping output after sorting

■■ Filtering output from one cmdlet

■■ Filtering output from one cmdlet before sorting

One of the tasks that Windows PowerShell excels at is providing insight into data. This
usually involves sending data through the pipeline. In fact, the Windows PowerShell

pipeline is a fundamental concept, and it is integral to sorting data, grouping data, and
filtering out specific information from collections of other information. Using the Windows
PowerShell pipeline is a skill you will use on a routine basis when working with Windows
PowerShell.

Introduction to the pipeline

The Windows PowerShell pipeline takes the output from one command and sends it as in-
put to another command. By using the pipeline, you can accomplish tasks such as finding all
computers in one specific location and restarting them. You need one command to find all
the computers in a specific location and another command to restart each of the comput-
ers. Passing the objects from one command to a new command makes Windows PowerShell
easy to use inside the console because you do not have to stop and parse the output from
the first command before taking action with a second command.

Windows PowerShell passes objects down the pipeline. This is one way that Windows
PowerShell becomes very efficient: It takes an object (or group of objects) from the results
of running one command and it passes those objects to the input of another command.
By using the Windows PowerShell pipeline, it is not necessary to store the results of one

	42	 CHAPTER 3	 Filtering, grouping, and sorting

command into a variable and then call a method on that object to perform an action. For
example, the following command disables all network adapters on my Windows 8 computer:

Get-NetAdapter | Disable-NetAdapter

NOTE  Windows PowerShell honors the security policy. Therefore, to disable a network
adapter, you must run Windows PowerShell with administrator rights. For more informa-
tion about starting Windows PowerShell with administrator rights, see Chapter 1.

In addition to disabling all network adapters, you can enable them as well. To do this,
use the Get-NetAdapter cmdlet and pipeline the results to the Enable-Netadapter cmdlet, as
shown in the following example:

Get-NetAdapter | Enable-NetAdapter

If you want to start all the virtual machines on Windows 8 or Windows Server 2012, use the
Get-VM cmdlet and pipeline the resulting virtual machine objects to the Start-VM cmdlet, as
shown in the following example:

Get-VM | Start-VM

To shut down all the virtual machines, use the Get-VM cmdlet and pipeline the resulting
virtual machine objects to the Stop-VM cmdlet, as shown in the following example:

Get-VM | Stop-VM

In each of the preceding commands, an object (or group of objects) resulting from one
command pipelines to another cmdlet for further action.

Sorting output from a cmdlet

The Get-Process cmdlet generates a nice table view of process information to the Windows
PowerShell console. The default view appears in ascending alphabetical process name order.
This view is useful for helping to find specific process information, but it hides important
details, such as which process uses the least, or the most virtual, memory. To sort the output
from the process table, pipeline the results from the Get-Process cmdlet to the Sort-Object
cmdlet and supply the property upon which to sort to the -Property parameter. The default
sort order is ascending (that is, smallest numbers appear at the top of the list). The following
command sorts the process output by the amount of virtual memory used by each process:

Get-Process | Sort-Object -Property VM

The processes consuming the least amount of virtual memory appear at the top of the list.

If you are interested in which processes consume the most virtual memory, you might
want to reverse the default sort order. To do this, use the -Descending switch parameter, as
shown in the following example:

	 Sorting output from a cmdlet	 CHAPTER 3	 43

Get-Process | Sort-Object -Property VM -Descending

Figure 3-1 shows the command to produce the virtual memory sorted list of processes and
the associated output from the command.

FIGURE 3-1  Use the Sort-Object cmdlet to organize object output into readable output.

It is possible to shorten the length of Windows PowerShell commands that use the Sort-
Object cmdlet. The command Sort is an alias for the Sort-Object cmdlet. A cmdlet alias is a
shortened form of the cmdlet name that Windows PowerShell recognizes as a substitute
for the complete cmdlet name. Some aliases are easily recognizable, such as sort for Sort-
Object or select for Select-Object. Other aliases must be learned, such as ? (the question mark
symbol) for the Where-Object cmdlet. Most Windows users expect ? to be an alias for the
Get-Help cmdlet.

In addition to using an alias for the Sort-Object cmdlet name, the -Property parameter is
the default parameter the cmdlet uses, so it can be omitted from the command. The follow-
ing command uses the shortened syntax to produce a list of services by status:

Get-Service | sort status

It is possible to sort on more than one property. You need to be careful doing this be-
cause at times it is not possible to sort additional properties. With the services, a multiple
sort makes sense because there are two broad categories of status: Running and Stopped. It
therefore makes sense to attempt to organize the output further to facilitate finding particu-
lar stopped or running services. One way to facilitate finding services is to sort alphabetically
the displayname property of each service. The following example sorts the service objects
obtained through the Get-Service cmdlet by the status, and then by the displayname from
within the status:

Get-Service | sort status, displayname -Descending

The output appears in descending order instead of the default ascending sorted list.

 44 ChAPTER 3 Filtering, grouping, and sorting

Figure 3-2 shows the command to sort services by status and displayname as well as the
output from the command.

FIGURE 3-2 Using the Sort-Object cmdlet to organize the output from the Get-Service cmdlet.

Grouping output after sorting

After you have sorted the objects coming through the pipeline, you can then group them.
It is important to sort the objects prior to grouping to help to ensure the best performance
and the most accurate results. To group the count of running or stopped services, use the
Get-Service cmdlet to retrieve the service objects. Pipeline the resulting service objects to the
Sort-Object cmdlet and sort on the status property. Finally, pipeline the sorted service objects
to the Group-Object cmdlet and specify that you want to group on the status property. The
following example shows the resulting command and associated output:

PS C:\> Get-Service | Sort-Object status | Group-Object -Property status

Count Name Group
----- ---- -----
 99 Stopped {PNRPsvc, p2pimsvc, ose, TrustedInstaller...}
 83 Running {vmms, wudfsvc, Wcmsvc, stisvc...}

	 Grouping output after sorting	 CHAPTER 3	 45

NOTE  When you use the Group-Object cmdlet, it is vital that you specifically select the
property on which to group. The property on which to group should be the property on
which you sorted. Without specifying an object on which to group, the command appears
to work but the results are inconsistent.

You can shorten the length of the Group-Object cmdlet by using the Group cmdlet alias in-
stead of typing out Group-object. In addition, the -Property parameter is the default parame-
ter and can be omitted. The following example shows the shortened version of the command
to display running and stopped service counts:

PS C:\> Get-Service | sort status | group status

Count Name Group
----- ---- -----
 95 Stopped {PNRPsvc, p2psvc, p2pimsvc, ose...}
 87 Running {wudfsvc, SysMain, Wcmsvc, wuauserv...}

Grouping information without element data
By default, the Group-Object cmdlet displays three properties: Count, Name, and Group. The
Group property contains data associated with the values appearing under the Name prop-
erty. Often the data in the Group column is useful because it provides examples of the kind of
values available for the grouping. At times, however, this output is distracting. The preceding
examples of using the Group-Object cmdlet contain a column that provides a small clue as to
the items grouped. By default, Windows PowerShell displays four items in the Group column,
which generally is enough to provide an indication as to how the command ran. However, it
is also a bit of a distraction having the column with the braces as well as the ellipses clutter-
ing up the screen. When you work with the event log, for example, the group data displays
the data type of the entry. This information is similar for all event log entries, and therefore is
spurious. The following example shows the five most recent error events from the application
log:

12:47 C:\> Get-EventLog -Log application -EntryType error -new 5| sort message |
group message

Count Name Group
----- ---- -----
 1 (GetHomepage()): Faile... {System.Diagnostics.EventLogEntry}
 1 (GetHomepages()): Fail... {System.Diagnostics.EventLogEntry}
 1 (PerformTasks()): Fail... {System.Diagnostics.EventLogEntry}
 2 App DefaultBrowser_NOP... {System.Diagnostics.EventLogEntry, System.Diagnos...

The five error messages are sorted by the message value and displayed to the Windows
PowerShell console. Notice that the Group column occupies value display space, and the data
that provides the most important information, the Name column, is truncated to the point
that the information is barely usable.

	46	 CHAPTER 3	 Filtering, grouping, and sorting

If you know your command will return the information you seek, and you are interested
only in the group counts, you can use the Group-Object cmdlet to return only the grouped
property and the count of the items in that group. The key is to use the -NoElement switched
parameter. The command that follows groups the processes by name, then sorts the count of
the processes in descending order:

Get-Process | sort name | group name -NoElement | sort count -Descending

Figure 3-3 shows the command to get running processes, sort by name, group the names,
and sort the count of the running processes by name. Figure 3-3 also shows the output from
the command.

FIGURE 3-3  By using the -NoElement switched parameter, the grouping data does not display to the
Windows PowerShell console.

Filtering output from one cmdlet

Grouping and sorting data is useful in that it permits a general overview of the queried data.
However, it is data filtering that permits you to dive into the data and surface relevant pat-
terns. For example, you might spend a long time staring at the output from the Get-Process
cmdlet before you find there is a process on your system that is using 1,000 MB of virtual
memory. But with a simple Where-Object filter, the information becomes blatantly obvious.
The following example shows the command to retrieve process information and to filter out
all processes that are using more than 1,000 MB of virtual memory:

	 Filtering output from one cmdlet	 CHAPTER 3	 47

PS C:\> Get-Process | Where-Object vm -gt 1000MB

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName
------- ------ ----- ----- ----- ------ -- -----------
 762 46 12824 17140 1203 1656 svchost

Filtering by date
Many times, from a troubleshooting perspective, you need to look at what happened after
a specific date. Some cmdlets permit direct filtering by date while others do not. If a cmdlet
does not have a parameter that permits filtering by date, all that is required is to pipeline the
returned objects to the Where-Object cmdlet.

The Get-WindowsDriver function from the Deployment Image Servicing and Management
(DISM) module in Windows 8 retrieves a listing of all the installed drivers on a computer.
While there are several parameters available to filter drivers on the left side of the pipeline
character, there is no facility to filter by date. To find drivers installed after a specific date,
pipeline the results of Get-WindowsDriver to the Where-Object and specify that you want only
drivers installed after a specific date. The following example shows this command:

PS C:\> Get-WindowsDriver -Online | where date -gt 10/8/2012

Published Name : oem26.inf
Original File Name : C:\Windows\System32\DriverStore\FileRepository\ibmpmdrv.inf_amd
 64_728348017c675c91\ibmpmdrv.inf
InBox : False
Class Name : System
Boot Critical : True
Provider Name : Lenovo
Date : 10/9/2012 12:00:00 AM
Version : 1.66.0.17

NOTE  You need elevated rights to use the Windows 8 Get-WindowsDriver function.

The Sort-Object cmdlet works great with dates. Sorting dates makes identifying similar
events easy. For example, the following command returns all hotfixes installed after Decem-
ber 1, 2012 on a local computer:

Get-HotFix | Where installedon -gt 12/1/12

The only problem with the command to list hotfixes installed after December 1, 2012 is
that a lot of hotfixes were released in December, 2012. This makes finding a particular hotfix
a problem. However, if you pipeline the results to the Sort-Object cmdlet, you can identify
specific hotfixes easily. In fact, the default-ascending sort is perfect for date-related sorting
jobs. The following example shows the command:

Get-HotFix | Where installedon -gt 12/1/12 | sort installedon

	48	 CHAPTER 3	 Filtering, grouping, and sorting

Figure 3-4 shows the command to find and sort all hotfixes installed after December 1,
2012 and the associated output from the command.

FIGURE 3-4  Sorting dates after filtering by date is an easy way to identify patterns in data.

The object that returns dates is called the DateTime object. The DateTime object is made
up of a number of methods and properties. The properties of the DateTime object are what
are used when you perform a filter. To see the properties of the DateTime object, pipeline a
date to the Get-Member cmdlet. The following example shows the command to return the
properties of a DateTime object and the output from the command:

16:59 C:\> Get-Date | Get-Member -MemberType Property

 TypeName: System.DateTime

Name MemberType Definition
---- ---------- ----------
Date Property datetime Date {get;}
Day Property int Day {get;}
DayOfWeek Property System.DayOfWeek DayOfWeek {get;}
DayOfYear Property int DayOfYear {get;}
Hour Property int Hour {get;}
Kind Property System.DateTimeKind Kind {get;}
Millisecond Property int Millisecond {get;}
Minute Property int Minute {get;}
Month Property int Month {get;}
Second Property int Second {get;}
Ticks Property long Ticks {get;}
TimeOfDay Property timespan TimeOfDay {get;}
Year Property int Year {get;}

	 Filtering output from one cmdlet	 CHAPTER 3	 49

The time that a process starts is reported as a DateTime object. The Get-Member cmdlet
reveals this information through the following command:

17:03 C:\> Get-Process | Get-Member -Name starttime

 TypeName: System.Diagnostics.Process

Name MemberType Definition
---- ---------- ----------
StartTime Property datetime StartTime {get;}

Because the StartTime property contains an instance of the DateTime object, any property
from that object can be used to create a filter. To filter the time by hour, minute, second, or
any other property from the DateTime objects requires using a more complicated form of the
Where-Object cmdlet. This form begins and ends with a ScriptBlock. A pair of braces ({}) marks
the ScriptBlock. Once inside the ScriptBlock, the $_ automatic variable is used to gain access
to each item as it crosses the pipeline. From there, it works like any other filter. Choose the
property from the object, and use the greater than (>) operator to specify which minute to
filter on, as shown in the following example:

17:06 C:\> Get-Process | Where { $_.starttime.minute -gt 55} | select name, starttime

Name StartTime
---- ---------
IAStorIcon 1/5/2013 2:56:32 PM
WINWORD 1/5/2013 2:58:25 PM

Filtering to the left
From a performance perspective, it’s best to perform most actions to the data on the left
side of the pipeline character. This is because when a cmdlet runs, it might return a lot of
data. Even when you work locally, returning large amounts of data could involve significant
memory, CPU time, and disk I/O. If you return data from across the network, then an inef-
ficient query also causes network performance issues. In general, when you work locally (or
when you work remotely with fast network connections) there is a point of diminishing re-
turns. For example, if you spend 10 minutes perfecting a query that takes only a few seconds
to run (when not optimized), you have probably wasted 9.9 minutes that could have been
more effectively utilized. If, on the other hand, the non-optimized query takes 10 minutes to
run, and you are going to run it on 100 remote servers, some of which are severely bandwidth
constrained, then you would be justified in spending several days to optimize the query.

So how do you filter to the left of the pipeline character? You use the filtering capabili-
ties of the cmdlet itself. For example, the following command returns all the event log entries
from the application log:

Get-EventLog -LogName application

	50	 CHAPTER 3	 Filtering, grouping, and sorting

On my computer, there are 10,575 event log entries in the application log. If you are
interested in looking at only error logs, you can use the Where-Object cmdlet, as shown in the
following example:

Get-EventLog -LogName application | where entrytype -eq ‘error’

On my computer, the previous command takes 1.8 seconds to complete. If I use the
-EntryType filter from the Get-EventLog cmdlet, I arrive at the following query:

Get-EventLog -LogName application -EntryType error

By filtering to the left of the pipeline (in this case, not piping to the Where-Object) the
command runs in .8 seconds, which is less than half the amount of time. Now, to be truthful,
when I work on my local computer I am not too concerned about reducing a command from
1.8 seconds to .8 seconds. However, you will also note that by using the -EntryType parameter
from the Get-EventLog cmdlet, the command is shorter and easier to read. In addition, it is
less error prone because tab expansion is used to complete the command.

Filtering output from one cmdlet before sorting

When you know you are going to sort your output, it is better to reduce the amount of data
to sort before performing the sort operation. Earlier, I discussed the dictum “filter to the left.”
The corollary is to “sort on the right.” The sort operation is more efficient when it has fewer
items to sort. The Windows 8 cmdlet Get-AppxPackage returns a lot of data. In fact, it returns
so much data, it can be cumbersome to use. Figure 3-5 shows the unfiltered use of the Get-
AppxPackage cmdlet.

FIGURE 3-5  Because of the amount of data returned by the Get-AppxPackage cmdlet, it is difficult to find
specific information about packages from a specific publisher.

	 Summary	 CHAPTER 3	 51

To find specific information about packages from a specific publisher, it is better to choose
only the properties that are interesting to you and then sort on the most important property.
In the following example, only the Name, Version, and Publisher properties are chosen from
the AppxPackage objects returned by the Get-AppxPackage cmdlet. Once the properties are
selected, the Where-Object cmdlet is used to filter resulting packages created by Microsoft.
Finally, the names of the packages are sorted in an ascending list. The following example
shows the command to return a filtered list of packages:

Get-AppxPackage | Select Name, Version, Publisher | Where Publisher -Match Microsoft |
Sort Name

Figure 3-6 shows the output from the filtered list of packages, along with the command
creating the list.

FIGURE 3-6  By filtering the output from a command prior to sorting the output, a clean, easily read
output displays.

Summary

This chapter began with an introduction to the pipeline. Next, it covered sorting output from
a cmdlet, grouping output after sorting, and filtering output from one cmdlet. The chapter
concluded with filtering output from one cmdlet before sorting.

		 	 53

C H A P T E R 4

Formatting output
■■ Creating a table

■■ Creating a list

■■ Creating a wide display

■■ Creating an output grid

When you work with Windows PowerShell, it is common to want to format the output
to the Windows PowerShell console. This is not always a requirement, however, due

to the fact that many Windows PowerShell cmdlets include their own formatted output. For
example, the Get-Process cmdlet produces a nice table output that readily meets the needs
for 90 percent of those who require process information. Occasionally, however, it becomes
necessary to customize the output. In this chapter, you learn about creating tables, lists,
wide lists, and even how to use a selectable grid view.

NOTE  If you use any of the formatting tools mentioned in this chapter, they must appear
at the end of the Windows PowerShell pipeline. Once you send output to a formatter, you
can no longer manipulate the data. If you attempt to sort, filter, or group data after the
formatting cmdlets, an error arises.

Creating a table

When you have between two and five properties you are interested in viewing in columns
of data, the Format-Table cmdlet is the tool to use to organize your data. The typical use
of Format-Table is to permit delving into specific information in a customizable way. For
example, the Get-Process cmdlet returns a table with eight columns containing essential
process information. Figure 4-1 shows the Get-Process command and the resulting output.

 54 ChAPTER 4 Formatting output

FIGURE 4-1 The Get-Process cmdlet returns an eight-column table by default.

Choosing specific properties in a specific order
If the eight columns of default process information meet your needs, there is no need to think
about using a formatting cmdlet. However, the Process object returned by the Get-Process
cmdlet actually contains 51 properties and 7 script properties. As a result, there is much more
information available than just the eight default properties. To dive into this information
requires using one of the formatting cmdlets. From the perspective of the Get-Process cmdlet,
there are six alias properties. Alias properties are great because they can shorten the amount
of typing required. The Get-Process alias properties appear in the following output:

13:40 C:\> get-process | get-member -MemberType alias*

 TypeName: System.Diagnostics.Process

Name MemberType Definition
---- ---------- ----------
Handles AliasProperty Handles = Handlecount
Name AliasProperty Name = ProcessName
NPM AliasProperty NPM = NonpagedSystemMemorySize
PM AliasProperty PM = PagedMemorySize
VM AliasProperty VM = VirtualMemorySize
WS AliasProperty WS = WorkingSet

To use the Format-List cmdlet, you pipeline the results from one cmdlet to the Format-List
cmdlet and select the property names you want to display.

NOTE The order in which the properties appear is the order in which they display in the
table.

	 Creating a table	 CHAPTER 4	 55

The following command displays process information from every process on the local sys-
tem. The specified properties use the alias properties created for the Get-Process cmdlet. The
output is in the order of Name, Handles, Virtual Memory Size, and the Working Set.

Get-Process | Format-Table -Property name, handles, vm, ws

Figure 4-2 shows the command to produce the formatted list of process information as
well as the output associated with the command.

FIGURE 4-2  Using the Format-Table cmdlet, you can specify the order of selected properties from a
command.

NOTE  The Get-Process cmdlet has an alias of GPS, and the Format-Table cmdlet has an
alias of FT. Therefore, the command to return a table of process information can be short-
ened to the following:

GPS | FT name, handles, vm, ws

Controlling the way the table displays
When you pipeline information to the Format-Table cmdlet, it has to determine how much
space to reserve for each column. What happens is that the Format-Table cmdlet takes a quick
look at the data as it crosses the pipeline and makes a guess that is based upon the number
of columns, the width of the Windows PowerShell console, and the length of each value to
display in each column. For commands that send vast quantities of data across the pipeline,
the actual width of the columns may shift as more and more data becomes available. Because
this quick look at the data seldom produces a completely optimized display, you might want
to have the Format-Table cmdlet wait until all the data crosses the pipeline, and then deter-
mine the maximum amount of space to permit each column. While this results in a table that
optimizes the amount of available space, it does add to the amount of time the command
takes to run. Often, the good enough display is just that: It is good enough, and speedy
return of the data is more important than a perfectly formatted and optimized output. The

	56	 CHAPTER 4	 Formatting output

following command returns the service names, the status of each service, and the display
name of services defined on the local system:

Get-Service | Format-Table -property name, status, displayname

Figure 4-3 shows the output after the command runs.

FIGURE 4-3  Using Format-Table defaults results in a quick but non-optimized output.

To fix the output appearing in Figure 4-3, you need to add the -AutoSize parameter to the
end of the Format-Table command. The -Autosize parameter causes Format-Table to wait until
all data is available, and then the space between columns reduces to fit the actual size of the
data contained in the columns. The following example shows the revised command:

Get-Service | Format-Table -property name, status, displayname -AutoSize

Figure 4-4 shows the command to display service names, status, and display names of all
defined services.

	 Creating a table	 CHAPTER 4	 57

FIGURE 4-4  Using the -AutoSize parameter reduces wasted space between columns and produces a
more readable output.

The output in Figure 4-4 is much better than the previous output because of the opti-
mized space between columns that results in displaying maximum data. However, there are
still a couple of service display names that are too long to display in the limited amount of
console output. When this happens, the output truncates. The following two lines of code
illustrate the truncated service display names:

LENOVO.TPKNRSVC Running Lenovo AVFramework Microphone Volume Controller...
LENOVO.TVTVCAM Running Lenovo AVFramework Control Center and ThinkVant...

To display the overly long display names, use the -Wrap parameter in addition to using the
-AutoSize parameter. The following example shows the revised code:

Get-Service | Format-Table -property name, status, displayname -AutoSize -wrap

Once the revised command runs, the two previously truncated Lenovo service display
names wrap to the subsequent lines:

LENOVO.TPKNRSVC Running Lenovo AVFramework Microphone Volume Controller
 and Dolby Interface
LENOVO.TVTVCAM Running Lenovo AVFramework Control Center and
 ThinkVantage Virtual Camera Controller

	58	 CHAPTER 4	 Formatting output

Creating a list

When you want to see all the properties and associated values returned by a particular com-
mand, using Format-List is the easy way to display the information. By using a wildcard to
select all properties from an object, the properties and associated values of the properties
appear on individual lines in the Windows PowerShell console. Figure 4-5 shows the output
from the Get-Process cmdlet when pipelined to the Format-List cmdlet.

FIGURE 4-5  Use a wildcard character to select all properties to display when pipelining results to the
Format-List cmdlet.

NOTE  When using the Get-Process cmdlet, a non-elevated user does not have access to
all properties and their associated values. For example, the path parameter will not display
information to a non-elevated user. The output in Figure 4-5 was produced by right-
clicking on the Windows PowerShell button and selecting Run as Administrator from the
Task menu.

	 Creating a list	 CHAPTER 4	 59

Choosing properties by name
You are not limited to only displaying all properties from a command. You can choose prop-
erties by name, and the resulting output will still display one property/value pair per line. The
following example chooses the first five entries from the application log on the local com-
puter. It then selects the source, entry type, and event ID from each event log entry:

Get-EventLog -LogName application -Newest 5 | Format-List -property source, entrytype,
eventID

Figure 4-6 shows the command to display the source, entry type, and event ID from the first
five entries in the application log on the local computer, along with the associated output.

FIGURE 4-6  Format-List cmdlet produces a nice, tight display for information that would be too long to
fit easily in a table.

Choosing properties by wildcard
The command shown in the preceding Figure 4-6 is rather long and reduces some of the
efficiency obtained by working directly in the Windows PowerShell console. To shorten the
command, use the fl alias for the Format-List cmdlet. Also, it is not necessary to specify the
-Property parameter because it is the default parameter for the Format-List cmdlet. But the
real power comes from using wildcards to select the properties to display. By supplying just a
few characters, the desired properties display. The following example shows the revised com-
mand. (The default parameter for the Get-EventLog cmdlet is -LogName, so it can be left out.)
Instead of typing the complete -Newest parameter, only the first letter is required:

Get-EventLog application -N 5 | Fl s*,e*

	60	 CHAPTER 4	 Formatting output

When the revised command runs, it adds an additional property, the Site property. The
following example shows the command and associated output from the command:

16:08 C:\> Get-EventLog application -N 5 | Fl s*,e*

Source : ESENT
Site :
EventID : 910
EntryType : Warning

Source : ESENT
Site :
EventID : 910
EntryType : Warning

Source : ESENT
Site :
EventID : 910
EntryType : Warning

Source : ESENT
Site :
EventID : 910
EntryType : Warning

Source : ESENT
Site :
EventID : 910
EntryType : Warning

To keep the additional Site property from displaying, add one letter to the Format-List
command. The following example shows this revision with the accompanying desired output:

16:09 C:\> Get-EventLog application -N 5 | Fl so*,e*

Source : ESENT
EventID : 910
EntryType : Warning

Source : ESENT
EventID : 910
EntryType : Warning

Source : ESENT
EventID : 910
EntryType : Warning

Source : ESENT
EventID : 910
EntryType : Warning

Source : ESENT
EventID : 910
EntryType : Warning

	 Creating a wide display	 CHAPTER 4	 61

Creating a wide display

If you are interested in a single property, use the Format-Wide cmdlet. If you are interested
only in a listing of the names of processes, Format-Wide is the ideal choice. To display the
name of each process, use the Get-Process cmdlet to obtain the process objects. Pipeline the
results to the Format-Wide cmdlet and specify Name for the -Property parameter:

Get-Process | Format-Wide -Property name

The resulting output from the Format-Wide cmdlet appears to be a two-column table, but
because it contains only a single property, it actually is a single property displaying in two
columns. Figure 4-7 shows the output.

FIGURE 4-7  A two-column display created by the Format-Wide cmdlet.

Using the -AutoSize parameter to configure the output
By default, the Format-Wide cmdlet works in a similar fashion to the Format-Table cmdlet;
they both sort of guess at the proper spacing. This means that you will generally get a rather
loose two-column display. To tighten up the display, use the -AutoSize parameter. Just like
with the Format-Table cmdlet, using -AutoSize increases the time required to produce output.
This is because all the data must be obtained, analyzed, and the number of columns chosen
to avoid truncating output.

	62	 CHAPTER 4	 Formatting output

The following command obtains information from all processes on the local computer. The
resulting process objects are piped to the Format-Wide cmdlet where the Name property is
selected. The -AutoSize switched parameter is used to tighten up the display:

Get-Process | Format-Wide -Property name -AutoSize

Figure 4-8 shows the Get-Process command and the output associated with the Format-
Wide cmdlet.

FIGURE 4-8  Using the -AutoSize parameter with the Format-Wide cmdlet tightens up the output.

Customizing the Format-Wide output
It might be that the output produced by using the -AutoSize parameter still takes up too
much space. For example, in the preceding Figure 4-8, some of the process names are rather
lengthy. The longest process name is 26 characters in length. The next longest one is 21
characters long. In addition to the few abnormally long process names, if the names were
truncated just a bit, enough of the name would still be visible so you could make an intel-
ligent decision as to the process. For example, the Format-Wide cmdlet displays the names
of processes on the local computer, with four columns. However, only two process names
truncate, as shown in Figure 4-9.

	 Creating an output grid	 CHAPTER 4	 63

FIGURE 4-9  By specifying an exact number of columns with Format-Wide, you can control the amount of
truncation that occurs.

By changing the -Column parameter to 5, the number of truncated process names increas-
es to eight, but the number of rows decreases to 19 from the previous 23. Therefore, it is up
to you how compact the output can be. Keep in mind that the -Autosize parameter and the
-Column parameter are mutually exclusive. You cannot tell Windows PowerShell to automati-
cally size the Format-Wide output and then try to tell it how many columns to use.

Creating an output grid

The Out-GridView cmdlet is different from the other formatting cmdlets explored thus far
in this chapter. The Out-GridView cmdlet is an interactive cmdlet; that is, it does not format
output for display on the Windows PowerShell console or for sending to a printer. Instead,
Out-GridView provides a control permitting exploration of the pipelined data. For example,
the following command pipelines the results of the Get-Process cmdlet to the Out-GridView
cmdlet (gps is an alias for the Get-Process cmdlet):

gps | Out-GridView

 64 ChAPTER 4 Formatting output

Sorting output by using the column buttons
When the command completes, a grid appears containing process information arranged in
columns and in rows. The new window displaying the process information in a grid appears
in Figure 4-10. One useful feature of the Out-GridView cmdlet is that the returned control
contains the command producing the control in the title bar. Figure 4-10 lists the command
gps | Out-GridView in the title bar (the command run to produce the grid control).

FIGURE 4-10 The Out-GridView cmdlet accepts pipelined input and displays a control that permits further
exploration.

You can click the column headings to sort the output in descending order. Clicking the
same column again changes the sort to ascending order. In Figure 4-11, the processes are
sorted by the number of handles used by each process. The sort is from the largest number of
handles to the smallest number of handles.

	 Creating an output grid	 CHAPTER 4	 65

FIGURE 4-11  Clicking the column heading buttons permits sorting in either descending or ascending
fashion.

The Out-GridView cmdlet accepts input from other cmdlets as well as from the Get-Process
cmdlet. For example, you can pipeline the output from the Get-Service cmdlet to Out-
GridView by using the syntax that appears here (gsv is an alias for the Get-Service cmdlet and
ogv is an alias for the Out-GridView cmdlet).

gsv | ogv

Figure 4-12 shows the resulting Grid view.

	66	 CHAPTER 4	 Formatting output

FIGURE 4-12  The Out-GridView cmdlet displays service controller information such as the current status
of all defined services.

The Out-GridView cmdlet automatically detects the data type of the incoming properties.
It uses this data type to determine how to present the filtering and the sorting information
to you. For example, the data type of the Status property is a string. Clicking the Add Criteria
button, choosing the Status property and selecting Add adds a filter that permits choosing
various ways of interacting with the text stored in the Status property. The available options
include the following: contains, does not contain, equals, does not equal, ends with, is empty,
and is not empty. The options change depending upon the perceived data type of the incom-
ing property.

Filtering output by using the filter box
To filter only running services, you can change the filter to “equals running.” Keep in mind
that if you choose an equality operator, your filtered string must match exactly. Therefore,
“equals run” will not return any matches. Only “equals running” works. On the other hand, if
you choose a “starts with” operator, you will find all the running services with the first letter.
Therefore, “starts with r” returns everything. As you continue to type, matches continue to
refine in the output.

	 Summary	 CHAPTER 4	 67

TIP  Keep in the mind the difference in the behavior of the various filters. Depending on
the operator you select, the self-updating output is extremely useful. This works especially
well when attempting to filter out numerical data if you are not very familiar with the data
ranges and what a typical value looks like. Figure 4-13 shows this technique.

FIGURE 4-13  The Out-GridView self-updates when you type into the filter box.

By the time you type the first two letters of the explorer process name in the filter box, the
resulting process information changes to display the single matching process name. Figure
4-14 shows the output.

FIGURE 4-14  Clicking the red X at the end of the filter box clears the explore filter you added.

Summary

This chapter demonstrated how to use Windows PowerShell to create a table. Next, we dis-
cussed how to create a list and a wide display. We discussed the use of each of the three types
of format as well as recommendations for most effective use. Finally, we examined the use of
the output grid.

 69

C h A P T E R 5

Storing output
■■ Storing data in text files

■■ Storing data in .csv files

■■ Storing data in XML

When you work with Windows PowerShell in an interactive fashion from the Windows
PowerShell console, there are times when you will want to store the output. On a

Windows 8 computer, you can use the Snipping Tool to take a screen shot of the output.
However, this is not an option on Windows Server 2012 unless you have installed the Desk-
top Experience feature. Of course, while having a screen shot does help you to have access
to the data later, it does not facilitate parsing of the data.

Another option is copying to the Clipboard. With QuickEdit mode enabled for the Win-
dows PowerShell console, you can use the mouse to highlight and copy text. You can then
paste the text into any other program you want such as Notepad, Word, or even Outlook.

Storing data in text files

One of the easiest methods to store data is to store the data in a text file. In Figure 5-1,
the output from the Get-Volume function displays in the Windows PowerShell console. The
output formats nicely in columns and contains essential information about the volumes on a
Windows 8 computer.

FIGURE 5-1 The Get-Volume function on Windows 8 displays essential information about the status of
volumes.

	70	 CHAPTER 5	 Storing output

Redirect and append
The easiest way to store volume information obtained from the Get-Volume function is to
redirect the output to a text file. Because several lines of information return from the func-
tion, it is best to redirect and append the outputted information. The redirect and append
operator is two right arrows, one behind the other with no space in between them (>>).

The following code redirects and appends the information from the Get-Volume function
to a text file that resides in the folder c:\fso. The file, VolumeInfo.txt, might not exist. If it does
not exist, it will be created and the information written to the file. If the file does exist, the
outputted data will append to the file. The following example shows the command:

Get-Volume >>c:\fso\volumeinfo.txt

When the command runs, nothing outputs to the Windows PowerShell console. The out-
put, formatted as it appears in the Windows PowerShell console, writes to the target text file.
Figure 5-2 shows the Volumeinfo.txt file created by redirecting and appending the results of
the Get-Volume function from Windows 8.

FIGURE 5-2  When you use the redirection and append operator, the output from the Windows Power-
Shell console writes to a text file for storage or documentation.

If you run the code that redirects and appends the information from the Get-Volume
function to a text file named Volumeinfo.txt that resides in the folder c:\fso a second time,
the information from Get-Volume writes to the bottom of the previously created text file; that
is, it appends to the file. This is a great way to produce simple logging. Figure 5-3 shows the
volume information appearing twice. In both cases, the values are identical. This shows that
between the time the first Get-Volume command ran and the second time the Get-Volume
ran, nothing changed.

	 Storing data in text files	 CHAPTER 5	 71

FIGURE 5-3  The redirect and append operator is great when you want to create a log file to check for
changes over time.

Redirect and overwrite
If you do not need to maintain a history of prior settings, results, or data, use the redirect
operator and do not append. The redirect and overwrite operator is a single right arrow (>).

The following code redirects and overwrites the information from the Get-Volume function
to a text file that resides in the folder c:\fso. The file, VolumeInfo.txt, might not exist. If it does
not exist, it will be created and the information written to the file. If the file does exist, the
outputted data will overwrite previously existing data when writing to the file. The following
example shows the command:

Get-Volume >c:\fso\volumeinfo.txt

Comparing the SizeRemaining value of the C drive from Figure 5-3 with the SizeRemaining
value of the C drive in Figure 5-4 reveals that the drive suddenly has nearly 4 GB of additional
free space. But because the Volumeinfo.txt file is overwritten by the redirect and overwrite
operator, you have no way to discover this condition unless you have a backup of the previous
Volumeinfo.txt file. Knowing when the 4 GB of disk space suddenly becomes available might
assist the technical support agent when a user calls and says that “Outlook is not working.”

	72	 CHAPTER 5	 Storing output

FIGURE 5-4  If you use the redirect operator without the append, previously existing files overwrite. This
could mean a loss of data in many cases.

Controlling the text file
If you need to ensure your text file is a specific width (such as 152 columns wide) or a spe-
cific type of encoding (such as ASCII or Unicode), you will need to use the Out-File cmdlet. In
addition to storing data, creating a very wide text file is a great way to overcome day-to-day
space limitations of either the Windows PowerShell console or the Windows PowerShell ISE. In
Figure 5-5, all the properties returned by the Get-Service cmdlet display to a table. Unfortu-
nately, the computer screen resolution and the font size of the Windows PowerShell console
do not permit displaying much information. In fact, nearly all the displayed information trun-
cates to the point that the resulting output is unusable.

FIGURE 5-5  Screen resolution and font size in the Windows PowerShell console combine to make wide
tables of data almost unusable.

When the same command that selects all properties from the Get-Service cmdlet and pipe-
lines them to a table pipelines the results to a text file through the Out-File cmdlet instead of

	 Storing data in .csv files	 CHAPTER 5	 73

writing to the Windows PowerShell console, the result is much more readable. To ensure that
each row of data has enough space to write, increase the page width to 500. To ensure that
Unicode characters are properly recorded, set the text encoding to UTF8.

NOTE  Permissible encoding values for the Out-File cmdlet are: string, unicode, bigendi-
anunicode, utf8, utf7, utf32, ascii.

The following example shows the code to obtain all the service information to write it to a
wide text file in table format:

Get-Service | Format-Table -Property * -Force -Auto |
Out-File -FilePath c:\fso\WideServices.txt -Encoding UTF8 -Width 500

Figure 5-6 shows the wide table in Notepad. The font size is reduced to permit more of the
columns to appear on the page.

FIGURE 5-6  Avoid truncated columns by writing the wide table to a text file and specifying a wide width.

Storing data in .csv files

After a plain text file, the next level of complexity is a Comma Separated Value (.csv) file. Ac-
tually, by using the Export-CSV cmdlet, creating a .csv file is not very complicated.

No type information
The most important thing to remember when creating a .csv file is that if you want to open it
in Microsoft Excel or import it to SQL or some other application, use the -NoTypeInformation
switched parameter to avoid writing a line of type information to the top of the file. The following

	74	 CHAPTER 5	 Storing output

example shows this technique of avoiding type information by using the NoTypeInformation
switch when collecting process information:

Get-Process | Export-Csv -Path c:\fso\process.csv -NoTypeInformation

Opening the Process.csv text file in Notepad is not very illuminating. In fact, it is confusing
due to the myriad commas and quotation marks. Figure 5-7 shows the Process.csv text file.

FIGURE 5-7  Opening a .csv file in Notepad is not the best use of the file format due to the numerous
commas and quotation marks in the file.

A better way to use the .csv file format is to either import it to a database or open it in Mi-
crosoft Excel. When you open it in Microsoft Excel, you can easily manipulate the .csv file, sort
the columns, and change the numbers to different formats. This ease of use makes pipelining
data to a .csv file, and then opening and parsing in Microsoft Excel, a natural workflow. Figure
5-8 shows the same Process.csv file displayed in Figure 5-7 opened in Microsoft Excel. The
difference in readability between the two figures is remarkable.

	 Storing data in .csv files	 CHAPTER 5	 75

FIGURE 5-8  Opening a .csv file in Microsoft Excel is as easy as right-clicking on the file and selecting
Open with Microsoft Excel.

Using type information
The way to use the type information, which is the same information that was removed in the
“No type information” section of this chapter, is to provide information for reconstituting an
object. It might sound confusing, but it actually is easy to do. You simply pipeline the results
from a Windows PowerShell cmdlet to the Export-CSV cmdlet. This time you keep the type
information. At a later point in time, you will import the CSV information from the .csv file,
and you can use Windows PowerShell to analyze the data stored in the .csv file. This permits
easy offline analysis of system data through Windows PowerShell and the .csv file.

NOTE  Storing Windows PowerShell information into a .csv file for offline analysis is a
great technique for consultants to use. You can have customers store the information
in .csv files and email them to you so you can analyze the data and tell them what the
problem is.

The following example shows the offline analysis technique:

C:\> get-process | Export-Csv -Path c:\fso\processInfo.csv
C:\> Import-Csv -Path C:\fso\processInfo.csv | sort vm | select -First 2 |
ft name, vm

Name VM
---- --
wlanext 100147200

wmpnetwk 100188160

	76	 CHAPTER 5	 Storing output

The first command stores all process information in a .csv file named ProcessInfo.csv. The
Export-CSV cmdlet is used to perform the export. After the .csv file is created, the Import-CSV
cmdlet imports the ProcessInfo.csv file. This command reconstitutes the process objects. The
process objects are pipelined to the Sort-Object cmdlet (sort is an alias for Sort-Object) where
the objects are sorted based upon the amount of virtual memory (VM) they consume. Next,
the Select-Object cmdlet (Select is an alias for Select-Object) chooses the first two process
objects. The first two process objects are pipelined to the Format-Table cmdlet (ft is an alias
for Format-Table) where the name and the VM properties display.

Storing data in XML

Some objects are much more complex than the objects that could be stored easily in the
relatively flat text format of a .csv file. Objects that are more complex are objects that have
objects as values for their properties. For example, in the .csv file created in the previous sec-
tion, the reconstituted objects do not contain any thread information. This is because thread
information returned by the Get-Process cmdlet is a ProcessThreadCollection object.

The problem with complex objects
When you reconstitute an object from a .csv file, simple property/value pairs create perfectly.
But objects stored in properties do not. The following example imports the CSV information
from the ProcessInfo.csv file and stores the recreated objects in a variable named $csv:

C:\> $csv = Import-Csv -Path C:\fso\processInfo.csv

The following example retrieves the name of the first object. This code works fine:

C:\> $csv[0].name
Armsvc

Now, the VM property of the Armsvc process is retrieved. This code works as well:

C:\> $csv[0].vm
46989312

However, when you are attempting to retrieve the threads of the Armsvc process, a string
stating that it is a System.Diagnostics.ProcessThreadCollection object will return:

C:\> $csv[0].threads
System.Diagnostics.ProcessThreadCollection

Using XML to store complex objects
The solution to storing an offline representation of a complex object is to use XML. Because
Windows PowerShell handles the process of creating the XML and interpreting the XML, you
do not need to know anything about XML. This is great because essentially you get the power

	 Storing data in XML	 CHAPTER 5	 77

of using XML without having to deal with any of the complexities of XML. To create an XML
representation of the object, pipeline the results from the cmdlet to the Export-Clixml cmdlet
and specify the path. Just like the Export-CSV cmdlet, there is a -NoTypeInformation param-
eter, but unlike CSV, there are not too many easy-to-use applications that facilitate perusing
an offline .xml file. The following example shows the command to create the .xml file:

Get-Process | Export-Clixml -Path c:\fso\processXML.xml

Now, it is certainly possible to open the .xml file and peruse it. Figure 5-9 shows the .xml
file as it appears in Internet Explorer.

FIGURE 5-9  It is possible to open an exported .xml file in another application, but generally it is easier to
reconstitute the object and use Windows PowerShell to parse the data.

To reconstitute the object from the offline .xml file, use the Import-Clixml cmdlet and store
the objects in a variable:

C:\> $xml = Import-Clixml -Path C:\fso\processXML.xml

To view the name of the first process object, choose the Name property from the first
element:

C:\> $xml[0].name
Armsvc

	78	 CHAPTER 5	 Storing output

To see the amount of virtual memory used by the Armsvc process, use the VM property:

C:\> $xml[0].vm
46989312

Now, to see the threads used by the Armsvc process, all that is required is to access the
Threads property:

C:\> $xml[0].threads

BasePriority : 8
CurrentPriority : 9
Id : 2224
StartAddress : 8776924411104
ThreadState : Wait
WaitReason : UserRequest
Site :
Container :

BasePriority : 8
CurrentPriority : 8
Id : 2232
StartAddress : 8776924411104
ThreadState : Wait
WaitReason : EventPairLow
Site :
Container :

BasePriority : 8
CurrentPriority : 9
Id : 2240
StartAddress : 8776924411104
ThreadState : Wait
WaitReason : UserRequest
Site :
Container :

Summary

This chapter examined storing output from Windows PowerShell cmdlets. In particular, we
covered creating a text file to store the results of commands. We can use Windows PowerShell
to facilitate bringing data into other tools such as a database or a spreadsheet.

 79

C h A P T E R 6

Leveraging Windows
PowerShell providers

■■ Understanding Windows PowerShell providers

■■ Understanding the Alias provider

■■ Understanding the Certificate provider

■■ Understanding the Environment provider

■■ Understanding the File System provider

■■ Understanding the Function provider

■■ Understanding the Registry provider

■■ Understanding the Variable provider

One of the most important concepts with Windows PowerShell is the concept of Windows
PowerShell providers. Windows PowerShell providers permit you to use the same cmd-

lets, such as Get-Item or Set-Item, to work with different types of data. This allows you to know
immediately how to work with lots of different types of data. For example, you can use the
Get-Item cmdlet to retrieve information about a file. However, you can use the same cmdlet to
retrieve information about an alias, a certificate, a function, an environment variable, a registry
key, or a variable. The same cmdlet with the same basic parameters used in the same way per-
mits you to work with many different types of data. In addition, Windows PowerShell providers
are extensible; that is, other teams at Microsoft and third-party vendors can write additional
providers to provide access to their data stores. The Microsoft Active Directory provider
permits you to use cmdlets like Get-Item to retrieve information about a user, a computer,
or other object in Microsoft Active Directory Domain Services (AD DS). In addition, an SQL
provider exposes information about Microsoft SQL Server databases. In the community,
there are XML providers that permit working with XML documents, and there is an SQLite
provider for working with an SQLite database. In this chapter, we examine the Alias, Certifi-
cate, Environment, File System, Function, Registry, and Variable providers.

	80	 CHAPTER 6 	 Leveraging Windows PowerShell providers

Understanding Windows PowerShell providers

By identifying the providers installed with Windows PowerShell, we can begin to understand
the capabilities intrinsic to a default installation. Providers expose information contained in
different data stores by using a drive and file system analogy. An example of this is obtain-
ing a listing of registry keys. To do this, you connect to the registry drive and use the Get-
ChildItem cmdlet, which is the same method you use to obtain a listing of files on the hard
drive. The only difference is the specific name associated with each drive.

To obtain a listing of all providers, use the Get-PSProvider cmdlet. This command produces
the following list on a default installation of Windows PowerShell:

PS C:\> Get-PSProvider

Name Capabilities Drives
---- ------------ ------
Alias ShouldProcess {Alias}
Environment ShouldProcess {Env}
FileSystem Filter, ShouldProcess, Crede... {C}
Function ShouldProcess {Function}
Registry ShouldProcess, Transactions {HKLM, HKCU, HKCR}
Variable ShouldProcess {Variable}

Understanding the Alias provider
In Chapter 1, “Overview of Windows PowerShell 3.0,” we examined the various Help utilities
available that show how to use cmdlets. The alias provider provides easy-to-use access to
all aliases defined in Windows PowerShell. An alias is a shortcut name for a cmdlet or for a
function. Aliases make it easier to work interactively with Windows PowerShell from within
the Windows PowerShell console. Because aliases are customizable, you can create your own
aliases for existing cmdlets and functions or for new cmdlets or functions that you write in the
future. If you do not like an existing alias, you can delete it or you can change its meaning.

NOTE  Because of the dynamic nature of aliases, it is not wise to use an alias in a Windows
PowerShell script that you intend to share with others. If you are the only one who will ever
use a particular Windows PowerShell script, then it is fine to use an alias because you know
the alias will exist only on your system. But you can never be sure if an alias will exist on
someone else’s computer, and therefore as a best practice you should avoid using aliases in
Windows PowerShell scripts you intend to share.

	 Understanding Windows PowerShell providers	 CHAPTER 6 	 81

To work with the aliases on your machine, use the Set-Location cmdlet and specify the
Alias:\ drive. You can then use the same cmdlets you would use to work with the file system.
These include the Get-Item, Set-Item, New-Item, and Remove-Item cmdlets.

TIP  With the Alias provider, you can use a Where-Object cmdlet and filter to search for an
alias by name or description.

The following example creates a new alias named Processes for the Get-Process cmdlet:

PS C:\> Set-Location alias:
PS Alias:\> New-Item -Name Processes -Value Get-Process

CommandType Name ModuleName
----------- ---- ----------
Alias Processes -> Get-Process

To use the newly created alias, just type the alias name at the Windows PowerShell com-
mand prompt. As shown in the following example, the newly created Processes alias returns
the first process:

PS Alias:\> processes | select -First 1

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName
------- ------ ----- ----- ----- ------ -- -----------
 76 8 1156 4096 45 2220 armsvc

To delete the alias, use the Remove-Item cmdlet. Because you are still using the Alias:\
drive, it is unnecessary to supply the complete path to the alias. In fact, using tab expansion
causes .\ to prepend to the alias name. This is because .\ refers to the current directory. Noth-
ing returns to the Windows PowerShell console when the Remove-Item cmdlet runs, but if the
item does not exist, an error appears:

PS Alias:\> Remove-Item .\Processes

If you want to verify the removal of an alias, you can use the Get-Item cmdlet. When you
do this, an error appears in the Windows PowerShell console because the alias Processes was
already deleted in the previous command. The following example shows this verification
process:

PS Alias:\> Get-Item .\processes
Get-Item : Cannot find path ‘Alias:\processes’ because it does not exist.
At line:1 char:1
+ Get-Item .\processes
+ ~~~~~~~~~~~~~~~~~~~~
 + CategoryInfo : ObjectNotFound: (Alias:\processes:String) [Get-Item],
 ItemNotFoundException
 + FullyQualifiedErrorId : PathNotFound,Microsoft.PowerShell.Commands.GetItemCom
 Mand

	82	 CHAPTER 6 	 Leveraging Windows PowerShell providers

You do not need to use the Alias provider and the *Item cmdlets, such as Get-Item and
New-Item, to work with aliases because there are five cmdlets designed specifically to work
with Windows PowerShell aliases. The following example shows these cmdlets:

PS C:\> Get-Command -Noun alias | select name

Name

Export-Alias
Get-Alias
Import-Alias
New-Alias
Set-Alias

For example, to create a new alias by using the New-Alias cmdlet, you need to specify the
name for the alias and the value. These correspond with the New-Item cmdlet parameters.
The big difference is that the path is not required because New-Alias automatically creates
the newly created alias in the proper location. The following example shows the command:

PS C:\> New-Alias -Name myservice -Value Get-Service

Once created, the newly created alias works just like any other alias, as shown in the fol-
lowing example:

PS C:\> myservice | select name -First 1

Name

AdobeActiveFileMonitor6.0

There is no Remove-Alias cmdlet, so you must use the Remove-Item cmdlet to remove an
alias and specify the complete path to the alias. The following example shows this technique
from the C drive:

PS C:\> Remove-Item -Path Alias:\myservice

This requirement for the path prevents you from pipelining the results of Get-Alias to the
Remove-Item cmdlet. To pipeline an alias to the Remove-Item cmdlet, you must use the Alias
drive, as shown in the following example:

PS C:\> New-Alias -Name sample -Value Get-EventLog
PS C:\> Get-Item Alias:\sample | Remove-Item

Understanding the Certificate provider
In the preceding section, we explored working with the Alias provider. Because the file system
model applies to the Certificate provider in much the same way as it did the Alias provider,
you can use many of the same cmdlets. To find information about the Certificate provider, use
the Get-Help cmdlet. If you are unsure what topics in Help may be related to certificates, you
can use the wild card asterisk (*) parameter:

Get-Help *cer*

	 Understanding Windows PowerShell providers	 CHAPTER 6 	 83

The Certificate provider gives you the ability to sign scripts and allows Windows Power-
Shell to work with signed and unsigned scripts as well. It also gives you the ability to search
for, copy, move, and delete certificates. Using the certificate provider, you can even open the
Certificates Microsoft Management Console (MMC) by using the Invoke-Item cmdlet. The fol-
lowing example illustrates this technique:

Invoke-Item cert:

NOTE  The Certificate provider does not load by default. The module that contains the
Certificate provider, Microsoft.PowerShell.Security, does not automatically import into
every session. To use the Cert drive, use the Import-Module cmdlet to import the module
or run a command that uses the Cert drive, such as a “Set-Location Cert” command.

Searching for specific certificates
To search for specific certificates, you might want to examine the Subject property. For exam-
ple, the following code examines the Subject property of every certificate in the currentuser
store beginning at the root level. It does a recursive search and returns only the certificates
that contain the word test in some form in the Subject property. The following example shows
the command and associated output:

PS C:\Users\administrator.IAMMRED> dir Cert:\CurrentUser -Recurse | ? subject -match
‘test’

 Directory: Microsoft.PowerShell.Security\Certificate::CurrentUser\Root

Thumbprint Subject
---------- -------
8A334AA8052DD244A647306A76B8178FA215F344 CN=Microsoft Testing Root Certificate A...
2BD63D28D7BCD0E251195AEB519243C13142EBC3 CN=Microsoft Test Root Authority, OU=Mi...

To delete these test certificates, you simply need to pipeline the results of the previous
command to the Remove-Item cmdlet.

IMPORTANT  When you perform any operation that might alter system state, it is a good
idea to use the Whatif parameter to prototype the command prior to actually executing it.

The following command uses the Whatif parameter from Remove-Item to prototype the
command to remove all the certificates from the currentuser store that contain the word test
in the Subject property. Once completed, retrieve the command by pressing the Up arrow key
and removing the Whatif switched parameter from the command prior to actual execution.
The following example shows this technique:

PS C:\Users\administrator.IAMMRED> dir Cert:\CurrentUser -Recurse | ? subject -match
‘test’ | Remove-Item -WhatIf

 84 ChAPTER 6 Leveraging Windows PowerShell providers

What if: Performing operation "Remove certificate" on Target "Item: CurrentUser\Root\
8A334AA8052DD244A647306A76B8178FA215F344 ".
What if: Performing operation "Remove certificate" on Target "Item: CurrentUser\Root\
2BD63D28D7BCD0E251195AEB519243C13142EBC3 ".
PS C:\Users\administrator.IAMMRED> dir Cert:\CurrentUser -Recurse | ? subject -match
‘test’ | Remove-Item

Finding expiring certificates
A common task in companies using certificates is to identify certificates that have either
expired or are about to expire. Using the Certificate provider, it is simple to identify expir-
ing or expired certificates. To do this, use the NotAfter property from the certificate objects
returned from the certificate drives. One approach is to look for certificates that expire prior
to a specific date:

PS Cert:\> dir .\\CurrentUser -Recurse | where notafter -lt "5/1/2012"

A more flexible approach is to use the current date because each time the command runs
it retrieves expired certificates:

PS Cert:\> dir .\\CurrentUser -Recurse | where notafter -lt (Get-Date)

One problem with simply using the Get-ChildItem cmdlet on the currentuser store is that it
returns both certificate stores as well as certificates. To obtain only certificates, you must filter
out the PSISContainer property. Because you will also need to filter based on date, it means
you no longer can use the simple Where-Object syntax.

 The following command retrieves the expiration dates, the thumbprints, and the subjects
of all expired certificates. It also creates a table displaying the information. The command is a
single logical command, but it is broken at the pipeline character to permit better display in
the book:

PS Cert:\> dir .\\CurrentUser -Recurse |
where { !$_.psiscontainer -AND $_.notafter -lt (Get-Date)} |
ft notafter, thumbprint, subject -AutoSize -Wrap

WARNING All versions of Microsoft Windows ship with expired certificates to permit
verification of old executables that were signed with those certificates. Do not arbitrarily
delete an expired certificate, or you could cause serious damage to your system.

If you want to identify certificates that will expire in the next 30 days, use the dynamic
parameter -ExpiringInDays from the Get-ChildItem cmdlet. This dynamic parameter adds to
the Get-ChildItem cmdlet when it is used on the Cert drive:

PS Cert:\> Get-ChildItem -Recurse -ExpiringInDays 30

	 Understanding Windows PowerShell providers	 CHAPTER 6 	 85

To produce a useful display, select the Subject and the NotAfter parameters and sort by
the NotAfter parameter. Then pipeline the output to a table that is autosized and wrapped.
The following example shows the command:

PS Cert:\> gci -ExpiringInDays 30 -r | select subject, notafter | sort notafter | ft
notafter, subject -a -wr

NotAfter Subject
-------- -------
2/12/2013 6:34:47 PM
2/16/2013 2:56:37 PM CN=KenMyer@microsoft.com
3/4/2013 4:42:09 PM CN=Microsoft Corporation, OU=MOPR, O=Microsoft Corporation,
 L=Redmond, S=Washington, C=US
3/4/2013 4:42:09 PM CN=Microsoft Corporation, OU=MOPR, O=Microsoft Corporation,
 L=Redmond, S=Washington, C=US

Understanding the Environment provider
The Environment provider in Windows PowerShell provides access to the system environment
variables. If you open a Command Prompt window and type set, you will obtain a listing of
all environment variables defined on the system. (You can run the old-fashioned command
prompt inside Windows PowerShell.)

NOTE  It is easy to forget you are running the command-line program when you use the
Windows PowerShell console. The best way to determine if you are running the command-
line program or Windows PowerShell is to examine the prompt. The default Windows
PowerShell prompt is PS C:\>, assuming you are working on the C drive.

Figure 6-1 shows the results if you use the echo command in the command interpreter to
print the value of %windir%.

FIGURE 6-1  Use echo in a command prompt to see the value of an environmental variable.

	86	 CHAPTER 6 	 Leveraging Windows PowerShell providers

Various applications and other utilities use environment variables as a shortcut to provide
easy access to specific files, folders, and configuration data. By using the Environment pro-
vider in Windows PowerShell, you can obtain a listing of the environment variables. You can
also add, change, clear, and delete these variables.

To obtain a listing of all environmental variables, use the Get-ChildItem cmdlet on the Env
drive (you can also use the alias dir, ls, or even gci to do this). The following example shows
this technique:

PS C:\> Set-Location env:
PS Env:\> dir

Name Value
---- -----
ALLUSERSPROFILE C:\ProgramData
APPDATA C:\Users\ed.IAMMRED\AppData\Roaming
CommonProgramFiles C:\Program Files\Common Files
CommonProgramFiles(x86) C:\Program Files (x86)\Common Files
<… Output truncated …>

To display the value of a specific environmental variable, you can use the Get-Item cmdlet:

PS Env:\> Get-Item windir

Name Value
---- -----
windir C:\WINDOWS

This technique is great if you want to see the environmental variable as well as the value
associated with the variable. But if you want only the value, perhaps because you want to use
the value somewhere else, it gets a little tricky. One way to do this is to use the group and
dot methodology in which you group the command and then access the specific property, as
shown in the following example:

PS Env:\> (Get-Item windir).value
C:\WINDOWS

A more direct way uses a shortcut to access the value directly:

PS C:\> $env:windir
C:\WINDOWS

Understanding the File System provider
The File System provider is the easiest Windows PowerShell provider to understand because it
simply provides access to the file system. When Windows PowerShell is launched, it automati-
cally opens on the C: Powershell Drive. Using the Windows PowerShell File System provider,
you can create both directories and files. You can retrieve properties of files and directories,
and you can delete them as well. In addition, you can open files and append or overwrite data
to the files. This can be done with inline code or by using the pipelining feature of Windows
PowerShell.

	 Understanding Windows PowerShell providers	 CHAPTER 6 	 87

To create a new folder, use the New-Item cmdlet and specify the path for the new folder to
reside. You will also need to specify the ItemType of the directory:

PS C:\> New-Item -Path C:\samplefolder -ItemType directory

 Directory: C:\

Mode LastWriteTime Length Name
---- ------------- ------ ----
d---- 2/9/2013 9:26 PM samplefolder

If you do not want the returned DirectoryInfo object when you create the new folder, pipe-
line the results to the Out-Null cmdlet:

PS C:\> New-Item -Path C:\samplefolder\sub1 -ItemType directory | Out-Null
PS C:\>

Use the Set-Location cmdlet (cd is an alias) to change to the newly created folder. After you
open the folder, you can use New-Item to create a new file. Because you changed the working
location to the newly created directory, it is unnecessary to specify the path for the new file.
You need to specify only the name. The following example shows this technique:

PS C:\> Set-Location C:\samplefolder
PS C:\samplefolder> New-Item -Name samplefile.txt -ItemType file

 DirectorY: C:\samplefolder

Mode LastWriteTime Length Name
---- ------------- ------ ----
-a--- 2/9/2013 9:28 PM 0 samplefile.txt

To write to the newly created file, use the Add-Content cmdlet. The required parameters
for the Add-Content cmdlet are the path to the file and the value to write to the file:

PS C:\samplefolder> Add-Content -Path .\samplefile.txt -Value "this is new content"

To read the contents of a file, use the Get-Content cmdlet:

PS C:\samplefolder> Get-Content -Path .\samplefile.txt
this is new content

Instead of using the Set-Location cmdlet, you can use the alias CD to change your working
location on the drive. For example, to change from C:\samplefolder back to the root of the
drive, you can use the following technique:

PS C:\samplefolder> cd C:\

PS C:\>

	88	 CHAPTER 6 	 Leveraging Windows PowerShell providers

To delete a folder, use the Remove-Item cmdlet. If the folder has additional folders or files
inside it, you need to use the -Recurse parameter. If you do not specify -Recurse, a command
prompt appears. The following example shows this technique:

PS C:\> Remove-Item C:\samplefolder

Confirm
The item at C:\samplefolder has children and the Recurse parameter was not
specified. If you continue, all children will be removed with the item. Are you sure
 you want to continue?
[Y] Yes [A] Yes to All [N] No [L] No to All [S] Suspend [?] Help
(default is "Y"):y

Understanding the Function provider
The Function provider provides access to the functions defined in Windows PowerShell. By
using the Function provider, you can obtain a listing of all functions on your system. You
can also add, modify, and delete functions. The Function provider uses a file system–based
model, and the cmdlets you learned earlier apply to working with functions.

Use the Get-ChildItem cmdlet to obtain a listing of all the functions defined on the system:

PS C:\> Get-ChildItem function:

CommandType Name ModuleName
----------- ---- ----------
Function A:
Function Add-HeaderToScript PowerShellISEM..
Function Add-Help PowerShellISEM..
Function Add-SBSBookHeaderToScript PowerShellISEM..
Function B:
<… Output Truncated …>

To see the contents of a function, use the Get-Content cmdlet to read the contents of the
function from the function drive. The following example reads the contents of the Prompt
function:

PS C:\> Get-Content Function:\prompt
"PS $($executionContext.SessionState.Path.CurrentLocation)$(‘>’ *
($nestedPromptLevel + 1)) "
.Link
http://go.microsoft.com/fwlink/?LinkID=225750
.ExternalHelp System.Management.Automation.dll-help.xml

To modify a system function, you might want to create a backup of the function first. To
do this, redirect the output to a file:

PS C:\> Get-Content Function:\prompt >>C:\fso\PromptFunction.txt

	 Understanding Windows PowerShell providers	 CHAPTER 6 	 89

Understanding the Registry provider
In Windows PowerShell 1.0, the Registry provider makes it easy to work with the registry on
the local system. Unfortunately, without remoting you are limited to working with the local
computer or using some other remoting mechanism such as a logon script to make changes
on remote systems. Beginning with Windows PowerShell 2.0, the inclusion of remoting makes
it possible to make remote registry changes as easily as changing the local registry.

CAUTION  The registry contains information vital to the operation and configuration of
your computer. Serious problems could arise if you edit the registry incorrectly. There-
fore, it is important to back up your system prior to attempting to make any changes. For
information about backing up your registry, see KB322756. For general information about
working with the registry, see KB310516 and KB256986.

The Registry provider permits access to the registry in the same manner that the File System
provider permits access to a local disk drive. The same cmdlets that used to access the file
system—such as New-Item, Get-ChildItem, Set-Item, and Remove-Item—also work with the
registry. In addition to these cmdlets, if you want to work with a specific registry item value,
you might need to use New-ItemProperty, Get-ItemProperty, Set-ItemProperty, and Remove-
ItemProperty.

The two registry drives
By default, the Registry provider creates two registry drives. To find all the drives exposed by
the Registry provider, use the Get-PSDrive cmdlet. The following example shows these drives:

PS C:\> Get-PSDrive -PSProvider registry | select name, root

Name Root
---- ----
HKCU HKEY_CURRENT_USER

HKLM HKEY_LOCAL_MACHINE

You can create additional registry drives by using the New-PSDrive cmdlet. For example, it
is common to create a registry drive for the HKEY_CLASSES_ROOT registry hive, as shown in
the following example:

PS C:\> New-PSDrive -PSProvider registry -Root HKEY_CLASSES_ROOT -Name HKCR

WARNING: column "CurrentLocation" does not fit into the display and was removed.

Name Used (GB) Free (GB) Provider Root
---- --------- --------- -------- ----
HKCR Registry HKEY_CLASSES_ROOT

	90	 CHAPTER 6 	 Leveraging Windows PowerShell providers

Once created, the new HKCR drive is accessible in the same way as any other drive. For ex-
ample, to change the working location to the HKCR drive, use either the Set-Location cmdlet
or one of its aliases (such as cd):

PS C:\> Set-Location HKCR:

To determine the current location, use the Get-Location cmdlet:

PS HKCR:\> Get-Location

Path

HKCR:\

Once set, explore the new working location by using the Get-ChildItem cmdlet (or one of
the aliases for that cmdlet such as dir). Figure 6-2 shows this technique.

FIGURE 6-2  Creating a new registry drive for the HKEY_CLASSES_ROOT registry hive enables easy access
to class registration information.

Retrieving registry values
To view the values stored in a registry key, use either the Get-Item or the Get-ItemProperty
cmdlet. Using the Get-Item cmdlet reveals there is one property (named default), as shown in
the following example:

	 Understanding Windows PowerShell providers	 CHAPTER 6 	 91

PS HKCR:\> Get-Item .\.ps1 | fl *

PSPath : Microsoft.PowerShell.Core\Registry::HKEY_CLASSES_ROOT\.ps1
PSParentPath : Microsoft.PowerShell.Core\Registry::HKEY_CLASSES_ROOT
PSChildName : .ps1
PSDrive : HKCR
PSProvider : Microsoft.PowerShell.Core\Registry
PSIsContainer : True
Property : {(default)}
SubKeyCount : 1
ValueCount : 1
Name : HKEY_CLASSES_ROOT\.ps1

To access the value of the default property, you must use the Get-ItemProperty cmdlet:

PS HKCR:\> Get-ItemProperty .\.ps1 | fl *

PSPath : Microsoft.PowerShell.Core\Registry::HKEY_CLASSES_ROOT\.ps1
PSParentPath : Microsoft.PowerShell.Core\Registry::HKEY_CLASSES_ROOT
PSChildName : .ps1
PSDrive : HKCR
PSProvider : Microsoft.PowerShell.Core\Registry

(default) : Microsoft.PowerShellScript.1

Figure 6-3 shows the technique for accessing registry keys and the values associated with
them.

FIGURE 6-3  Use the Get-ItemProperty cmdlet to access registry property values.

 92 ChAPTER 6 Leveraging Windows PowerShell providers

To return only the value of the default property requires a bit of manipulation. The default
property requires using literal quotation marks to force the evaluation of the parentheses in
the name, as shown in the following example:

PS HKCR:\> (Get-ItemProperty .\.ps1 -Name ‘(default)’).’(default)’
Microsoft.PowerShellScript.1
PS HKCR:\>

Two PSDrives are created by default. To identify the PSDrives that are supplied by the
Registry provider, you can use the Get-PSDrive cmdlet, pipeline the resulting objects into the
Where-Object cmdlet, and filter on the provider property while supplying a value that is like
the word registry. The following example shows this command:

Get-PSDrive | where Provider -like "*Registry*"
The resulting list of PSDrives is shown here:
Name Provider Root CurrentLocation
---- -------- ---- ---------------
HKCU Registry HKEY_CURRENT_USER
HKLM Registry HKEY_LOCAL_MACHINE

Creating new registry keys
Creating a new registry key by using Windows PowerShell is the same as creating a new file
or a new folder because all three processes use the New-Item cmdlet. In addition, you could
use the Test-Path cmdlet to determine if the registry key already exists. You might also want
to change your working location to one of the registry drives. If you do this, you could use
the Push-Location, Set-Location, and Pop-Location cmdlets. This is, of course, the long way of
doing things.

The following example creates a new registry key named HSG off the HKEY_CUR-
RENT_USERS software registry hive. It illustrates the five cmdlets mentioned in the preceding
paragraph:

Push-Location
Set-Location HKCU:
Test-Path .\Software\sample
New-Item -Path .\Software -Name sample
Pop-Location

Figure 6-4 shows the commands and the associated output.

	 Understanding Windows PowerShell providers	 CHAPTER 6 	 93

FIGURE 6-4  Creating a new registry key by using the New-Item cmdlet.

The short way to create a new registry key
It is not always necessary to change the working location to a registry drive when you create
a new registry key. In fact, it is not even necessary to use the Test-Path cmdlet to determine
if the registry key exists. If the registry key already exists, an error generates. If you want to
overwrite the registry key, use the Force parameter.

	NOTE  IT pros who venture very far into the world of scripting need to make a design
decision about how to deal with an already existing registry key. Software developers are
very familiar with these types of decisions and usually deal with them in the analyzing re-
quirements stages of the development lifecycle. IT pros who open the Windows PowerShell
ISE first and think about the design requirements second become easily stymied or else
write in problems. For more information, see my Microsoft Press book, Windows Power-
Shell 2.0 Best Practices.

The following example creates a new registry key named Test in the HKCU:\Software location:

New-Item -Path HKCU:\Software -Name test -Force

Because the command includes the full path, it does not need to execute from the HKCU
drive. The command uses the Force switched parameter, so the command overwrites the
HKCU:\Software\test registry key if it already exists.

Setting the default value for the key
The preceding examples do not set the default value for the newly created registry key. If the
registry key already exists (as it does in this specific case) use the Set-Item cmdlet to assign a
default value to the registry key. To accomplish this, use the Set-Item cmdlet and supply the
complete path to the existing registry key. Next, supply the default value in the Value param-
eter of the Set-Item cmdlet.

	94	 CHAPTER 6 	 Leveraging Windows PowerShell providers

The following command assigns the value “sample key” to the default property value of
the sample registry key contained in the HKCU:\Software location:

Set-Item -Path HKCU:\Software\sample -Value "sample key"

Using New-Item to create and assign a value
It is unnecessary to use the New-Item cmdlet to create a registry key and then use the Set-
Item cmdlet to assign a default value. You can combine these into a single command. The
following command creates a new registry key with the name Sample and assigns a default
value of “default value” to the registry key:

New-Item -Path HKCU:\Software\sample -Value "default value"

Modifying the value of a registry property value
To modify the value of a registry property value, you must use the Set-PropertyItem cmdlet.
To begin changing the registry property value, use the Push-Location cmdlet to save the
current working location. Next, use the Set-Location cmdlet to change to the appropriate
registry drive, and then use the Set-ItemProperty cmdlet to assign a new value to the registry
property. Finally, use the Pop-Location cmdlet to return to the original working location. The
following example shows this technique:

PS C:\> Push-Location
PS C:\> Set-Location HKCU:
PS HKCU:\> Set-ItemProperty .\Software\sample -Value "new value" -name sample
PS HKCU:\> Pop-Location
PS C:\>

When you know that a registry property value exists, the solution is simple: Use the
Set-ItemProperty cmdlet and assign a new value. The following example saves the current
working location, changes the new working location to the HSG registry key, uses the Set-
ItemProperty cmdlet to assign new values, and then uses the Pop-Location cmdlet to return to
the original working location:

PS C:\> Push-Location
PS C:\> Set-Location HKCU:\Software\sample
PS HKCU:\Software\sample> Set-ItemProperty . newproperty "mynewvalue"
PS HKCU:\Software\sample> Pop-Location
PS C:\>

	 Understanding Windows PowerShell providers	 CHAPTER 6 	 95

NOTE  The preceding code relies on positional parameters for the Set-ItemProperty cmd-
let. The first parameter is path. Because the Set-Location cmdlet set the working location
to the HSG registry key, a period identifies the path as the current directory. The second
parameter is the Name of the registry property to change; in this example, it is newproper-
ty. The last parameter is value, and that defines the value to assign to the registry property.
In this example, it is mynewvalue. The command, with complete parameter names, is
Set-ItemProperty -Path . -Name newproperty -Value mynewvalue. The quotation marks
in the code are not required, but do not harm anything either.

Of course, all the pushing, popping, and setting of locations are not really required. It is
entirely possible to change the registry property value from any location within the Windows
PowerShell provider subsystem.

Use the Set-ItemProperty cmdlet to assign a new value. Ensure you specify the complete
path to the registry key.

The following example shows how to use the Set-ItemProperty cmdlet to change a registry
property value without first navigating to the registry drive:

PS C:\> Set-ItemProperty -Path HKCU:\Software\test -Name newproperty -Value anewvalue

Dealing with a missing registry property value
If you need to set a registry property value, you can set the value of the property easily by us-
ing the Set-ItemProperty cmdlet. But what if the registry property does not exist? How do you
set the property value then? You can still use the Set-ItemProperty cmdlet to set a registry
property value, even if the registry property does not exist:

Set-ItemProperty -Path HKCU:\Software\sample -Name missingproperty -Value avalue

To determine if a registry key exists is easy: simply use the Test-Path cmdlet. It returns True
if the key exists and False if it does not exist. The following example shows this technique:

PS C:\> Test-Path HKCU:\Software\sample
True
PS C:\> Test-Path HKCU:\Software\sample\newproperty
False

Unfortunately, this technique does not work for a registry key property. It always returns
False, even if the registry property exists:

PS C:\> Test-Path HKCU:\Software\sample\newproperty
False
PS C:\> Test-Path HKCU:\Software\sample\bogus
False

Therefore, if you do not want to overwrite a registry key property if it already exists, you
need a way to determine if the registry key property exists. Using the Test-Path cmdlet does
not work.

	96	 CHAPTER 6 	 Leveraging Windows PowerShell providers

Use the If statement and the Get-ItemProperty cmdlet to retrieve the value of the registry
key property. Specify the erroraction (ea is an alias) of silentlycontinue (0 is the enumeration
value). In the scriptblock for the If statement, display a message that the registry property ex-
ists or simply exit. In the Else statement, call the Set-ItemProperty to create and set the value
of the registry key property. The following example shows this technique:

if((Get-ItemProperty HKCU:\Software\sample -Name bogus -ea 0).bogus) {‘Propertyalready
exists’}
ELSE { Set-ItemProperty -Path HKCU:\Software\sample -Name bogus -Value ‘initial value’}

Understanding the Variable provider
The Variable provider provides access to the variables that are defined within Windows
PowerShell. These variables include both user-defined variables, such as $mred, and system-
defined variables, such as $host. You can obtain a listing of the cmdlets designed to work
specifically with variables by using the Get-Help cmdlet and specifying the asterisk (*) variable.
To return only cmdlets, you can use the Where-Object cmdlet and filter on the category that
is equal to cmdlet. The following example shows this command:

Get-Help *variable | Where-Object category -eq "cmdlet"

You can also use the Where-Object command, as shown in the following example:

Get-Help -Name Variable -Category cmdlet

The resulting list contains five cmdlets but is a little jumbled and difficult to read. So let’s
modify the preceding command and specify the properties to return. To do this, use the Up
arrow key and pipeline the returned object into the Format-List cmdlet. Add the three prop-
erties we are interested in: Name, Category, and Synopsis. The following example shows the
revised command:

Get-Help *variable | Where-Object {$_.category -eq "cmdlet"} |
Format-List name, category, synopsis

The resulting output is much easier to read and understand:

Name : Get-Variable
Category : Cmdlet
Synopsis : Gets the variables in the current console.

Name : New-Variable
Category : Cmdlet
Synopsis : Creates a new variable.

Name : Set-Variable
Category : Cmdlet
Synopsis : Sets the value of a variable. Creates the variable if one with the requested
name does not exist.

Name : Remove-Variable
Category : Cmdlet
Synopsis : Deletes a variable and its value.

	 Summary	 CHAPTER 6 	 97

Name : Clear-Variable
Category : Cmdlet
Synopsis : Deletes the value of a variable.

Summary

This chapter discussed how to use the various Windows PowerShell providers that ship with
Windows PowerShell 3.0. Specifically, we examined the Alias provider, Certificate provider,
Environment provider, File System provider, Function provider, Registry provider, and Variable
provider.

 99

C h A P T E R 7

Using Windows PowerShell
remoting

■■ Using PowerShell remoting

■■ Configuring Windows PowerShell remoting

■■ Troubleshooting Windows PowerShell remoting

When you need to use Windows PowerShell on your local computer, it is pretty easy:
You open the Windows PowerShell console or the Windows PowerShell ISE, and you

run a command or a series of commands. Assuming you have rights to make the changes in
the first place, it just works. But what if the change you need to make must be enacted on a
hundred or a thousand computers? In the past, these types of changes required expensive
specialized software packages, but with Windows PowerShell 3.0 running a command on
a remote computer is as easy as running the command on your local computer; in some
cases, it is even easier.

Using Windows PowerShell remoting

One of the great improvements in Windows PowerShell 3.0 is the change surrounding
remoting. The configuration is easier than it was in Windows PowerShell 2.0, and in many
cases, Windows PowerShell remoting "just works." When we talk about Windows PowerShell
remoting, a bit of confusion can arise because there are several different ways of running
commands against remote servers. Depending on your particular network configuration
and security needs, one or more methods of remoting might not be appropriate.

Classic remoting
Classic remoting relies on protocols such as the Distributed Component Object Model
(DCOM) and remote procedure call (RPC) to make connections to remote machines. Tradi-
tionally, these techniques require opening many ports in the firewall and starting various
services the different cmdlets utilize. To find the Windows PowerShell cmdlets that natively
support remoting, use the Get-Help cmdlet. Specify a value of computername for the pa-
rameter of the Get-Help cmdlet. This command produces a nice list of all cmdlets that have
native support for remoting. The following example shows the command and associated

	100	 CHAPTER 7 	 Using Windows PowerShell remoting

output (this command does not display all cmdlets with support for computername unless the
associated modules are preloaded):

PS C:\> Get-Help * -Parameter computername | sort name | ft name, synopsis -auto -wrap

Name Synopsis
---- --------
Add-Computer Add the local computer to a domain or workgroup.
Add-Printer Adds a printer to the specified computer.
Add-PrinterDriver Installs a printer driver on the specified
 computer.
Add-PrinterPort Installs a printer port on the specified computer.
<…Output Truncated …>

Some of the cmdlets provide the ability to specify credentials. This allows you to use a dif-
ferent user account to make the connection and retrieve the data.

The following example shows this technique of using the computername and the creden-
tial parameters in a cmdlet:

PS C:\> Get-WinEvent -LogName application -MaxEvents 1 -ComputerName ex1 -Credential
nwtraders\administrator

TimeCreated ProviderName Id Message
----------- ------------ -- -------
7/1/2012 11:54:14 AM MSExchange ADAccess 2080 Process MAD.EXE (...

However, as mentioned earlier, use of these cmdlets often requires opening holes in the
firewall or starting specific services. By default, these types of cmdlets fail when run against
remote machines that have not relaxed access rules. The following example shows this type of
error:

PS C:\> Get-WinEvent -LogName application -MaxEvents 1 -ComputerName dc1 -Credential
nwtraders\administrator
Get-WinEvent : The RPC server is unavailable
At linE:1 chaR:1
+ Get-WinEvent -LogName application -MaxEvents 1 -ComputerName dc1 -Credential iam
...
+ ~~
 + CategoryInfo : NotSpecifieD: (:) [Get-WinEvent], EventLogException
 + FullyQualifiedErrorId : System.Diagnostics.Eventing.Reader.EventLogException,
 Microsoft.PowerShell.Commands.GetWinEventCommand

Other cmdlets, such as Get-Service or Get-Process, do not have a credential parameter, and
therefore the command impersonates the logged-on user, as shown in the following example:

PS C:\> Get-Service -ComputerName hyperv -Name bits

Status Name DisplayName
------ ---- -----------
Running bits Background Intelligent Transfer Ser...

PS C:\>

	 Configuring Windows PowerShell remoting	 CHAPTER 7 	 101

Just because the cmdlet does not support alternative credentials does not mean the cmd-
let must impersonate the logged-on user. Holding down the Shift key and right-clicking on
the Windows PowerShell icon brings up an action menu that allows you to run the program
as a different user. When you use the Run as different user dialog box, you have alternative
credentials available for Windows PowerShell cmdlets that do not support the credential
parameter.

Configuring Windows PowerShell remoting

Windows Server 2012 installs with Windows Remote Management (WinRm) configured and
running to support remote Windows PowerShell commands. WinRm is the Microsoft imple-
mentation of the industry standard WS-Management Protocol. As such, WinRM provides a
firewall-friendly method of accessing remote systems in an interoperable manner. It is the
remoting mechanism used by the new Common Information Model (CIM) cmdlets (the CIM
cmdlets are covered in Chapter 9, "Using CIM"). As soon as Windows Server 2012 is up and
running, you can make a remote connection and run commands or open an interactive Win-
dows PowerShell console. A Windows 8 client, on the other hand, ships with WinRm locked
down. Therefore, the first step is to use the Enable-PSRemoting function to configure remot-
ing. When running the Enable-PSRemoting function, the following steps occur:

1.	 Starts or restarts the WinRM service.

2.	 Sets the WInRM service startup type to Automatic.

3.	 Creates a listener to accept requests from any Internet Protocol (IP) address.

4.	 Enables inbound firewall exceptions for WS_Management traffic.

5.	 Sets a target listener named Microsoft.powershell.

6.	 Sets a target listener named Microsoft.powershell.workflow.

7.	 Sets a target listener named Microsoft.powershell32.

During each step of this process, the function prompts you to agree or not agree to
performing the specified action. If you are familiar with the steps the function performs, and
you do not make any changes from the defaults, you can run the command with the Force
switched parameter and it will not prompt prior to making the changes. The following ex-
ample shows the syntax of this command:

Enable-PSRemoting -Force

	102	 CHAPTER 7 	 Using Windows PowerShell remoting

The following example shows the use of the Enable-PSRemoting function in interactive
mode, along with all associated output from the command:

PS C:\> Enable-PSRemoting

WinRM Quick Configuration
Running command "Set-WSManQuickConfig" to enable remote management of this computer
by using the Windows Remote Management (WinRM) service.
 This includes:
 1. Starting or restarting (if already started) the WinRM service
 2. Setting the WinRM service startup type to Automatic
 3. Creating a listener to accept requests on any IP address
 4. Enabling Windows Firewall inbound rule exceptions for WS-Management traffic
(for http only).

Do you want to continue?
[Y] Yes [A] Yes to All [N] No [L] No to All [S] Suspend [?] Help
(default is "Y"):y
WinRM has been updated to receive requests.
WinRM service type changed successfully.
WinRM service started.

WinRM has been updated for remote management.
Created a WinRM listener on HTTP://* to accept WS-Man requests to any IP on this mac
hine.
WinRM firewall exception enabled.

Confirm
Are you sure you want to perform this action?
Performing operation "Set-PSSessionConfiguration" on Target "Name:
microsoft.powershell SDDL:
O:NSG:BAD:P(A;;GA;;;BA)(A;;GA;;;RM)S:P(AU;FA;GA;;;WD)(AU;SA;GXGW;;;WD). This will
allow selected users to remotely run Windows PowerShell commands on this computer".
[Y] Yes [A] Yes to All [N] No [L] No to All [S] Suspend [?] Help
(default is "Y"):y

Confirm
Are you sure you want to perform this action?
Performing operation "Set-PSSessionConfiguration" on Target "Name:
microsoft.powershell.workflow SDDL:
O:NSG:BAD:P(A;;GA;;;BA)(A;;GA;;;RM)S:P(AU;FA;GA;;;WD)(AU;SA;GXGW;;;WD). This will
allow selected users to remotely run Windows PowerShell commands on this computer".
[Y] Yes [A] Yes to All [N] No [L] No to All [S] Suspend [?] Help
(default is "Y"):y

Confirm
Are you sure you want to perform this action?
Performing operation "Set-PSSessionConfiguration" on Target "Name:
microsoft.powershell32 SDDL:
O:NSG:BAD:P(A;;GA;;;BA)(A;;GA;;;RM)S:P(AU;FA;GA;;;WD)(AU;SA;GXGW;;;WD). This will
allow selected users to remotely run Windows PowerShell commands on this computer".
[Y] Yes [A] Yes to All [N] No [L] No to All [S] Suspend [?] Help
(default is "Y"):y
PS C:\>

	 Configuring Windows PowerShell remoting	 CHAPTER 7 	 103

Once configured, use the Test-WSMan cmdlet to ensure the WinRM remoting is properly
configured and is accepting requests. A properly configured system replies with the following
data:

PS C:\> Test-WSMan -ComputerName w8c504

wsmid : httP://schemas.dmtf.org/wbem/wsman/identity/1/wsmanidentity.xsd
ProtocolVersion : httP://schemas.dmtf.org/wbem/wsman/1/wsman.xsd
ProductVendor : Microsoft Corporation
ProductVersion : OS: 0.0.0 SP: 0.0 Stack: 3.0

This cmdlet works with Windows PowerShell 2.0 remoting as well. Keep in mind that
configuring WinRM through the Enable-PSRemoting function does not enable the WinRM
firewall exception, and therefore PING commands will not work by default when pinging to a
Windows 8 client system.

Running commands
For simple configuration on a single remote machine, entering a remote Windows PowerShell
session is the answer. To enter a remote Windows PowerShell session, use the Enter-PSSession
cmdlet to create an interactive remote Windows PowerShell session on a target machine. If
you do not supply credentials, the remote session impersonates your current logon. The out-
put in the following example illustrates connecting to a remote computer named dc1:

PS C:\> Enter-PSSession -ComputerName dc1
[dc1]: PS C:\Users\Administrator\Documents> sl C:\
[dc1]: PS C:\> gwmi win32_bios

SMBIOSBIOSVersion : A01
Manufacturer : Dell Computer Corporation
Name : Default System BIOS
SerialNumber : 9HQ1S21
Version : DELL - 6

[dc1]: PS C:\> exit
PS C:\>

Once established, the Windows PowerShell prompt changes to include the name of the
remote system. The Set-Location (sl is an alias) changes the working directory on the remote
system to C:\. Next, the Get-WmiObject cmdlet retrieves the BIOS information on the remote
system. The Exit command exits the remote session and the Windows PowerShell prompt
returns to the default.

The good thing is that when using the Windows PowerShell transcript tool through Start-
Transcript, the transcript tool captures output from the remote Windows PowerShell session
as well as output from the local session. Indeed, all commands typed appear in the transcript.

	104	 CHAPTER 7 	 Using Windows PowerShell remoting

The following commands illustrate beginning a transcript, entering a remote Windows Power-
Shell session, typing a command, exiting the session, and stopping the transcript:

PS C:\> Start-Transcript
Transcript started, output file is C:\Users\administrator.IAMMRED\Documents\PowerShe
ll_transcript.20120701124414.txt
PS C:\> Enter-PSSession -ComputerName dc1
[dc1]: PS C:\Users\Administrator\Documents> gwmi win32_bios

SMBIOSBIOSVersion : A01
Manufacturer : Dell Computer Corporation
Name : Default System BIOS
SerialNumber : 9HQ1S21
Version : DELL - 6

[dc1]: PS C:\Users\Administrator\Documents> exit
PS C:\> Stop-Transcript
Transcript stopped, output file is C:\Users\administrator.IAMMRED\Documents\PowerShe
ll_transcript.20120701124414.txt
PS C:\>

Figure 7-1 shows the transcript from the preceding remote Windows PowerShell session.
The transcript contains all commands, including the ones from the remote computer, and as-
sociated output.

FIGURE 7-1  The transcript tool works in remote Windows PowerShell sessions as well as in local Windows
PowerShell console sessions.

	 Configuring Windows PowerShell remoting	 CHAPTER 7 	 105

Running a single Windows PowerShell command
When you have a single command to run, it does not make sense to go through all the
trouble of building and entering an interactive, remote Windows PowerShell session. Instead
of creating a remote Windows PowerShell console session, you can run a single command by
using the Invoke-Command cmdlet. If you have a single command to run, use the cmdlet di-
rectly and specify the computer name as well as any credentials required for the connection.
The following example shows this technique, with the last process running on the ex1 remote
server:

PS C:\> Invoke-Command -ComputerName ex1 -ScriptBlock {gps | select -Last 1}

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName PSComputerName
------- ------ ----- ----- ----- ------ -- ----------- ------------
 224 34 47164 51080 532 0.58 10164 wsmprovhost ex1

When you work interactively in a Windows PowerShell console, you might not want to
type a long command, even when using tab expansion to complete the command. To shorten
the amount of typing, you can use the icm alias for the Invoke-Command cmdlet. You can also
rely upon positional parameters (the first parameter is the computer name and the second
parameter is the script block). By using aliases and positional parameters, the previous com-
mand shortens considerably, as shown in the following example:

PS C:\> icm ex1 {gps | select -l 1}

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName PSComputerName
------- ------ ----- ----- ----- ------ -- ----------- ------------
 221 34 47260 51048 536 0.33 4860 wsmprovhost ex1

Running a single command against multiple computers
Use of the Invoke-Command exposes one of the more powerful aspects of Windows
PowerShell remoting, which is running the same command against a large number of re-
mote systems. The secret behind this power is that the computername parameter from the
Invoke-Command cmdlet accepts an array of computer names. In the output appearing here,
an array of computer names is stored in the variable $cn. Next, the $cred variable holds the
credential object for the remote connections. Finally, the Invoke-Command cmdlet is used
to make connections to all the remote machines and to return the BIOS information from
the systems. The nice thing about this technique is that an additional parameter, PSCom-
puterName, is added to the returning object, permitting easy identification of which BIOS is
associated with which computer system. The following example shows the commands and
associated output:

PS C:\> $cn = "dc1","dc3","ex1","sql1","wsus1","wds1","hyperv1","hyperv2","hyperv3"
PS C:\> $cred = Get-Credential iammred\administrator
PS C:\> Invoke-Command -cn $cn -cred $cred -ScriptBlock {gwmi win32_bios}

	106	 CHAPTER 7 	 Using Windows PowerShell remoting

SMBIOSBIOSVersion : BAP6710H.86A.0072.2011.0927.1425
Manufacturer : Intel Corp.
Name : BIOS Date: 09/27/11 14:25:42 Ver: 04.06.04
SerialNumber :
Version : INTEL - 1072009
PSComputerName : hyperv3

SMBIOSBIOSVersion : A11
Manufacturer : Dell Inc.
Name : Phoenix ROM BIOS PLUS Version 1.10 A11
SerialNumber : BDY91L1
Version : DELL - 15
PSComputerName : hyperv2

SMBIOSBIOSVersion : A01
Manufacturer : Dell Computer Corporation
Name : Default System BIOS
SerialNumber : 9HQ1S21
Version : DELL - 6
PSComputerName : dc1

SMBIOSBIOSVersion : 090004
Manufacturer : American Megatrends Inc.
Name : BIOS Date: 03/19/09 22:51:32 Ver: 09.00.04
SerialNumber : 3692-0963-1044-7503-9631-2546-83
Version : VRTUAL - 3000919
PSComputerName : wsus1

SMBIOSBIOSVersion : V1.6
Manufacturer : American Megatrends Inc.
Name : Default System BIOS
SerialNumber : To Be Filled By O.E.M.
Version : 7583MS - 20091228
PSComputerName : hyperv1

SMBIOSBIOSVersion : 080015
Manufacturer : American Megatrends Inc.
Name : Default System BIOS
SerialNumber : None
Version : 091709 - 20090917
PSComputerName : sql1

SMBIOSBIOSVersion : 080015
Manufacturer : American Megatrends Inc.
Name : Default System BIOS
SerialNumber : None
Version : 091709 - 20090917
PSComputerName : wds1

SMBIOSBIOSVersion : 090004
Manufacturer : American Megatrends Inc.
Name : BIOS Date: 03/19/09 22:51:32 Ver: 09.00.04
SerialNumber : 8994-9999-0865-2542-2186-8044-69
Version : VRTUAL - 3000919
PSComputerName : dc3

	 Configuring Windows PowerShell remoting	 CHAPTER 7 	 107

SMBIOSBIOSVersion : 090004
Manufacturer : American Megatrends Inc.
Name : BIOS Date: 03/19/09 22:51:32 Ver: 09.00.04
SerialNumber : 2301-9053-4386-9162-8072-5664-16
Version : VRTUAL - 3000919
PSComputerName : ex1

PS C:\>

Creating a persisted connection
If you anticipate making multiple connections to a remote system, use the New-PSSession
cmdlet to create a remote Windows PowerShell session. The New-PSSession cmdlet permits
you to store the remote session in a variable and provides you with the ability to enter and
leave the remote session as often as required, without the additional overhead of creating
and destroying remote sessions. In the commands that follow, a new Windows PowerShell
session is created through the New-PSSession cmdlet. The newly created session is stored in
the $dc1 variable. Next, the Enter-PSSession cmdlet is used to enter the remote session by
using the stored session. A command retrieves the remote hostname, and the remote ses-
sion is exited through the Exit command. Next, the session is re-entered and the last process
retrieved. The session is exited once again. Finally, the Get-PSSession cmdlet retrieves Win-
dows PowerShell sessions on the system, and all sessions are removed through the Remove-
PSSession cmdlet:

PS C:\> $dc1 = New-PSSession -ComputerName dc1 -Credential iammred\administrator
PS C:\> Enter-PSSession $dc1
[dc1]: PS C:\Users\Administrator\Documents> hostname
dc1
[dc1]: PS C:\Users\Administrator\Documents> exit
PS C:\> Enter-PSSession $dc1
[dc1]: PS C:\Users\Administrator\Documents> gps | select -Last 1

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName
------- ------ ----- ----- ----- ------ -- -----------
 292 9 39536 50412 158 1.97 2332 wsmprovhost

[dc1]: PS C:\Users\Administrator\Documents> exit
PS C:\> Get-PSSession

 Id Name ComputerName State ConfigurationName Availability
 -- ---- ------------ ----- ----------------- ------------
 8 Session8 dc1 Opened Microsoft.PowerShell Available

PS C:\> Get-PSSession | Remove-PSSession
PS C:\>

	108	 CHAPTER 7 	 Using Windows PowerShell remoting

If you have several commands, or if you anticipate making multiple connections, the
Invoke-Command cmdlet accepts a session parameter in the same manner as the Enter-
PSSession cmdlet does. In the output appearing here, a new PSSession is created to a remote
computer named dc1. The remote session is used to retrieve two different pieces of informa-
tion. Once completed, the session stored in the $dc1 variable is explicitly removed:

PS C:\> $dc1 = New-PSSession -ComputerName dc1 -Credential iammred\administrator
PS C:\> Invoke-Command -Session $dc1 -ScriptBlock {hostname}
dc1
PS C:\> Invoke-Command -Session $dc1 -ScriptBlock {Get-EventLog application -Newest 1}

 Index Time EntryType Source InstanceID Message PSCompu
 terName
 ----- ---- --------- ------ ---------- ------- -------
 17702 Jul 01 12:59 Information ESENT 701 DFSR... dc1

PS C:\> Remove-PSSession $dc1

You can also create persisted connection to multiple computers. This enables you to use
the Invoke-Command cmdlet to run multiple commands against multiple remote computers.
The first thing is to create a new PSSession that contains multiple computers. You can do this
by using alternative credentials. Create a variable that holds the credential object returned
by the Get-Credential cmdlet. A dialog box appears, permitting you to enter the credentials.
Figure 7-2 shows the dialog box.

FIGURE 7-2  Store remote credentials in a variable populated through the Get-Credential cmdlet.

Once you have stored the credentials in a variable, create another variable to store the
remote computer names. Next, use the New-PSSession cmdlet to create a new Windows
PowerShell session using the computer names stored in the computer name variable and
the credentials stored in the credential variable. To be able to reuse the Windows PowerShell
remote session, store the newly created Windows PowerShell session in a variable as well.
The following example illustrates storing the credentials, computer names, and newly created
Windows PowerShell session:

	 Configuring Windows PowerShell remoting	 CHAPTER 7 	 109

$cred = Get-Credential -Credential iammred\administrator
$cn = "ex1","dc3"
$ps = New-PSSession -ComputerName $cn -Credential $cred

Once the Windows PowerShell session is created and stored in a variable, it can be used
to execute commands against the remote computers. To do this, use the Invoke-Command
cmdlet, as shown in the following example:

PS C:\> Invoke-Command -Session $ps -ScriptBlock {gsv | select -First 1}

Status Name DisplayName PSComputerName
------ ---- ----------- --------------
Stopped AeLookupSvc Application Experience ex1
Running ADWS Active Directory Web Services dc3

The great thing about storing the remote connection in a variable is that it can be used for
additional commands as well. The following example shows the command that returns the
first process from each of the two remote computers:

PS C:\> Invoke-Command -Session $ps -ScriptBlock {gps | select -First 1}

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName PSComputerName
------- ------ ----- ----- ----- ------ -- ----------- ------------
 47 7 1812 6980 53 0.70 3300 conhost dc3
 32 4 824 2520 22 0.22 1140 conhost ex1

Figure 7-3 shows the commands to store the credentials, create a remote Windows Power
Shell connection to two different computers, and run two remote commands against them.
Figure 7-3 also shows the output associated with the commands.

FIGURE 7-3  By creating and by storing a remote Windows PowerShell connection, it becomes easy to run
commands against multiple computers.

 110 ChAPTER 7 Using Windows PowerShell remoting

Troubleshooting Windows PowerShell remoting

The first tool to use to see if Windows PowerShell remoting is working or not is the Test-
WSMan cmdlet. Use it first on the local computer (no parameters are required). The following
example shows the command and associated output:

PS C:\> Test-WSMan

wsmid : http://schemas.dmtf.org/wbem/wsman/identity/1/wsmanidentity.xsd
ProtocolVersion : http://schemas.dmtf.org/wbem/wsman/1/wsman.xsd
ProductVendor : Microsoft Corporation
ProductVersion : OS: 0.0.0 SP: 0.0 Stack: 3.0

To test a remote computer, specify the -ComputerName parameter. The following example
shows the command running against a Windows Server 2012 domain controller named dc3:

PS C:\> Test-WSMan -ComputerName dc3

wsmid : http://schemas.dmtf.org/wbem/wsman/identity/1/wsmanidentity.xsd
ProtocolVersion : http://schemas.dmtf.org/wbem/wsman/1/wsman.xsd
ProductVendor : Microsoft Corporation
ProductVersion : OS: 0.0.0 SP: 0.0 Stack: 3.0

However, the Test-WSMan cmdlet also works against a computer running Windows Power-
Shell 2.0. The following example shows the command running against a Windows Server 2008
domain controller named dc1:

PS C:\> Test-WSMan -ComputerName dc1

wsmid : http://schemas.dmtf.org/wbem/wsman/identity/1/wsmanidentity.xsd
ProtocolVersion : http://schemas.dmtf.org/wbem/wsman/1/wsman.xsd
ProductVendor : Microsoft Corporation
ProductVersion : OS: 0.0.0 SP: 0.0 Stack: 2.0

To examine a specific Windows PowerShell session, use the Get-PSSession cmdlet. The
easiest way to do this is to pipeline the variable containing the Windows PowerShell session to
the Get-PSSession cmdlet. The key items to pay attention to are the computer name, the state
of the session, and the availability of the session. The following example shows this technique:

PS C:\> $ps | Get-PSSession

 Id Name ComputerName State ConfigurationName Availability
 -- ---- ------------ ----- ----------------- ------------
 3 Session3 ex1 Opened Microsoft.PowerShell Available
 4 Session4 dc3 Opened Microsoft.PowerShell Available

	 Summary	 CHAPTER 7 	 111

To focus on a specific session, reference the session by either ID or by Name. Send the re-
turned session object over the pipeline to the Format-List cmdlet and select all the properties.
The following example shows this technique (using fl as an alias for the Format-List cmdlet):

PS C:\> Get-PSSession -Name Session4 | fl *

State : Opened
IdleTimeout : 7200000
OutputBufferingMode : None
ComputerName : dc3
ConfigurationName : Microsoft.PowerShell
InstanceId : c15cc80d-64f0-4096-a010-0211f0188aec
Id : 4
Name : Session4
Availability : Available
ApplicationPrivateData : {PSVersionTable}
Runspace : System.Management.Automation.RemoteRunspace

You can remove a remote Windows PowerShell session by pipelining the results of Get-
PSSession to the Remove-PSSession cmdlet, as shown in the following example:

Get-PSSession -Name Session4 | Remove-PSSession

You can also remove a PS session directly by specifying the name to the Remove-PSSession
cmdlet, as shown in the following example:

Remove-PSSession -Name session3

Summary

This chapter discussed the reason to use Windows PowerShell remoting. We covered the
different types of remoting, such as classic remoting and Windows Remote Management
Windows PowerShell (WinRM) remoting. In addition, we covered how to enable Windows
PowerShell remoting and how to run a single command against a remote computer. Finally,
we examined running multiple commands, creating persisted connections, and troubleshoot-
ing Windows PowerShell remoting.

		 	 113

C H A P T E R 8

Using WMI
■■ Understanding the WMI model

■■ Working with objects and namespaces

■■ Querying WMI: The basics

The inclusion of Windows Management Instrumentation (WMI) in virtually every oper-
ating system released by Microsoft since Windows NT 4.0 should give you an idea of

the importance of this underlying technology. From a network management perspective,
many useful tasks can be accomplished using just Windows PowerShell, but to truly begin
to unleash the power of scripting, you need to bring in additional tools. This is where WMI
comes into play. WMI provides access to many powerful ways of managing Microsoft Win-
dows systems. In this section, we dive into the pieces that make up WMI. We look at several
concepts, such as namespaces, providers, and classes, and show how these concepts can aid
us in leveraging WMI in our Windows PowerShell scripts.

Understanding the WMI Model

WMI is a hierarchical namespace, in which the layers build on one another like the Light-
weight Directory Access Protocol (LDAP) directory used in Active Directory or the file
system structure on your hard disk drive. Although it is true that WMI is a hierarchical
namespace, the term by itself does not really convey the richness of WMI. The WMI model
has three sections: resources, infrastructure, and consumers. These sections have the follow-
ing uses:

■■ WMI resources  Resources include anything that can be accessed by using WMI:
the file system, networked components, event logs, files, folders, disks, Active Direc-
tory, and so on.

■■ WMI infrastructure  The infrastructure comprises three parts: the WMI service, the
WMI repository, and the WMI providers. Of these parts, WMI providers are the most
important because they provide the means for WMI to gather needed information.

■■ WMI consumers  A consumer consumes the data from WMI. A consumer can be a
Windows PowerShell cmdlet, a Visual Basic Script (VBScript), an enterprise manage-
ment software package, or some other tool or utility that executes WMI queries.

	114	 CHAPTER 8	 Using WMI

Working with objects and namespaces
Let’s go back to the idea of a namespace introduced earlier in this chapter. You can think of a
namespace as a way to organize or collect data related to similar items. Visualize an old- fil-
ing cabinet. Each drawer can represent a particular namespace. Inside this drawer are hanging
folders that collect information related to a subset of what the drawer actually holds. For
example, at home in my filing cabinet, I have a drawer reserved for information related to my
woodworking tools. Inside this particular drawer are hanging folders for my table saw, my
planer, my joiner, my dust collector, and so on. In the folder for the table saw is information
about the motor, the blades, and the various accessories I purchased for the saw, such as an
over-arm blade guard.

WMI organizes the namespaces in a similar fashion as the filing cabinets. It is possible to
extend the filing cabinet analogy to include the three components of WMI with which you
will work. The three components are namespaces, providers, and classes. The namespaces are
the file cabinets. The providers are drawers in the file cabinet. The folders in the drawers of
the file cabinet are the WMI classes.

Namespaces contain objects, and these objects contain properties you can manipu-
late. Let’s use a WMI command to illustrate the organization of the WMI namespaces. In
the command that follows the Get-WmiObject cmdlet is used to make the connection into
WMI. The class argument specifies the name of the class. In this example, the class name is
__Namespace (the WMI class from which all WMI namespaces derive). Yes, you read that class
name correctly; it is the word namespace preceded by two underscore characters. A double
underscore is used for all WMI system classes because it makes them easy to find in sorted
lists; the double underscore when sorted rises to the top of the list. The namespace argument
is root because it specifies the root level (the top namespace) in the WMI namespace hierar-
chy. The following example shows the Get-WmiObject class:

Get-WmiObject -class __Namespace -namespace root

Listing WMI providers
Understanding the namespace assists the network administrator with judiciously applying
WMI scripting to her network duties. However, as mentioned earlier, to access information
through WMI you must have access to a WMI provider. After implementing the provider, you
can gain access to the information the provider makes available.

NOTE  Keep in mind that in nearly every case, installation of providers happens in the
background through an operating system configuration or management application instal-
lation. For example, addition of new roles and features to server SKUs often installs new
WMI providers and their attendant WMI classes.

	 Understanding the WMI Model	 CHAPTER 8	 115

WMI bases providers on a template class, or a system class called __provider. Armed with
this information, we can look for instances of the provider class, and we will have a list of all
the providers that reside in our WMI namespace. This is exactly what the Get-WmiProvider
function does.

The Get-WmiProvider function begins by assigning the string Root\cimv2 to the $wmiNS
variable. This value will be used with the Get-WmiObject cmdlet to specify where the WMI
query will take place.

The Get-WmiObject cmdlet queries WMI. The class parameter limits the WMI query to
the __provider class. The namespace argument tells the Get-WmiObject cmdlet to look only
in the Root\cimv2 WMI namespace. The array of objects returned from the Get-WmiObject
cmdlet pipelines to the Sort-Object cmdlet, where the listing of objects alphabetize based on
the name property. After this process is completed, the reorganized objects pipeline to the
Select-Object cmdlet, where the name of each provider displays. The following example shows
this process:

Get-WmiObject -class __Provider -namespace root\cimv2 |
 Sort-Object -property Name |
 Select-Object name

Working with WMI classes
In addition to working with namespaces, the inquisitive network administrator will want to ex-
plore the concept of classes. In WMI parlance, you have core classes, common classes, and dy-
namic classes. Core classes represent managed objects that apply to all areas of management.
These classes provide a basic vocabulary for analyzing and describing managed systems. Two
examples of core classes are parameters and the SystemSecurity class. Common classes are
extensions to the core classes and represent managed objects that apply to specific manage-
ment areas. However, common classes are independent from a particular implementation
or technology. The CIM_UnitaryComputerSystem is an example of a common class. Network
administrators do not use core and common classes because they serve as templates from
which other classes derive, and as such are mainly of interest to developers of management
applications.

Many of the classes stored in Root\cimv2, therefore, are abstract classes and are of use as
templates used in creating other WMI classes. However, a few classes in Root\cimv2 are dy-
namic classes used to hold actual information. The important aspect to remember about dy-
namic classes is that providers generate instances of a dynamic class, and therefore dynamic
WMI classes are more likely to retrieve “live” data from the system.

To produce a simple listing of WMI classes, you can use the Get-WmiObject cmdlet and
specify the list argument:

Get-WmiObject -list

	116	 CHAPTER 8	 Using WMI

A partial output from the previous command is shown in the following example:

Win32_TSGeneralSetting Win32_TSPermissionsSetting
Win32_TSClientSetting Win32_TSEnvironmentSetting
Win32_TSNetworkAdapterListSetting Win32_TSLogonSetting
Win32_TSSessionSetting Win32_DisplayConfiguration
Win32_COMSetting Win32_ClassicCOMClassSetting
Win32_DCOMApplicationSetting Win32_MSIResource
Win32_ServiceControl Win32_Property

One of the big problems with WMI is finding the WMI class needed to solve a particular
problem. With literally thousands of WMI classes installed on even a basic Windows instal-
lation, searching through all the classes is difficult at best. While it is possible to search the
Microsoft Developer Network (MSDN), a faster solution is to use Windows PowerShell itself.
As we just saw, using the list switched parameter produces a listing of all the WMI classes in
a particular namespace. It is possible to combine WMI namespaces to use the feature to pro-
duce a listing of every WMI class on a computer, but that would only compound an already
complicated situation.

A better solution is to stay focused on a single WMI namespace, and to use wildcard
characters to assist in finding appropriate WMI classes. For example, you can use the wildcard
pattern “*bios*” to find all WMI classes that contain the letters bios in the class name. The fol-
lowing code accomplishes this task:

Get-WmiObject -List "*bios*"

In fact, you should not use all the classes for direct query. Nevertheless, some of the classes
are useful; some of the classes solve the problem. You might ask, “Which ones should I use?”
A simple answer, not completely accurate, but something to get you started, is to use only the
WMI classes that begin with win32. You can easily modify the previous Get-WMIObject query
to return only WMI classes that begin with win32. A regular expression pattern looks at the
first position of each WMI class name to determine if the characters win32 appear. The special
character ^ tells the match operator to begin looking at the beginning of the string. The fol-
lowing example shows the revised code:

Get-WmiObject -List "*bios*" | where name -match '^win32'

It is also possible to simplify the preceding code by taking advantage of command aliases
and the simplified Where-Object syntax. In the code that follows, gwmi is an alias for the
Get-WmiObject cmdlet. The ? symbol is an alias for the Where-Object cmdlet, and the name
property from the returned ManagementClass objects is examined from each instance cross-
ing the pipeline to see if the regular expression pattern match appears. The shorter syntax
appears here:

gwmi -list "*bios*" | ? name -match '^win32'

It is even possible to combine the following into a single command and avoid the pipeline
altogether. The following command looks for WMI classes that begin with the letters win32
and are followed by the letters bios in a four-letter pattern:

gwmi -List 'win32*bios*'

	 Querying WMI: The basics	 CHAPTER 8	 117

Only a few WMI classes return from the preceding command. It is now time to query each
WMI class to determine the WMI classes that might be useful. It is certainly possible to choose
a class from the list and to query it directly. Using the gwmi alias for the Get-WmiObject cmd-
let, it is not very much typing. Here is the command to return BIOS information from the local
computer:

gwmi win32_bios

It is also possible to pipeline the results of the query to find WMI classes to a command to
query the WMI classes. The long form of the command (using complete cmdlet names) ap-
pears here. Keep in mind this is a single-line command, which appears here on two different
lines for readability:

Get-WmiObject -List "*bios*" | Where-Object { $_.name -match '^win32'} |
ForEach-Object { Get-WmiObject -Class $_.name }

The short form of the command uses the alias gwmi for Get-WmiObject, ? for the Where-
Object cmdlet as well as the simplified Where-Object syntax, and % for the ForEach-Object
cmdlet. The following example shows the shortened command:

gwmi -list "*bios*" | ? name -match '^win32' | % {gwmi $_.name}

Querying WMI: The basics

In most situations, when you use WMI you are performing some sort of query. Even when you
are going to set a particular property, you still need to execute a query to return a dataset
that enables you to perform the configuration. A dataset includes the data that come back
to you as the result of a query; that is, it is a set of data. There are several steps involved in
performing a basic WMI query:

1.	 Connect to WMI by using the Get-WMIObject cmdlet.

2.	 Specify a valid WMI class name to query.

3.	 Specify a value for the namespace; omit the namespace parameter to use the default
root\cimv2 namespace.

4.	 Specify a value for the computername parameter; omit the computername parameter
to use the default value of localhost.

Windows PowerShell makes it easy to query WMI. In fact, at its most basic level the only
thing required is gwmi (alias for the Get-WmiObject cmdlet) and the WMI class name. The fol-
lowing example shows this simple syntax, along with the associated output:

PS C:\> gwmi win32_bios
SMBIOSBIOSVersion : BAP6710H.86A.0064.2011.0504.1711
Manufacturer : Intel Corp.
Name : BIOS Date: 05/04/11 17:11:33 Ver: 04.06.04
SerialNumber :
Version : INTEL - 1072009

	118	 CHAPTER 8	 Using WMI

However, there are more properties available on the Win32_Bios WMI class than the five
displayed in the preceding output. The reason for the limited output displayed from the com-
mand is a custom view of the Win32_Bios class defined in the Types.ps1xml file that resides in
the Windows PowerShell home directory on your system. The following command uses the
Select-String cmdlet to search the Types.ps1xml file to see if there is any reference to the WMI
class Win32_Bios:

Select-String -Path $pshome*.ps1xml -SimpleMatch "Win32_Bios"

In Figure 8-1, several Select-String commands display results when a special format exists
for a particular WMI class. The last query, for the Win32_CurrentTime WMI class, does not
return any results, indicating that no special formatting exists for this class.

FIGURE 8-1  Use the Select-String cmdlet to find format XML files for specific WMI classes.

The Select-String queries shown in Figure 8-1 indicate there is a special formatting for the
Win32_Bios, Win32_DesktopMonitor, and Win32_Service WMI classes. The Types.ps1xml file
contains information to Windows PowerShell that tells it how to display a particular WMI
class. When an instance of the Win32_Bios WMI class appears, Windows PowerShell uses

	 Querying WMI: The basics	 CHAPTER 8	 119

the DefaultDisplayPropertySet configuration to display only five properties. The following
example shows the portion of the Types.ps1xml file that details these five properties:

 <PropertySet>
 <Name>DefaultDisplayPropertySet</Name>
 <ReferencedProperties>
 <Name>SMBIOSBIOSVersion</Name>
 <Name>Manufacturer</Name>
 <Name>Name</Name>
 <Name>SerialNumber</Name>
 <Name>Version</Name>
 </ReferencedProperties>
 </PropertySet>

Figure 8-2 shows the complete type definition for the Win32_Bios WMI class.

FIGURE 8-2  The Types.PS1XML file contains information that tells Windows PowerShell which properties
to display by default.

Special formatting instructions for the Win32_Bios WMI class indicate there is an alter-
native property set available in addition to the DefaultDisplayPropertySet. This additional

	120	 CHAPTER 8	 Using WMI

property set, named PSStatus, contains four properties. The following example shows the four
properties that appear in the PropertySet description:

 <PropertySet>
 <Name>PSStatus</Name>
 <ReferencedProperties>
 <Name>Status</Name>
 <Name>Name</Name>
 <Name>Caption</Name>
 <Name>SMBIOSPresent</Name>
 </ReferencedProperties>
 </PropertySet>

Finding the PSStatus property set is more than a simple academic exercise because it can
be used directly with Windows PowerShell cmdlets such as Select-Object (select is an alias),
Format-List (fl is an alias), or Format-Table (ft is an alias). The following commands illustrate
this technique:

gwmi win32_bios | select psstatus
gwmi win32_bios | fl psstatus
gwmi win32_bios | ft psstatus

Unfortunately, you cannot use the alternate property set PSStatus to select the properties
through the property parameter. Therefore, the command that appears here fails:

gwmi win32_bios -Property psstatus

Tell me everything about everything
When novices first write WMI scripts, they nearly all begin by asking for every property from
every instance of a class. For example, the queries will say, “Tell me everything about every
process.” This is also referred to as the infamous “select * query.” This approach often can
return an overwhelming amount of data, particularly when you are querying a class such as
installed software or processes and threads. Rarely does one need to have so much data.
Typically, when looking for installed software, you’re looking for information about a particu-
lar software package.

There are, however, several occasions when you want to use the “tell me everything about
all instances of a particular class” query, including the following:

■■ During development of a script to see representative data.

■■ When troubleshooting a more directed query; for example, when you try to filter on a
field that does not exist.

■■ When the returned data are so few that being more precise doesn’t make sense.

In the next command, you make a connection to the default namespace in WMI and re-
turn all the information about all the shares on a local machine. This is actually good practice
because in the past numerous worms have propagated through unsecured shares, and you

 Querying WMI: The basics ChAPTER 8 121

might have unused shares around. A user might create a share for a friend and then forget to
delete it. The following example shows this connection to the default namespace:

Get-WmiObject -Class win32_Share -Property * | Format-List *

The data returned contain a number of system properties and other objects not directly
related to a share, as shown in the following example:

PS C:\> Get-WmiObject -Class win32_Share -Property * | Format-List *

PSComputerName : EDLT
Status : OK
Type : 2147483648
Name : ADMIN$
__GENUS : 2
__CLASS : Win32_Share
__SUPERCLASS : CIM_LogicalElement
__DYNASTY : CIM_ManagedSystemElement
__RELPATH : Win32_Share.Name="ADMIN$"
__PROPERTY_COUNT : 10
__DERIVATION : {CIM_LogicalElement, CIM_ManagedSystemElement}
__SERVER : EDLT
__NAMESPACE : root\cimv2
__PATH : \\EDLT\root\cimv2:Win32_Share.Name="ADMIN$"
AccessMask :
AllowMaximum : True
Caption : Remote Admin
Description : Remote Admin
InstallDate :
MaximumAllowed :
Path : C:\WINDOWS
Scope : System.Management.ManagementScope
Options : System.Management.ObjectGetOptions
ClassPath : \\EDLT\root\cimv2:Win32_Share
Properties : {AccessMask, AllowMaximum, Caption, Description...}
SystemProperties : {__GENUS, __CLASS, __SUPERCLASS, __DYNASTY...}
Qualifiers : {dynamic, Locale, provider, UUID}
Site :
Container :
<… Output truncated …>

The default output for this class is probably more immediately useful. The following ex-
ample shows the output:

PS C:\> Get-WmiObject -Class win32_Share

Name Path Description
---- ---- -----------
ADMIN$ C:\WINDOWS Remote Admin
C$ C:\ Default share
IPC$ Remote IPC
Users C:\Users

	122	 CHAPTER 8	 Using WMI

Rather than specifying the -class and -property parameters to obtain all the WMI informa-
tion related to the Win32_Share WMI class, it is possible to use a SQL type of syntax. This is
the same type of syntax used in VBScript and in other scripting languages. The advantage
is that it might be more readable, and there are lots of examples of the syntax available on
scripting repositories (such as the TechNet Script Center Script Repository). The following
example illustrates creating the query and using it in a command:

PS C:\> $query = "Select * from Win32_Share"
PS C:\> Get-WmiObject -Query $query

Name Path Description
---- ---- -----------
ADMIN$ C:\WINDOWS Remote Admin
C$ C:\ Default share
IPC$ Remote IPC
Users C:\Users

Of course, it is possible to perform this query in a single line instead of storing the WMI
query in a variable. The following example illustrates this technique:

Get-WmiObject -Query "Select * from Win32_Share"

Tell me selected things about everything
The next level of sophistication from using Select * is to return only the properties you are
interested in. This is a more efficient strategy. For instance, in the preceding example you en-
tered Select * and were returned a lot of data you weren’t necessarily interested in. Suppose
you want to know only what shares are on each machine. You first make a connection to WMI
by using the Get-WmiObject cmdlet. Next you use the query argument to supply the WMI
query to the Get-WmiObject cmdlet. In the query, use the Select statement to choose the
specific property you are interested in; for example, Select name. In the query, use the From
statement to indicate the class from which you want to retrieve data—for example, From
Win32_Share.

Only two small changes from the previous query are required to enable garnering specific
data through the WMI script. In place of the asterisk in the Select statement assigned at the
beginning of the script, substitute the property you want. In this case, only the names of the
shares are required. The following example shows the first revision:

PS C:\> Get-WmiObject -Query "Select name from win32_share"

__GENUS : 2
__CLASS : Win32_Share
__SUPERCLASS :
__DYNASTY :
__RELPATH : Win32_Share.Name="ADMIN$"
__PROPERTY_COUNT : 1
__DERIVATION : {}
__SERVER :

	 Querying WMI: The basics	 CHAPTER 8	 123

__NAMESPACE :
__PATH :
Name : ADMIN$
PSComputerName :
<…Output Truncated …>

The second change is to eliminate all unwanted system properties from the Output section.
The strange thing here is the way that Windows PowerShell works. In the Select statement, we
selected only the name property. However, if we were to print out the results without further
refinement, we would retrieve unwanted system properties as well. By using the Format-List
cmdlet and selecting only the property name, you eliminate the unwanted excess. The following
example shows this technique:

PS C:\> Get-WmiObject -Query "Select name from win32_share" | Format-List name

name : ADMIN$

name : C$

name : IPC$

name : Users

This same technique (of selecting the name from each share) appears in the following code
using the -Property parameter:

PS C:\> gwmi win32_share -Property name | fl name

name : ADMIN$

name : C$

name : IPC$

name : Users

Tell me everything about some things
In many situations, you will want to limit the data you return to a specific instance of that class
in the dataset. If you go back to your query and add a Where clause to the Select statement,
you’ll be able to greatly reduce the amount of information returned by the query. Notice
that in the value associated with the wmiQuery, you added a dependency that indicated you
wanted only information with the share name C$. This value is not case sensitive, but it must
be surrounded with single quotation marks, as you can see in the wmiQuery string in the
following script. These single quotation marks are important because they tell WMI that the
value is a string value and not some other programmatic item. The code illustrates returning

	124	 CHAPTER 8	 Using WMI

all available properties from a specific share, the admin share of the C drive. There are two
ways to do this. The first way uses the Where clause in the WMI query:

PS C:\> $wmiQuery = "Select * from win32_share where name='c$'"
PS C:\> Get-WmiObject -Query $wmiQuery | Format-List *

PSComputerName : EDLT
Status : OK
Type : 2147483648
Name : C$
__GENUS : 2
__CLASS : Win32_Share
__SUPERCLASS : CIM_LogicalElement
__DYNASTY : CIM_ManagedSystemElement
__RELPATH : Win32_Share.Name="C$"
__PROPERTY_COUNT : 10
__DERIVATION : {CIM_LogicalElement, CIM_ManagedSystemElement}
__SERVER : EDLT
__NAMESPACE : root\cimv2
__PATH : \\EDLT\root\cimv2:Win32_Share.Name="C$"
AccessMask :
AllowMaximum : True
Caption : Default share
Description : Default share
InstallDate :
MaximumAllowed :
Path : C:\
Scope : System.Management.ManagementScope
Options : System.Management.ObjectGetOptions
ClassPath : \\EDLT\root\cimv2:Win32_Share
Properties : {AccessMask, AllowMaximum, Caption, Description...}
SystemProperties : {__GENUS, __CLASS, __SUPERCLASS, __DYNASTY...}
Qualifiers : {dynamic, Locale, provider, UUID}
Site :
Container :

The second way to reduce the number of instances returned by a WMI query is to use the
-Filter parameter. This works in a manner similar to the Where clause (except that it does not
use the keyword Where):

Get-WmiObject -Class win32_share -Filter "name = 'c$'" | Format-List *

	 Summary	 CHAPTER 8	 125

Tell me selected things about some things
The most specific WMI query is one that returns only a few properties from a few instances of
the class. For example, you might be interested in the directory provided by a specific share.
To do this, you need to specify which properties you wish to retrieve as well as specify the
name of a particular share of interest. This involves both selecting the properties to return as
well as limiting the instances returned. Use the following WMI query:

PS C:\> $query = "Select name, path from win32_share where name = 'users'"
PS C:\> Get-WmiObject -Query $query | format-table name, path

name path
---- ----
Users C:\Users

You can also omit the -Query parameter and specify the -Filter and the -Property param-
eters. This following example shows this revision:

Get-WmiObject -Class win32_share -Property name, path -Filter "name = 'users" |
format-table name, path

Summary

This chapter began with a basic overview of WMI. In the overview, you learned about WMI
classes, providers, and namespaces. The chapter concluded by querying WMI. We examined
two different ways of querying WMI: by using an SQL type of syntax and by using specific
parameters from the Get-WMIObject cmdlet. In addition to two different ways of querying
WMI, we also examined four ways of returning WMI data.

		 	 127

C H A P T E R 9

Using CIM
■■ Using CIM cmdlets to explore WMI classes

■■ Retrieving WMI instances

■■ Working with associations

One of the new and exciting changes to WMI in Windows PowerShell 3.0 is the introduc-
tion of the Common Information Model (CIM). The CIM cmdlets provide a new way to

retrieve existing WMI. The advantages are numerous. First, you will probably notice that the
CIM cmdlets return WMI information faster than does the Get-WMiObject cmdlet. Second,
because the CIM cmdlets use WinRM (instead of the legacy DCOM) for a network transport,
it means you can immediately use CIM to query your remote Windows Server 2012 comput-
er. It also means you can easily use CIM for remote management because WinRM is easily
configured. See Chapter 7, “Using Windows PowerShell Remoting” for more information
about WinRM. Lastly, the CIM cmdlets provide several cmdlets that promote WMI discovery.
All in all, CIM is a good thing.

Using CIM cmdlets to explore WMI classes

CIM cmdlets support multiple ways of exploring WMI. They work well when working in an
interactive fashion. For example, tab expansion expands the namespace when you use CIM
cmdlets, thereby permitting you to explore namespaces that might not otherwise be very
discoverable. You can even drill down into namespaces by using this technique. All CIM
classes support tab expansion of the namespace parameter, but to explore WMI classes you
should use the Get-CimClass cmdlet.

NOTE  The default WMI namespace on all operating systems after Windows NT 4.0 is
Root/Cimv2. Therefore, all the CIM cmdlets default to Root/Cimv2. The only time you need
to change the default WMI namespace (through the namespace parameter) is when you
need to use a WMI class from a non-default WMI namespace.

	128	 CHAPTER 9 	 Using CIM

Using the classname parameter
Using the Get-CimClass cmdlet, you can use wildcards for the classname parameter to enable
you to quickly identify potential WMI classes for perusal. You can also use wildcards for the
qualifiername parameter. In the following example, the Get-CimClass cmdlet looks for WMI
classes related to computers:

PS C:\> Get-CimClass -ClassName *computer*

 NameSpace: ROOT/CIMV2

CimClassName CimClassMethods CimClassProperties
------------ --------------- ------------------
Win32_ComputerSystemEvent {} {SECURITY_DESCRIPTOR, TIME_
CR...
Win32_ComputerShutdownEvent {} {SECURITY_DESCRIPTOR, TIME_
CR...
CIM_ComputerSystem {} {Caption, Description,
Instal...
CIM_UnitaryComputerSystem {SetPowerState} {Caption, Description,
Instal...
Win32_ComputerSystem {SetPowerState, R... {Caption, Description,
Instal...
CIM_ComputerSystemResource {} {GroupComponent, PartComponent}
CIM_ComputerSystemMappedIO {} {GroupComponent, PartComponent}
CIM_ComputerSystemDMA {} {GroupComponent, PartComponent}
CIM_ComputerSystemIRQ {} {GroupComponent, PartComponent}
Win32_ComputerSystemProcessor {} {GroupComponent, PartComponent}
CIM_ComputerSystemPackage {} {Antecedent, Dependent}
Win32_ComputerSystemProduct {} {Caption, Description,
Identi...
Win32_NTLogEventComputer {} {Computer, Record}

NOTE  If you try to use a wildcard for the classname parameter of the Get-CimInstance
cmdlet, an error returns because the parameter design does not permit wildcard
characters.

Finding WMI class methods
If you want to find WMI classes related to processes that contain a method that begins with
the letters term*, you use a command similar to the one in the following example:

PS C:\> Get-CimClass -ClassName *process* -MethodName term*

 NameSpace: ROOT/cimv2

	 Using CIM cmdlets to explore WMI classes	 CHAPTER 9 	 129

CimClassName CimClassMethods CimClassProperties
------------ --------------- ------------------
Win32_Process {Create, Terminat... {Caption, Description,
Instal...

To find all WMI classes related to processes that expose any methods, use the command in
the following example:

PS C:\> Get-CimClass -ClassName *process* -MethodName *

 NameSpace: ROOT/cimv2

CimClassName CimClassMethods CimClassProperties
------------ --------------- ------------------
Win32_Process {Create, Terminat... {Caption, Description,
Instal...
CIM_Processor {SetPowerState, R... {Caption, Description,
Instal...
Win32_Processor {SetPowerState, R... {Caption, Description,
Instal...

To find any WMI class in the root/cimv2 WMI namespace that exposes a method called cre-
ate, use the command in the following example:

PS C:\> Get-CimClass -ClassName * -MethodName create

 NameSpace: ROOT/cimv2

CimClassName CimClassMethods CimClassProperties
------------ --------------- ------------------
Win32_Process {Create, Terminat... {Caption, Description,
Instal...
Win32_ScheduledJob {Create, Delete} {Caption, Description,
Instal...
Win32_DfsNode {Create} {Caption, Description,
Instal...
Win32_BaseService {StartService, St... {Caption, Description,
Instal...
Win32_SystemDriver {StartService, St... {Caption, Description,
Instal...
Win32_Service {StartService, St... {Caption, Description,
Instal...
Win32_TerminalService {StartService, St... {Caption, Description,
Instal...
Win32_Share {Create, SetShare... {Caption, Description,
Instal...
Win32_ClusterShare {Create, SetShare... {Caption, Description,
Instal...
Win32_ShadowCopy {Create, Revert} {Caption, Description,
Instal...
Win32_ShadowStorage {Create} {AllocatedSpace, DiffVolume,
...

	130	 CHAPTER 9 	 Using CIM

Filtering classes by qualifier
To find WMI classes that possess a particular qualifier, use the qualifier parameter. For
example, the following command finds WMI classes that relate to computers and have the
supportsupdate WMI qualifier:

PS C:\> Get-CimClass -ClassName *computer* -QualifierName *update

 NameSpace: ROOT/cimv2

CimClassName CimClassMethods CimClassProperties
------------ --------------- ------------------
Win32_ComputerSystem {SetPowerState, R... {Caption, Description,
Instal...

The parameters can be combined to produce powerful searches that without using the
CIM cmdlets would require rather complicated scripting. For example, the following com-
mand finds all WMI classes in the root/Cimv2 namespace that have the singleton qualifier and
also expose a method:

PS C:\> Get-CimClass -ClassName * -QualifierName singleton -MethodName *

 NameSpace: ROOT/cimv2

CimClassName CimClassMethods CimClassProperties
------------ --------------- ------------------
__SystemSecurity {GetSD, GetSecuri... {}
Win32_OperatingSystem {Reboot, Shutdown... {Caption, Description,
Instal...
Win32_OfflineFilesCache {Enable, RenameIt... {Active, Enabled, Location}

One qualifier that is important to review is the deprecated qualifier. Deprecated WMI
classes are not recommended for use because they are being phased out. Using the Get-
CimClass cmdlet, it is easy to spot these WMI classes. The following example shows this
technique:

PS C:\> Get-CimClass * -QualifierName deprecated

 NameSpace: ROOT/cimv2

CimClassName CimClassMethods CimClassProperties
------------ --------------- ------------------
Win32_PageFile {TakeOwnerShip, C... {Caption, Description,
Instal...
Win32_DisplayConfiguration {} {Caption, Description,
Settin...
Win32_DisplayControllerConfigura... {} {Caption, Description,
Settin...
Win32_VideoConfiguration {} {Caption, Description,
Settin...
Win32_AllocatedResource {} {Antecedent, Dependent}

 Using CIM cmdlets to explore WMI classes ChAPTER 9 131

Using this technique, it is easy to find association classes. More information about working
with WMI association classes appears in the “Working with associations” section later in this
chapter.

The following code finds all the WMI classes in the root/cimv2 WMI namespace that relate
to sessions. In addition, it looks for the association qualifier. Luckily, you can use wildcards for
the qualifier names, and therefore the following code uses assoc* instead of association:

PS C:\> Get-CimClass -ClassName *session* -QualifierName assoc*

 NameSpace: ROOT/cimv2

CimClassName CimClassMethods CimClassProperties
------------ --------------- ------------------
Win32_SubSession {} {Antecedent, Dependent}
Win32_SessionConnection {} {Antecedent, Dependent}
Win32_LogonSessionMappedDisk {} {Antecedent, Dependent}
Win32_SessionResource {} {Antecedent, Dependent}
Win32_SessionProcess {} {Antecedent, Dependent}

One qualifier you should definitely look for is the dynamic qualifier. This is because it is
unsupported to query abstract WMI classes. Therefore, when looking for WMI classes you will
want to ensure that at some point you run your list through the dynamic filter. In the follow-
ing example, three WMI classes return that are related to time:

PS C:\> Get-CimClass -ClassName *time

 NameSpace: ROOT/cimv2

CimClassName CimClassMethods CimClassProperties
------------ --------------- ------------------
Win32_CurrentTime {} {Day, DayOfWeek, Hour,
Millis...
Win32_LocalTime {} {Day, DayOfWeek, Hour,
Millis...
Win32_UTCTime {} {Day, DayOfWeek, Hour,
Millis...

By adding the query for the qualifier, the appropriate WMI classes are identified. One class
is abstract and the other two are dynamic classes that could prove to be useful. This follow-
ing example shows where first, the dynamic qualifier is used and second, where the abstract
qualifier appears:

PS C:\> Get-CimClass -ClassName *time -QualifierName dynamic

 NameSpace: ROOT/cimv2

	132	 CHAPTER 9 	 Using CIM

CimClassName CimClassMethods CimClassProperties
------------ --------------- ------------------
Win32_LocalTime {} {Day, DayOfWeek, Hour,
Millis...
Win32_UTCTime {} {Day, DayOfWeek, Hour,
Millis...

PS C:\> Get-CimClass -ClassName *time -QualifierName abstract

 NameSpace: ROOT/cimv2

CimClassName CimClassMethods CimClassProperties
------------ --------------- ------------------
Win32_CurrentTime {} {Day, DayOfWeek, Hour,
Millis...

Retrieving WMI instances
To query for WMI data, use the Get-CimInstance cmdlet. The easiest way to use the Get-
CimInstance cmdlet is to query for all properties and all instances of a particular WMI class on
the local machine. This is extremely easy to do. The following command illustrates returning
BIOS information from the local computer:

PS C:\> Get-CimInstance win32_bios

SMBIOSBIOSVersion : 090004
Manufacturer : American Megatrends Inc.
Name : BIOS Date: 03/19/09 22:51:32 Ver: 09.00.04
SerialNumber : 4429-0046-2083-1237-7579-8937-43
Version : VRTUAL - 3000919

The Get-CimInstance cmdlet returns the entire WMI object, but it honors the format*.xml
files that Windows PowerShell uses to determine which properties are displayed by default
for a particular WMI class. The following command shows the properties available from the
Win32_Bios WMI class:

PS C:\> $b = Get-CimInstance win32_bios
PS C:\> $b.CimClass.CimClassProperties | fw name -Column 3

Caption Description InstallDate
Name Status BuildNumber
CodeSet IdentificationCode LanguageEdition
Manufacturer OtherTargetOS SerialNumber
SoftwareElementID SoftwareElementState TargetOperatingSystem
Version PrimaryBIOS BiosCharacteristics
BIOSVersion CurrentLanguage InstallableLanguages
ListOfLanguages ReleaseDate SMBIOSBIOSVersion
SMBIOSMajorVersion SMBIOSMinorVersion SMBIOSPresent

	 Using CIM cmdlets to explore WMI classes	 CHAPTER 9 	 133

Reducing returned properties and instances
To limit the amount of data returned from a remote connection, reduce the number of prop-
erties returned as well as the number of instances. To reduce properties, use the property
parameter. To reduce the number of returned instances use the filter parameter. The follow-
ing command uses gcim, which is an alias for the Get-CimInstance cmdlet. It also abbreviates
the classname parameter and the filter parameter. As seen here, the command returns only
the name and state from the bits service. The default output, however, shows all the prop-
erty names as well as the system properties. As shown here, however, only the two selected
properties contain data:

PS C:\> gcim -clas win32_service -Property name, state -Fil "name = 'bits'"

Name : BITS
Status :
ExitCode :
DesktopInteract :
ErrorControl :
PathName :
ServiceType :
StartMode :
Caption :
Description :
InstallDate :
CreationClassName :
Started :
SystemCreationClassName :
SystemName :
AcceptPause :
AcceptStop :
DisplayName :
ServiceSpecificExitCode :
StartName :
State : Running
TagId :
CheckPoint :
ProcessId :
WaitHint :
PSComputerName :
CimClass : root/cimv2:Win32_Service
CimInstanceProperties : {Caption, Description, InstallDate, Name...}
CimSystemProperties : Microsoft.Management.Infrastructure.CimSystemProperties

	134	 CHAPTER 9 	 Using CIM

Cleaning up output from the command
To produce a cleaner output, send the selected data to the Format-Table cmdlet. This is easy
to do because ft is an alias for the Format-Table cmdlet:

PS C:\> gcim -clas win32_service -Property name, state -Fil "name = 'bits'" | ft name,
state

name state
---- -----
BITS Running

Make sure you choose properties you have already selected in the property parameter or
else they will not display. In the command appearing here, the status property is selected in
the Format-Table cmdlet. There is a status property on the Win32_Service WMI class, but it
was not chosen when the properties were selected:

PS C:\> gcim -clas win32_service -Property name, state -Fil "name = 'bits'" | ft name,
state, status

name state status
---- ----- ------
BITS Running

The Get-CimInstance cmdlet does not accept a wildcard parameter for property names
(neither does the Get-WmiObject cmdlet for that matter). One thing that can simplify some of
your coding is to put your property selection into a variable. This permits you to use the same
property names in both the Get-CimInstance cmdlet and in your Format-Table (or Format-List,
or Select-Object, or whatever you are doing after you get your WMI data) without having to
type things twice. The following example shows this technique:

PS C:\> $property = "name","state","startmode","startname"
PS C:\> gcim -clas win32_service -Pro $property -fil "name = 'bits'" | ft $property -A

name state startmode startname
---- ----- --------- ---------
BITS Running Manual LocalSystem

Working with associations

In the old-fashioned VBScript days, working with association classes was extremely com-
plicated. This is unfortunate because WMI association classes are extremely powerful and
useful. Earlier versions of Windows PowerShell simplified working with association classes,
primarily because it simplified working with WMI data in general. However, figuring out
how to utilize the Windows PowerShell advantage was still pretty much an advanced tech-
nique. Luckily, in Windows PowerShell 3.0 we have the CIM classes that introduce the Get-
CimAssociatedInstance cmdlet.

	 Working with associations	 CHAPTER 9 	 135

The first thing to do is to retrieve a CIM instance and store it in a variable. In the following
example, instances of the Win32_LogonSession WMI class are retrieved and stored in the $log-
on variable. Next, the Get-CimAssociatedInstance cmdlet is used to retrieve instances associ-
ated with this class. To see what type of objects will return from the command the results pipe
to the Get-Member cmdlet. Two WMI classes return: the Win32_UserAccount and all processes
that are related to that user account in the form of instances of the Win32_Process cmdlet:

PS C:\> $logon = Get-CimInstance win32_logonsession
PS C:\> Get-CimAssociatedInstance $logon | Get-Member

 TypeName: Microsoft.Management.Infrastructure.CimInstance#root/cimv2/Win32_
UserAccount

Name MemberType Definition
---- ---------- ----------
Clone Method System.Object ICloneable.Clone()
Dispose Method void Dispose(), void IDisposable.Dispose()
Equals Method bool Equals(System.Object obj)
GetCimSessionComputerName Method string GetCimSessionComputerName()
GetCimSessionInstanceId Method guid GetCimSessionInstanceId()
GetHashCode Method int GetHashCode()
GetObjectData Method void GetObjectData(System.Runtime.
Serialization....
GetType Method type GetType()
ToString Method string ToString()
AccountType Property uint32 AccountType {get;}
Caption Property string Caption {get;}
Description Property string Description {get;}
Disabled Property bool Disabled {get;set;}
Domain Property string Domain {get;}
FullName Property string FullName {get;set;}
InstallDate Property CimInstance#DateTime InstallDate {get;}
LocalAccount Property bool LocalAccount {get;set;}
Lockout Property bool Lockout {get;set;}
Name Property string Name {get;}
PasswordChangeable Property bool PasswordChangeable {get;set;}
PasswordExpires Property bool PasswordExpires {get;set;}
PasswordRequired Property bool PasswordRequired {get;set;}
PSComputerName Property string PSComputerName {get;}
SID Property string SID {get;}
SIDType Property byte SIDType {get;}
Status Property string Status {get;}
PSStatus PropertySet PSStatus {Status, Caption, PasswordExpires}

 TypeName: Microsoft.Management.Infrastructure.CimInstance#root/cimv2/Win32_Process

Name MemberType Definition
---- ---------- ----------
Handles AliasProperty Handles = Handlecount
ProcessName AliasProperty ProcessName = Name
VM AliasProperty VM = VirtualSize
WS AliasProperty WS = WorkingSetSize

	136	 CHAPTER 9 	 Using CIM

Clone Method System.Object ICloneable.Clone()
Dispose Method void Dispose(), void IDisposable.Dispose()
Equals Method bool Equals(System.Object obj)
GetCimSessionComputerName Method string GetCimSessionComputerName()
GetCimSessionInstanceId Method guid GetCimSessionInstanceId()
GetHashCode Method int GetHashCode()
GetObjectData Method void GetObjectData(System.Runtime.
Serializat...
GetType Method type GetType()
ToString Method string ToString()
Caption Property string Caption {get;}
CommandLine Property string CommandLine {get;}
CreationClassName Property string CreationClassName {get;}
CreationDate Property CimInstance#DateTime CreationDate {get;}
CSCreationClassName Property string CSCreationClassName {get;}
CSName Property string CSName {get;}
Description Property string Description {get;}
ExecutablePath Property string ExecutablePath {get;}
ExecutionState Property uint16 ExecutionState {get;}
Handle Property string Handle {get;}
HandleCount Property uint32 HandleCount {get;}
InstallDate Property CimInstance#DateTime InstallDate {get;}
KernelModeTime Property uint64 KernelModeTime {get;}
MaximumWorkingSetSize Property uint32 MaximumWorkingSetSize {get;}
MinimumWorkingSetSize Property uint32 MinimumWorkingSetSize {get;}
Name Property string Name {get;}
OSCreationClassName Property string OSCreationClassName {get;}
OSName Property string OSName {get;}
OtherOperationCount Property uint64 OtherOperationCount {get;}
OtherTransferCount Property uint64 OtherTransferCount {get;}
PageFaults Property uint32 PageFaults {get;}
PageFileUsage Property uint32 PageFileUsage {get;}
ParentProcessId Property uint32 ParentProcessId {get;}
PeakPageFileUsage Property uint32 PeakPageFileUsage {get;}
PeakVirtualSize Property uint64 PeakVirtualSize {get;}
PeakWorkingSetSize Property uint32 PeakWorkingSetSize {get;}
Priority Property uint32 Priority {get;}
PrivatePageCount Property uint64 PrivatePageCount {get;}
ProcessId Property uint32 ProcessId {get;}
PSComputerName Property string PSComputerName {get;}
QuotaNonPagedPoolUsage Property uint32 QuotaNonPagedPoolUsage {get;}
QuotaPagedPoolUsage Property uint32 QuotaPagedPoolUsage {get;}
QuotaPeakNonPagedPoolUsage Property uint32 QuotaPeakNonPagedPoolUsage {get;}
QuotaPeakPagedPoolUsage Property uint32 QuotaPeakPagedPoolUsage {get;}
ReadOperationCount Property uint64 ReadOperationCount {get;}
ReadTransferCount Property uint64 ReadTransferCount {get;}
SessionId Property uint32 SessionId {get;}
Status Property string Status {get;}
TerminationDate Property CimInstance#DateTime TerminationDate {get;}
ThreadCount Property uint32 ThreadCount {get;}
UserModeTime Property uint64 UserModeTime {get;}
VirtualSize Property uint64 VirtualSize {get;}
WindowsVersion Property string WindowsVersion {get;}
WorkingSetSize Property uint64 WorkingSetSize {get;}
WriteOperationCount Property uint64 WriteOperationCount {get;}

	 Working with associations	 CHAPTER 9 	 137

WriteTransferCount Property uint64 WriteTransferCount {get;}
Path ScriptProperty System.Object Path {get=$this.ExecutablePath;}

When the command runs without piping to the Get-Member object, we see that first the
instance of the Win32_UserAccount WMI class returns. The output shows the user name, ac-
count type, SID, domain, and the caption of the user account. As shown in the output from
Get-Member, a lot more information is available, but this is the default display. Following the
user account information, the default process information displays the process ID, name, and
a bit of performance information related to the processes associated with the user account:

PS C:\> $logon = Get-CimInstance win32_logonsession
PS C:\> Get-CimAssociatedInstance $logon

Name Caption AccountType SID Domain
---- ------- ----------- --- ------
ed IAMMRED\ed 512 S-1-5-21-14579... IAMMRED

ProcessId : 2780
Name : taskhostex.exe
HandleCount : 215
WorkingSetSize : 8200192
VirtualSize : 242356224

ProcessId : 2804
Name : rdpclip.exe
HandleCount : 225
WorkingSetSize : 8175616
VirtualSize : 89419776

ProcessId : 2352
Name : explorer.exe
HandleCount : 1078
WorkingSetSize : 65847296
VirtualSize : 386928640

ProcessId : 984
Name : powershell.exe
HandleCount : 577
WorkingSetSize : 94527488
VirtualSize : 690466816

ProcessId : 296
Name : conhost.exe
HandleCount : 54
WorkingSetSize : 7204864
VirtualSize : 62164992

	138	 CHAPTER 9 	 Using CIM

If you do not want to retrieve both classes from the association query, you can specify
the resulting class by name. To do this, use the resultclassname parameter from the Get-
CimAssociatedInstance cmdlet. In the following example, only the Win32_UserAccount WMI
class returns from the query:

PS C:\> $logon = Get-CimInstance win32_logonsession
PS C:\> Get-CimAssociatedInstance $logon -ResultClassName win32_useraccount

Name Caption AccountType SID Domain
---- ------- ----------- --- ------
ed IAMMRED\ed 512 S-1-5-21-14579... IAMMRED

When you work with the Get-CimAssociatedInstance cmdlet, the InputObject you supply
must be a single instance. If you supply an object that contains more than one instance of the
class, an error raises. This error appears in the following example, where more than one disk is
provided to the InputObject parameter:

PS C:\> $disk = Get-CimInstance win32_logicaldisk
PS C:\> Get-CimAssociatedInstance $disk
Get-CimAssociatedInstance : Cannot convert 'System.Object[]' to the type
'Microsoft.Management.Infrastructure.CimInstance' required by parameter 'InputObject'.
Specified method is not supported.
At line:1 char:27
+ Get-CimAssociatedInstance $disk
+ ~~~~~
 + CategoryInfo : InvalidArgument: (:) [Get-CimAssociatedInstance], Paramete
 rBindingException
 + FullyQualifiedErrorId : CannotConvertArgument,Microsoft.Management.Infrastructure.
 CimCmdlets.GetCimAssociatedInstanceCommand

There are two ways to correct this particular error. The first, and the easiest, is to use array
indexing, as shown in the following example:

PS C:\> $disk = Get-CimInstance win32_logicaldisk
PS C:\> Get-CimAssociatedInstance $disk[0]

Name PrimaryOwnerName Domain TotalPhysicalMemory Model Manufacturer
---- ---------------- ------ ------------------- ----- ------------
W8C504 ed iammred.net 2147012608 Virtual Ma... Microsoft ...

PS C:\> Get-CimAssociatedInstance $disk[1]

Name Hidden Archive Writeable LastModified
---- ------ ------- --------- ------------
c:\

NumberOfBlocks : 265613312
BootPartition : False
Name : Disk #0, Partition #1
PrimaryPartition : True
Size : 135994015744
Index : 1

	 Working with associations	 CHAPTER 9 	 139

Domain : iammred.net
Manufacturer : Microsoft Corporation
Model : Virtual Machine
Name : W8C504
PrimaryOwnerName : ed
TotalPhysicalMemory : 2147012608

Using array indexing is fine when you find yourself in the situation with an InputObject
that contains an array. However, the results might be a bit inconsistent. A better approach is
to ensure you do not have an array in the first place. To do this, use the filter parameter to
reduce the number of instances of your WMI class that return. In the following example, the
filter returns the number of WMI instances to the C drive:

PS C:\> $disk = Get-CimInstance win32_logicaldisk -Filter "name = 'c:'"
PS C:\> Get-CimAssociatedInstance $disk

Name Hidden Archive Writeable LastModified
---- ------ ------- --------- ------------
c:\

NumberOfBlocks : 265613312
BootPartition : False
Name : Disk #0, Partition #1
PrimaryPartition : True
Size : 135994015744
Index : 1

Domain : iammred.net
Manufacturer : Microsoft Corporation
Model : Virtual Machine
Name : W8C504
PrimaryOwnerName : ed
TotalPhysicalMemory : 2147012608

An easy way to see the objects returned by the Get-CimAssociatedInstance cmdlet is to
pipeline the returned objects to the Get-Member cmdlet and then to select the typename
property. Because more than one instance of the object might return and clutter the output,
it is important to choose unique typenames. The following example shows this command:

PS C:\> Get-CimAssociatedInstance $disk | gm | select typename -Unique

TypeName

Microsoft.Management.Infrastructure.CimInstance#root/cimv2/Win32_Directory
Microsoft.Management.Infrastructure.CimInstance#root/cimv2/Win32_DiskPartition
Microsoft.Management.Infrastructure.CimInstance#root/cimv2/Win32_ComputerSystem

 140 ChAPTER 9 Using CIM

Armed with this information, it is easy to explore the returned associations, as shown in the
following example:

PS C:\> Get-CimAssociatedInstance $disk -ResultClassName win32_directory

Name Hidden Archive Writeable LastModified
---- ------ ------- --------- ------------
c:\

PS C:\> Get-CimAssociatedInstance $disk -ResultClassName win32_diskpartition

Name NumberOfBlocks BootPartition PrimaryPartition Size Index
---- -------------- ------------- -------------- ---- -----
Disk #0, Part... 265613312 False True 135994015744 1

PS C:\> Get-CimAssociatedInstance $disk -ResultClassName win32_Computersystem

Name PrimaryOwnerName Domain TotalPhysicalMemory Model Manufacturer
---- -------------- ------ -------------- ----- ------------
W8C504 ed iammred.net 2147012608 Virtual Ma... Microsoft ...

Keep in mind that the entire WMI class returns and is therefore ripe for further exploration.
The easy way to do this is to store the results into a variable, and then walk through the data.
Once you have what interests you, you might decide to display a nicely organized table, as
shown in the following example:

PS C:\> $dp = Get-CimAssociatedInstance $disk -ResultClassName win32_diskpartition
PS C:\> $dp | FT deviceID, BlockSize, NumberOfBLicks, Size, StartingOffSet -AutoSize

deviceID BlockSize NumberOfBLicks Size StartingOffSet
-------- --------- -------------- ---- --------------
Disk #0, Partition #1 512 135994015744 368050176

Summary

This chapter discussed using CIM cmdlets to perform WMI discovery. We reviewed how to
find WMI class methods as well as how to find classes by qualifier. Next, we covered how
to return WMI information both locally and remotely. We concluded by examining WMI
associations.

		 	 141

C H A P T E R 1 0

Using the Windows
PowerShell ISE

■■ Running the Windows PowerShell ISE

■■ Working with Windows PowerShell ISE snippets

The Windows PowerShell ISE in Windows PowerShell 3.0 is completely revised over its 2.0
cousin. The ISE in Windows PowerShell ISE stands for Integrated Scripting Environment,

but that does not mean you must use it to write scripts. In fact, many IT pros like to use the
Windows PowerShell ISE for interactive Windows PowerShell commands because it is easier
to edit, has better tab completion, and has a built-in Command pane.

Running the Windows PowerShell ISE

On Windows 8, the Windows PowerShell ISE appears to be a bit hidden. In fact, on Windows
Server 2012 it also is a bit hidden. On Windows Server 2012, a Windows PowerShell shortcut
automatically appears on the desktop taskbar. Pinning Windows PowerShell to the Windows
8 desktop taskbar is also a Windows PowerShell best practice.

To start the Windows PowerShell ISE, you have a couple of choices. On the Start window
of Windows Server 2012, you can type PowerShell and both Windows PowerShell and the
Windows PowerShell ISE appear as search results. However, on Windows 8, this is not the
case. You must type PowerShell_ISE to find the Windows PowerShell ISE. Another way
to launch the Windows PowerShell ISE is to right-click the Windows PowerShell icon and
choose either Windows PowerShell ISE or Run ISE as Administrator from the task menu.
Figure 10-1 shows the task menu.

FIGURE 10-1  Right-clicking on the Windows PowerShell icon on the desktop taskbar displays a task
menu that allows you to select the Windows PowerShell ISE.

	142	 CHAPTER 10 	 Using the Windows PowerShell ISE

In the Windows PowerShell console, you need to type only ise to launch the Windows
PowerShell ISE. This shortcut permits quick access to the Windows PowerShell ISE when you
need to type more than a few interactive commands.

Navigating the Windows PowerShell ISE
Once the Windows PowerShell ISE launches, two panes appear. On the left side of the screen
is an interactive Windows PowerShell console. On the right side of the screen is the Command
Add-on window. The Command Add-on is really a Windows PowerShell command explorer
window. When you use the Windows PowerShell ISE in an interactive way, the Command
Add-on gives you the ability to build a command by using the mouse. Once you have built
the command, click the Run button to copy the command to the console window and execute
the command. Figure 10-2 shows this view of the Windows PowerShell ISE.

FIGURE 10-2  The Windows PowerShell ISE presents a Windows PowerShell console on the left side of the
screen and a Command Add-on on the right side of the screen.

 Running the Windows PowerShell ISE ChAPTER 10 143

Typing into the Name text box causes the Command Add-on to search through all Win-
dows PowerShell modules to retrieve a matching command. This is a great way to find and
locate commands. By default, the Command Add-on uses a wildcard search pattern. There-
fore, typing wmi returns five cmdlets that include that letter pattern, as shown in Figure 10-3.

FIGURE 10-3 The Command Add-on uses a wildcard search pattern to find matching cmdlets.

Once you find the cmdlet that interests you, select it from the filter list of cmdlet names.
Upon selection, the Command pane changes to the parameters for the selected cmdlet. Each
parameter set appears on a different tab. Screen resolution really affects the usability of this
feature. The greater the screen resolution, the more usable this feature becomes. With a small
resolution, you have to scroll back and forth to see the parameter sets, and you have to scroll
up and down to see the available parameters for a particular parameter set. In this view, it is
easy to miss important parameters.

	144	 CHAPTER 10 	 Using the Windows PowerShell ISE

In Figure 10-4, the Get-WmiObject cmdlet queries the Win32_Bios WMI class. When you
enter the WMI class name in the Class text box, the Run button executes the command. The
Console pane displays the command first and then displays the output from running the
command.

FIGURE 10-4  Select the command to run from the Command Add-on, fill in the required parameters, and
press Run to execute Windows PowerShell cmdlets inside the Windows PowerShell ISE.

NOTE  Using the Insert button inserts the command to the console but does not execute
the command. This is great for occasions when you want to look over the command prior
to actually executing it. It also provides you with the chance to edit the command prior to
execution.

To find and run commands through the Command Add-on, enter the command you are
interested in running in the Name text box of the Command Add-on. Next, select the com-
mand from the filtered list. Enter the parameters in the Parameters for… parameter text box
and press the Run button when finished. The results appear in the Command output pane in
the center of the Windows PowerShell ISE.

	 Running the Windows PowerShell ISE	 CHAPTER 10 	 145

Working with the Script pane
Pressing the Script arrow beside the word in the upper-right corner of the Console pane re-
veals a fresh Script pane. You can also obtain a fresh Script pane by selecting File | New or by
clicking the small white piece of paper icon in the upper-left corner of the Windows PowerShell
ISE. You can also use the keyboard shortcut Ctrl+N.

Just because it’s called the Script pane does not mean that you have to enable script sup-
port to use it. As long as you do not save the script to a file, you can enter as complex of com-
mands into the Script pane as you want. You can even run the script with the script execution
policy restricted. Once you save the script to a file, however, the script execution policy comes
into effect, and you will need to deal with the script execution policy at that point. Setting the
Script Execution policy is discussed in Chapter 11, “Using Windows PowerShell Scripts.”

You can still use the Command Add-on with the Script pane, but it requires an extra step.
Use the Command Add-on as described in the preceding section, but instead of using the
Run or Insert button, use the Copy button. Navigate to the appropriate section in the Script
pane, and then use the Paste command by means of one of the following options: Select
Paste from the right-click menu, select Paste from the Edit menu, click the Paste icon on the
toolbar, or simply press Ctrl+V.

NOTE  If you press the Insert button while the Script pane is maximized, the command is
inserted into the hidden Console pane. Pressing Insert a second time inserts the command
a second time on the same command line in the hidden Console pane. No notification that
this occurs is presented.

To run commands present in the Script pane, click the green triangle in the middle of the
toolbar, press F-5, or select Run from the File menu. The commands from the Script pane
transfer to the Console pane and then execute. Any output associated with the commands
appears under the transferred commands. Once saved as a script, the commands no longer
transfer to the Command pane. Rather, the path to the script appears in the Console pane
along with any associated output.

	146	 CHAPTER 10 	 Using the Windows PowerShell ISE

You can continue to use the Command Add-on to build your commands as you pipe-
line the output from one cmdlet to another one. In Figure 10-5, the output from the Get-
WmiObject cmdlet pipes to the Format-Table cmdlet. The properties chosen in the Format-
Table cmdlet as well as the implementation of the Wrap switch are configured through the
Command Add-on.

FIGURE 10-5  Use of the Command Add-on permits easy building of commands.

Tab expansion and Intellisense
Most advanced scripters will not use the Command Add-on because it consumes valuable
screen real estate, plus it requires the use of the mouse to find and create commands. For
advanced scripters, tab expansion and Microsoft Intellisense are the keys to productivity. To
turn off the Command Add-on, either click the “x” in the upper-right corner of the Command
Add-on or deselect Show Command Add-on from the View menu. Once deselected, the Win-
dows PowerShell ISE remembers your preference and will not display the Command Add-on
again until you re-select it.

	 Running the Windows PowerShell ISE	 CHAPTER 10 	 147

Intellisense provides pop-up help and options permitting rapid command development
without requiring complete syntax knowledge. When you type a cmdlet name, Intellisense
supplies possible matches to the cmdlet names. Once you select the cmdlet, Intellisense dis-
plays the complete syntax of the cmdlet, as shown in Figure 10-6.

FIGURE 10-6  Once you select a particular cmdlet from the list, Intellisense displays the complete syntax.

When you select a particular cmdlet, as you come to parameters, Intellisense displays
the applicable parameters in a list. Once Intellisense appears, use the Up and Down arrows
to navigate within the list. Press Enter to insert the highlighted option. You can then fill in
required values for parameters and go to the next parameter. Once again as you approach a
parameter position, Intellisense displays the appropriate options in a list. This process contin-
ues until you complete the command. Figure 10-7 illustrates selecting the property parameter
from the Intellisense list of optional parameters.

	148	 CHAPTER 10 	 Using the Windows PowerShell ISE

FIGURE 10-7  Intellisense displays parameters in a drop-down list. When you select a particular parameter,
the data type of the property appears.

Working with Windows PowerShell ISE snippets

Even experienced scripters love to use Windows PowerShell ISE snippets because they are a
great time saver. It takes just a little bit of familiarity with the snippets themselves, along with
a bit of experience with the Windows PowerShell syntax. Once you have the requirements
under your belt, you will be able to use the Windows PowerShell ISE snippets and create code
faster than you previously believed was possible.

Using Windows PowerShell ISE snippets to create code
To start the Windows PowerShell ISE snippets, use the Ctrl+J keystroke combination (you can
also use the mouse to select Edit | Start Snippets). Once the snippets appear, type the first
letter of the snippet name to quickly jump to the appropriate portion of the snippets (you can
also use the mouse to navigate up and down the snippet list). When you have identified the
snippet you wish to use, press Enter to place the snippet at the current insertion point in your
Windows PowerShell Script pane.

 Working with Windows PowerShell ISE snippets ChAPTER 10 149

To create a new function through Windows PowerShell ISE snippets, press CTRL+J to start
the Windows PowerShell ISE snippets. Next, type f to move to the “f” section of the Windows
PowerShell ISE snippets. Use the Down arrow until you arrive at the simple function snippet.
Press Enter to enter the simple function snippet into your code.

Creating new Windows PowerShell ISE snippets
After you spend a bit of time using Windows PowerShell ISE snippets, you will wonder how
you ever managed to create script without them. In that same instant, you might also begin
to think in terms of new snippets. Luckily, it is very easy to create a new Windows PowerShell
ISE snippet. In fact, there is even a cmdlet to do this. The cmdlet is the New-IseSnippet cmdlet.

NOTE  To create or use a user-defined Windows PowerShell ISE snippet, you must change 
the script execution policy to permit the execution of scripts. This is because user-defined 
snippets load from .xml files, and reading and loading files requires the script execution 
policy to permit running scripts. To verify your script execution policy, use the Get-Execution-
Policy cmdlet. To set the script execution policy, use the Set-ExecutionPolicy cmdlet. 

Use the New-IseSnippet cmdlet to create a new Windows PowerShell ISE snippet. Once you
create the snippet, it becomes immediately available in the Windows PowerShell ISE once you
start the Windows PowerShell ISE snippets. The command syntax is simple, but the command
takes a decent amount of space to complete. Only three parameters are required: Description,
Text, and Title. The name of the snippet is the Title parameter. The snippet itself is typed into
the Text parameter. When you want your code to appear on multiple lines, use the `r special
character. Of course, to do this means your Text parameter must appear inside double quota-
tion marks, not single quotation marks.

The following code creates a new Windows PowerShell ISE snippet that is a simplified
Switch syntax. It is a single logical line of code:

New-IseSnippet -Title SimpleSwitch -Description "A simple switch statement" -Author "ed

wilson" -Text "Switch () `r{'param1' { }`r}" -CaretOffset 9

Once you execute the New-IseSnippet command, it creates a new Snippets.xml file in the
snippets directory within your WindowsPowerShell folder in your documents folder. Figure
10-8 shows the SimpleSwitch.snippets .xml file.

	150	 CHAPTER 10 	 Using the Windows PowerShell ISE

FIGURE 10-8  Windows PowerShell snippets store in a Snippets.xml file in your WindowsPowerShell folder.

User-defined snippets are permanent; that is, they survive closing and re-opening the
Windows PowerShell ISE. They also survive reboots because they reside as .xml files in your
WindowsPowerShell folder.

Removing user-defined Windows PowerShell ISE snippets
Although there is a New-IseSnippet cmdlet and a Get-ISESnippet cmdlet, there is no Remove-
ISESnippet cmdlet. There is no need, really, because you have Remove-Item. To delete all your
custom Windows PowerShell ISE snippets, use the Get-ISESnippet cmdlet to retrieve the snip-
pets and the Remove-Item cmdlet to delete them. The following example shows this process:

Get-IseSnippet | Remove-Item

If you do not want to delete all your custom Windows PowerShell ISE snippets, use the
Where-Object cmdlet to filter only the ones you do want to delete. The following example
uses the Get-ISESnippet cmdlet to list all the user-defined Windows PowerShell ISE snippets
on the system:

PS C:\Windows\system32> Get-IseSnippet

 Directory: C:\Users\administrator.IAMMRED\Documents\WindowsPowerShell\Snippets

Mode LastWriteTime Length Name
---- ------------- ------ ----
-a--- 7/1/2012 1:03 AM 653 bogus.snippets.ps1xml
-a--- 7/1/2012 1:02 AM 653 mysnip.snippets.ps1xml
-a--- 7/1/2012 1:02 AM 671 simpleswitch.snippets.ps1xml

	 Summary	 CHAPTER 10 	 151

Next, use the Where-Object cmdlet (? is an alias for the Where-Object) to return all the
user-defined Windows PowerShell ISE snippets except the ones that contain the word Switch
within the name. The snippets that make it through the filter are pipelined to the Remove-
Item cmdlet. In the following example, the WhatIf switch shows which snippets will be
removed by the command:

PS C:\Windows\system32> Get-IseSnippet | ? name -NotMatch 'switch' | Remove-Item -WhatIf
What if: Performing operation "Remove file" on Target "C:\Users\administrator.IAMMRED\
Documents\Win
dowsPowerShell\Snippets\bogus.snippets.ps1xml".
What if: Performing operation "Remove file" on Target "C:\Users\administrator.IAMMRED\
Documents\Win
dowsPowerShell\Snippets\mysnip.snippets.ps1xml".

Once you have confirmed that only the snippets you do not want to keep will be deleted,
remove the WhatIf switch from the Remove-Item cmdlet and run the command a second
time. To confirm which snippets remain, use the Get-ISESnippet cmdlet to see which Windows
PowerShell ISE snippets are left on the system:

PS C:\Windows\system32> Get-IseSnippet | ? name -NotMatch 'switch' | Remove-Item

PS C:\Windows\system32> Get-IseSnippet

 Directory: C:\Users\administrator.IAMMRED\Documents\WindowsPowerShell\Snippets

Mode LastWriteTime Length Name
---- ------------- ------ ----
-a--- 7/1/2012 1:02 AM 671 simpleswitch.snippets.ps1xml

Summary

This chapter presented the advantages of using the Windows PowerShell ISE. The chapter
provided an overview of the Windows PowerShell ISE, including the Script pane, tab expan-
sion, and the Output pane. In addition, we covered the use of the Command Add-on. We
concluded by demonstrating how to use snippets.

		 	 153

C H A P T E R 1 1

Using Windows PowerShell
scripts

■■ Writing Windows PowerShell scripts

■■ Scripting fundamentals

■■ Using the While statement

■■ Using the Do…While statement

■■ Using the Do…Until statement

■■ Using the For statement

■■ Using the If statement

■■ Using the Switch statement

With the ability to perform so many actions from inside Windows PowerShell in an
interactive fashion, you might wonder, “Why do I need to write scripts?” For many

network administrators, one-line Windows PowerShell commands will indeed solve many
routine problems. This can become extremely powerful when the commands are combined
into batch files and perhaps called from a log-on script. However, there are some very good
reasons to write Windows PowerShell scripts. We will examine them in this chapter.

Why write Windows PowerShell scripts?

Perhaps the number one reason to write a Windows PowerShell script is to address recur-
ring needs. As an example, consider the activity of producing a directory listing. The simple
Get-ChildItem cmdlet does a good job, but after you decide to sort the listing and filter out
only files of a certain size, you end up with the following command:

Get-ChildItem c:\fso | Where-Object Length -gt 1000 | Sort-Object -Property name

Even if you use tab completion, the previous command requires a bit of typing. One way
to shorten it is to create a user-defined function. We will examine that technique later in this

	154	 CHAPTER 11 	 Using Windows PowerShell scripts

chapter. For now, the easiest solution is to write a Windows PowerShell script. The following
example shows the DirectoryListWithArguments.ps1 script:

DirectoryListWithArguments.ps1
foreach ($i in $args)
 {Get-ChildItem $i | Where-Object length -gt 1000 |
 Sort-Object -property name}

The DirectoryListWithArguments.ps1 script takes a single, unnamed argument that allows
the script to be modified when it is run. This makes the script much easier to work with and
adds flexibility.

An additional reason that network administrators write Windows PowerShell scripts is to
run the script as a scheduled task. On Windows 8 and Windows Server 2012, you have two
modules that assist in scheduling jobs: The ScheduledTasks module that permits working with
the Windows job scheduler and the PSScheduledJob module that permits creating Windows
PowerShell scheduled jobs. The PSScheduledJob module exists on any computer that runs
Windows PowerShell 3.0.

The ListProcessesSortResults.ps1 script is a script that a network administrator might want
to schedule to run several times a day. It produces a list of currently running processes and
writes the results to a text file as a formatted and sorted table:

ListProcessesSortResults.ps1
$args = "localhost","loopback","127.0.0.1"

foreach ($i in $args)
 {$strFile = "c:\mytest\"+ $i +"Processes.txt"
 Write-Host "Testing" $i "please wait ...";
 Get-WmiObject -computername $i -class win32_process |
 Select-Object name, processID, Priority, ThreadCount, PageFaults, PageFileUsage |
 Where-Object {!$_.processID -eq 0} | Sort-Object -property name |
 Format-Table | Out-File $strFile}

Another reason for writing Windows PowerShell scripts is that it makes it easy to store and
share both the “secret commands” and the ideas behind the scripts. For example, suppose
you develop a script that will connect remotely to workstations on your network and search
for user accounts that do not require a password. Obviously, an account without a password is
a security risk! After some searching around, you discover the WIN32_UserAccount WMI class
and develop a script that performs to your expectation. Because this is likely a script you will
want to use on a regular basis, and perhaps share with other network administrators in your
company, it makes sense to save it as a script. An example of such a script is AccountsWith-
NoRequiredPassword.ps1:

AccountsWithNoRequiredPassword.ps1
$args = "localhost"

foreach ($i in $args)
 {Write-Host "Connecting to" $i "please wait ...";
 Get-WmiObject -computername $i -class win32_UserAccount |
 Select-Object Name, Disabled, PasswordRequired, SID, SIDType |
 Where-Object {$_.PasswordRequired -eq 0} |
 Sort-Object -property name}

	 Scripting fundamentals	 CHAPTER 11 	 155

Scripting fundamentals

In its most basic form, a Windows PowerShell script is a collection of Windows PowerShell
commands. For example, you can put the following command into a Windows PowerShell
script and run it directly as it written:

Get-Process notepad | Stop-Process

To create a Windows PowerShell script, you only have to copy the command in a text file
and save the file by using a .PS1 extension. If you create the file in the Windows PowerShell
ISE and save the file, the .PS1 extension is added automatically. If you double-click the file, it
will open in Notepad by default.

Running Windows PowerShell scripts
To run the script, you can open the Windows PowerShell console and drag the file to the
console. If you first copy the path of the script to the Clipboard, you can later right-click inside
the Windows PowerShell console to paste the path of the script into the console. Then you
only need to press Enter to run the script. You just printed a string that represents the path of
the script, as shown in the following example:

PS C:\> "C:\fso\test.ps1"
C:\fso\test.ps1

In Windows PowerShell, when you want to print a string in the console, you put it in
quotation marks. You do not have to use Wscript.Echo or similar commands that you use in
VBScript. It is easier and simpler, but it is something that takes getting used to. Ok, you figure
out that you just displayed a string, so you remove the quotation marks and press Enter. This
time, you receive a real error message. You might ask, “What now?” Figure 11-1 shows the er-
ror message that relates to the script execution policy that disallows the running of scripts.

FIGURE 11-1  By default, an attempt to run a Windows PowerShell script generates an error message.

	156	 CHAPTER 11 	 Using Windows PowerShell scripts

Enabling Windows PowerShell scripting support
By default, Windows PowerShell disallows the execution of scripts. Script support can be
controlled by using Group Policy, but if it is not, and if you have administrator rights on
your computer, you can use the Set-ExecutionPolicy Windows PowerShell cmdlet to turn on
script support. The following list shows the six levels that can be enabled by using the Set-
ExecutionPolicy cmdlet:

■■ Restricted  Does not load configuration files or run scripts. “Restricted” is the default.

■■ AllSigned  Requires that all scripts and configuration files be signed by a trusted pub-
lisher, including scripts that you write on the local computer.

■■ RemoteSigned  Requires that all scripts and configuration files downloaded from the
Internet be signed by a trusted publisher.

■■ Unrestricted  Loads all configuration files and runs all scripts. If you run an unsigned
script that was downloaded from the Internet, you are prompted for permission before
it runs.

■■ Bypass  Nothing is blocked and there are no warnings or prompts.

■■ Undefined  Removes the currently assigned execution policy from the current scope.
This parameter will not remove an execution policy that is set in a Group Policy scope.

In addition to six levels of execution policy, there are three different scopes for the execu-
tion policies. The following list shows the three different execution policy scopes:

■■ Process  The execution policy affects only the current Windows PowerShell process.

■■ CurrentUser  The execution policy affects only the current user.

■■ LocalMachine  The execution policy affects all users of the computer.

Setting the LocalMachine execution policy requires administrator rights on the local
computer. By default, a non-elevated user has rights to set the script execution policy for the
CurrentUser user scope that affects his own execution policy.

With so many choices available to you for a script execution policy, you might be won-
dering which one is appropriate for you. The Windows PowerShell team recommends the
RemoteSigned setting, stating that it is appropriate for most circumstances. Remember that
even though descriptions of the various policy settings use the term Internet, this may not
always refer to the World Wide Web or even to locations outside your own firewall. This is be-
cause Windows PowerShell obtains its script origin information by using the Internet Explorer
zone settings. This means anything that comes from a computer other than your own is in the
Internet zone. You can change the Internet Explorer zone settings by using Internet Explorer,
the registry, or Group Policy.

If you do not want to see the confirmation message when you change the script execution
policy on Windows PowerShell 3.0, use the -Force parameter.

To view the execution policy for all scopes, use the List parameter when calling the Get-
ExecutionPolicy cmdlet, as shown in the following example:

 Scripting fundamentals ChAPTER 11 157

PS C:\> Get-ExecutionPolicy -List

 Scope ExecutionPolicy
 ----- ---------------
 MachinePolicy Undefined
 UserPolicy Undefined
 Process Undefined
 CurrentUser RemoteSigned
 LocalMachine Restricted

Use the Set-ExecutionPolicy cmdlet to change the script execution policy to unrestricted, as
shown in the following example:

Set-ExecutionPolicy unrestricted

Once you set the execution policy, it is a good idea to use the Get-ExecutionPolicy cmdlet
to retrieve the current effective script execution policy, as shown in the following example:

Get-ExecutionPolicy

The result prints to Windows PowerShell console:

Unrestricted

TIP If the execution policy on Windows PowerShell is set to restricted, how can you use a
script to determine the execution policy? One method is to use the Bypass parameter when
calling Windows PowerShell to run the script. The Bypass parameter bypasses the script
execution policy for the duration of the script run when calling it.

Transitioning from command line to script
Now that you have everything set up to enable script execution, you can run your StopNote-
pad.ps1 script:

StopNotepad.ps1
Get-Process Notepad | Stop-Process

If an instance of the Notepad process is running, everything is successful. However, if there
is no instance of Notepad running, an error is generated:

Get-Process : Cannot find a process with the name ‘Notepad’. Verify the process
 name and call the cmdlet again.
At C:\Documents and Settings\ed\Local Settings\Temp\tmp1DB.tmp.ps1:14 char:12
+ Get-Process <<<< Notepad | Stop-Process

NOTE Be sure to read error messages when you use Windows PowerShell. It’s a good
habit to cultivate.

	158	 CHAPTER 11 	 Using Windows PowerShell scripts

The first part of the error message provides a description of the problem. In this example,
it could not find a process with the name of Notepad. The second part of the error message
shows the position in the code where the error occurred. This is known as the position mes-
sage. The first line of the position message states the error occurred on line 14. The second
portion has a series of arrows that point to the command that failed. The Get-Process cmdlet
command is the one that failed:

At C:\Documents and Settings\ed\Local Settings\Temp\tmp1DB.tmp.ps1:14 char:12
+ Get-Process <<<< Notepad | Stop-Process

The easiest way to eliminate this error message is to use the -ErrorAction parameter and
specify the SilentlyContinue value. This is basically the same as using the On Error Resume
Next command from VBScript. The really useful feature of the -ErrorAction parameter is that
it can be specified on a cmdlet-by-cmdlet basis. In addition, there are four values that can be
used. The following list shows the allowed values for the -ErrorAction parameter:

■■ SilentlyContinue

■■ Continue (the default value)

■■ Inquire

■■ Stop

In the StopNotepadSilentlyContinue.ps1 script, add the -ErrorAction parameter to the
Get-Process cmdlet to skip any error that might arise if the Notepad process does not exist. To
make the script easier to read, break the code at the pipeline character. The pipeline charac-
ter is not the line continuation character. The backtick (`) character, also known as the grave
character, is used when a line of code is too long and must be broken into two physical lines
of code. The key thing to be aware of is that the two physical lines form a single logical line of
code. The following example shows how to use line continuation:

Write-Host -foregroundcolor green "This is a demo " `
 "of the line continuation character"

The following example shows the StopNotepadSilentlyContinue.ps1 script:

StopNotepadSilentlyContinue.ps1
Get-Process -name Notepad -erroraction silentlycontinue |
Stop-Process

Because you are writing a script, you can take advantage of some features of a script. One
of the first things you can do is use a variable to hold the name of the process to be stopped.
This has the advantage of enabling you to easily change the script to allow for stopping of
processes other than Notepad. All variables begin with the dollar sign ($). The following ex-
ample shows the line that holds the name of the process in a variable:

$process= "notepad"

Another improvement to the script is one that provides information about the process that
is stopped. The Stop-Process cmdlet returns no information when it is used. However, by using
the -PassThru parameter, the process object is passed along in the pipeline. Use this parameter

	 Scripting fundamentals	 CHAPTER 11 	 159

and pipeline the process object to the ForEach-Object cmdlet. Use the $_ automatic variable to
refer to the current object on the pipeline and select the name and process ID of the process
that is stopped. The concatenation operator in Windows PowerShell is the plus (+) sign. Use
it to display the values of the selected properties in addition to the strings completing your
sentence, as shown in the following example:

ForEach-Object { $_.name + ‘ with process ID: ‘ + $_.ID + ‘ was stopped.’}

The following example shows the complete StopNotepadSilentlyContinuePassThru.ps1
script:

StopNotepadSilentlyContinuePassThru.ps1
$process = "notepad"
Get-Process -name $Process -erroraction silentlycontinue |
Stop-Process -passthru |
ForEach-Object { $_.name + ‘ with process ID: ‘ + $_.ID + ‘ was stopped.’}

When you run the script with two instances of Notepad running, you get the following
output:

notepad with process ID: 2088 was stopped.
notepad with process ID: 2568 was stopped.

An additional advantage of the StopNotepadSilentlyContinuePassThru.ps1 script is that
you can use it to stop different processes. You can assign multiple process names (an array) to
the $process variable, and when you run the script, each process will be stopped. The follow-
ing example shows how to assign the Notepad and Calc processes to the $process variable:

$process= "notepad", "calc"

When you run the script, both processes are stopped:

calc with process ID: 3428 was stopped.
notepad with process ID: 488 was stopped.

You could continue changing your script. You could put the code in a function, write
command-line Help, and change the script so that it accepts command-line input or even
reads a list of processes from a text file. As soon as you move from the command line to
script, such options suddenly become possible.

Running Windows PowerShell scripts
You cannot simply double-click on a Windows PowerShell script and have it run. You cannot
type the name in the Run dialog box, either. In Windows PowerShell, you can run scripts if
you have enabled the execution policy, but you need to type the entire path to the script you
want to run and make sure you include the .ps1 extension.

If you need to run a script from outside Windows PowerShell, you need to type the full
path to the script, but you must feed it as an argument to the PowerShell.exe program. In ad-
dition, you probably want to specify the -NoExit argument so you can read the output from
the script, as shown in Figure 11-2.

	160	 CHAPTER 11 	 Using Windows PowerShell scripts

FIGURE 11-2  Use the -NoExit argument for the PowerShell.exe program to keep the console open after a
script run.

TIP  Add a shortcut to Windows PowerShell in your SendTo folder. This folder is located in
the Documents and Settings\%username% folder. When you create the shortcut, make sure
you specify the -NoExit switch for PowerShell.exe or the output will scroll by so fast you
will not be able to read it.

Understanding variables and constants
Understanding the use of variables and constants in Windows PowerShell is fundamental to
much of the flexibility of the Windows PowerShell scripting language. Variables are used to
hold information for use later in the script. Variables can hold any type of data, including text,
numbers, and even objects.

Using variables
By default when working with Windows PowerShell, you do not need to declare variables
before use. When you use the variable to hold data, it is declared. All variable names must be
preceded with a dollar sign ($). The following example illustrates creating a variable to hold
the results from the Get-Process cmdlet. Once the process objects are stored in the $process
variable, the contents of the variable are accessible. You can sort them and select specific
properties:

PS C:\> $process = Get-Process

PS C:\> $process | sort cpu -Descending | select name, id, cpu -First 2 | ft -auto

Name Id CPU

---- -- ---

PindoraRadio 1324 1856.8019025

WINWORD 5184 99.5754383

	 Scripting fundamentals	 CHAPTER 11 	 161

There are a number of special variables in Windows PowerShell. These variables are cre-
ated automatically and have a special meaning. As a best practice when writing scripts, do not
create a variable with the same name (but with a different meaning) as these special variables.
It can lead to unpredictable results and can be very difficult to troubleshoot. Table 11-1 shows
a listing of the special variables and their associated meaning.

TABLE 11-1  Use of special variables

Name Use

$ Contains the first token of the last line input into the shell.

$$ Contains the last token of the last line input into the shell.

$_ The current pipeline object; used in script blocks, filters, Where-Object, ForEach-
Object, and Switch.

$? Contains the success or fail status of the last statement.

$Args Used in creating functions requiring parameters.

$Error If an error occurs, the error object is saved in the $error variable.

$ExecutionContext The execution objects available to cmdlets.

$foreach Refers to the enumerator in a ForEach loop.

$HOME The user’s home directory; set to %HOMEDRIVE%\%HOMEPATH%.

$Input Input is piped to a function or code block.

$Match A hash table consisting of items found by the -match operator.

$MyInvocation Information about the currently executing script or command line.

$PSHome The directory where Windows PowerShell is installed.

$Host Information about the currently executing host.

$LastExitCode The exit code of the last native application to run.

$true Boolean true.

$false Boolean false.

$null A null object.

$this In the Types.ps1xml file and some script block instances, this represents the cur-
rent object.

$OFS Output Field Separator used when converting an array to a string.

$ShellID Identifier for the shell. This value is used by the shell to determine the
ExecutionPolicy and which profiles are run on startup.

$StackTrace Contains detailed stack trace information about the last error.

	162	 CHAPTER 11 	 Using Windows PowerShell scripts

Using the While statement

In VBScript, you have the While…Wend loop. An example of using the While…Wend loop is the
WhileReadLineWend.vbs script. The first thing you do in the script is create an instance of the
FileSystemObject and store it in the objFSO variable. You then use the OpenTextFile method
to open a test file and store that object in the objFile variable. Next, you use the While…
Not…Wend construction to read one line at a time from the text stream and display it on the
screen. You continue to do this until you are at the end of the text stream object. A While…
Wend loop continues to operate as long as a condition is evaluated as true. In this example, as
long as you are not at the end of the stream, you will continue to read the line from the text
file. The following example shows the WhileReadLineWend.VBS script:

WhileReadLineWend.vbs
Set objFSO = CreateObject("Scripting.FileSystemObject")
Set objFile = objFSO.OpenTextFile("C:\fso\testfile.txt")

While Not objFile.AtEndOfStream
 WScript.Echo objFile.ReadLine
Wend

Constructing the While statement
As you probably have already guessed, you have the same kind of construction available to
you in Windows PowerShell that you do in VBScript. The While statement in Windows Power-
Shell is used in the same way that the While…Wend statement is used in VBScript.

In the DemoWhileLessThan.ps1 script, you first initialize the variable $i to be equal to 0.
You then use the While keyword to begin the While loop. In Windows PowerShell, you must
include the condition that will be evaluated inside a set of parentheses. For this example,
you determine the value of the $i variable with each pass through the loop. If the value of
$i is less than the number 5, you perform the action that is specified inside the braces (curly
brackets) that set off the script block. In VBScript, the condition that is evaluated is positioned
on the same line with the While statement, but no parentheses are required. Although this is
convenient from a typing perspective, it actually makes the code a bit confusing to read. In
Windows PowerShell, the statement is outside the parentheses and the condition is clearly
delimited by the parentheses. In VBScript, the action that is performed is added between two
words: While and Wend. In Windows PowerShell, there is no Wend statement, and the action
to be performed is positioned inside a pair of braces. Although shocking at first to users com-
ing from a VBScript background, the braces are always used to contain code. This is what is
called a script block, and they are used everywhere. As soon as you are used to seeing them
here, you also will find them with other language statements. One benefit is you do not have
to look for items such as the Wend keyword or the Loop keyword (from the Do…Loop fame).

	 Using the While statement	 CHAPTER 11 	 163

Understanding expanding strings
In\ Windows PowerShell, there are two kinds of strings: literal strings and expanding strings.
In the DemoWhileLessThan.ps1 script, use the expanding string, which is signified by a double
quotation mark (“). The literal string uses a single quotation mark (‘). You should display the
name of the variable, and you should display the value that is contained in the variable. This
is a perfect place to showcase the expanding string. In an expanding string, the value that is
contained in a variable is displayed to the screen when a line is evaluated. Consider the fol-
lowing example:

PS C:\> $i = 12
PS C:\> "$i is equal to $i"
12 is equal to 12
PS C:\>

As the example shows, you assign the value 12 to the variable $i. You then put $i inside a
pair of double quotation marks, making an expanding string. When the line “$i is equal to $i”
is evaluated, you obtain “12 is equal to 12”, which, while true, is barely illuminating.

Understanding literal strings
What you probably want to do is display both the name of the variable and the value that is
contained inside it. In VBScript, you have to use concatenation. For this to work you have to
use the literal string, as shown in the following example:

PS C:\> $i = 12
PS C:\> ‘$i is equal to ‘ + $i
$i is equal to 12
PS C:\>

If you want to use the advantage of the expanding string, you have to suppress the
expanding nature of the expanding string for the first variable. To do this, use the escape
character, which is the backtick (or grave character):

PS C:\> $i = 12
PS C:\> "`$i is equal to $i"
$i is equal to 12
PS C:\>

In the DemoWhileLessThan.ps1 script, use the expanding string to print your status mes-
sage of the value of the $i variable during each trip through the While loop. Suppress the ex-
panding nature of the expanding string for the first $i variable so you can see which variable
you are using. As soon as you have done this, increment the value of the $i variable by one.
To do this, use the $i++ syntax. This is identical to the following example:

$i = $i + 1

	164	 CHAPTER 11 	 Using Windows PowerShell scripts

The advantage is that the $i++ syntax is less typing. The following example shows the
DemoWhileLessThan.ps1 script:

DemoWhileLessThan.ps1
$i = 0
While ($i -lt 5)
 {
 "`$i equals $i. This is less than 5"
 $i++
 } #end while $i lt 5

When you run the DemoWhileLessThan.ps1 script, you receive the following output:

$i equals 0. This is less than 5
$i equals 1. This is less than 5
$i equals 2. This is less than 5
$i equals 3. This is less than 5
$i equals 4. This is less than 5
PS C:\>

A practical example of using the While statement
Now that you know how to use the While loop, let’s examine the WhileReadLine.ps1 script.
The first step is to initialize the $i variable and set it equal to 0. Next, use the Get-Content
cmdlet to read the contents of the testfile.txt and store the contents into the $fileContents
variable.

Use the While statement to loop through the contents of the text file. Do this as long as
the value of the $i variable is less than or equal to the number of lines in the text file. The
number of lines in the text file is represented by the length property. Inside the script block,
treat the contents of the $fileContents variable like it is an array (which it is), and use the
$i variable to index into the array to print the value of each line in the $fileContents vari-
able. Next, increment the value of the $i variable by one. The following example shows the
WhileReadLine.ps1 script:

WhileReadLine.ps1
$i = 0
$fileContents = Get-Content -path C:\fso\testfile.txt
While ($i -le $fileContents.length)
 {
 $fileContents[$i]
 $i++
 }

Using special features of Windows PowerShell
If you are thinking the WriteReadLine.ps1 script is a bit difficult, in reality it is about the same
difficulty level as the VBScript version. The difference is you resorted to using arrays to work
with the content you received from the Get-Content cmdlet. The VBScript version uses a

	 Using the Do…While statement	 CHAPTER 11 	 165

FileSystemObject and a TextStreamObject to work with the data. In reality, you do not have to
use a script exactly like the WhileReadLine.ps1 script to read the contents of the text file. This
is because the Get-Content cmdlet does this for you automatically. All you really have to do to
display the contents of the TestFile.txt is use Get-Content, as shown in the following command:

Get-Content -path c:\fso\TestFile.txt

Because the results of the command are not stored in a variable, the contents are auto-
matically emitted to the screen. You can further shorten the Get-Content command by using
the GC alias (shortcut name for Get-Content) and by omitting the name of the -Path parame-
ter (which is the default parameter). When you do this, you create a command that resembles
the following:

GC c:\fso\TestFile.txt

To find the available aliases for the Get-Content cmdlet, use the Get-Alias cmdlet with
the -Definition parameter. The Get-Alias cmdlet searches for aliases that have a definition
that matches Get-Content. The following example shows the command and the output you
receive:

PS C:\> Get-Alias -Definition Get-Content

CommandType Name Definition
----------- ---- ----------
Alias cat Get-Content
Alias gc Get-Content
Alias type Get-Content

In this section, you have seen that you can use the While statement in Windows Power-
Shell to perform looping. You have also seen that activities in VBScript that require looping
do not always require you to use the looping behavior in Windows PowerShell because some
cmdlets automatically display information. Finally, you saw how to find aliases for cmdlets you
frequently use.

Using the Do…While statement

The Do…While…Loop statement is often used when working with VBScript. This section covers
some of the advantages of the Do…While statement in Windows PowerShell.

The DemoDoWhile.vbs script illustrates using the Do…While statement in VBScript. The
first step is to assign the value of 0 to the variable i. You then create an array. To do this, use
the Array function and assign the numbers 1 through 5 to the variable $ary. Next, use the
Do…While…Loop construction to walk through the array of numbers. As long as the value
of the variable i is less than the number 5, you display the value of the variable i. You then

	166	 CHAPTER 11 	 Using Windows PowerShell scripts

increment the value of the variable and loop back around. The following example shows the
DemoDoWhile.vbs script:

DemoDoWhile.vbs
i = 0
ary = Array(1,2,3,4,5)
Do While i < 5
 WScript.Echo ary(i)
 i = i + 1
Loop

When you run the DemoDoWhile.vbs script in Cscript at the command prompt, you see
the numbers 1 through 5 displayed at the command prompt.

You can do exactly the same thing by using Windows PowerShell. The DemoDoWhile.ps1
script and the DemoDoWhile.vbs scripts are essentially the same. The differences between the
two scripts are due to syntax differences between Windows PowerShell and VBScript. The first
thing you do is assign the value of 1 to the variable $i. You then create an array of the num-
bers 1 through 5 and store that array in the $ary variable. You can use a shortcut in Windows
PowerShell to make this a bit easier. Actually, arrays in Windows PowerShell are fairly easy
anyway. If you want to create an array, you just have to assign multiple pieces of data to the
variable. To do this, simply separate each piece of data by a comma:

$ary = 1,2,3,4,5

Using the range operator
If you want to create an array with 32,000 numbers in it, it would be impractical to type each
number and separate it with a comma. In VBScript, you have to use a For…Next…Loop to add
the numbers to the array. In Windows PowerShell, you can use the range operator. To do this,
use a variable to hold the array of numbers that are created, and type the beginning and the
ending number separated with two periods:

$ary = 1..5

Unfortunately, the range operator does not work for letters. But there is nothing to pre-
vent you from creating a range of numbers that represent the ASCII value of each letter and
then casting it to a string later.

Operating over an array
You are now ready for the Do…While…Loop in Windows PowerShell. First, use the Do state-
ment and open a set of braces (curly brackets). A script block is inside these curly brackets.
Next, index into the array. On your first pass through the array, the value of $i is equal to 0.
You therefore display the first element in the $ary array. Next, increment the value of the $i
variable by one. You are now done with the script block, so look at the While statement. The
condition you are examining is the value of the $i variable. As long as it is less than 5, you will

	 Using the Do…While statement	 CHAPTER 11 	 167

continue to loop around. As soon as the value of $i is no longer less than the number 5, you
will stop looping. The following example shows this process:

DemoDoWhile.ps1
$i = 0
$ary = 1..5
do
{
 $ary[$i]
 $i++
} while ($i -lt 5)

One thing to be aware of, because it can be a bit confusing, is that you are evaluating the
value of $i. You initialized $i at 0. The first number in your array was 1. But the first element
number in the array is always 0 in Windows PowerShell (unlike VBScript which can start arrays
with 0 or 1). The While statement evaluates the value contained in the $i variable, not the
value that is contained in the array. That is why you see the number 5 displayed.

Casting to ASCII values
You can change the DemoDoWhile.ps1 script and display the uppercase letters from A - Z.
To do this, first initialize the $i variable and set it to 0. Next, create a range of numbers from
65 through 91. These are the ASCII values for the capital letter A through the capital letter Z.
Now, begin the Do statement and open your script block. To this point, the script is identical
to the previous one. To obtain letters from numbers, cast the integer to a char. To do this, use
the char data type and put it in square brackets. You then use this to convert an integer to an
uppercase letter. To display the uppercase letter B from the ASCII value of 66, the code should
resemble the following:

PS C:\> [char]66
B

Because you know that the $caps variable contains an array of numbers ranging from 65
through 91, and the variable $i will hold numbers from 0 through 26, you index into the $caps
array, cast the integer to a char, and display the results, as shown in the following example:

[char]$caps[$i]

You then increment the value of $i by one, close the script block, and enter the While
statement where you check the value of $i to make sure it is less than 26. As long as $i is
less than 26, you continue to loop around. The following example shows the complete
DisplayCapitalLetters.ps1 script:

DisplayCapitalLetters.ps1
$i = 0
$caps = 65..91
do
{
 [char]$caps[$i]
 $i++
} while ($i -lt 26)

	168	 CHAPTER 11 	 Using Windows PowerShell scripts

In this section, we explored the Do…While construction from Windows PowerShell by
comparing it to a similar construction from VBScript. In addition, we examined the use of the
range operator and casting.

Using the Do…Until statement

Looping technology is something that is essential to master. It occurs everywhere, and should
be a tool you can use without thought. When you are confronted with a collection of items,
an array, or other bundle of items, you have to know how to easily walk through the mess
without resorting to research, panic, or hours searching the Internet with Bing search.

This section examines the Do…Until…Loop construction. Most of the scripts that do loop-
ing at the Microsoft TechNet Script Center seem to use the Do…While…Loop. The scripts that
use Do…Until…Loop are typically used to read through a text file (do until the end of the
stream) or to read through an Active X Data Object (ADO) recordset (do until the end of the
file). As you will see here, these are not required coding conventions and are not meant to be
limitations. You can frequently perform the same thing by using any of the different looping
constructions.

Using the Windows PowerShell Do…Loop statement
You can write a looping script by using the Do…Loop statement in Windows PowerShell. In
the DemoDoUntil.ps1 script, you first set the value of the $i variable to 0. You then create an
array with the numbers 1 through 5 in it and store that array in the $ary variable. You then
arrive at the Do…Loop (Do-Until) construction. After the Do keyword, open a set of braces
(curly brackets). Inside the curly brackets, use the $i variable to index into the $ary array and
retrieve the value that is stored in the first element (element 0) of the array. Next, increment
the value of the $i variable by 1. Continue to loop through the elements in the array until the
value of the $i variable is equal to 5. At that time, you end the script. This script resembles the
DemoDoWhile.ps1 script examined in the preceding section. The following example shows
this process:

DemoDoUntil.ps1
$i = 0
$ary = 1..5

Do
{
 $ary[$i]
 $i ++
} Until ($i -eq 5)

 Using the Do…Until statement ChAPTER 11 169

The Do…While and Do…Until statements always run once
In VBScript, if a Do…While…Loop condition is never true, the code inside the loop will never
execute. In Windows PowerShell, the Do…While and the Do…Until constructions always run at
least once. This can be unexpected behavior and is something you should focus on. This is il-
lustrated in the DoWhileAlwaysRuns.ps1 script. The script assigns the value of 1 to the variable
$i. Inside the script block for the Do…While loop, you print a message that states execution
is taking place inside the Do loop. The loop condition continues while the variable $i is equal
to 5. As you can see, the value of the $i variable is 1. Therefore, the value of the $i variable
will never reach 5 because you are not incrementing it. The following example shows the
DoWhileAlwaysRuns.ps1 script:

DoWhileAlwaysRuns.ps1
$i = 1

Do
{
 "inside the do loop"
} While ($i -eq 5)

When you run the script, the text “inside the do loop” is printed once.

What about a similar script that uses the Do…Until construction? The EndlessDoUntil.ps1
script is the same script as the DoWhileAlwaysRuns.ps1 script except for one small detail. In-
stead of using Do…While, you are using Do…Until. The rest of the script is the same. The value
of the $i variable is equal to 1, and in the script block for the Do…Until loop you print the
string “inside the do loop.” This line of code should execute once for each Do loop until the
value of $i is equal to 5. Because the value of $i is never increased to 5, the script will continue
to run. The following example shows the EndlessDoUntil.ps1 script:

EndlessDoUntil.ps1
$i = 1

Do
{
 "inside the do loop"
} Until ($i -eq 5)

Before you run the EndlessDoUntil.ps1 script, you should know how to interrupt the run-
ning of the script. To do this, hold down the CTRL key and press C (Ctrl+C). This is the same
key stroke sequence that will break a runaway VBScript that is run in Cscript.

The While statement is used to prevent unwanted execution
If you have a situation where the script block must not execute if the condition is not true,

you should use the While statement. We examined this statement in the “Using the While
statement” section earlier in this chapter. Again, you have the same kind of script. You assign
the value of 0 to the variable $i, but instead of using a Do … kind of construction, you use
the While statement. The condition you are looking at is the same condition you used for the
other scripts, where the value of $i is equal to 5. Inside the script block, display a string that

	170	 CHAPTER 11 	 Using Windows PowerShell scripts

states the process is inside the While loop. The following example shows the WhileDoesNot-
Run.ps1 script:

WhileDoesNotRun.ps1
$i = 0

While ($i -eq 5)
{
 "Inside the While Loop"
}

It is perhaps a bit anti-climactic, but go ahead and run the WhileDoesNotRun.ps1 script.
There should be no output displayed to the console.

Using the For statement

In VBScript a For…Next…Loop is somewhat easy to create. An example of a simple For…Next…
Loop is seen in DemoForLoop.vbs. You use the For keyword, define a variable to keep track of
the count, indicate how far you will go, define your action, and do not forget to specify the
Next keyword. That is about all there is to it. It sounds more difficult than it is. The following
example shows DemoForLoop.vbs:

DemoForLoop.vbs
For i = 1 To 5
 WScript.Echo i
Next

Creating a For…Loop
The structure of the For…Loop in Windows PowerShell resembles the structure for VBScript.
They both begin with the For keyword, they both initialize the variable, and they both specify
how far the loop will progress. One difference is that a For…Loop in VBScript automatically
increments the counter variable. In Windows PowerShell, the variable is not automatically
incremented, and you add $i++ to increment the $i variable by 1. Inside the script block
(braces, curly brackets), you display the value of the $i variable. The following example shows
the DemoForLoop.ps1 script:

DemoForLoop.ps1
For($i = 0; $i -le 5; $i++)
{
 ‘$i equals ‘ + $i
}

The Windows PowerShell For statement is very flexible, and you can leave one or more el-
ements of it out. In the DemoForWithoutInitOrRepeat.ps1 script, you exclude the first and last
sections of the For statement. You set the $i variable equal to 0 on the first line of the script.
Next, you come to the For statement. In the DemoForLoop.ps1 script, the $i = 0 was moved
from inside the For statement to the first line of the script. The semicolon is still required because it is

	 Using the For statement	 CHAPTER 11 	 171

used to separate the three sections of the statement. The condition portion, $i -le 5, is the same as in
the previous script. The repeat section, $i ++, is not used either.

In the script section of the For statement, you display the value of the $i variable, and you
also increment the value of $i by one. There are two kinds of Windows PowerShell strings:
expanding and literal. We examined these two types of strings earlier in the “Constructing the
While statement” section of this chapter. In the DemoForLoop.ps1 script, you see an example
of a literal string because what is entered is what is displayed:

‘$i equals ‘ + $i

In the DemoForWithoutInitOrRepeat.ps1 script, you see an example of an expanding
string. The value of the variable, not the variable name itself, is displayed. To suppress the
expanding nature of the expanding string, escape the variable by using the backtick charac-
ter. When you use the expanding string in this manner, it enables you to avoid concatenating
the string and the variable as you did in the DemoForLoop.ps1 script. This following example
shows this technique:

"`$i is equal to $i"

The value of $i must be incremented somewhere. Because it was not incremented in the
repeat section of the For statement, you have to be able to increment it inside the script
block. The following example shows the DemoForWithoutInitOrRepeat.ps1 script:

DemoForWithoutInitOrRepeat.ps1
$i = 0
For(;$i -le 5;)
{
 "`$i is equal to $i"
 $i++
}

When you run the DemoForWithoutInitOrRepeat.ps1 script, the output that is displayed
resembles the output produced by the DemoForLoop.ps1. You would never be able to tell it
was missing 2/3 of the parameters.

You can put your For statement into an infinite loop by omitting all three sections of the
For statement. You must leave the semicolons as position holders. When you omit the three
parts of the For statement, the For statement will resemble the following:

for(;;)

The ForEndlessLoop.ps1 script will create an endless loop, but you do not have to do this
if this is not your desire. Instead, you can use an If statement to evaluate a condition and take
action when the condition is met. We cover If statements in the “Using the If statement” sec-
tion later in this chapter. In the ForEndlessLoop.ps1 script, you display the value of the $i vari-
able and increment it by 1. The semicolon is used to represent a new line. The For statement
could therefore be written on three lines if you want to do this. This would be useful if you
have a very complex For statement, as it would make the code easier to read. You can write

	172	 CHAPTER 11 	 Using Windows PowerShell scripts

the script block for the ForEndlessLoop.ps1 script on different lines and exclude the semico-
lon, as shown in the following example:

{
 $i
 $i++
}
ForEndlessLoop.ps1
for(;;)
{
 $i ; $i++
}

 When you run the ForEndlessLoop.ps1 script, you are greeted with a long line of numbers.
To break out of the endless loop, press Ctrl+C at the Windows PowerShell prompt.

You can see that working with Windows PowerShell is all about choices. You can decide
how you want to work and what you want to achieve. The For statement in Windows Power-
Shell is very flexible, and maybe one day you will find just the problem waiting for the solu-
tion that you have.

Using the ForEach statement
The ForEach statement resembles the For…Each…Next construction from VBScript. In the
DemoForEachNext.vbs script, you create an array of five numbers. They number 1 through
5. You then use the For…Each…Next statement to walk your way through the array that is
contained in the variable $ary. The variable i is used iterate through the elements of the array.
The For…Each block is entered as long as there is at least one item in the collection or array.
When the loop is entered, all statements inside the loop are executed for the first element. In
the DemoForEachNext.vbs script, this means that the following command is executed for each
element in the array:

Wscript.Echo i

As long as there are more elements in the collection or array, the statements inside the
loop continue to execute for each element. When there are no more elements in the col-
lection or array, the loop is exited, and execution continues with the statement following
the Next statement. The following example shows this process in the DemoForEachNext.vbs
script:

DemoForEachNext.vbs
ary = Array(1,2,3,4,5)
For Each i In ary
 WScript.Echo i
Next
Wscript.echo "All done"

	 Using the For statement	 CHAPTER 11 	 173

The DemoForEachNext.vbs script works exactly like the DemoForEach.ps1 script. In the
DemoForEach.ps1 Windows PowerShell script, you first create an array that contains the num-
bers 1 through 5 and store that array in the $ary variable:

$ary = 1..5

Then you use the ForEach statement to walk through the array contained in the $ary vari-
able. Use the $i variable to keep track of your progress through the array. Inside the script
block (the curly brackets), you display the value of each variable, as shown in the following
DemoForEach.ps1 script:

DemoForEach.ps1
$ary = 1..5
Foreach ($i in $ary)
{
 $i
}

Using the ForEach statement from the Windows PowerShell console
The great advantage of Windows PowerShell is that you can also use the ForEach statement
from inside the Windows PowerShell console, as shown in the following example:

PS C:\> $ary = 1..5
PS C:\> foreach($i in $ary) { $i }
1
2
3
4
5

The ability to use the ForEach statement from inside the Windows PowerShell console can
give you excellent flexibility when you are working interactively. However, much of the work
done at the Windows PowerShell console consists of using pipelining. When you are working
with the pipeline, you can use the ForEach-Object cmdlet. This cmdlet behaves in a similar
manner to the ForEach statement but is designed to handle pipelined input. The difference
is that you do not have to use an intermediate variable to hold the contents of the array.
You can create the array and send it across the pipeline. The other difference is that you do
not have to create a variable to use for the enumerator. You can use the $_ automatic vari-
able (which represents the current item on the pipeline) instead, as shown in the following
example:

PS C:\> 1..5 | ForEach-Object { $_ }
1
2
3
4
5

	174	 CHAPTER 11 	 Using Windows PowerShell scripts

Exiting the ForEach statement early
Suppose you do not want to work with all the numbers in the array. In VBScript terms, leav-
ing a For…Each…Loop early is called an Exit For statement. You have to use an If statement
to perform the evaluation of the condition. When the condition is met, you call Exit For. In
the DemoExitFor.vbs script, you use an inline If statement to make this determination. The
inline syntax is more efficient for these kinds of things than spreading the statement across
three different lines. The key thing to remember about the inline If statement is it does not
conclude with the final End If statement. The following example shows the DemoExitFor.vbs
script:

DemoExitFor.vbs
ary = Array(1,2,3,4,5)
For Each i In ary
 If i = 3 Then Exit For
 WScript.Echo i
Next
WScript.Echo "Statement following Next"

Using the Break statement
In Windows PowerShell terms, you use the Break statement to leave the loop early. Inside the
script block, you use an If statement to evaluate the value of the $i variable. If it is equal to 3,
you call the Break statement and leave the loop:

if($i -eq 3) { break }

The following example shows the complete DemoBreakFor.ps1 script:

DemoBreakFor.ps1
$ary = 1..5
ForEach($i in $ary)
{
 if($i -eq 3) { break }
 $i
}
"Statement following foreach loop"

When the DemoBreakFor.ps1 script runs, it displays the numbers 1 and 2. Then it leaves
the ForEach loop and runs the line of code following the ForEach loop:

1
2
Statement following foreach loop

Using the Exit statement
If you do not want to run the line of code after the Loop statement, you would use the Exit
statement instead of the Break statement. Keep in mind that when using Exit it will cause
Windows PowerShell to close, unless you are running a script. If you use Exit in a function, the

	 Using the If statement	 CHAPTER 11 	 175

Exit statement will close the Windows PowerShell console instead of exiting the function. This
is shown in following example for the DemoExitFor.ps1 script:

DemoExitFor.ps1
$ary = 1..5
ForEach($i in $ary)
{
 if($i -eq 3) { exit }
 $i
}
"Statement following foreach loop"

When the DemoExitFor.ps1 script runs, the line of code following the ForEach loop never
executes. This is because the Exit statement ends the script. Following are the results of run-
ning the DemoExitF0r.ps1 script:

1
2

You could achieve the same thing in VBScript by using the Wscript.Quit statement instead
of Exit For. As with the DemoExitFor.ps1 script, the DemoQUitFor.vbs script never comes to
the line of code following the For…Each…Loop, as shown in the DemoQuitFor.vbs script:

DemoQuitFor.vbs
ary = Array(1,2,3,4,5)
For Each i In ary
 If i = 3 Then WScript.Quit
 WScript.Echo i
Next
WScript.Echo "Statement following Next"

In this section, we examined the use of the ForEach statement. It is used when you do not
know how many items are contained within a collection. It allows you to walk through the
collection and to work with items from that collection on an individual basis. In addition, we
examined two techniques for exiting a ForEach statement.

Using the If statement

In VBScript the If…Then…End If statement was somewhat straightforward. There were several
rules to be aware of:

■■ The If and Then statements must be on the same line.

■■ The If…Then…End If statement must conclude with End If.

■■ End If is two words, not one word.

	176	 CHAPTER 11 	 Using Windows PowerShell scripts

The following example shows the VBScript If…Then…End If statement in the DemoIf.vbs
script:

DemoIf.vbs
a = 5
If a = 5 Then
 WScript.Echo "a equals 5"
End If

In the Windows PowerShell version of the If…Then…End If statement, there is no Then key-
word, nor is there an End If statement. The Windows PowerShell If statement is easier to type.
This simplicity, however, comes with a bit of complexity. The condition that is evaluated in the
If statement is positioned in a set of smooth parentheses. In the DemoIf.ps1 script, you are
checking whether the variable $a is equal to 5, as shown in the following example:

If ($a -eq 5)

The code that is executed when the condition is true is positioned inside a pair of braces
(curly brackets). Code inside a pair of curly brackets is called a script block in Windows Power-
Shell, and script blocks are everywhere. The following example shows the script block for the
DemoIf.ps1 script:

{
 ‘$a equals 5’
}

The Windows PowerShell version of the DemoIf.vbs script is the DemoIf.ps1 script:

DemoIf.ps1
$a = 5
If($a -eq 5)
 {
 ‘$a equals 5’
 }

The one thing that is different about the Windows PowerShell If statement is the compari-
son operators. In VBScript the equal sign (=) is used as an assignment operator. It is also used
as an equality operator for comparison. On the first line of code, the variable a is assigned the
value 5. This uses the equal sign as an assignment. On the next line of code, the If statement
is used to see whether the value of a is equal to the number 5. On this line of code, the equal
sign is used as the equality operator:

a = 5
If a = 5 Then

In simple examples such as this, it is fairly easy to tell the difference between an equality
operator and an assignment operator. In more complex scripts, however, things could be con-
fusing. Windows PowerShell removes that confusion by having special comparison operators.
It might help to realize the main operators are two letters long. Table 11-2 shows the com-
parison operators.

	 Using the If statement	 CHAPTER 11 	 177

TABLE 11-2  Comparison operators

Operator Description Example Result

-eq equals $a = 5 ; $a -eq 4 False

-ne not equal $a = 5 ; $a -ne 4 True

-gt greater than $a = 5 ; $a -gt 4 True

-ge greater than or equal to $a = 5 ; $a -ge 5 True

-lt less than $a = 5 ; $a -lt 5 False

-le less than or equal to $a = 5 ; $a -le 5 True

-like wildcard comparison $a = “This is Text” ; $a -like
“Text”

False

-notlike wildcard comparison $a = “This is Text” ; $a -notlike
“Text”

True

-match regular expression comparison $a = “Text is Text” ; $a -match
“Text”

True

-notmatch regular expression comparison $a = “This is Text” ; $a -notmatch
“Text$”

False

Using assignment and comparison operators
Any value assignment will evaluate to true, and therefore the script block is executed. In the
following example, you assign the value 1 to the variable $a. In the condition for the If state-
ment, you assign the value of 12 to the variable $a. Any assignment evaluates to true, and the
script block executes:

PS C:\> $a = 1 ; If ($a = 12) { "its true" }
its true

Rarely do you test a condition and perform an outcome. Most of the time, you have to per-
form one action if the condition is true, and another action if the condition is false. In VBScript
you used the If…Else…End If construction. The Else clause went immediately after the first out-
come to be performed if the condition were true. This is seen in the DemoIfElse.vbs script:

DemoIfElse.vbs
a = 4
If a = 5 Then
 WScript.Echo "a equals 5"
Else
 WScript.Echo "a is not equal to 5"
End If

In Windows PowerShell, the syntax is not surprising. Following the closing curly brackets
from the If statement script block, you add the Else keyword and open a new script block to
hold the alternative outcome:

	178	 CHAPTER 11 	 Using Windows PowerShell scripts

demoIfElse.ps1
$a = 4
If ($a -eq 5)
{
 ‘$a equals 5’
}
Else
{
 ‘$a is not equal to 5’
}

Things become confusing with VBScript when you want to evaluate multiple conditions
and have multiple outcomes. The Else If clause provides for the second outcome. You have to
evaluate the second condition. The Else If clause receives its own condition, which is followed
by the Then keyword. Following the Then keyword, you list the code you want to execute.
This is followed by the Else keyword and a pair of End If statements. This is seen in the
DemoIfElseIfElse.vbs script:

DemoIfElseIfElse.vbs
a = 4
If a = 5 Then
 WScript.Echo "a equals 5"
Else If a = 3 Then
 WScript.Echo "a equals 3"
Else
 WScript.Echo "a does not equal 3 or 5"
End If
End If

Evaluating multiple conditions
The Windows PowerShell demoIfElseIfElse.ps1 script is a bit easier to understand because it
avoids the double End If kind of scenario. For each condition you want to evaluate, use ElseIf
(be aware that it is a single word). Put the condition inside a pair of smooth parentheses and
open your script block. The following example shows the demoIfElseIfElse.ps1 script:

demoIfElseIfElse.ps1
$a = 4
If ($a -eq 5)
{
 ‘$a equals 5’
}
ElseIf ($a -eq 3)
{
 ‘$a is equal to 3’
}
Else
{
 ‘$a does not equal 3 or 5’
}

 Using the Switch statement ChAPTER 11 179

In this section, we examined the use of the If statement. We also covered comparison
operators and assignment operators.

Using the Switch statement

As a best practice, you generally avoid using the ElseIf type of construction from either VB-
Script or Windows PowerShell because there is a better way to write the same code.

In VBScript, use the Select Case statement to evaluate a condition and select one outcome
from a group of potential statements. In the DemoSelectCase.VBS script, the value of the
variable a is assigned the value of 2. The Select Case statement is used to evaluate the value of
the variable a. The following example shows the syntax:

Select Case testexpression

The test expression that is evaluated is the variable a. Each of the different cases contains
potential values for the test expression. If the value of the variable a is equal to 1, the code
Wscript.Echo “a = 1” is executed:

Case 1
 WScript.Echo "a = 1"

Each of the different cases is evaluated in the same manner. The Case Else expression is
run if none of the previous expressions evaluate to true. The following example shows the
complete DemoSelectCase.vbs script:

DemoSelectCase.vbs
a = 2
Select Case a
 Case 1
 WScript.Echo "a = 1"
 Case 2
 WScript.Echo "a = 2"
 Case 3
 WScript.Echo "a = 3"
 Case Else
 WScript.Echo "unable to determine value of a"
End Select
WScript.Echo "statement after select case"

	180	 CHAPTER 11 	 Using Windows PowerShell scripts

Using the basic Switch statement
In Windows PowerShell, there is no Select Case statement. There is, however, the Switch
statement. The Switch statement is the most powerful statement in the Windows PowerShell
language. The Switch statement begins with the Switch keyword, and the condition to be
evaluated is positioned inside a pair of smooth parentheses:

Switch ($a)

Next a pair of braces (curly brackets) is used to mark off the script block for the Switch
statement. Inside the script block, each condition to be evaluated begins with a value fol-
lowed by the script block to be executed in the event the value matches the condition:

1 { ‘$a = 1’ }
2 { ‘$a = 2’ }
3 { ‘$a = 3’ }

Defining the Default condition
If no match is found, and the Default statement is not used, the Switch statement exits and
the line of code that follows the Switch statement is executed. The Default statement per-
forms a function similar to the one performed by the Case Else statement from the Select
Case statement. The following example shows the Default statement:

Default { ‘unable to determine value of $a’ }

The following example shows the complete DemoSwitchCase.ps1 script:

DemoSwitchCase.ps1
$a = 2
Switch ($a)
{
 1 { ‘$a = 1’ }
 2 { ‘$a = 2’ }
 3 { ‘$a = 3’ }
 Default { ‘unable to determine value of $a’ }
}
"Statement after switch"

Understanding matching
With the Select Case statement, the first matching case is the one that is executed. As soon
as that code executes, the line following the Select Case statement is executed. If the condi-
tion matches multiple cases in the Select Case statement, only the first match in the list is
executed. Matches from lower in the list are not executed. Therefore, make sure that the most
desirable code to execute is positioned highest in the Select Case order.

	 Using the Switch statement	 CHAPTER 11 	 181

With the Switch statement in Windows PowerShell, order is not a major design concern.
This is because every match from inside the Switch statement will be executed. An example of
this is in the DemoSwitchMultiMatch.ps1 script:

DemoSwitchMultiMatch.ps1
$a = 2
Switch ($a)
{
 1 { ‘$a = 1’ }
 2 { ‘$a = 2’ }
 2 { ‘Second match of the $a variable’ }
 3 { ‘$a = 3’ }
 Default { ‘unable to determine value of $a’ }
}
"Statement after switch"

When the DemoSwitchMultiMatch.ps1 script runs, the second condition and third condi-
tion will both be matched, and therefore their associated script blocks are executed. The
DemoSwitchMultiMatch.ps1 script produces the output in the following example:

$a = 2
Second match of the $a variable
Statement after switch

Evaluating an array
If an array is stored in the variable a in the DemoSelectCase.vbs script, a type mismatch error
will be produced, as shown in the following example:

Microsoft VBScript runtime error: Type mismatch

The Windows PowerShell Switch statement can handle an array in the variable $a without
any modification:

$a = 2,3,5,1,77

The following example shows the complete DemoSwitchArray.ps1 script:

DemoSwitchArray.ps1
$a = 2,3,5,1,77
Switch ($a)
{
 1 { ‘$a = 1’ }
 2 { ‘$a = 2’ }
 3 { ‘$a = 3’ }
 Default { ‘unable to determine value of $a’ }
}
"Statement after switch"

	182	 CHAPTER 11 	 Using Windows PowerShell scripts

Controlling matching behavior
If you do not want the multi-match behavior of the Switch statement, you can use the Break
statement to change the behavior. In the DemoSwitchArrayBreak.ps1 script, the Switch state-
ment will be exited when the first match occurs because each of the match condition script
blocks contains the Break statement, as shown in the following example:

 1 { ‘$a = 1’ ; break }
 2 { ‘$a = 2’ ; break }
 3 { ‘$a = 3’ ; break }

You are not required to include the Break statement with each condition; instead, you
could use it to exit the switch only after a particular condition is matched. The following ex-
ample shows the complete DemoSwitchArrayBreak.ps1 script:

DemoSwitchArrayBreak.ps1
$a = 2,3,5,1,77
Switch ($a)
{
 1 { ‘$a = 1’ ; break }
 2 { ‘$a = 2’ ; break }
 3 { ‘$a = 3’ ; break }
 Default { ‘unable to determine value of $a’ }
}
"Statement after switch"

In this section, we examined the use of the Windows PowerShell Switch statement. We also
discussed the matching behavior of the Switch statement and use of Break statement.

Summary

This chapter covered the fundamentals of Windows PowerShell scripting. The chapter began
with a discussion of the reasons to write scripts. Next, we examined how to run scripts and set
the script execution policy. Finally, we reviewed the elements of Windows PowerShell scripts
such as variables and the various language statements.

		 	 183

C H A P T E R 1 2

Working with functions
■■ Understanding functions

■■ Using multiple input parameters

■■ Using functions to encapsulate business logic

■■ Using functions to provide ease of modification

There are clear-cut guidelines that you can use to design script. You can use these
guidelines to ensure that scripts are easy to understand, easy to maintain, and easy to

troubleshoot. In this chapter, we examine the reasons for scripting guidelines and provide
examples of both good code and bad code design.

Understanding functions

In Windows PowerShell, functions have moved to the forefront as the primary programming
element used when writing Windows PowerShell scripts. This is not necessarily due to im-
provements in functions per se, but rather a combination of factors including the maturity
of Windows PowerShell scriptwriters. In Windows PowerShell 1.0, functions were not well
understood, perhaps due to the lack of clear documentation as to their use, purpose, and
application.

To create a function, you begin with the Function keyword followed by the name of the
function. As a best practice, use the Windows PowerShell verb and noun combination when
you create functions. Choose the verb from the standard list of Windows PowerShell verbs
to make your functions easier to remember. It is a best practice to avoid creating new verbs
when there is an existing verb that can easily do the job.

You can get an idea of the verb coverage by using the Get-Command cmdlet and piping
the results to the Group-Object cmdlet, as shown in the following example:

Get-Command -CommandType cmdlet | Group-Object -Property Verb |
Sort-Object -Property count -Descending

	184	 CHAPTER 12	 Working with functions

The following example shows the output after the preceding command is run:

Count Name Group
----- ---- -----
 98 Get {Get-Acl, Get-Alias, Get-AppLockerFileInformation...
 48 Set {Set-Acl, Set-Alias, Set-AppLockerPolicy, Set-Aut...
 38 New {New-Alias, New-AppLockerPolicy, New-CertificateN...
 31 Remove {Remove-AppxPackage, Remove-AppxProvisionedPackag...
 15 Add {Add-AppxPackage, Add-AppxProvisionedPackage, Add...
 11 Invoke {Invoke-BpaModel, Invoke-CimMethod, Invoke-Comman...
 11 Import {Import-Alias, Import-Certificate, Import-Clixml,...
 11 Export {Export-Alias, Export-Certificate, Export-Clixml,...
 10 Test {Test-AppLockerPolicy, Test-Certificate, Test-Com...
 10 Enable {Enable-ComputerRestore, Enable-JobTrigger, Enabl...
 10 Disable {Disable-ComputerRestore, Disable-JobTrigger, Dis...
 9 Clear {Clear-Content, Clear-EventLog, Clear-History, Cl...
 8 Start {Start-BitsTransfer, Start-DtcDiagnosticResourceM...
 8 Write {Write-Debug, Write-Error, Write-EventLog, Write-...
 7 Out {Out-Default, Out-File, Out-GridView, Out-Host...}
 6 ConvertTo {ConvertTo-Csv, ConvertTo-Html, ConvertTo-Json, C...
 6 Register {Register-CimIndicationEvent, Register-EngineEven...
 6 Stop {Stop-Computer, Stop-DtcDiagnosticResourceManager...
 5 Format {Format-Custom, Format-List, Format-SecureBootUEF...
 4 Update {Update-FormatData, Update-Help, Update-List, Upd...
 4 Unregister {Unregister-Event, Unregister-PSSessionConfigurat...
 4 Show {Show-Command, Show-ControlPanelItem, Show-EventL...
 4 ConvertFrom {ConvertFrom-Csv, ConvertFrom-Json, ConvertFrom-S...
 3 Receive {Receive-DtcDiagnosticTransaction, Receive-Job, R...
 3 Wait {Wait-Event, Wait-Job, Wait-Process}
 3 Complete {Complete-BitsTransfer, Complete-DtcDiagnosticTra...
 3 Select {Select-Object, Select-String, Select-Xml}
 3 Resume {Resume-BitsTransfer, Resume-Job, Resume-Service}
 3 Suspend {Suspend-BitsTransfer, Suspend-Job, Suspend-Service}
 3 Rename {Rename-Computer, Rename-Item, Rename-ItemProperty}
 2 Restore {Restore-Computer, Restore-IscsiVirtualDisk}
 2 Resolve {Resolve-DnsName, Resolve-Path}
 2 Restart {Restart-Computer, ReStart-Service}
 2 Save {Save-Help, Save-WindowsImage}
 2 Send {Send-DtcDiagnosticTransaction, Send-MailMessage}
 2 Disconnect {Disconnect-PSSession, Disconnect-WSMan}
 2 Dismount {Dismount-IscsiVirtualDiskSnapshot, Dismount-Wind...
 2 Connect {Connect-PSSession, Connect-WSMan}
 2 Checkpoint {Checkpoint-Computer, Checkpoint-IscsiVirtualDisk}
 2 Move {Move-Item, Move-ItemProperty}
 2 Mount {Mount-IscsiVirtualDiskSnapshot, Mount-WindowsImage}
 2 Measure {Measure-Command, Measure-Object}
 2 Join {Join-DtcDiagnosticResourceManager, Join-Path}
 2 Install {Install-NfsMappingStore, Install-WindowsFeature}
 2 Unblock {Unblock-File, Unblock-Tpm}
 2 Convert {Convert-IscsiVirtualDisk, Convert-Path}
 2 Undo {Undo-DtcDiagnosticTransaction, Undo-Transaction}
 2 Copy {Copy-Item, Copy-ItemProperty}
 2 Use {Use-Transaction, Use-WindowsUnattend}
 1 Tee {Tee-Object}
 1 Trace {Trace-Command}

	 Understanding functions	 CHAPTER 12	 185

 1 Uninstall {Uninstall-WindowsFeature}
 1 Switch {Switch-Certificate}
 1 Compare {Compare-Object}
 1 Repair {Repair-WindowsImage}
 1 Sort {Sort-Object}
 1 Reset {Reset-ComputerMachinePassword}
 1 Confirm {Confirm-SecureBootUEFI}
 1 Read {Read-Host}
 1 Push {Push-Location}
 1 Where {Where-Object}
 1 Limit {Limit-EventLog}
 1 Initialize {Initialize-Tpm}
 1 Group {Group-Object}
 1 ForEach {ForEach-Object}
 1 Expand {Expand-IscsiVirtualDisk}
 1 Exit {Exit-PSSession}
 1 Enter {Enter-PSSession}
 1 Debug {Debug-Process}
 1 Split {Split-Path}
 1 Pop {Pop-Location}

The command was run on Windows Server 2012 and includes cmdlets from the default
modules. As shown in the example, Get is used the most by the default cmdlets, followed
distantly by Set, New, and Remove.

A function is not required to accept any parameters. In fact, many functions do not require
input to perform their job in the script. Let’s use an example to illustrate this point. A common
task for network administrators is obtaining the operating system version. Scriptwriters often
need to do this to ensure their script uses the correct interface or exits gracefully. It is also
quite common that one set of files is copied to a desktop running one version of the operat-
ing system, and a different set of files is copied for another version of the operating system.

The first step to create a function is to decide on a name. Because the function is going to
retrieve information, the best verb to use from the listing of cmdlet verbs in the preceding ex-
ample is Get. For the noun portion of the name, it is best to use something that describes the
information that will be obtained. In our example, the noun OperatingSystemVersion makes
sense. An example of such a function is the function in the Get-OperatingSystemVersion.ps1
script. The Get-OperatingSystemVersion function uses WMI to obtain the version of the op-
erating system. In this, the most basic form of the function, the Function keyword is followed
by the name of the function and a script block with code in it, which is delimited by curly
brackets. The following example shows this pattern:

Function Function-Name
{
 #insert your code here
}

In the following Get-OperatingSystemVersion.ps1 script, the Get-OperatingSystemVersion
function is at the top of the script. It uses the Function keyword to define the function fol-
lowed by the name Get-OperatingSystemVersion.

	186	 CHAPTER 12	 Working with functions

Get-OperatingSystemVersion.ps1

Function Get-OperatingSystemVersion
{
 (Get-WmiObject -Class Win32_OperatingSystem).Version
} #end Get-OperatingSystemVersion

"This OS is version $(Get-OperatingSystemVersion)"

As shown in the preceding example, the curly brackets are open, followed by the code. The
code uses the Get-WmiObject cmdlet to retrieve an instance of the Win32_OperatingSystem
WMI class. Because this WMI class returns only a single instance, the properties of the class
are directly accessible. The version is the property in question, and so parentheses force the
evaluation of the code inside. The returned management object is used to emit the Ver-
sion value. The curly brackets are used to close the function. The operating system version is
returned to the code that calls the function. In this example, a string that writes “This OS is
Version “ is used. A sub expression is used to force evaluation of the function. The version of
the operating system is returned to the place from where the function was called.

In the earlier listing of cmdlet verbs, there is one cmdlet that uses the verb Read. It is the
Read-Host cmdlet, which is used to obtain information from the command line. This indicates
the verb Read is not used to describe reading a file. There is no verb called Display, and the
Write verb is used in cmdlet names such as Write-Error and Write-Debug, both of which do
not really seem to represent the concept of displaying information. If you were writing a func-
tion that would read the content of a text file and display statistics about that file, you might
call the function Get-TextStatistics. This is in keeping with cmdlet names such as Get-Process
and Get-Service, which represent the concept of emitting their retrieved content within their
essential functionality. The Get-TextStatistics function accepts a single parameter called Path.
The interesting thing about parameters for functions is that when you pass a value to the
parameter you use a dash, which is used to tell Windows PowerShell to use the information
following the parameter to modify the way the cmdlet operates. When you refer to the value
inside the function, it is a variable such as $path.

To call the Get-TextStatistics function, you have a couple of options. The first is to use the
name of the function and put the value in parentheses, as shown in the following example:

Get-TextStatistics("C:\fso\mytext.txt")

This is a natural way to call the function, and it works when there is a single parameter. It
does not work when there are two or more parameters. Another way to pass a value to the
function is to use the dash and the parameter name, as shown in the following example:

Get-TextStatistics -path "C:\fso\mytext.txt"

You will note from the preceding example that no parentheses are required. You can
also use positional arguments when passing a value. In this usage, you omit the name of the
parameter entirely and simply place the value for the parameter following the call to the
function, as shown in the following example:

Get-TextStatistics "C:\fso\mytext.txt"

 Understanding functions ChAPTER 12 187

NOTE The use of positional arguments works well when you are working from the com-
mand line and you want to speed things along by reducing the typing load. It can be a bit
confusing, and in general I tend to avoid it, even when working at the command line. This is
because I often copy my working code from the console directly into a script, and as a result
would need to re-type the command a second time to get rid of aliases and unnamed argu-
ments. With the improvements in tab expansion, I feel the time saved by using positional
arguments or partial arguments does not sufficiently warrant the time involved in re-typing
commands when they need to be transferred to scripts. The other reason for always using
named arguments is that it helps me to be aware of the exact command syntax.

One additional way to pass a value to a function is to use partial parameter names. All that
is required is enough of the parameter name to disambiguate it from other parameters. This
means if you have two parameters that both begin with the letter p, you would need to sup-
ply enough letters of the parameter name that would separate it from the other parameter, as
shown in the following example:

Get-TextStatistics -p "C:\fso\mytext.txt"

The following example shows the complete text of the Get-TextStatistics function:

Get-TextStatistics function

Function Get-TextStatistics($path)
{
 Get-Content -path $path |
 Measure-Object -line -character -word
}

Between Windows PowerShell 1.0 and Windows PowerShell 2.0, the number of verbs grew
from 40 to 60. It is anticipated that the list of standard verbs should cover 80 to 85 percent of
administrative tasks. The following list shows the Windows PowerShell 2.0 verbs:

■■ Checkpoint

■■ Complete

■■ Connect

■■ Debug

■■ Disable

■■ Disconnect

■■ Enable

■■ Enter

■■ Exit

■■ Limit

■■ Receive

■■ Register

	188	 CHAPTER 12	 Working with functions

■■ Reset

■■ Restore

■■ Send

■■ Show

■■ Undo

■■ Unregister

■■ Use

■■ Wait

The really good news is that Windows PowerShell 3.0 adds only two additional verbs:

■■ Optimize

■■ Resize

Once you have named the function, you need to create any parameters the function may
require. The parameters are contained within smooth parentheses. In the Get-TextStatistics
function, the function accepts a single parameter, the Path parameter. When you have a func-
tion that accepts a single parameter, you can pass the value to the function by placing the
value for the parameter inside smooth parentheses:

Get-TextLength("C:\fso\test.txt")

The path “C:\fso\test.txt” is passed to the Get-TextStatistics function by means of the Path
parameter. Inside the function, the string “C:\fso\text.txt” is contained in the $path variable.
The $path variable lives only within the confines of the Get-TextStatistics function. It is not
available outside the scope of the function. It is available from within child scopes of the Get-
TextStatistics function. A child scope of the Get-TextStatistics is one that is created from within
the Get-TextStatistics function.

In the Get-TextStatisticsCallChildFunction.ps1 script, the Write-Path function is called from
within the Get-TextStatistics function. This means the Write-Path function will have access to
variables that are created within the Get-TextStatistics function. This is the concept of variable
scope, which is an extremely important concept when working with functions. As you use
functions to separate the creation of objects, you must always be aware of where the object
gets created and where you intend to use that object. In the Get-TextStatisticsCallChildFunc-
tion, the $path variable does not obtain its value until it is passed to the function. It therefore
lives within the Get-TextStatistics function. But because the Write-Path function is called from
within the Get-TextStatistics function, it inherits the variables from that scope. When you call a
function from within another function, variables created within the parent function are avail-
able to the child function, as shown in the Get-TextStatisticsCallChildFunction.ps1 script:

Get-TextStatisticsCallChildFunction.ps1

Function Get-TextStatistics($path)
{
 Get-Content -path $path |
 Measure-Object -line -character -word

	 Understanding functions	 CHAPTER 12	 189

 Write-Path
}

Function Write-Path()
{
 "Inside Write-Path the `$path variable is equal to $path"
}

Get-TextStatistics("C:\fso\test.txt")
"Outside the Get-TextStatistics function `$path is equal to $path"

Inside the Get-TextStatistics function, the $path variable is used to provide the path to the Get-
Content cmdlet. When the Write-Path function is called, nothing is passed to it. But inside the
Write-Path function, the value of $path is maintained. Outside both functions, however, $path
does not have any value. The following example shows the output from running the script:

 Lines Words Characters Property
 ----- ----- ---------- --------
 3 41 210
Inside Write-Path the $path variable is equal to C:\fso\test.txt
Outside the Get-TextStatistics function $path is equal to

You will then need to open and close a script block. The curly bracket is used to delimit the
script block on a function. As a best practice, when I write a function I always use the Function
keyword. I type in the name, the input parameters, and the curly brackets for the script block
at the same time, as shown in the following example:

Function My-Function()
{
 #insert your code here
}

In this manner, I do not forget to close the curly brackets. Trying to identify a missing curly
bracket within a long script can be somewhat problematic as the error that is presented does
not always correspond to the line that is missing the curly bracket. Suppose the closing curly
bracket is left off the Get-TextStatistics function, as seen in the Get-TextStatisticsCallChildFunc-
tion-DoesNOTWork-MissingClosingBracket.ps1 script. The following error will be generated:

Missing closing ‘}’ in statement block.
At C:\Scripts\Get-TextStatisticsCallChildFunction-DoesNOTWork-MissingClosingBracket.
ps1:28 char:1

The problem is the position indicator of the error message points to the first character on line
28. Line 28 happens to be the first blank line after the end of the script. This means that Windows
PowerShell scanned the entire script looking for the closing curly bracket. Because it did not find
it, it states the error is the end of the script. If you were to place a closing curly bracket on line 28,
the error in this example would disappear, but the script would not work either.

The following example shows the Get-TextStatisticsCallChildFunction-DoesNOTWork-Miss-
ingClosingBracket.ps1 script with a comment that indicates where the missing closing curly
bracket should be placed:

	190	 CHAPTER 12	 Working with functions

Get-TextStatisticsCallChildFunction-DoesNOTWork-MissingClosingBracket.ps1
Function Get-TextStatistics($path)
{
 Get-Content -path $path |
 Measure-Object -line -character -word
 Write-Path
Here is where the missing bracket goes

Function Write-Path()
{
 "Inside Write-Path the `$path variable is equal to $path"
}
Get-TextStatistics("C:\fso\test.txt")
Write-Host "Outside the Get-TextStatistics function `$path is equal to $path"

One other technique to guard against the missing curly bracket problem is to add a com-
ment to the closing curly bracket of each function.

Using a type constraint
When accepting parameters for a function, it might be important to use a type constraint to
ensure the function receives the correct type of data. To do this, place the desired type alias
inside square brackets in front of the input parameter. This will constrain the data type and
prevent the entry of an incorrect type of data. Table 12-1 shows allowable type shortcuts.

TABLE 12-1  Data type aliases

Alias Type

[int] 32-bit signed integer

[long] 64-bit signed integer

[string] Fixed-length string of Unicode characters

[char] Unicode 16-bit character

[bool] true or false value

[byte] 8-bit unsigned integer

[double] Double-precision, 64-bit floating point number

[decimal] A 128-bit decimal value

[single] Single precision, 32-bit floating point number

[array] Array of values

[xml] XML objects

[hashtable] A hashtable object (similar to a dictionary object)

	 Understanding functions	 CHAPTER 12	 191

In the Resolve-ZipCode function, which is included in the Resolve-ZipCode.ps1 script, the
$zip input parameter is constrained to allow only a 32-bit signed integer for input. (Obviously
the [int] type constraint would eliminate most of the world’s zip codes, but the web service
the script uses resolves only U.S. zip codes, so it is a good addition to the function.)

In the Resolve-ZipCode function, the first thing that is done is to use a string that points
to the WSDL for the web service. Next, the New-WebServiceProxy cmdlet is used to create a
new web service proxy for the ZipCode service. The WSDL for the ZipCode service defines a
method called the GetInfoByZip method. It will accept a standard U.S. zip code. The results
are displayed as a table. The following example shows the Resolve-ZipCode.ps1 script:

Resolve-ZipCode.ps1
#Requires -Version 2.0
Function Resolve-ZipCode([int]$zip)
{
 $URI = "http://www.webservicex.net/uszip.asmx?WSDL"
 $zipProxy = New-WebServiceProxy -uri $URI -namespace WebServiceProxy -class ZipClass
 $zipProxy.getinfobyzip($zip).table
} #end Get-ZipCode

Resolve-ZipCode 28273

When you use a type constraint on an input parameter, any deviation from the expected
data type will generate an error similar to the one in the following example:

Resolve-ZipCode : Cannot process argument transformation on parameter ‘zip’. Cannot
convert value "COW" to type "System
.Int32". Error: "Input string was not in a correct format."
At C:\Users\edwils.NORTHAMERICA\AppData\Local\Temp\tmp3351.tmp.ps1:22 char:16
+ Resolve-ZipCode <<<< "COW"
 + CategoryInfo : InvalidData: (:) [Resolve-ZipCode], ParameterBindin...
mationException
 + FullyQualifiedErrorId : ParameterArgumentTransformationError,Resolve-ZipCode

Needless to say, such an error could be distracting to the users of the function. One way
to handle the problem of confusing error messages is to use the Trap keyword. In the De-
moTrapSystemException.ps1 script, the My-Test function uses [int] to constrain the $myinput
variable to accepting only a 32-bit unsigned integer for input. If such an integer is received
by the function when it is called, the function will return the string “It worked”. If the function
receives a string for input, an error will be raised, similar to the one in the preceding example.

Rather than displaying a raw error message, which most users and many IT Pros find con-
fusing, it is a best practice to suppress the display of the error message. You also could inform
the user an error condition has occurred and provide more meaningful and direct information
that the user can then relay to technical support. Often, IT departments will display such an
error message, complete with either a local telephone number for the appropriate technical
support or even a link to an internal webpage that provides detailed troubleshooting and
self-help, corrective steps the user can perform. You could even provide a webpage that hosts
a script the user could run that would fix the problem. This is similar to the Microsoft Fix it
Center at http://fixitcenter.support.microsoft.com/Portal.

	192	 CHAPTER 12	 Working with functions

When an instance of a System.SystemException class is created (when a system excep-
tion occurs), the Trap statement will trap the error rather than allowing it to display the error
information on the screen. If you were to query the $error variable, you would see that the
error had in fact occurred and was actually received by the error record. You would also have
access to the ErrorRecord class by means of the $_ automatic variable, which means the error
record has been passed along the pipeline. This gives you the ability to build a rich error-
handling solution.

In the following example, the string “error trapped” is displayed, and the Continue state-
ment is used to continue the script execution on the next line of code. The next line of code
that is executed is the “After the error” string. The example shows the output after the De-
moTrapSystemException.ps1 script is run:

error trapped
After the error

The following example shows the complete DemoTrapSystemException.ps1 script:

DemoTrapSystemException.ps1
Function My-Test([int]$myinput)
{

 "It worked"
} #End my-test function
*** Entry Point to Script ***

Trap [SystemException] { "error trapped" ; continue }
My-Test -myinput "string"
"After the error"

Using multiple input parameters

When I use multiple input parameters, I consider it a best practice to modify the way the
function is structured. This is more of a visual change that makes the function easier to read.
In the basic function pattern shown in the following example, the function accepts three
input parameters. When you are considering the default values and the type constraints, the
parameters begin to string along fairly long. Moving them to the inside of the function body
highlights the fact they are input parameters, and it makes them easier to read, easier to
understand, and easier to maintain:

Function Function-Name
{
 Param(
 [int]$Parameter1,
 [String]$Parameter2 = "DefaultValue",
 $Parameter3
)
#Function code goes here
} #end Function-Name

	 Using multiple input parameters	 CHAPTER 12	 193

An example of a function that uses three input parameters is the Get-DirectoryListing func-
tion. With the type constraints, default values, and parameter names, the function signature
would be rather cumbersome to include on a single line, as shown in the following example:

Function Get-DirectoryListing (String]$Path,[String]$Extension = "txt",[Switch]$Today)

If you increase the number of parameters to four, or if you include a default value for the
Path parameter, the signature would easily scroll to two lines. Using the Param statement
inside the function body also provides you with the ability to specify input parameters to a
function.

NOTE  Using the Param statement inside the function body is often regarded as a person-
al preference. Personally, I do not think it makes sense to use the Param statement inside
the function body when there is only one or two input parameters. It requires additional
work and often leaves the reader of the script wondering why this was done. When there
are more than two parameters, the Param statement stands out visually, and it is obvious
why it was done in this particular manner.

Following the Function keyword and the name of the function, the Param keyword is used
to identify the parameters for the function. Each parameter must be separated by a comma.
All the parameters must be surrounded with a set of smooth parentheses. If you want to as-
sign a default value for a parameter, such as the extension .txt for the Extension parameter in
the Get-DirectoryListing function, you do a straight value assignment followed by a comma.

In the Get-DirectoryListing function, the Today parameter is a switched parameter. When it
is supplied to the function, only files written to since midnight on the day the script is run will
be displayed. If it is not supplied, all files matching the extension in the folder will be dis-
played. The following example shows the Get-DirectoryListingToday.ps1 script:

Get-DirectoryListingToday.ps1
Function Get-DirectoryListing
{
 Param(
 [String]$Path,
 [String]$Extension = "txt",
 [Switch]$Today
)
 If($Today)
 {
 Get-ChildItem -Path $path* -include *.$Extension |
 Where-Object { $_.LastWriteTime -ge (Get-Date).Date }
 }
 ELSE
 {
 Get-ChildItem -Path $path* -include *.$Extension
 }
} #end Get-DirectoryListing

*** Entry to script ***
Get-DirectoryListing -p c:\fso -t

	194	 CHAPTER 12	 Working with functions

NOTE  As a best practice, you should avoid creating functions that have a large number
of input parameters. It is very confusing. When you find yourself creating a large number
of input parameters, you should ask if there is a better way to accomplish your tasks. It
might be an indicator you do not have a single-purpose function. In the Get-Directory-
Listing function, I have a switched parameter that will filter the files returned by the ones
written to today. If I were really writing the script for production use, instead of just to
demonstrate multiple function parameters, I would have created another function called
something like Get-FilesByDate. In that function, I would have a Today switch and a Date
parameter to allow a selectable date for the filter. This separates the data-gathering func-
tion and the filter and presentation function. See the “Using functions to provide ease of
modification” section later in this chapter for more discussion of this technique.

Using functions to encapsulate business logic

Scriptwriters need to be concerned with two kinds of logic: program logic and business logic.
Program logic is the way the script works, the order in which things need to be done, and the
requirements of code used in the script. An example of program logic is the requirement to
open a connection to a database before querying the database. Business logic is something
that is a requirement of the business, but not necessarily a requirement of the program and
script. The script can often operate just fine, regardless of the particulars of the business rule.
If the script is designed properly, it should operate perfectly fine no matter what gets sup-
plied for the business rules.

In the BusinessLogicDemo.ps1 script, a function called Get-Discount is used to calculate the
discount to be granted to the total amount. One benefit to encapsulating the business rules
for the discount into a function is as long as the contract between the function and the calling
code does not change, you can drop any kind of convoluted discount schedule between the
curly brackets of the Get-Discount function that the business decides to come up with. This
includes database calls to determine on-hand inventory, time of day, day of week, total sales
volume for the month, the buyers’ loyalty level, and the square root of some random number
that is used to determine the instant discount rate.

So what is the contract with the function? The contract with the Get-Discount function
says, “If you give me a rate number as a type of system.double and a total as an integer, I will
return to you a number that represents the total discount to be applied to the sale.” As long
as you adhere to that contract, you never need to modify the code.

The Get-Discount function begins with the Function keyword, the name of the function,
and the definition for two input parameters. The first input parameter is the $rate parameter,
which is constrained to be a system.double (which will permit us to supply decimal numbers).
The second input parameter is the $total parameter, which is constrained to be a system.inte-
ger and therefore will not allow decimal numbers. In the script block, the value of the -Total

	 Using functions to encapsulate business logic	 CHAPTER 12	 195

parameter is multiplied by the value of the -Rate parameter. The result of this calculation is
returned to the pipeline.

The following example shows the Get-Discount function:

Function Get-Discount([double]$rate,[int]$total)
{
 $rate * $total
} #end Get-Discount

The entry point to the script assigns values to both the $total and $rate variables:

$rate = .05
$total = 100

The variable $discount is used to hold the result of the calculation from the Get-Discount
function. When calling the function, it is a best practice to use full parameter names. It makes
the code easier to read and will help to make it immune to unintended problems if the func-
tion signature ever changes, as shown in the following example:

$discount = Get-Discount -rate $rate -total $total

NOTE  The signature of a function is the order and names of the input parameters. If you
typically supply values to the signature by means of positional parameters, and the order
of the input parameters changes, the code will fail or, worse yet, produce inconsistent re-
sults. If you typically call functions by means of partial parameter names and an additional
parameter is added, the script will fail due to difficulty with the disambiguation process.
Obviously, you should take this into account when first writing the script and the function,
but the problem can arise months or years later when making modifications to the script or
calling the function by means of another script.

The remainder of the script produces output for the screen. The following example shows

the results of running the script:

Total: 100
Discount: 5
Your Total: 95

The following example shows the complete text of the BusinessLogicDemo.ps1 script:

BusinessLogicDemo.ps1
Function Get-Discount([double]$rate,[int]$total)
{
 $rate * $total
} #end Get-Discount

$rate = .05
$total = 100
$discount = Get-Discount -rate $rate -total $total

	196	 CHAPTER 12	 Working with functions

"Total: $total"
"Discount: $discount"
"Your Total: $($total-$discount)"

Business logic does not have to be related to business purposes. Business logic is any-
thing that is arbitrary that does not affect the running of the code. In the FindLargeDocs.ps1
script, there are two functions. The first function, Get-Doc, is used to find document files (files
with an extension of .doc, .docx, or .dot) in a folder that is passed to the function when it is
called. Use the Recurse switch with the Get-ChildItem cmdlet to cause the Get-Doc to look in
the present folder as well as look within child folders. This function is standalone and has no
dependency on any other functions.

The LargeFiles piece of code is a filter. A filter is kind of special purpose function that uses
the Filter keyword rather than using the Function keyword when it is created:

FindLargeDocs.ps1
Function Get-Doc($path)
{
 Get-ChildItem -Path $path -include *.doc,*.docx,*.dot -recurse
} #end Get-Doc

Filter LargeFiles($size)
{
 $_ |
 Where-Object { $_.length -ge $size }
} #end LargeFiles

Get-Doc("C:\FSO") | LargeFiles 1000

Using functions to provide ease of modification

It is a truism that a script is never completed. There is always something else to add to a
script, such as a change that will improve it or additional functionality someone requests.
When a script is written as one long piece of inline code, without recourse to functions, it can
be rather tedious and error prone to modify.

An example of an inline script is the InLineGetIPDemo.ps1 script. The first line of code uses
the Get-WmiObject cmdlet to retrieve the instances of the Win32_NetworkAdapterConfigura-
tion WMI class that is IP-enabled. The results of this WMI query are stored in the $IP variable,
as shown in the following example:

$IP = Get-WmiObject -class Win32_NetworkAdapterConfiguration -Filter "IPEnabled = $true"

Once the WMI information has been obtained and stored, the remainder of the script
prints information to the screen. The IPAddress, IPSubNet, and DNSServerSearchOrder are all
stored an array. For this example, we are interested only in the first IP address, and we there-
fore print element 0, which will always exist if the network adapter has an IP address. The
following example shows this section of the script:

 Using functions to provide ease of modification ChAPTER 12 197

"IP Address: " + $IP.IPAddress[0]
"Subnet: " + $IP.IPSubNet[0]
"GateWay: " + $IP.DefaultIPGateway
"DNS Server: " + $IP.DNSServerSearchOrder[0]
"FQDN: " + $IP.DNSHostName + "." + $IP.DNSDomain

When the script is run, it produces output similar to the following example:

IP Address: 192.168.2.5
Subnet: 255.255.255.0
GateWay: 192.168.2.1
DNS Server: 192.168.2.1
FQDN: w8client1.nwtraders.com

The following example shows the complete InLineGetIPDemo.ps1 script:

InLineGetIPDemo.ps1
$IP = Get-WmiObject -class Win32_NetworkAdapterConfiguration -Filter "IPEnabled = $true"
"IP Address: " + $IP.IPAddress[0]
"Subnet: " + $IP.IPSubNet[0]
"GateWay: " + $IP.DefaultIPGateway
"DNS Server: " + $IP.DNSServerSearchOrder[0]
"FQDN: " + $IP.DNSHostName + "." + $IP.DNSDomain

With just a few modifications to the script, you can obtain a great deal of flexibility. The
modifications, of course, involve moving the inline code into functions. As a best practice, a
function should be narrowly defined and should encapsulate a single thought. Although we
could move the entire preceding script into a function, we would not have as much flexibility.
There are two thoughts or ideas that are expressed in the script: The first is obtaining the IP
information from WMI, and the second is formatting and displaying the IP information. It
would be best to separate the gathering and displaying processes from one another as they
are logically two different activities.

To convert the InLineGetIPDemo.ps1 script into a script that uses a function, you need to
add only the Function keyword, give it a name, and surround the original code with a pair of
curly brackets. The transformed script is now named GetIPDemoSingleFunction.ps1:

GetIPDemoSingleFunction.ps1
Function Get-IPDemo
{
 $IP = Get-WmiObject -class Win32_NetworkAdapterConfiguration -Filter "IPEnabled =
$true"
 "IP Address: " + $IP.IPAddress[0]
 "Subnet: " + $IP.IPSubNet[0]
 "GateWay: " + $IP.DefaultIPGateway
 "DNS Server: " + $IP.DNSServerSearchOrder[0]
 "FQDN: " + $IP.DNSHostName + "." + $IP.DNSDomain
} #end Get-IPDemo

*** Entry Point To Script ***

Get-IPDemo

	198	 CHAPTER 12	 Working with functions

If you go to all the trouble to transform the inline code into a function, what benefit do
you derive? By making this single change, you gain the following benefits:

■■ Easier to read

■■ Easier to understand

■■ Easier to reuse

■■ Easier to troubleshoot

The script is easier to read because you do not really need to read each line of code to see
what it does. There is a function that obtains the IP address, and it is called from outside the
function. That is all the script does.

The script is easier to understand because there is a function that obtains the IP address.
If you want to know the details of that operation, you can read that function. If you are not
interested in the details, you can skip that portion of the code.

The script is easier to reuse because you can dot-source the script as seen here. When the
script is dot-sourced, all the executable code in the script is run. As a result, because each of
the scripts prints information, the following output is displayed:

IP Address: 192.168.2.5
Subnet: 255.255.255.0
GateWay: 192.168.2.1
DNS Server: 192.168.2.1
FQDN: w8client1.nwtraders.com

 w8client1 free disk space on drive C:
 48,767.16 MegaBytes

This OS is version 6.2

The following example shows the DotSourceScripts.ps1 script:

DotSourceScripts.ps1
. C:\Scripts\GetIPDemoSingleFunction.ps1
. C:\Scripts\Get-FreeDiskSpace.ps1
. C:\Scripts\Get-OperatingSystemVersion.ps1

As you can see, this provides a certain level of flexibility to choose the information re-
quired, and it also makes it easy to mix and match the required information. If each of the
scripts had been written in a more standard fashion, and the output standardized, the results
would have been more impressive. As it is, three lines of code produced an exceptional
amount of useful output that could be acceptable in a variety of situations. The .ps1 script is
easier to troubleshoot in part because it is easier to read and easier to understand.

A better way to work with the function is to think about the things the function is actu-
ally doing. In the FunctionGetIPDemo.ps1 script, there are two functions. The first connects
to WMI, which returns a management object. The second function formats the output. These
are two completely unrelated tasks. The first task is data gathering, and the second task is the

	 Using functions to provide ease of modification	 CHAPTER 12	 199

presentation of the information. The following example shows the FunctionGetIPDemo.ps1
script:

FunctionGetIPDemo.ps1
Function Get-IPObject
{
 Get-WmiObject -class Win32_NetworkAdapterConfiguration -Filter "IPEnabled = $true"
} #end Get-IPObject

Function Format-IPOutput($IP)
{
 "IP Address: " + $IP.IPAddress[0]
 "Subnet: " + $IP.IPSubNet[0]
 "GateWay: " + $IP.DefaultIPGateway
 "DNS Server: " + $IP.DNSServerSearchOrder[0]
 "FQDN: " + $IP.DNSHostName + "." + $IP.DNSDomain
} #end Format-IPOutput

*** Entry Point To Script

$ip = Get-IPObject
Format-IPOutput($ip)

By separating the data gathering and the presentation activities into different functions,
additional flexibility is gained. You could easily modify the Get-IPObject function to look
for network adapters that were not IP-enabled. To do this, you would need to modify the
filter parameter of the Get-WmiObject cmdlet. Because most of the time you would actually
be interested only in network adapters that are IP-enabled, it would make sense to set the
default value of the input parameter to $true. By default, the behavior of the revised function
is exactly as it was prior to modification. The advantage is you can now use the function and
modify the objects returned by it. To do this, you supply $false when calling the function. This
is illustrated in the Get-IPObjectDefaultEnabled.ps1 script:

Get-IPObjectDefaultEnabled.ps1
Function Get-IPObject([bool]$IPEnabled = $true)
{
 Get-WmiObject -class Win32_NetworkAdapterConfiguration -Filter "IPEnabled = $IPEnabled"
} #end Get-IPObject

Get-IPObject -IPEnabled $False

By separating the gathering of the information from the presentation of the information,
you gain flexibility not only in the type of information that is garnered, but also in the way the
information is displayed. When gathering network adapter configuration information from
a network adapter that is not enabled for IP, the results are not as impressive as one that is
enabled for IP. You might therefore decide to create a different display to list only the perti-
nent information. As the function that displays the information is different than the one that
gathers the information, you can easily make a change that customizes the information that
is most germane. The Begin section of the function is run once during the execution of the
function. This is the perfect place to create a header for the output data. The Process section

	200	 CHAPTER 12	 Working with functions

executes once for each item on the pipeline, which in this example will be each of the non
IP-enabled network adapters. The Write-Host cmdlet is used to easily write the data to the
Windows PowerShell console. The backtick t (`t) character is used to produce a tab.

NOTE  The backtick t character is a string character and, as such, works with cmdlets that
accept string input.

The following example shows the Get-IPObjectDefaultEnabledFormatNonIPOutput.ps1
script:

Get-IPObjectDefaultEnabledFormatNonIPOutput.ps1
Function Get-IPObject([bool]$IPEnabled = $true)
{
 Get-WmiObject -class Win32_NetworkAdapterConfiguration -Filter "IPEnabled = $IPEnabled"
} #end Get-IPObject

Function Format-NonIPOutput($IP)
{
 Begin { "Index # Description" }
 Process {
 ForEach ($i in $ip)
 {
 Write-Host $i.Index `t $i.Description
 } #end ForEach
 } #end Process
} #end Format-NonIPOutPut

$ip = Get-IPObject -IPEnabled $False
Format-NonIPOutput($ip)

You can use the Get-IPObject function to retrieve the network adapter configuration, and
you can use the Format-NonIPOutput and Format-IPOutput functions to clean up the output
from the Get-IPObject function:

CombinationFormatGetIPDemo.ps1
Function Get-IPObject([bool]$IPEnabled = $true)
{
 Get-WmiObject -class Win32_NetworkAdapterConfiguration -Filter "IPEnabled = $IPEnabled"
} #end Get-IPObject

Function Format-IPOutput($IP)
{
 "IP Address: " + $IP.IPAddress[0]
 "Subnet: " + $IP.IPSubNet[0]
 "GateWay: " + $IP.DefaultIPGateway
 "DNS Server: " + $IP.DNSServerSearchOrder[0]
 "FQDN: " + $IP.DNSHostName + "." + $IP.DNSDomain
} #end Format-IPOutput

Function Format-NonIPOutput($IP)
{
 Begin { "Index # Description" }

	 Summary	 CHAPTER 12	 201

 Process {
 ForEach ($i in $ip)
 {
 Write-Host $i.Index `t $i.Description
 } #end ForEach
 } #end Process
} #end Format-NonIPOutPut

*** Entry Point ***
$IPEnabled = $false
$ip = Get-IPObject -IPEnabled $IPEnabled
If($IPEnabled) { Format-IPOutput($ip) }
ELSE { Format-NonIPOutput($ip) }

Summary

This chapter focused on creating functions. We began with an introduction to functions and
their use. Next, we discussed how to accept parameters for input and concluded by demon-
strating two special case scenarios for using functions.

		 	 203

C H A P T E R 1 3

Debugging scripts
■■ Understanding debugging in Windows PowerShell

■■ Debugging the script

No one enjoys debugging scripts. In fact, the best debugging is no debugging. It is also
true that well written, well formatted, well documented, and clearly constructed Win-

dows PowerShell code requires less effort to debug than poorly formatted, undocumented
spaghetti code. It is fair to say that debugging begins when you first open the Windows
PowerShell ISE.

Understanding debugging in Windows PowerShell

If you can read and understand your Windows PowerShell code, chances are you will need
to do very little debugging. But what if you do need to do some debugging? Well, just as
excellent golfers spend many hours practicing chipping out of the sand trap in hopes that
they will never need to use the skill, so too must competent Windows PowerShell scripters
practice debugging skills in hopes they will never need to apply the knowledge. Under-
standing the color coding of the Windows PowerShell ISE, detecting when closing quotation
marks are missing, and knowing which pair of braces correspond to which command can
greatly reduce the debugging that might be needed later.

Debugging the script

The debugging features of Windows PowerShell 3.0 make the use of the Set-PSDebug cmd-
let seem rudimentary or even cumbersome. Once you are more familiar with the debugging
features of Windows PowerShell 3.0, you might decide not to use the Set-PSDebug cmdlet.
Several cmdlets enable debugging from both the Windows PowerShell console and from
the Windows PowerShell ISE. Table 13-1 shows the debugging cmdlets.

 204 ChAPTER 13 Debugging scripts

TABLE 13-1 Windows PowerShell debugging cmdlets

Cmdlet name Cmdlet function

Set-PsBreakpoint Sets breakpoints on lines, variables, and commands.

Get-PsBreakpoint Gets breakpoints in the current session.

Disable-PsBreakpoint Turns off breakpoints in the current session.

Enable-PsBreakpoint Re-enables breakpoints in the current session.

Remove-PsBreakpoint Deletes breakpoints from the current session.

Get-PsCallStack Displays the current call stack.

Setting breakpoints
The debugging features in Windows PowerShell use breakpoints. Breakpoints are very famil-
iar to developers who have used products such as Microsoft Visual Studio in the past. But for
many IT pros without a programming background, the concept of a breakpoint is somewhat
foreign. A breakpoint is a spot in the script where you would like the execution of the script to
pause. Because the script pauses, it is like the stepping functionality that we examined earlier.
But because you control where the breakpoint will occur, the stepping experience is much faster
because it doesn’t halt on each line of the script. In addition, because you have many different
methods to use to set the breakpoint (instead of merely stepping through the script line by
line), you can tailor the breakpoint to reveal precisely the information you are looking for.

Setting a breakpoint on a line number
To set a breakpoint, use the Set-PSBreakpoint cmdlet. The easiest way to set a breakpoint is to
set it on line 1 of the script. To set a breakpoint on the first line of the script, use the Line pa-
rameter and Script parameter. When you set a breakpoint, an instance of the System.Manage-
ment.Automation.LineBreak .NET Framework class is returned. It lists the ID, Script, and Line
properties that were assigned when the breakpoint was created, as shown in the following
example:

PS C:\> Set-PSBreakpoint -line 1 -script Y:\BadScript.ps1
 ID Script Line Command Variable Action
 -- ------ ---- ------- -------- ------
 0 BadScript.ps1 1

This causes the script to break immediately. You can then step through the function in the
same way you did using the Set-PSDebug cmdlet with the Step parameter. When you run the
script, it hits the breakpoint that was set on the first line of the script, and Windows Power-
Shell enters the script debugger. Windows PowerShell will enter the debugger every time the
BadScript.ps1 script is run from the Y drive. When the Windows PowerShell enters the debug-
ger, the Windows PowerShell command prompt changes to [DBG]: PS C:\>>> to visually alert

	 Debugging the script	 CHAPTER 13 	 205

you that you are inside the Windows PowerShell debugger. To step to the next line in the
script, type s. To quit the debugging session, type q. The debugging commands are not case
sensitive. The following example shows this process:

PS C:\> Y:\BadScript.ps1
Hit Line breakpoint on ‘Y:\BadScript.ps1:1’

BadScript.ps1:1 #
--
[DBG]: PS C:\>>> s
BadScript.ps1:16 Function AddOne([int]$num)
[DBG]: PS C:\>>> s
BadScript.ps1:21 Function AddTwo([int]$num)
[DBG]: PS C:\>>> s
BadScript.ps1:26 Function SubOne([int]$num)
[DBG]: PS C:\>>> s
BadScript.ps1:31 Function TimesOne([int]$num)
[DBG]: PS C:\>>> s
BadScript.ps1:36 Function TimesTwo([int]$num)
[DBG]: PS C:\>>> s
BadScript.ps1:41 Function DivideNum([int]$num)
[DBG]: PS C:\>>> s
BadScript.ps1:48 $num = 0
[DBG]: PS C:\>>> s
BadScript.ps1:49 SubOne($num) | DivideNum($num)
[DBG]: PS C:\>>> s
BadScript.ps1:28 $num-1
[DBG]: PS C:\>>> s
BadScript.ps1:43 12/$num
[DBG]: PS C:\>>> s
 if ($_.FullyQualifiedErrorId -ne
"NativeCommandErrorMessage" -and $ErrorView -ne "CategoryView") {
[DBG]: PS C:\>>> q
PS C:\>

NOTE  Keep in mind that breakpoints depend on the location of the specific script when
you specify a breakpoint on a script. When you create a breakpoint for a script, you specify
the location to the script for which you want to set a breakpoint. Often I have several cop-
ies of a script that I keep in different locations (for version control). At times, I get confused
in a long debug session and might open up the wrong version of the script to debug it.
This will not work. If the script is identical in all respects except for the path to the script,
it will not break. If you want to use a single breakpoint that could apply to a specific script
that is stored in multiple locations, you can set the breakpoint for the condition inside the
Windows PowerShell console. In this case, do not use the Script parameter.

	206	 CHAPTER 13 	 Debugging scripts

Setting a breakpoint on a variable
Setting a breakpoint on line 1 of the script is useful for easily entering a debug session, but
setting a breakpoint on a variable can often make a problem with a script easy to detect. This
is, of course, especially true when you have already determined the problem is with a variable
that is either getting assigned a value or being ignored. There are three modes that can be
configured for when the breakpoint is specified for a variable. The modes are specified by us-
ing the Mode parameter. Table 13-2 lists the three modes of operation.

TABLE 13-2  Variable breakpoint access modes

Access Mode Meaning

Write Stops execution immediately before a new value is written to the variable.

Read Stops execution when the variable is read; that is, when its value is accessed, either
to be assigned, displayed, or used. In Read mode, execution does not stop when the
value of the variable changes.

ReadWrite Stops execution when the variable is read or written.

To see when the BadScript.ps1 script writes to the $num variable, use the Write mode.
When you specify the value for the Variable parameter, do not include the dollar sign in front
of the variable name. To set a breakpoint on a variable, you need to supply only a path to
the script, the name of the variable, and the access mode. When a variable breakpoint is set,
the System.Management.Automation.LineBreak .NET Framework class object that is returned
does not include the access mode value. This is true even if you use the Get-PSBreakpoint
cmdlet to directly access the breakpoint. If you pipeline the System.Management.Automation.
LineBreak .NET Framework class object to the Format-List cmdlet, you will be able to see that
the access mode property is available. In the following example, we set a breakpoint when the
$num variable is written to in the y:\BadScript.ps1 script.

PS C:\> Set-PSBreakpoint -Variable num -Mode write -Script Y:\BadScript.ps1
 ID Script Line Command Variable Action
 -- ------ ---- ------- -------- ------
 3 BadScript.ps1 num

PS C:\> Get-PSBreakpoint
 ID Script Line Command Variable Action
 -- ------ ---- ------- -------- ------
 3 BadScript.ps1 num

PS C:\> Get-PSBreakpoint | Format-List * -Force
AccessMode : Write
Variable : num
Action :
Enabled : True
HitCount : 0
Id : 3
Script : Y:\BadScript.ps1

	 Debugging the script	 CHAPTER 13 	 207

After you set the breakpoint, when you run the script (if the other breakpoints have
been removed or deactivated, which will be discussed later) the script will enter the Win-
dows PowerShell debugger when the breakpoint is hit; in other words, the breakpoint is hit
when the value of the $num variable is written to. If you step through the script by using the
s command, you will be able to follow the sequence of operations. Only one breakpoint is hit
when the script is run. This was on line 48 when the value was set to 0, as shown in the follow-
ing example:

PS C:\> Y:\BadScript.ps1
Hit Variable breakpoint on ‘Y:\BadScript.ps1:$num’ (Write access)

BadScript.ps1:48 $num = 0
[DBG]: PS C:\>>> $num
[DBG]: PS C:\>>> Write-Host $num

[DBG]: PS C:\>>> s
BadScript.ps1:49 SubOne($num) | DivideNum($num)
[DBG]: PS C:\>>> $num
0

To set a breakpoint on a Read operation for the variable, you specify the Variable param-
eter and name of the variable, the Script parameter with the path to the script, and Read as
the value for the Mode parameter, as shown in the following example:

PS C:\> Set-PSBreakpoint -Variable num -Script Y:\BadScript.ps1 -Mode read

 ID Script Line Command Variable Action
 -- ------ ---- ------- -------- ------
 4 BadScript.ps1 num

When you run the script, a breakpoint will be displayed each time you hit a Read operation
on the variable. Each breakpoint will be displayed in the Windows PowerShell console as Hit
Variable breakpoint followed by the path to the script and the access mode of the variable.
In the BadScript.ps1 script, the value of the $num variable is read several times. The following
example shows the truncated output:

PS C:\> Y:\BadScript.ps1
Hit Variable breakpoint on ‘Y:\BadScript.ps1:$num’ (Read access)

BadScript.ps1:49 SubOne($num) | DivideNum($num)
[DBG]: PS C:\>>> s
Hit Variable breakpoint on ‘Y:\BadScript.ps1:$num’ (Read access)

BadScript.ps1:49 SubOne($num) | DivideNum($num)
[DBG]: PS C:\>>> s
BadScript.ps1:28 $num-1
[DBG]: PS C:\>>> s
Hit Variable breakpoint on ‘Y:\BadScript.ps1:$num’ (Read access)

BadScript.ps1:28 $num-1
[DBG]: PS C:\>>> s

	208	 CHAPTER 13 	 Debugging scripts

If you set the ReadWrite access mode for the Mode parameter for the variable $num for
the BadScript.ps1 script, you will receive the following output:

PS C:\> Set-PSBreakpoint -Variable num -Mode readwrite -Script Y:\BadScript.ps1

 ID Script Line Command Variable Action
 -- ------ ---- ------- -------- ------
 6 BadScript.ps1 num

When you run the script (assuming you have disabled the other breakpoints), you will
hit a breakpoint each time the $num is read to or written to. If you get tired of typing s and
pressing Enter while you are in the debugging session, you can press Enter and it will repeat
your previous s command as you continue to step through the breakpoints. When the script
has stepped through the code and hits the error in the BadScript.ps1 script, type to exit the
debugger. The following example shows this process:

PS C:\> Y:\BadScript.ps1
Hit Variable breakpoint on ‘Y:\BadScript.ps1:$num’ (ReadWrite access)

BadScript.ps1:48 $num = 0
[DBG]: PS C:\>>> s
BadScript.ps1:49 SubOne($num) | DivideNum($num)
[DBG]: PS C:\>>>
Hit Variable breakpoint on ‘Y:\BadScript.ps1:$num’ (ReadWrite access)

BadScript.ps1:49 SubOne($num) | DivideNum($num)
[DBG]: PS C:\>>>
Hit Variable breakpoint on ‘Y:\BadScript.ps1:$num’ (ReadWrite access)

BadScript.ps1:49 SubOne($num) | DivideNum($num)
[DBG]: PS C:\>>>
BadScript.ps1:28 $num-1
[DBG]: PS C:\>>>
Hit Variable breakpoint on ‘Y:\BadScript.ps1:$num’ (ReadWrite access)

BadScript.ps1:28 $num-1
[DBG]: PS C:\>>>
BadScript.ps1:43 12/$num
[DBG]: PS C:\>>>
Hit Variable breakpoint on ‘Y:\BadScript.ps1:$num’ (ReadWrite access)

BadScript.ps1:43 12/$num
[DBG]: PS C:\>>>
 if ($_.FullyQualifiedErrorId -ne
"NativeCommandErrorMessage" -and $ErrorView -ne "CategoryView") {
[DBG]: PS C:\>>> q
PS C:\>

When you use the ReadWrite access mode of the Mode parameter for breaking on
variables, the breakpoint does not tell you if the operation was a Read operation or a Write
operation. You have to look at the code that is being executed to determine if the value of
the variable was being written or read.

	 Debugging the script	 CHAPTER 13 	 209

By specifying a value for the Action parameter, you can include regular Windows Power-
Shell code that will execute when the breakpoint is hit. If, for example, you are trying to follow
the value of a variable within the script, and you want to display the value of the variable each
time the breakpoint is hit, you might want to specify an Action that uses the Write-Host cmd-
let to display the value of the variable. By using the Write-Host cmdlet, you can also include
a string that indicates the value of the variable being displayed. This is crucial for picking up
variables that never initialize; therefore, it is easier to spot than a blank line. The following
example shows the technique of using the Write-Host cmdlet in an Action parameter:

PS C:\> Set-PSBreakpoint -Variable num -Action { write-host "num = $num" ;
Break } -Mode readwrite -script Y:\BadScript.ps1

 ID Script Line Command Variable Action
 -- ------ ---- ------- -------- ------
 5 BadScript.ps1 num write-host "...

When you run the Y:\BadScript.ps1 with the breakpoint set, you receive the following out-
put inside the Windows PowerShell debugger:

PS C:\> Y:\BadScript.ps1
num =
Hit Variable breakpoint on ‘Y:\BadScript.ps1:$num’ (ReadWrite access)

BadScript.ps1:48 $num = 0
[DBG]: PS C:\>>> s
BadScript.ps1:49 SubOne($num) | DivideNum($num)
[DBG]: PS C:\>>> s
Set-PSBreakpoint -Variable num -Action { write-host "num = $num" ; break }
-Mode readwrite -script Y:\BadScript.ps1
[DBG]: PS C:\>>> s
num = 0
Set-PSBreakpoint -Variable num -Action { write-host "num = $num" ; break }
-Mode readwrite -script Y:\BadScript.ps1
[DBG]: PS C:\>>> c
Hit Variable breakpoint on ‘Y:\BadScript.ps1:$num’ (ReadWrite access)

BadScript.ps1:49 SubOne($num) | DivideNum($num)
[DBG]: PS C:\>>>

Setting a breakpoint on a command
To set the breakpoint on a command, use the Command parameter. You can break on a call
to a Windows PowerShell cmdlet, function, or external script. You can use aliases when setting
breakpoints. When you create a breakpoint on an alias for a cmdlet, the debugger will hit
only on the use of the alias, not on the actual command name. In addition, you do not have
to specify a script for the debugger to break. If you do not type a path to a script, the debug-
ger will be active for everything within the Windows PowerShell console session. Every occur-
rence of the ForEach command causes the debugger to break. Because ForEach is a language
statement as well as an alias for the ForEach-Object cmdlet, you might wonder whether the
Windows PowerShell debugger will break on both the language statement and the use of the

	210	 CHAPTER 13 	 Debugging scripts

alias for the cmdlet. The answer is no. You can set breakpoints on language statements, but
the debugger will not break on a language statement. As shown in the following example,
the debugger breaks on the use of the ForEach alias, but not on the use of the ForEach-Object
cmdlet:

PS C:\> Set-PSBreakpoint -Command foreach

 ID Script Line Command Variable Action
 -- ------ ---- ------- -------- ------
 10 foreach

PS C:\> 1..3 | ForEach-Object { $_}
1
2
3
PS C:\> 1..3 | foreach { $_ }
Hit Command breakpoint on ‘foreach’

1..3 | foreach { $_ }
[DBG]: PS C:\>>> c
1
Hit Command breakpoint on ‘foreach’

1..3 | foreach { $_ }
[DBG]: PS C:\>>> c
2
Hit Command breakpoint on ‘foreach’

1..3 | foreach { $_ }
[DBG]: PS C:\>>> c
3

NOTE  You can use the shortcut technique of creating the breakpoint for the Windows
PowerShell session, and not specifically for the script. By leaving out the Script parameter
when creating a breakpoint, you cause the debugger to break into any running script that
uses the named function. This allows you to use the same breakpoints when debugging
scripts that use the same function.

When you create a breakpoint for the DivideNum function used by the y:\BadScript.ps1
script, you can omit the path to the script because it is the only script that uses the Divide-
Num function. This makes the command easier to type, but could become confusing when
you look through a collection of breakpoints. If you are debugging multiple scripts in a single
Windows PowerShell console session, it could become confusing if you do not specify the
script to which the breakpoint applies unless you are specifically debugging the function as it

	 Debugging the script	 CHAPTER 13 	 211

is used in multiple scripts. The following example shows the creation of a command break-
point for the DivideNum function:

PS C:\> Set-PSBreakpoint -Command DivideNum

 ID Script Line Command Variable Action
 -- ------ ---- ------- -------- ------
 7 DivideNum

When you run the script, it hits a breakpoint when the DivideNum function is called. When
BadScript.ps1 hits the DivideNum function, the value of $num is 0. As you step through the
DivideNum function, you assign the value of 2 to the $num variable. The result of 6 is dis-
played, then the 12/$num operation is carried out. Next, the AddOne function is called, and
the value of $num is once again 0. When the AddTwo function is called, the value of $num is
also 0. The following example shows this process:

PS C:\> Y:\BadScript.ps1
Hit Command breakpoint on ‘DivideNum’

BadScript.ps1:49 SubOne($num) | DivideNum($num)
[DBG]: PS C:\>>> s
BadScript.ps1:43 12/$num
[DBG]: PS C:\>>> $num
0
[DBG]: PS C:\>>> $num =2
[DBG]: PS C:\>>> s
6
BadScript.ps1:50 AddOne($num) | AddTwo($num)
[DBG]: PS C:\>>> s
BadScript.ps1:18 $num+1
[DBG]: PS C:\>>> $num
0
[DBG]: PS C:\>>> s
BadScript.ps1:23 $num+2
[DBG]: PS C:\>>> $num
0
[DBG]: PS C:\>>> s
2
PS C:\>

Responding to breakpoints
When the script reaches a breakpoint, control of the Windows PowerShell console is turned
over to you. Inside the debugger, you can type any legal Windows PowerShell command
and even run cmdlets such as Get-Process or Get-Service. In addition, there are several new
debugging commands you can type into the Windows PowerShell console when a breakpoint
has been reached. Table 13-3 shows the available debug commands.

	212	 CHAPTER 13 	 Debugging scripts

TABLE 13-3  Windows PowerShell Debugger commands

Keyboard
shortcut Command name Command meaning

s Step-into Executes the next statement and then stops.

v Step-over Executes the next statement, but skips functions and invocations. The
skipped statements are executed, but not stepped through.

o Step-out Steps out of the current function up one level if nested. If in the main
body, it continues to the end or the next breakpoint. The skipped
statements are executed, but not stepped through.

c Continue Continues to run until the script is complete or until the next break-
point is reached. The skipped statements are executed, but not
stepped through.

l List Displays the part of the script that is executing. By default, it displays
the current line, 5 previous lines, and 10 subsequent lines. To con-
tinue listing the script, press Enter.

l <m> List Displays 16 lines of the script beginning with the line number speci-
fied by <m>.

l <m> <n> List Displays <n> lines of the script, beginning with the line number
specified by <m>.

q Stop Stops executing the script, and exits the debugger.

k Get-PsCallStack Displays the current call stack.

Enter Repeat Repeats the last command if it was Step (s), Step-over (v), or List (l).
Otherwise, represents a submit action.

h or ? Help Displays the debugger command-line Help.

Using the DivideNum function as a breakpoint, when the BadScript.ps1 script is run the
script breaks on line 49 when the DivideNum function is called. The s debugging command is
used to step into the next statement and stop prior to actually executing the command. The l
debugging command is used to list the 5 previous lines of code from the BadScript.ps1 script
and the 10 lines of code that follow the current line in the script, as shown in the following
example:

PS C:\> Y:\BadScript.ps1
Hit Command breakpoint on ‘Y:\BadScript.ps1:dividenum’

BadScript.ps1:49 SubOne($num) | DivideNum($num)
[DBG]: PS C:\>>> s
BadScript.ps1:43 12/$num
[DBG]: PS C:\>>> l

 38: $num*2
 39: } #end function TimesTwo
 40:
 41: Function DivideNum([int]$num)
 42: {
 43:* 12/$num

	 Debugging the script	 CHAPTER 13 	 213

 44: } #end function DivideNum
 45:
 46: # *** Entry Point to Script ***
 47:
 48: $num = 0
 49: SubOne($num) | DivideNum($num)
 50: AddOne($num) | AddTwo($num)
 51:

After reviewing the code, the o debugging command is used to step out of the DivideNum
function. The remaining code in the DivideNum function is still executed, and therefore the
Divide By Zero error is displayed. There are no more prompts until the next line of executing
code is met. The v debugging statement is used to step over the remaining functions in the
script. The remaining functions are still executed, and the results are displayed at the Win-
dows PowerShell console:

[DBG]: PS C:\>>> o
Attempted to divide by zero.
At Y:\BadScript.ps1:43 char:5
+ 12/ <<<< $num
 + CategoryInfo : NotSpecified: (:) [], RuntimeException
 + FullyQualifiedErrorId : RuntimeException

BadScript.ps1:50 AddOne($num) | AddTwo($num)
[DBG]: PS C:\>>> v
2
PS C:\>

Listing breakpoints
Once you have set several breakpoints, you might want to know where they have been cre-
ated. One thing to keep in mind is that breakpoints are stored in the Windows PowerShell
environment and not in the individual script. Using the debugging features does not involve
editing of the script or modifying your source code. This enables you to debug any script
without worry of corrupting the code. But because you might have set several breakpoints in
the Windows PowerShell environment during a typical debugging session, you might want to
know what breakpoints have been defined. To do this, use the Get-PSBreakpoint cmdlet, as
shown in the following example:

PS C:\> Get-PSBreakpoint
 ID Script Line Command Variable Action
 -- ------ ---- ------- -------- ------
 11 BadScript.ps1 dividenum
 13 BadScript.ps1 if
 3 BadScript.ps1 num
 5 BadScript.ps1 num
 6 BadScript.ps1 num
 7 DivideNum
 8 foreach
 9 gps
 10 foreach
PS C:\>

	214	 CHAPTER 13 	 Debugging scripts

If you are interested in which breakpoints are currently enabled, you need to use the
Where-Object cmdlet and pipeline the results of the Get-PSBreakpoint cmdlet, as shown in
the following example:

PS C:\> Get-PSBreakpoint | where { $_.enabled }

 ID Script Line Command Variable Action
 -- ------ ---- ------- -------- ------
 11 BadScript.ps1 dividenum

PS C:\>

You could also pipeline the results of the Get-PSBreakpoint to a Format-Table cmdlet:

PS C:\> Get-PSBreakpoint |
Format-Table -Property id, script, command, variable, enabled -AutoSize

Id Script Command variable Enabled
-- ------ ------- -------- -------
11 Y:\BadScript.ps1 dividenum True
13 Y:\BadScript.ps1 if False
 3 Y:\BadScript.ps1 num False
 5 Y:\BadScript.ps1 num False
 6 Y:\BadScript.ps1 num False
 7 DivideNum False
 8 foreach False
 9 gps False
10 foreach False

Because the creation of the custom formatted breakpoint table requires a little bit of typ-
ing, and because the display is extremely helpful, you might consider placing the code into a
function that could be included in your profile or in a custom debugging module. The follow-
ing example shows such a function stored in the Get-EnabledBreakpointsFunction.ps1 script:

Get-EnabledBreakpointsFunction.ps1

Function Get-EnabledBreakpoints
{
 Get-PSBreakpoint |
 Format-Table -Property id, script, command, variable, enabled -AutoSize
}

*** Entry Point to Script ***

Get-EnabledBreakpoints

	 Debugging the script	 CHAPTER 13 	 215

Enabling and disabling breakpoints
While you are debugging a script, you might need to disable a particular breakpoint to see
how the script runs. To do this, use the Disable-PSBreakpoint cmdlet:

Disable-PSBreakpoint -id 0

On the other hand, you might also need to enable a breakpoint. To do this, use the Enable-
PSBreakpoint cmdlet:

Enable-PSBreakpoint -id 1

As a best practice, when I am in a debugging session, I use the selectively enable and dis-
able breakpoints to see how the script is running in an attempt to troubleshoot the script. To
keep track of the status of breakpoints, I use the Get-PSBreakpoint cmdlet, as illustrated in the
preceding section.

Deleting breakpoints
When you are finished debugging the script, you should remove all the breakpoints that
were created during the Windows PowerShell session. There are two ways to do this. The
first way is to close the Windows PowerShell console. While this is a good way to clean up
the environment, you might not want to do this because you could have remote Windows
PowerShell sessions defined or variables that are populated with the results of certain queries.
The second way to delete all the breakpoints is to use the Remove-PSBreakpoint cmdlet.
Unfortunately, there is no All switch for the Remove-PSBreakpoint cmdlet. When you delete a
breakpoint, you must supply the breakpoint ID number for the Remove-PSBreakpoint cmdlet.
To remove a single breakpoint, you specify the ID number for the id parameter, as shown in
the following example:

Remove-PSBreakpoint -id 3

If you want to remove all the breakpoints, pipeline the results from Get-PSBreakpoint to
Remove-PSBreakpoint, as shown in the following example:

Get-PSBreakpoint | Remove-PSBreakpoint

If you want to remove only the breakpoints from a specific script, you can pipeline the
results through the Where object:

(Get-PSBreakpoint | Where ScriptName - eq "C:\Scripts\Test.ps1") |
Removeakpoint

 216 ChAPTER 13 Debugging scripts

Summary

This chapter discussed using the Windows PowerShell debugger. We covered setting break-
points, listing breakpoints, and enabling and disabling breakpoints. The chapter concluded
with a discussion about deleting breakpoints.

		 	 217

C H A P T E R 1 4

Handling errors
■■ Handling missing parameters

■■ Limiting choices

■■ Handling missing rights

■■ Using Try/Catch/Finally

When it comes to handling errors in your script, you need to have an understanding of
the intended use of the script. The way that a script will be used is sometimes called

the use case scenario. It describes how the user will interact with the script. If the use case
scenario is simple, the user might not need to do anything more than type the name of
the script inside the Windows PowerShell console. A script such as Get-Bios.ps1 could get
by without much need for any error handling. This is because there are no inputs to the
script. The script is called, it runs, and it displays information that should always be read-
ily available because the Win32_Bios WMI class is present in all versions of Windows since
Windows 2000:

Get-Bios.ps1
Get-WmiObject -class Win32_Bios

Handling missing parameters

When you examine the Get-Bios.ps1 script, you can see that it does not receive any input
from the command line. This is a good way to avoid user errors in your script, but it is not
always practical. When your script accepts command-line input, you are opening the door
for all kinds of potential problems. Depending on how you accept command-line input,
you might need to test the input data to ensure that it corresponds to the type of input the
script is expecting. The Get-Bios.ps1 script does not accept command-line input; therefore,
it avoids most potential sources of errors.

	218	 CHAPTER 14 	 Handling errors

Creating a default value for the parameter
There are two ways to assign default values for a command-line parameter. You can assign
the default value in the Param declaration statement or you can assign the value in the script
itself. Given a choice between the two, it is a best practice to assign the default value in the
Param statement. This is because it makes the script easier to read, which in turn makes the
script easier to modify and easier to troubleshoot. For more information on troubleshooting
scripts, see Chapter 13, “Debugging Scripts.”

Detecting the missing value and assigning it in the script
In the Get-BiosInformation.ps1 script, a command-line parameter, computerName, allows the
script to target both local and remote computers. If the script runs without a value for the
computerName parameter, the Get-WmiObject cmdlet fails because it requires a value for the
computerName parameter. To solve the problem of the missing parameter, the Get-BiosIn-
formation.ps1 script checks for the presence of the $computerName variable. If this variable
is missing, it means it was not created through the command-line parameter, and the script
therefore assigns a value to the $computerName variable. The following example shows the
line of code that populates the value of the $computerName variable:

If(-not($computerName)) { $computerName = $env:computerName }

The following example shows the completed get-BiosInformation.ps1 script:

Get-BiosInformation.ps1
Param(
 [string]$computerName
) #end param

Function Get-BiosInformation($computerName)
{
 Get-WmiObject -class Win32_Bios -computerName $computername
} #end function Get-BiosName

*** Entry Point To Script ***
If(-not($computerName)) { $computerName = $env:computerName }
Get-BiosInformation -computerName $computername

Assigning the value in the Param statement
To assign a default value in the Param statement, use the equality operator following the
parameter name and assign the value to the parameter, as shown in the following example:

Param(
 [string]$computerName = $env:computername
) #end param

The advantage of assigning the default value for the parameter in the Param statement
is the script is easier to read. Because the parameter declaration and the default parameter
are in the same place, you can see immediately which parameters have default values and

	 Handling missing parameters	 CHAPTER 14 	 219

which ones do not have default values. The second advantage that arises from assigning a
default value in the Param statement is the script is easier to write. You will notice there is
no If statement used to check the existence of the $computerName variable. The following
example shows the complete Get-BiosInformationDefaultParam.ps1 script:

Get-BiosInformationDefaultParam.ps1
Param(
 [string]$computerName = $env:computername
) #end param

Function Get-BiosInformation($computerName)
{
 Get-WmiObject -class Win32_Bios -computername $computername
} #end function Get-BiosName

*** Entry Point To Script ***

Get-BiosInformation -computerName $computername

Making the parameter mandatory
The best way to handle an error is to ensure the error does not occur in the first place. In
Windows PowerShell 3.0, you can mark a parameter mandatory. The advantage of marking a
parameter mandatory is it requires the user of the script to supply a value for the parameter.
If you do not want the user of the script to be able to run the script without making a particu-
lar selection, you should make the parameter mandatory. To make a parameter mandatory,
use the Mandatory parameter attribute. The following example shows this technique:

Param(
 [Parameter(Mandatory=$true)]
 [string]$drive,
 [string]$computerName = $env:computerName
) #end param

The following example shows the complete MandatoryParameter.ps1 script:

MandatoryParameter.ps1
#Requires -version 3.0
Param(
 [Parameter(Mandatory=$true)]
 [string]$drive,
 [string]$computerName = $env:computerName
) #end param

Function Get-DiskInformation($computerName,$drive)
{
 Get-WmiObject -class Win32_volume -computername $computername `
-filter "DriveLetter = ‘$drive’"
} #end function Get-BiosName

*** Entry Point To Script ***

 Get-DiskInformation -computername $computerName -drive $drive

	220	 CHAPTER 14 	 Handling errors

When a script with a mandatory parameter runs without supplying a value for the pa-
rameter, an error does not generate. Instead, Windows PowerShell prompts for the required
parameter value, as shown in the following example:

PS C:\bp> .\MandatoryParameter.ps1

cmdlet MandatoryParameter.ps1 at command pipeline position 1
Supply values for the following parameters:
drive:

Limiting choices

Depending on the design of the script, several scripting techniques can ease error-checking
requirements. If you have a limited number of choices you want to display to your user, you
can use the PromptForChoice method. If you want to limit the selection to computers that are
currently running, you can use the Test-Connection cmdlet prior to attempting to connect to
a remote computer. If you would like to limit the choice to a specific subset of computers or
properties, you can parse a text file and use the contains operator. In this section, we examine
each of these techniques for limiting the permissible input values from the command line.

Using PromptForChoice to limit selections
If you use the PromptForChoice method of soliciting input from the user, your user has a
limited number of options from which to choose. You eliminate the problem of bad input be-
cause the user has only specific options available to supply to your script. Figure 14-1 shows
the user prompt from the PromptForChoice method.

FIGURE 14-1  The PromptForChoice method presents a selectable menu to the user.

The use of the PromptForChoice method appears in the Get-ChoiceFunction.ps1 script. In
the Get-Choice function, the $caption variable and the $message variable hold the caption
and message that is used by PromptForChoice. The choices that are offered are an instance
of the ChoiceDescription .NET Framework class. When you create the ChoiceDescription class,
you also supply an array with the choices that will appear:

$choices = [System.Management.Automation.Host.ChoiceDescription[]] `
 @("&loopback", "local&host", "&127.0.0.1")

	 Limiting choices	 CHAPTER 14 	 221

Next, you need to select a number to represent the default choice. When you begin count-
ing, keep in mind that ChoiceDescription is an array and the first option is numbered 0. Next,
call the PromptForChoice method and display the options:

[int]$defaultChoice = 0
$choiceRTN = $host.ui.PromptForChoice($caption,$message, $choices,$defaultChoice)

Because the PromptForChoice method returns an integer, you could use the If statement
to evaluate the value of the $choiceRTN variable. The syntax of the switch statement is more
compact and is actually a better choice for this application. The following example shows the
Switch statement from the Get-Choice function:

switch($choiceRTN)
 {
 0 { "loopback" }
 1 { "localhost" }
 2 { "127.0.0.1" }
 }

When you call the Get-Choice function, it returns the computer that was identified by the
PromptForChoice method. You place the method call in a set of parentheses to force it to be
evaluated before the rest of the command:

Get-WmiObject -class win32_bios -computername (Get-Choice)

This solution to the problem of bad input works well when you have technical support
personnel who will be working with a limited number of computers. The other caveat to this
approach is that you do not want to have to change the choices on a regular basis, so you
would want a stable list of computers to avoid creating a maintenance nightmare for yourself.
The following example shows the complete Get-ChoiceFunction.ps1 script:

Get-ChoiceFunction.ps1
Function Get-Choice
{
 $caption = "Please select the computer to query"
 $message = "Select computer to query"
 $choices = [System.Management.Automation.Host.ChoiceDescription[]] `
 @("&loopback", "local&host", "&127.0.0.1")
 [int]$defaultChoice = 0
 $choiceRTN = $host.ui.PromptForChoice($caption,$message, $choices,$defaultChoice)

 switch($choiceRTN)
 {
 0 { "loopback" }
 1 { "localhost" }
 2 { "127.0.0.1" }
 }
} #end Get-Choice function

Get-WmiObject -class win32_bios -computername (Get-Choice)

 222 ChAPTER 14 Handling errors

Using Test-Connection to identify accessible computers
If you have more than a few computers that need to be accessible, or if you do not have a
stable list of computers you will be working with, then one solution to the problem of trying
to connect to non-existent computers is to ping the computer prior to attempting to make
the WMI connection.

You can use the Win32_PingStatus WMI class to send a ping to a computer. The best way
to use the Win32_PingStatus WMI class is to use the Test-Connection cmdlet because it wraps
the WMI class into an easy-to use-package. The following example shows how to use the
Test-Connection cmdlet with default values:

PS C:\> Test-Connection -ComputerName dc1

Source Destination IPV4Address IPV6Address
------ ----------- ----------- -----------
W8CLIENT6 dc1 192.168.0.101
W8CLIENT6 dc1 192.168.0.101
W8CLIENT6 dc1 192.168.0.101
W8CLIENT6 dc1 192.168.0.101

If you are interested only if the target computer is up or not, use the Quiet parameter. The
Quiet parameter returns a Boolean value (true if the computer is up, false if the computer is
down):

PS C:\> Test-Connection -ComputerName dc1 -Quiet
True

The Test-Connection cmdlet tends to be slower than the traditional Ping utility. It has a lot
more capabilities and even returns an object, but it is slower. A few seconds can make a huge
difference when attempting to run a single script to manage thousands of computers. To
increase performance in these types of fan-out scenarios, use the Count parameter to reduce
the default number of pings from four to one. In addition, reduce the default buffersize from
32 to 16.

Because Test-Connection -Quiet returns a Boolean value, it means there is no need to
evaluate a number of possible return values. In fact, the logic is simple: Either it returns, or
it does not. If it does return, add the action to take place in the If statement. If it does not
return, add the action to take in the Else statement. Or perhaps you do not want to log failed
connections. In that case, you would only have to contend with the action in the If statement.
The Test-ComputerPath .psl script illustrates using the Test-Connection cmdlet to determine if
a computer is up prior to attempting a remote connection. The following example shows the
complete Test-ComputerPath script:

Test-ComputerPath.ps1
Param([string]$computer = $env:COMPUTERNAME)
if(Test-Connection -computer $computer -BufferSize 16 -Count 1 -Quiet)
 { Get-WmiObject -class Win32_Bios -computer $computer }
Else
 { "Unable to reach $computer computer"}

	 Limiting choices	 CHAPTER 14 	 223

Using the contains operator to examine contents of an array
To verify input that is received from the command line, you can use the contains operator
to examine the contents of an array of possible values. In the following example, an array of
three values is created and stored in the variable $noun. The contains operator is then used to
see if the array contains “hairy-nosed wombat.” Because the $noun variable does not have an
array element that is equal to the string “hairy-nosed wombat,” the contains operator returns
false:

PS C:\> $noun = "cat","dog","rabbit"
PS C:\> $noun -contains "hairy-nosed wombat"
False
PS C:\>

If an array contains a match, the contains operator returns true:

PS C:\> $noun = "cat","dog","rabbit"
PS C:\> $noun -contains "rabbit"
True
PS C:\>

The contains operator returns true only when there is an exact match. Partial matches
return false:

PS C:\> $noun = "cat","dog","rabbit"
PS C:\> $noun -contains "bit"
False
PS C:\>

The contains operator is case insensitive. Therefore it will return true when matched, re-
gardless of case:

PS C:\> $noun = "cat","dog","rabbit"
PS C:\> $noun -contains "Rabbit"
True
PS C:\>

If you need to perform a case-sensitive match, you can use the case-sensitive version of
the contains operator ccontains. As shown in the following example, it will return true only if
the case of the string matches the value contained in the array:

PS C:\> $noun = "cat","dog","rabbit"
PS C:\> $noun -ccontains "Rabbit"
False
PS C:\> $noun -ccontains "rabbit"
True
PS C:\>

	224	 CHAPTER 14 	 Handling errors

In the Get-AllowedComputers.ps1 script, a single command-line parameter is created that
is used to hold the name of the target computer for the WMI query. The computer param-
eter is a string, and it receives the default value from the environmental drive. This is a good
technique because it ensures the script will have the name of the local computer, which could
then be used in producing a report of the results. If you set the value of the computer param-
eter to localhost, you will never know what computer the results belong to, as shown in the
following example:

Param([string]$computer = $env:computername)

The Get-AllowedComputer function is used to create an array of permitted computer
names and to check the value of the $computer variable to see if it is present. If the value of
the $computer variable is present in the array, the Get-AllowedComputer function returns true.
If the value is missing from the array, the Get-AllowedComputer function returns false. The
array of computer names is created by using the Get-Content cmdlet to read a text file that
contains a listing of computer names. The text file, servers.txt, is a plain ASCII text file that has
a list of computer names on individual lines, as shown in Figure 14-2.

FIGURE 14-2  A text file with computer names and addresses is an easy way to work with allowed
computers.

A text file of computer names is easier to maintain than a hard-coded array that is embed-
ded into the script. In addition, the text file can be placed on a central share and can be used
by many different scripts. The following example shows the Get-AllowedComputer function:

Function Get-AllowedComputer([string]$computer)
{
 $servers = Get-Content -path c:\fso\servers.txt
 $servers -contains $computer
} #end Get-AllowedComputer function

Because the Get-AllowedComputer function returns a Boolean value (true/false), it can be
used directly in an If statement to determine if the value that is supplied for the $computer
variable is on the permitted list. If the Get-AllowedComputer function returns true, the Get-
WmiObject cmdlet is used to query for BIOS information from the target computer, as show in
the following example:

if(Get-AllowedComputer -computer $computer)
 {
 Get-WmiObject -class Win32_Bios -Computer $computer
 }

	 Handling missing rights	 CHAPTER 14 	 225

On the other hand, if the value of the $computer variable is not found in the $servers array,
a string that states the computer is not an allowed computer is displayed:

Else
 {
 "$computer is not an allowed computer"
 }

The following example shows the complete Get-AllowedComputer.ps1 script:

Get-AllowedComputer.ps1
Param([string]$computer = $env:computername)

Function Get-AllowedComputer([string]$computer)
{
 $servers = Get-Content -path c:\fso\servers.txt
 $servers -contains $computer
} #end Get-AllowedComputer function

*** Entry point to Script ***

if(Get-AllowedComputer -computer $computer)
 {
 Get-WmiObject -class Win32_Bios -Computer $computer
 }
Else
 {
 "$computer is not an allowed computer"
 }

Handling missing rights

Another source of potential errors in a script is one that requires elevated permissions to
work correctly. Windows 8 makes it much easier to run and to allow the user to work without
requiring constant access to administrative rights. As a result, more and more users and even
network administrators are no longer running their computers with a user account that is a
member of the local administrators group. The User Account Control (UAC) feature makes
it easy to provide elevated rights for interactive programs, but Windows PowerShell 3.0 and
other scripting languages are not UAC aware and therefore will not prompt when elevated
rights are required to perform a specific activity. It is therefore incumbent upon the script-
writer to take rights into account when writing scripts. However, the Get-Bios.ps1 script that
we examined earlier in the chapter does not use a WMI class that requires elevated rights. As
the script is currently written, anyone who is a member of the local users group, and that in-
cludes everyone who is logged on interactively, has permission to run the Get-Bios.ps1 script.
So testing for rights and permissions prior to making an attempt to obtain information from
the Win32_Bios WMI class is not required.

 226 ChAPTER 14 Handling errors

Attempting and failing
One way to handle missing rights is to attempt the action and then fail. This will generate an
error. Windows PowerShell has two types of errors: terminating and non-terminating. Termi-
nating errors, as the name implies, will stop a script dead in its tracks. Non-terminating errors
will output to the screen and the script will continue. As the names imply, terminating errors
are generally more serious than non-terminating errors. Normally, you get a terminating
error when you try to use the .NET Framework or the Component Object Model (COM) from
within Windows PowerShell and you try to use a command that doesn’t exist, or when you do
not provide all the required parameters to a command. A good script will handle the errors it
expects and will report unexpected errors to the user. Because any good scripting language
has to provide decent error handling, Windows PowerShell has a few ways to approach the
problem. The old way is to use the Trap statement, which can sometimes be problematic. The
new way (for Windows PowerShell) is to use the Try/Catch/Finally block, which I will cover in
the “Using Try/Catch/Finally” section later in this chapter.

Checking for rights and exiting gracefully
The best way to handle insufficient rights is to check for the rights and then exit gracefully.
What are some of the things that could go wrong with a simple script such as the Get-Bios.
ps1 script that we examined earlier in the chapter? Well, the Get-Bios.ps1 script would fail if
the Windows PowerShell script execution policy was set to restricted. When the script execu-
tion policy is set to restricted, Windows PowerShell scripts will not run. The problem with a
restricted execution policy is that because Windows PowerShell scripts do not run, you can-
not write code to detect the restricted script execution policy. Because the script execution
policy is stored in the registry, you could write a VBScript script that would query and set the
policy prior to launching the Windows PowerShell script, but that would not be the best way
to manage the problem. The best way to manage the script execution policy is to use Group
Policy to set it to the appropriate level for your network. On a stand-alone computer, you can
set the execution policy by opening Windows PowerShell as an administrator and using the
Set-ExecutionPolicy cmdlet. In most cases, the remotesigned setting is appropriate. The follow-
ing example shows the command:

PS C:\> Set-ExecutionPolicy remotesigned
PS C:\>

The script execution policy is generally dealt with once, and there are no more problems
associated with it. In addition, the error message that is associated with the script execution
policy is relatively clear in that it will tell you that script execution is disabled on the system. It
also refers you to a Help topic that explains the various settings:

File C:\Documents and Settings\ed\Local Settings\Temp\tmp2A7.tmp.ps1 cannot be
loaded because the execution of scripts is disabled on this system. Please see
"get-help about_signing" for more details.
At line:1 char:66
+ C:\Documents` and` Settings\ed\Local` Settings\Temp\tmp2A7.tmp.ps1 <<<<

	 Using Try/Catch/Finally	 CHAPTER 14 	 227

Using Try/Catch/Finally

When you use a Try/Catch/Finally block, the command you should execute is placed in the
Try block. If an error occurs when the command executes, the error will be written to the
$Error variable and script execution will move to the Catch block. The TestTryCatchFinally.ps1
script uses the Try command to attempt to create an object. A string states that the script is
attempting to create a new object. The object to create is stored in the $obj1 variable. The
New-Object cmdlet creates the object. Once the object has been created and stored in the $a
variable, the members of the object are displayed by means of the Get-Member cmdlet. The
following example illustrates the technique:

Try
 {
 "Attempting to create new object $obj1"
 $a = new-object $obj1
 "Members of the $obj1"
 "New object $obj1 created"
 $a | Get-Member
 }

Use the Catch block to capture errors that occur during the Try block. You can specify the
type of error to catch as well as the action you wish to perform when the error occurs. The
TestTryCatchFinally.ps1 script monitors for System.Exception errors. The System.Exception .NET
Framework class is the base class from which all other exceptions derive. This means a System.
Exception is as generic as you can get. In essence, it will capture all predefined, common sys-
tem runtime exceptions. Upon catching the error, you can then specify what code you would
like to execute. The following example shows the Catch block. A single string states that the
script caught a system exception:

Catch [system.exception]
 {
 "caught a system exception"
 }

The Finally block of a Try/Catch/Finally sequence always runs, regardless if an error is
generated or not. This means that any code cleanup you want to do, such as explicitly releas-
ing COM objects, should be placed in a Finally block. In the TestTryCatchFinally.ps1 script, the
Finally block displays a string that states the script has ended:

Finally
 {
 "end of script"
 }

	228	 CHAPTER 14 	 Handling errors

The following example shows the complete TestTryCatchFinally.ps1 script:

TestTryCatchFinally.ps1
$obj1 = "Bad.Object"
"Begin test"
Try
 {
 "`tAttempting to create new object $obj1"
 $a = new-object $obj1
 "Members of the $obj1"
 "New object $obj1 created"
 $a | Get-Member
 }
Catch [system.exception]
 {
 "`tcaught a system exception"
 }
Finally
 {
 "end of script"
 }

Summary

In this chapter, we focused on handling errors. We began by discussing missing parameters
and examining two solutions for detecting and handling parameters. Next, we covered how
to limit choices as a means of ensuring quality input to the script. We reviewed how to handle
missing rights and concluded by looking at structured error handling.

		 	 229

A P P E N D I X A

Windows PowerShell FAQ
In this appendix, I cover a range of topics that are organized into a question-and-answer

format. I’ve included questions that frequently arise when I teach a Windows PowerShell
class or make Windows PowerShell presentations at various events.

Q. What is Windows PowerShell, in 30 words or less?

A. Windows PowerShell is the next generation command prompt and scripting language
from Microsoft. It can be a replacement for VBScript and for the command prompt in most
circumstances.

Q. How can you be sure that was 30 words or less?

A. By using the following code:

$a = “Windows PowerShell is the next generation command prompt and scripting language
from Microsoft. It can be a replacement for VBScript and for the command prompt in
most circumstances.”

Measure-Object -InputObject $a -Word

Q. How many cmdlets are available on a default Windows PowerShell installation?

A. 403.

Q. How can I find out how many cmdlets are available on a default Windows PowerShell
installation?

A. Get-Module -ListAvailable | Import-Module ; gcm -co cmdlet | measure

Q. What is the difference between a read-only variable and a constant?

A. A read-only variable is one whose content is read only. It can, however, be modified by
using the Set-Variable cmdlet with the -Force parameter. It can also be deleted by using
Remove-Variable -Force. However, a constant variable cannot be deleted nor modified,
even when using -Force.

	230	 APPENDIX A	 Windows PowerShell FAQ

Q. What are the three MOST important cmdlets?

A. Get-Command, Get-Help, and Get-Member.

Q. Which cmdlet can I use to work with event logs?

A. To work with event logs, use the Get-Eventlog cmdlet or the Get-WinEvent cmdlet.

Q. How did you find that cmdlet?

A. Get-Command -Noun *event*

Q. What .NET Framework class is leveraged by the Get-Eventlog cmdlet?

A. System.Diagnostics.EventLogEntry.

Q. How do I find the preceding information?

A. Get-Eventlog application | Get-Member

Q. What is the most powerful command in Windows PowerShell?

A. Switch.

Q. What is `t used for?

A. Tab.

Q. How do I use `t in a script to produce a tab?

A. “`thi”

Q. That syntax above is ugly. What happens if I put a space in it like this?

“`t hi”

A. If you include a space in the line like “`t hi”, then you will tab over one tab stop and one
additional space.

Q. Is the `t command such as “`thi” case sensitive?

A. Yes. It is one of the few things that is case sensitive in Windows PowerShell. If you use the `t
as “`Thi”, then you will produce Thi on the line.

	�	﻿	 APPENDIX A	 231

Q. How do I run a script with a space in the path?

A. There are two options:

PS > c:\my`folder\myscript.ps1

PS> &(“c:\my folder\myscript.ps1”)

Q. What is the easiest way to create an array?

A. There are two options:

$array = “1”,”2”,”3”,”4”

$array = 1..4

Q. How do I display a “calculated value” (in other words, megabytes instead of bytes) from a
WMI query when pipelining data into a Format-Table cmdlet?

A. Create a hash table in the position where you want to display the data and perform the
calculation inside curly brackets. Assign the results to the Expression parameter, as shown in
the following example:

gwmi win32_logicaldisk -Filter “drivetype=3” | ft -Property name, @{ Label=”freespace”;
expression={$_.freespace/1MB}}

Q. Which parameter of the Get-WMIObject cmdlet takes the place of a WQL Where clause?

A. The filter parameter: Get-wmiobject win32_logicaldisk -filter “drivetype = 3”

Q. Which command when typed at the beginning of a script will cause Windows PowerShell
to ignore errors and continue executing the code?

A. $erroractionpreference=SilentlyContinue

Q. How can I display only the current year? 		

A. There are three options:

get-date -Format yyyy

get-date -f yyyy

(Get-Date).year

	232	 APPENDIX A	 Windows PowerShell FAQ

Q. What are three ways of querying Active Directory from within Windows PowerShell?

A. The three ways are the following:

Use ADO and perform an LDAP dialect query.

Use ADO and perform an SQL dialect query.

Use the Get-ADOObject cmdlet from the ActiveDirectory module.

Q. How can I print the amount of free space on a fixed disk in MB with two decimal places?

A. Use a format specifier as shown in the following example:

“{0:n2}”-f ((gwmi win32_logicaldisk -Filter “drivetype=’3’”).freespace/1MB)

Q. I need to replace the “2” with “12” in the variable $array: $array = “1”,”2”,”3”,”4”. How can I
do this?

A. $array=[regex]::replace($array, “2”,”12”)

Q. I have the following Switch statement, and I want to prevent the Write-Host line “switched”
from being executed. How can I do this?

$a = 3

switch ($a) {

 1 { “one detected” }

{ “two detected” }

}

Write-Host “switched”

A. Add an Exit statement to the default switch:

$a = 3

switch ($a) {

1 { “one detected” }

2 { “two detected”}

DEFAULT { exit}

}

Write-Host “switched”

	�	﻿	 APPENDIX A	 233

Q. How can I supply alternative credentials for a remote WMI call when using the Get-
WmiObject cmdlet?

A. There are several options:

Use the credential parameter:

Get-WmiObject Win32_BIOS -ComputerName Server01 -Credential (get-credential `
Domain01@User01)

Use the credential parameter:

$c = Get-Credential

Get-WmiObject Win32_DiskDrive -ComputerName Server01 -Credential $c

Create a CIM session to the remote system by using New-CimSession.

Create a PS session to the remote system by using New-PSSession.

Q. How can I generate a random number?

A. There are two options:

Use the Get-Random cmdlet.

Use the System.Random .NET Framework class and call the next() method:([random]5).next()

Q. How can I generate a random number between the values of 1 and 10?

A. There are two options:

Use the System.Random .NET Framework class and call the next() method:

([random]5).next(“1”,”10”)

Use the Get-Random cmdlet: Get-Random -Maximum 10 -Minimum 1

Q. Which commands support regular expressions?

A. Two commands support regular expressions:

The Where-Object cmdlet using -match:

get-process | where-object { $_.ProcessName -match “^p.*” }

The Switch statement using regex:

switch -regex (“Hi there”) { “hi” { “found” } }

Q. How can I create an audit file of all commands typed during a Windows PowerShell ses-
sion?

A. Use the Start-Transcript command: Start-Transcript

	234	 APPENDIX A	 Windows PowerShell FAQ

Q. How can I see how many seconds it takes to retrieve objects from the application log?

A. (Measure-Command { Get-EventLog application }).totalseconds

Q. I want to get a list of all the modules installed with Windows PowerShell on my machine.
How can I do this?

A. Inside a Windows PowerShell console, type the following command:

Get-Module -ListAvailable

Q. I want to create an ASCII text file to hold the results of the Get-Process cmdlet. How can I
do this?

A. Pipeline the results to the Out-File cmdlet and use the -Encoding parameter to specify
ASCII. Use redirection like this: Get-Process >>c:\fso\myprocess.txt

Q. Someone told me the Write-Host cmdlet can use color for output. Can you give me some
samples of acceptable syntax?

A. Here are some examples:

Write-Host -ForegroundColor 12 “hi”

Write-Host -ForegroundColor 12 “hi” -BackgroundColor white

Write-Host -ForegroundColor blue -BackgroundColor white

Write-Host -ForegroundColor 2 hi

Write-Host -backgroundcolor 2 hi

Write-Host -backgroundcolor (“{0:X}” -f 2) hi

For($i=0 ; $i -le 15 ; $i++) { Write-Host -foregroundcolor $i “hi” }

Q. How can I tell if a command completes successfully?

A. There are two options:

Query the $error automatic variable. If $error[0] reports no information, then no errors have
occurred.

Query the $? automatic variable. If $? is equal to true, then the command completed success-
fully.

 APPEnDIx A 235

Q. How can I split the string in the $a variable shown in the following example?

$a = “atl-ws-01,atl-ws-02,atl-ws-03,atl-ws-04”

A. Use the split method: $b = $a.split(“,”)

Q. How do I join an array such as the one in the $a variable shown in the following example?
$a = “h”,”e”,”l”,”l”,”o”

A. Use the join static method from the string class: $b = [string]::join(“”, $a)

Q. I need to build a path to the Windows\system32 directory. How can I do this?

A. Join-Path -path (get-item env:\windir).value -ChildPath system32

Q. How can I print the value of %systemroot%?

A. There are two options:

(get-item Env:\systemroot).value

$env:systemroot

Q. I need to display process output at the Windows PowerShell prompt and write that same
output to a text file. How can I do this?

A. Get-process | Tee-Object -FilePath c:\fso\proc.txt

Q. I would like to display the ascii character associated with the ASCII value 56. How can I do
this?

A. [char]56

Q. I want to create a strongly typed array of system.diagnostics.processes and store it in a vari-
able called $a. How can I do this?

A. [diagnostics.process[]]$a=get-process

Q. I want to display the number 1234 in hexadecimal. How can I do this?

A. “{0:x}” -f 1234

Q. I want to display the decimal value of the hexadecimal number 0x4d2. How can I do this?

A. 0x4d2

	236	 APPENDIX A	 Windows PowerShell FAQ

Q. I want to find out if a string contains the letter m. The string is stored in the variable $a, as
shown in the following example: $a=”northern hairy-nosed wombat”

A. There are four options:

[string]$a.contains(“m”)

$a.contains(“m”)

[regex]::match($a,”m”)

([regex]::match($a,”m”)).success

Q. How can I solicit input from the user?

A. Use the Read-Host cmdlet: $in = Read-host “enter the data”

Q. Can I use a variable named $input to hold input from the Read-Host cmdlet?

A. The $input variable is an automatic variable that is used for script blocks in the middle of
a pipeline; as such, it would be a very poor choice. Call the variable $userInput or something
similar if you want. But do not call it $input!

Q. How can I cause the script to generate an error if a variable has not been declared?

A. There are two options:

Place Set-Psdebug -strict anywhere in the script. Any non-declared variable will generate an
error when accessed.

Use Set-StrictMode -Version latest.

Q. How can I increase the size used by the Get-History buffer?

A. Assign the desired value to the $MaximumHistoryCount automatic variable:

 $MaximumHistoryCount = 65

Q. How can I specify the number 1 as a 16-bit integer array?

A. $a=[int16[]][int16]1

	�	﻿	 APPENDIX A	 237

Q. I have a string: “this̀ ”is a string”. I want to replace the “ with nothing. No space, just noth-
ing. Effectively, I want to remove the “ from the string. The backtick(`) is used here to “escape”
the quotation mark. How can I use the replace method to replace the “ with nothing if the
string is held in a variable $arr? I want the results to look like this: thisis a string

A. There are two options:

Use the replace method from the system.string .NET Framework class: $arr.Replace(“̀ ””,””)

Use the ascii value of the quotation mark, and use the replace method from the system.string
.NET Framework class: $arr.Replace([char]34,””)

Q. How can I use invoke-expression to run a script inside Windows PowerShell when the path
has spaces in it?

A. Escape the spaces with a backtick(`) character and surround it in single quotes:

Invoke-Expression (“h:\LABS\extras\Run` With` Spaces.ps1’)

Q. How can I create an array of byte values that contain hexadecimal values?

A. Use the [byte] type constraint, but include the [] array character such that the type con-
straint now looks like [byte[]]. To specify a hexadecimal number, use 0x format. The following
example shows the resulting line of code:

[byte[]]$mac = 0x00,0x19,0xD2,0x72,0x0E,0x2A

Q. How can I count backward?

A. Use a For statement. In the second position (the condition), ensure you use greater than or
equal for the condition. In the third position (the repeat), use the decrement and assign char-
acter, which is a double minus (--). When you put it all together, it will look like the following
example:

for($i=30;$i -ge 20 ; $i --){$i}

		 	 239

A P P E N D I X B

Windows PowerShell 3.0
coding conventions
This appendix details scripting guidelines. These scripting guidelines have been col-

lected from more than a dozen different scriptwriters from around the world. Most are
Microsoft employees actively involved in the world of Windows PowerShell. Some are non-
Microsoft employees, such as network administrators and consultants, who use Windows
PowerShell on a daily basis to improve their work-life balance. Not every script will adhere
to all of these guidelines; however, you will find that the closer you adhere to the guidelines
the easier your scripts will be to understand and to maintain. They will not necessarily be
easier to write, but they will be easier to manage, and you will find that your total cost of
ownership (TCO) on the script should be lowered significantly. In the end, I have only three
requirements for a script: that it is easy to read, easy to understand, and easy to maintain.

General script construction

In this section, we cover some general considerations for the overall construction of your
scripts. This includes the use of functions and other considerations.

Include functions in the script that uses the functions
While it is possible to use an include file or dot-source a function within Windows Power-
Shell, it can become a support nightmare. If you know which function you want to use, but
don’t know which script provides it, you have to go looking. If a script provides the func-
tion you want but has other elements you don’t want, it’s hard to pick and choose from the
script file. Additionally, you must be very careful when it comes to variable naming conven-
tions as you could end up with conflicting variable names. When you use an include file, you
no longer have a portable script. It must always travel with the function library.

I use functions in my scripts because it makes the script easier to read and easier to
maintain. If I were to store these functions into separate files and then dot-source them,
then neither of my two personal objectives of function use is really met.

There is one other consideration: When a script references an external script containing
functions, there now exists a relationship that must not be disturbed. For example, if you
decide you would like to update the function, you might not remember how many external
scripts are calling this function and how it will affect their performance and operation. If

	240	 APPENDIX B	 Windows PowerShell 3.0 coding conventions

there is only one script calling the function, then the maintenance is easy. However, for only one
script, just copy the silly thing into the script file itself and be done with the whole business.

Use full cmdlet names and full parameter names
There are several advantages to spelling out cmdlet names and avoiding the use of aliases in
scripts. First of all, it makes your script nearly self-documenting and is therefore much easier
to read. Second, it makes the script resilient to alias changes by the user and more compatible
with future versions of Windows PowerShell.

Understanding the use of aliases
There are three kinds of aliases in Windows PowerShell: compatibility aliases, canonical
aliases, and user-defined aliases.

You can identify the compatibility aliases by using the following command:

Get-childitem alias: |

where-object {$_.options -notmatch “Readonly” }

The compatibility aliases are present in Windows PowerShell to provide an easier transi-
tion from using older command shells. You can remove the compatibility aliases by using the
following command:

Get-childitem alias: |

where-object {$_.options -notmatch “Readonly” } |

remove-item

 The canonical aliases were created specifically to make Windows PowerShell cmdlets
easier to use from within the Windows PowerShell console. Shortness of length and ease of
typing were the primary driving factors in their creation. To find the canonical aliases, use the
following command:

Get-childitem alias: |

where-object {$_.options -match “Readonly” }

If you must use an alias, use only canonical aliases in a script
You are reasonably safe in using canonical aliases in a script. However, they make the script
much harder to read, and as there are several aliases for often the same cmdlet, different us-
ers of Windows PowerShell might have their own personal favorite alias. Additionally, as the
canonical aliases are read-only, even a canonical alias could be removed, or worse yet have
the meaning radically altered when the user redefines the alias to have a different meaning.

	 General script readability	 APPENDIX B	 241

Always use the Description property when creating an alias
When adding aliases to your profile, you might want to specify the read-only or constant op-
tion. You should always include the Description property for your personal aliases, and make
the description something that is relatively constant. Here is an example from my personal
Windows PowerShell profile:

New-Alias -Name gh -Value Get-Help -Description “mred alias”

New-Alias -Name ga -Value get-alias -Description “mred alias”

Use Get-Item to convert path strings to rich types
This is actually a pretty cool trick. When working with a listing of files, if you use the Get-
Content cmdlet, you can only read each line and have it as a path to work with. However, if
you use Get-Item, you have an object with a corresponding number of both properties and
methods to work with. The following example illustrates this:

$files = Get-Content “filelist.txt” |

Get-Item $files |

Foreach-object { $_.Fullname }		

General script readability

One of the most important things you can do when it comes to writing good Windows
PowerShell code is to ensure your script is readable. If you can read and understand your
Windows PowerShell code, you will avoid 90 percent of all debugging situations and nearly
100 percent of all logic problems. Here are some of my top tips for ensuring your script is
readable:

■■ When creating an alias, include the -Description parameter and use it when searching
for your personal aliases, as shown in the following example:

 Get-Alias |

 where-object { $_.description -match ‘mred’ } |

 Format-Table -Property “ “,name, definition -autosize `

 -hideTableHeaders

■■ Scripts should accept -Help and print a Help text. Use comment-based Help to do this.

 242 APPENDIX B Windows PowerShell 3.0 coding conventions

■■ All procedures should begin with a brief comment describing what they do. This
description should not describe the implementation details (how it does it) because
these often change over time, resulting in unnecessary comment maintenance work or,
worse, erroneous comments.

■■ Arguments passed to a function should be described when their purpose is not obvi-
ous and when the function expects the arguments to be in a specific range.

■■ Return values for variables that are changed by a function should also be described at
the beginning of each function.

■■ Every important variable declaration should include an inline comment describing the
use of the variable if the name of the variable is not obvious.

■■ Variables and functions should be named clearly to ensure that inline comments are
needed only for complex functions.

■■ When creating a complex function with multiple code blocks, place an inline comment
for each closing curly bracket (}).

■■ At the beginning of your script, you should include an overview that describes the
script, significant objects and cmdlets, and any unique requirements for the script.

■■ When naming functions, use the verb and noun construction used by cmdlet names,
but avoid the dash in the name. In this way, you can clearly distinguish between the
function and the cmdlet. This avoids confusion as to why tab expansion works for one
“cmdlet” and not another “cmdlet.”

■■ Scripts should use named parameters if the scripts accept more than one argument. If
a script accepts only a single argument, then it is fine to use an unnamed argument.

■■ Always assume that users will copy your script and modify it to meet their needs. Place
comments in the code to facilitate this process.

■■ Never assume the current path. Always use the full path, either through an environ-
ment variable or an explicitly named path.

Formatting your code

Screen space should be conserved as much as possible, while still allowing code formatting to
reflect logic structure and nesting. Here are a few suggestions:

■■ Indent standard nested blocks two spaces.

■■ Block overview comments for a function.

■■ Block the highest level statements, with each nested block indented an additional two
spaces.

■■ Line up curly brackets. This will make it easier to follow the code flow.

	 Formatting your code	 APPENDIX B	 243

■■ Avoid single-line statements. In addition to making it easier to follow the flow of the
code, it also makes it easier when you end up searching for a missing curly bracket.

■■ Break each pipelined object at the pipe. Leave all pipes on the right.

■■ Avoid line continuation—the back tick (`) character. The exception is when it would
cause the user to have to scroll to read the code or the output, which is generally
around 90 characters.

■■ Scripts should follow CamelCase guidelines for long variable names.

■■ Scripts should use the Write-Progress cmdlet if they take more than 1 or 2 seconds to
run.

■■ Consider supporting the -Whatif and -Confirm parameters in your functions as well as
in your scripts, especially if they will change system state. The following example shows
use of the -Whatif parameter. For a complete script that does this, see the AddNodeE-
victNode.ps1 script in Chapter 14.

param(
 [switch]$whatif
)

function funwhatif()
 {
 “what if: Perform operation xxxx”
 }

if($whatif)
 {
 funwhatif #calls the funwhatif() function
 }

■■ If your script does not accept a variable set of arguments, you should check the value
of $args.count and call the Help function if the number is incorrect, as shown in the
following example:

if($args.count -ge 0)
 {
 “wrong number of arguments”
 Funhelp #calls the funhelp() function
 }

■■ If your script does not accept any arguments, you should use code such as the following:

If($args -ge 0) { funhelp }

	244	 APPENDIX B	 Windows PowerShell 3.0 coding conventions

Working with functions
Functions in Windows PowerShell 3.0 are crucial to both the expandability of Windows Pow-
erShell and the ability to write readable code. As a result, anyone who aspires to become an
advanced Windows PowerShell scripter needs to know how to work with functions. Here is a
quick list of things to keep in mind:

■■ Functions should handle mandatory parameter checking. To do this, use parameter
property attributes.

■■ Utility or shared functions can be placed into shared function libraries and then in-
cluded or dot-sourced into scripts. The file name should be of the form Library-<noun
or featurename>.ps1, as shown in the following example:

. c:\lib\Library-WmiFunctions.ps1

■■ If you are writing a function library script, consider using feature and parameter vari-
able names that incorporate a unique name to minimize the chances of conflict with
other variables in the scripts that call them. It is best to store these function libraries in
modules to facilitate sharing and use.

■■ Consider supporting standard parameters when it makes sense for your script. The
easiest way to do this is to implement cmdlet binding.

Creating template files
Scripters have used template files to ease their coding needs since the earliest scripting
languages. In Windows PowerShell, many people seem to avoid this tried and true technique.
However, a few judiciously created template files will yield great dividends in both speed of
development and quality of output. Here are some tips to help you to create the best tem-
plate files:

■■ Create templates that can be used for different types of scripts. Some examples might
be WMI scripts, ADSI scripts, and ADO scripts. When you are creating your templates,
consider the following:

■■ Add in common functions that you would use on a regular basis.

■■ Do not hardcode specific values that the connection strings might require: server
names, input file paths, output file paths, and so on. Instead, contain these values in
variables.

■■ Do not hardcode version information into the template.

■■ Make sure you include comments where the template will require modification to
be made functional.

■■ You might want to turn your templates into code snippets to facilitate their usage.

	 Formatting your code	 APPENDIX B	 245

Writing your own functions
When you write your own functions, there are some practices you might want to consider:

■■ Create highly specialized functions. Good functions do one thing well.

■■ Make the function completely self-contained. Good functions should be portable.

■■ Alphabetize the functions in your script, if possible. This promotes readability and
maintainability.

■■ Give your functions descriptive names, such as funHelp, funLine, or funComputePer-
centage. I like prefixing my functions with the moniker fun to avoid the possibility of
running into a keyword and to make them easy to see and read. You can spell out
function, but I think that is too much typing.

■■ Every function should have a single output point.

■■ Every function should have a single entry point.

■■ Use parameters to avoid problems with local and global variable scopes.

■■ Implement the common parameters, such as Verbose, Debug, and Whatif. Confirm
where appropriate to promote re-usability.

Variables, constants, and naming
Keep the following tips in mind when you create variables, constants, and naming:

■■ Avoid “magic numbers.” When calling methods or functions, avoid hardcoding numeric
literals. Instead, create a constant that is descriptive enough that someone reading the
code would be able to figure out what the thing is supposed to do. In the ServiceDe-
pendencies.ps1 script, we use a number to offset the print out. This number is deter-
mined by the position of a certain character in the output. Rather than just saying +14,
we create a constant with a descriptive name. Refer to Chapter 12 for more informa-
tion on this script. The following example shows the applicable portion of the code:

New-Variable -Name c_padline -value 14 -option constant

Get-WmiObject -Class Win32_DependentService -computername $computer |

Foreach-object `

 {

 “=” * ((([wmi]$_.dependent).pathname).length + $c_padline)

■■ Do not “recycle” variables. These are referred to as un-focused variables. Variables
should serve a single purpose. These are called focused variables.

■■ Give variables descriptive names. Remember you have tab completion, so you should
use it to simplify typing.

	246	 APPENDIX B	 Windows PowerShell 3.0 coding conventions

■■ Minimize variable scope. If you are going to use a variable only in a function, then
declare it in the function.

■■ When a constant is needed, use a read-only variable instead. Remember that constants
cannot be deleted, nor can their value change.

■■ Avoid hardcoding values into method calls and in the worker section of the script.
Instead, place values into variables.

■■ When possible, group your variables into a single section of each level of the script.

■■ Avoid using Hungarian notation if it is not needed. Remember everything in Windows
PowerShell is basically an object, so there is no value in naming a variable $objWMI.

■■ There are times when it makes sense to use the following: bln, int, dbl, err, dte, and str.
This is due to the fact that Windows PowerShell is a strongly typed language. It just
acts like it is not.

■■ Scripts should avoid populating the global variable space. Instead, consider passing
values to a function by reference [ref].

247

B
backing up profiles, 38
backtick (`) character, 158
BadScript.ps1 script, 206
breakpoints, debugging scripts

deleting, 215–216
listing, 213–215
responding to, 211–212
setting, 204–211

commands, 209–211
line number, 204–205
variables, 206–209

Break statement, scripts, 174
BusinessLogicDemo.ps1 script, 194
business logic, encapsulating with functions, 194–196
buttons, Add Criteria, 66
Bypass level (script support), 36, 156

C
$caption variable, 220
Case Else expression, 179
case-sensitivity issues, 10
Certificate provider, 82–84
checking for rights, 226
choice limitations, error handling, 220–225

contains operator, 223–225
PromptForChoice method, 220–221
Test-Connection cmdlet, 222

$choiceRTN variable, 221
CIM (Common Information Model), 127–140

associations, 134–140
cleaning up output, 134

Index

A
About conceptual Help topics, 29–30
accessing PowerShell, Start window, 2–4
AccountsWithNoRequiredPassword.ps1 script, 154
Action parameter, 209
Add-Content cmdlet, 87
Add Criteria button, 66
AddTwo function, 211
administrative rights

error handling, 225–226
security issues, 5–6

aliases
data type, functions, 190
properties, Get-Process cmdlet, 54

Alias provider, 80–82
AllSigned level (script support), 36, 156
appending information, text files, 70–71
arguments, positional, 187
arrays

evaluating with Switch statement, 181
indexing, 138

$ary variable, 173
ASCII values, DemoDoWhile.ps1 script, 167
assignment operators, 177–178
associations

CIM (Common Information Model), 134–140
qualifiers, 131

asterisk (*) parameter, 82
attempt and fail, handling missing rights, 226
$_ automatic variable, 159
AutoSize parameter, 56, 61–62

248

classes

Get-Member,  33–34
Get-NetAdapter,  9, 42
Get-NetConnectionProfile,  10
Get-Process,  7–8, 42
Get-PSDrive,  89
Get-PSProvider,  80
Get-Random,  12
Get-Service,  9, 43
Get-UICulture,  11
Get-VM,  42
Get-WinEvent,  27–28
Get-WmiObject,  114
Group-Object,  44–46
Help topics,  26
Import-Clixml,  77
Import-Module,  83
intellisense display,  147–148
Invoke-Command,  105
Invoke-Item,  83
New-Alias,  82
New-IseSnippet,  149
New-Item,  38, 94
New-PSDrive,  89
New-PSSession,  107
New-WebServiceProxy,  191
Out-File,  72
Out-GridView,  63–67
parameters,  22–24

EntryType,  50
ErrorAction parameter,  23–24
Verbose,  22–23

parameter sets,  16–18
Pop-Location,  92, 94
property members,  34–35
Push-Location,  92
Read-Host,  186
Remove-Item,  81, 150
Remove-PSBreakpoint,  215
Remove-PSSession,  107
Save-Help,  20
Select-Object,  115
Select-String,  118–120
Set-ExecutionPolicy,  36–38, 156–157, 226
Set-Item,  93
Set-ItemProperty,  94
Set-Location,  81, 87, 92
Set-PropertyItem,  94
Set-PSBreakpoint,  204

cmdlets,  127–132
classname parameter,  128
filtering WMI classes by qualifiers,  130–132
finding WMI class methods,  128–129

reducing returned properties and instances,  133
retrieving WMI instances,  132

classes
Win32_PingStatus WMI,  222
WMI (Windows Management

Instrumentation),  115–117, 127–132
classic remoting,  99–101
class methods (WMI),  128–129
classname parameter,  128
cmdlets,  6–16

About conceptual Help topics,  29–30
Add-Content,  87
CIM (Common Information Model),  127–132

classname parameter,  128
filtering WMI classes by qualifiers,  130–132
finding WMI class methods,  128–129

debugging scripts,  203–204
Disable-PSBreakpoint,  215
Enable-Netadapter,  42
Enable-PSBreakpoint,  215
Enter-PSSession,  103, 107
Export-Clixml,  77
Export-CSV,  73–76
ForEach-Object,  159, 173
Format-List,  54, 58–61, 111
Format-Table,  53–57

controlling table display,  55–57
Format-Wide,  61–63
Get-Alias,  165
Get-AppxPackage,  50–51
Get-ChildItem,  80, 88, 90
Get-CimAssociatedInstance,  134, 138
Get-CimClass,  127
Get-CimInstance,  132
Get-Command,  30–33, 183–185
Get-Content,  87
Get-Credential,  108
Get-Culture,  10–11
Get-Date,  11
Get-EventLog,  49–50
Get-Help,  26–28
Get-Hotfix,  8
Get-ISESnippet,  150
Get-ItemProperty,  90

249

debugging scripts

contains operator,  223–225
control, text files,  72–73
core classes, WMI,  115
creating

code, ISE snippets,  148–149
default value for missing parameters,  218–220
For...Loop,  170–172
functions,  185
lists,  58–61

properties by name,  59
properties by wildcard,  59–61

output grids,  63–67
column buttons,  64–66
filter box,  66–67

profiles,  37–38
registry keys,  92–93
snippets (ISE),  149–150
tables,  53–57

display,  55–57
ordering properties,  54–55

$cred variable,  105
.csv (Comma Separated Value) files, storing output, 

73–76
NoTypeInformation parameter,  73–75
type information,  75–76

culture settings, Get-Culture cmdlet,  10–11
CurrentUser scope (execution policy),  36, 156
customizing Format-Wide output,  62–63

D
data

leveraging providers.  See providers
storage.  See storing output

data pipeline,  41
filtering output,  46–51
grouping output after sorting,  44–46
sorting output from a cmdlet,  42–44

datasets,  117
data type aliases, functions,  190
dates, retrieving with Get-Date cmdlet,  11
DateTime object,  48
DCOM (Distributed Component Object Model),  99
debugging scripts,  203–216

cmdlets,  203–204
deleting breakpoints,  215–216
listing breakpoints,  213–215

Set-PSDebug,  203
Show-Command,  34–35
single parameters,  12–16

Description parameter,  13–14
Maximum parameter,  15–16
Name parameter,  14–15

Sort-Object,  42, 47–48, 76
Start-Transcript,  24, 38
Start-VM,  42
Stop-Transcript,  25
Test-Connection,  222
Test-Path,  38, 92, 95
Test-WSMan,  103, 110
two-part name,  6
Update-Help, Force parameter,  19–20
Win32_Process,  135
Write-Host,  209

$cn variable,  105
code, creating with ISE snippets,  148–149
column buttons, output grids,  64–66
Column parameter,  63
Command Add-on, Script pane,  145
Command Add-on window,  142–143
command-line parameters, assigning default values

to,  218–219
command-line utilities,  18–19
Command parameter,  209–211
commands.  See cmdlets

debugger commands,  211
remoting,  103–107
Script pane,  145
setting breakpoints on,  209–211

Comma Separated Value files.  See .csv files
common classes, WMI,  115
Common Information Model.  See CIM
comparison operators,  176–178
complex objects, storing in XML,  76–78
computername parameter,  105
concatenation operator,  159
conceptual Help topics,  26
conditions, If statements,  178–179
configuring remoting,  101–103
Confirm parameter (cmdlets),  22
console,  1
constants, scripts,  160–161
construction, While statement,  162–164
consumers, WMI (Windows Management

Instrumentation),  113

250

Debug parameter (cmdlets)

responding to breakpoints,  211–212
setting breakpoints,  204–211

commands,  209–211
line number,  204–205
variables,  206–209

Debug parameter (cmdlets),  22
declared variables,  160
DefaultDisplayPropertySet configuration,  119
Default statement, scripts,  180
default values, missing parameters,  218–220
deleting breakpoints,  215–216
DemoBreakFor.ps1 script,  174
DemoDoWhile.ps1 script,  166–168
DemoDoWhile.vbs script,  165
DemoExitFor.ps1 script,  175
DemoExitFor.vbs script,  174
DemoForEachNext.vbs script,  172
DemoForEach.ps1 script,  173
DemoForLoop.ps1 script,  170
DemoForLoop.vbs script,  170
DemoForWithoutInitOrRepeat.ps1 script,  170
demoIfElseIfElse.ps1 script,  178
DemoIfElseIfElse.vbs script,  178
DemoIf.ps1 script,  176
DemoIf.vbs script,  176
DemoSelectCase.vbs script,  179
DemoSwitchArrayBreak.ps1 script,  182
DemoSwitchArray.ps1 script,  181
DemoSwitchCase.ps1 script,  180
DemoSwitchMultiMatch.ps1 script,  181
DemoTrapSystemException.ps1 script,  191–192
DemoWhileLessThan.ps1 script,  162
Deployment Image Servicing and Management (DISM)

Get-WindowsDriver function,  47
deprecated qualifier,  130
Description parameter (cmdlets),  13–14
Description parameter, snippets,  149
dialog boxes, UAC (User Account Control),  5
DirectoryListWithArguments.ps1 script,  154
Disable-PSBreakpoint cmdlet,  215
DISM (Deployment Image Servicing and Management)

Get-WindowsDriver function,  47
display

formatting output,  61–63
lists,  61
tables,  55–57

DisplayCapitalLetters.ps1 script,  167
Distributed Component Object Model (DCOM),  99

DivideNum function,  211
Do...Loop statement, scripts,  168–170
DotSourceScripts.ps1 script,  198
Do...Until statement, scripts,  168
DoWhileAlwaysRuns.ps1 script,  169–170
Do...While statements, scripts,  165–168

casting to ASCII values,  167–168
operating over an array,  166–167
range operators,  166

drives, Registry provider,  89–90
dynamic classes, WMI,  115
dynamic qualifier,  131

E
ease of modification, functions,  196–201
editing profiles,  38
Enable-Netadapter cmdlet,  42
Enable-PSBreakpoint cmdlet,  215
Enable-PSRemoting function,  101
enabling support, scripts,  156–157
encapsulating business logic, functions,  194–196
EndlessDoUntil.ps1 script,  169
Enter-PSSession cmdlet,  103, 107
EntryType parameter,  50
Environment provider,  85–86
ErrorAction parameter,  158
ErrorAction parameter (cmdlets),  23–24
error handling

forcing intentional errors,  24
limiting choices,  220–225

contains operator,  223–225
PromptForChoice method,  220–221
Test-Connection cmdlet,  222

missing parameters,  217–220
creating default value,  218–220
making parameters mandatory,  219–220

missing rights,  225–226
Try/Catch/Finally block,  227–228

ErrorVariable parameter (cmdlets),  22
escape character,  163
Examples parameter, Get-Help cmdlet,  27
Exit For statements (VBScript),  174
exiting ForEach statement,  174–176
Exit statement, scripts,  174–175
expanding strings,  163
expired certificates,  84–85

251

Get-Discount function

ExpiringInDays parameter,  84
Export-Clixml cmdlet,  77
Export-CSV cmdlet,  73–76
extensible providers,  79

F
files

.csv.  See .csv (Comma Separated Value) files
text.  See text files

File System provider,  86–87
filter boxes, output grids,  66–67
filtering

output,  46–51
before sorting,  50–51
by dates,  47–49
to the left,  49–50

WMI classes,  130–132
Filter parameter,  124, 139
finding cmdlets, Get-Command cmdlet,  30–33
FindLargeDocs.ps1 script,  196
Fix it Center,  191
Force parameter, Update-Help cmdlet,  19–20
forcing intentional errors,  24
ForEach-Object cmdlet,  159, 173
ForEach statement, scripts,  172–175
ForEndlessLoop.ps1 script,  171
For...Loop, creating,  170–172
Format-IPOutput function,  200
Format-List cmdlet,  54, 58–61, 111
Format-NonIPOutput function,  200
Format-Table cmdlet,  53–57
formatting output

lists,  58–61
properties by name,  59
properties by wildcard,  59–61

output grids,  63–67
column buttons,  64–66
filter box,  66–67

tables,  53–57
display,  55–57
ordering properties,  54–55

wide displays,  61–63
AutoSize parameter,  61–62
customizing Format-Wide output,  62–63

Format-Wide cmdlet,  61–63
For statement, scripts,  170–172

ft alias,  134
Full parameter, Get-Help cmdlet,  27
Function provider,  88–89
functions

AddTwo,  211
DivideNum,  211
ease of modification,  196–201
encapsulating business logic,  194–196
Get-AllowedComputer,  224
multiple input parameters,  192–194
type constraints,  190–192
understanding,  183–190

creating functions,  185
naming functions,  185
variable scope,  188
verbs,  187–188

fundamentals
writing scripts,  155–161

enabling support,  156–157
running scripts,  155, 159–160
transitioning from command line to,  157–159
variables/constants,  160–161

G
GC alias,  165
gcim alias,  133
generating random numbers, Get-Random cmdlet,  12

Maximum parameter,  15–16
parameter sets,  17–18

Get-Alias cmdlet,  165
Get-AllowedComputer function,  224
Get-AllowedComputers.ps1 script,  224
Get-AppxPackage cmdlet,  50–51
Get-ChildItem cmdlet,  80, 88, 90
Get-ChoiceFunction.ps1 script,  220
Get-CimAssociatedInstance cmdlet,  134, 138
Get-CimClass cmdlet,  127
Get-CimInstance cmdlet,  132
Get-Command cmdlet,  30–33, 183–185
Get-Content cmdlet,  87
Get-Credential cmdlet,  108
Get-Culture cmdlet,  10–11
Get-Date cmdlet,  11
Get-DirectoryListing function,  193
Get-DirectoryListingToday.ps1 script,  193
Get-Discount function,  194

252

Get-Doc function

missing parameters,  217–220
creating default value,  218–220
making parameters mandatory,  219–220

missing rights,  225–226
Try/Catch/Finally block,  227–228

Help options,  19–20
Help topics,  26
hotfixes, Get-Hotfix cmdlet,  8
HSG registry key,  92

I
icm alias,  105
identifying network adapters, Get-NetAdapter cmd-

let,  9
If...Else...End construction (VBScript),  177
If statement, scripts,  175–179

assignment and comparison operators,  177–178
multiple conditions,  178–179

If…Then…End If statements (VBScript),  175
Import-Clixml cmdlet,  77
Import-Module cmdlet,  83
infrastructure, WMI (Windows Management Instrumen-

tation),  113
InLineGetIPDemo.ps1 script,  196
InputObject parameter (cmdlets), as part of parameter

set,  17–18
input parameters, functions,  192–194
Integrated Scripting Environment.  See ISE
intellisense,  146–148
intentional errors, forcing,  24
interactive Windows PowerShell console,  142
Invoke-Command cmdlet,  105
Invoke-Item cmdlet,  83
ISE (Integrated Scripting Environment),  2

navigation,  142–144
running,  141–148
Script pane,  145–147
snippets,  148–151

creating,  149–150
creating code with,  148–149
removing,  150–151

tab expansion and Intellisense,  146–148

Get-Doc function,  196
Get-EnabledBreakpointsFunction.ps1 script,  214
Get-EventLog cmdlet,  49–50
Get-Help cmdlet,  26–28
Get-Hotfix cmdlet,  8, 13–14
GetInfoByZip method,  191
GetIPDemoSingleFunction.ps1 script,  197
Get-IPObjectDefaultEnabledFormatNonIPOutput.ps1

script,  200
Get-IPObjectDefaultEnabled.ps1 script,  199
Get-IPObject function,  200
Get-ISESnippet cmdlet,  150
Get-ItemProperty cmdlet,  90
Get-Member cmdlet,  33–34
Get-NetAdapter cmdlet,  9, 42
Get-NetConnectionProfile cmdlet,  10
Get-OperatingSystemVersion.ps1 script,  185
Get-Process cmdlet,  7–8, 42, 54
Get-PSDrive cmdlet,  89
Get-PSProvider cmdlet,  80
Get-Random cmdlet,  12, 17–18
Get-Service cmdlet,  9, 43
Get-TextStatisticsCallChildFunction-DoesNOTWork-

MissingClosingBracket.ps1 script,  189
Get-TextStatisticsCallChildFunction.ps1 script,  188
Get-TextStatistics function,  186
Get-UICulture cmdlet,  11
Get-VM cmdlet,  42
Get-Volume function,  69, 70
Get-WindowsDriver function (DISM),  47
Get-WinEvent cmdlet,  27–28
Get-WmiObject cmdlet,  114
Get-WmiProvider function,  115
grave character,  158
grids, output,  63–67

column buttons,  64–66
filter boxes,  66–67

grouping output,  44–46
Group-Object cmdlet,  44–46
gwmi alias,  116

H
handling errors

limiting choices,  220–225
contains operator,  223–225
PromptForChoice method,  220–221
Test-Connection cmdlet,  222

253

$noun variable

methods
GetInfoByZip, 191
PromptForChoice, 220–221

Microsoft Fix it Center, 191
Microsoft Management Console (MMC), 83
missing parameters, error handling, 217–220

creating default value, 218–220
making parameters mandatory, 219–220

missing registry property values, 95–96
missing rights, error handling, 225–226
MMC (Microsoft Management Console), 83
Mode parameter, 206
modifying functions, 196–201
multiple conditions, If statements, 178–179
multiple input parameters, functions, 192–194

n
Name parameter (cmdlets), 14–15
Name parameter, Get-Help cmdlet, 26
namespaces, WMI (Windows Management Instrumen-

tation), 114
naming functions, 185
navigation, ISE (Integrated Scripting Environment),

142–144
network adapters, identifying with Get-NetAdapter

cmdlet, 9
New-Alias cmdlet, 82
New-IseSnippet cmdlet, 149
New-Item cmdlet, 38, 94
New-PSDrive cmdlet, 89
New-PSSession cmdlet, 107
New-WebServiceProxy cmdlet, 191
NoElement switched parameter, 46
NoExit argument, 159–160
non-elevated users, security issues, 4–5
non-terminating errors, 226
NotAfter property, 84
Notepad

scripts. See scripts
transcript log file, 25

NoTypeInformation parameter, 73–75
$noun variable, 223

K
keywords, Trap, 191

L
Language Code ID number (LCID), 10
launching

ISE, 141–142
ISE snippets, 148

LCID (Language Code ID number), 10
left, filtering to, 49–50
leveraging providers. See providers
limiting choices, error handling, 220–225

contains operator, 223–225
PromptForChoice method, 220–221
Test-Connection cmdlet, 222

line number, setting breakoints, 204–205
Line parameter, 204
listing breakpoints, 213–215
ListProcessesSortResults.ps1 script, 154
lists, formatting output, 58–61

properties by name, 59
properties by wildcard, 59–61

literal strings, 163–164
LocalMachine scope (execution policy), 36, 156
logic

business, 194–196
program, 194

LogName parameter, 59
looping technology

Do...Loop statement, 168–169
Do...Until statement, 168
Do...While statement, 165–167

M
Mandatory parameter attribute, 219
MandatoryParameter.ps1 script, 219
mandatory parameters, 219–220
matching Switch statements, scripts, 180–182
Maximum parameter (cmdlets), 15–16
MemberType parameter (cmdlets), 34–35

254

objects

EntryType,  50
ErrorAction,  23–24
NoElement switched,  46
single parameters,  12–16
Verbose,  22–23

Column,  63
Command,  209–211
computername,  105
ErrorAction,  158
error handling,  217–220

creating default value,  218–220
making parameters mandatory,  219–220

ExpiringInDays,  84
Filter,  124, 139
Force, Update-Help cmdlet,  19–20
intellisense display,  147–148
ISE snippets

Description,  149
Text,  149
Title,  149

Line,  204
LogName,  59
Mode,  206
multiple input parameters and functions,  192–194
NoTypeInformation,  73–75
PassThru,  158
PSComputerName,  105
qualifier,  130–132
Quiet,  222
Recurse,  88
resultclassname,  138
Script,  204
Subject,  85
Value,  93
wildcard asterisk (*),  82
Wrap,  57
$zip input,  191

parameter sets, cmdlets,  16–18
Param statement, assigning default value to

command-line parameter,  218–219
Param statements,  193
PassThru parameter,  158
persisted connections, remoting,  107–110
pipeline,  41

filtering output,  46–51
grouping output after sorting,  44–46
sorting output from a cmdlet,  42–44

Pop-Location cmdlet,  92, 94

O
objects

DateTime,  48
ProcessThreadCollection,  76
WMI (Windows Management Instrumentation),  114

offline analysis technique,  75–76
Online switch, displaying Help information,  19
operators

assignment,  177–178
comparison,  176–178
concatenation,  159
contains,  223–225
range,  17, 166
redirect and append,  70–71
redirect and overwrite,  71–72

ordering properties, tables,  54–55
OutBuffer parameter (cmdlets),  22
Out-File cmdlet,  72
Out-GridView cmdlet,  63–67
output

filtering,  46–51
formatting

lists,  58–61
output grids,  63–67
tables,  53–57
wide displays,  61–63

grouping,  44–46
sorting,  42–44
storing

.csv files,  73–76
text files,  69–73
XML,  76–78

output grids, creating,  63–67
column buttons,  64–66
filter box,  66–67

OutVariable parameter (cmdlets),  22
overwriting information, text files,  71–72

P
pagers, displaying Help information,  27–28
parameters

Action,  209
AutoSize,  56, 61–62
classname,  128
cmdlets,  22–24

255

Remove-PSSession cmdlet

Q
qualifier parameter,  130–132
queries, WMI (Windows Management

Instrumentation),  117–125
return a specific instance,  123–124
return only a few properties,  125–126
return only properties interested in,  122–123
select query,  120–122
Select-String cmdlet,  118–120

Quiet parameter,  222

R
random numbers, generating with Get-Random

cmdlet,  12
Maximum parameter,  15–16
parameter sets,  17–18

range operator,  17, 166
Read-Host cmdlet,  186
Recurse parameter,  88
redirect and append operator,  70–71
redirect and overwrite operator,  71–72
redirecting information, text files,  70–72
registry keys

creating,  92–93
setting default value,  93–94

Registry, Registry provider,  89–96
creating registry keys,  92–93
drives,  89–90
missing registry property values,  95–96
modifying registry property value,  94–95
New-Item cmdlet,  94
retrieving registry values,  90–92
setting default value for the key,  93–94

remote procedure call (RPC),  99
RemoteSigned level (scripting support),  156
RemoteSigned level (script support),  36
remoting,  99–112

classic,  99–101
commands,  103–107
configuring,  101–103
persisted connections,  107–110
troubleshooting,  110–111

Remove-Item cmdlet,  81, 150
Remove-PSBreakpoint cmdlet,  215
Remove-PSSession cmdlet,  107

positional arguments,  187
position message,  158
Process.csv text file,  74
ProcessInfo.csv file,  76
Process scope (execution policy),  36, 156
ProcessThreadCollection object,  76
$process variable,  159
$profile automatic variable,  37
profiles,  37–38
program logic,  194
PromptForChoice method,  220–221
properties

DateTime object,  48
Get-Process cmdlet,  54
lists,  59–61
NotAfter,  84
PSISContainer,  84
Site,  60
Status,  66
Subject,  83
tables,  54–55

property members,  34–35
provider class, WMI,  115
providers,  79–97

Alias,  80–82
Certificate,  82–84
Environment,  85–86
File System,  86–87
Function,  88–89
Get-PSProvider cmdlet,  80
Registry,  89–96

creating registry keys,  92–93
drives,  89–90
missing registry property values,  95–96
modifying registry property value,  94–95
New-Item cmdlet,  94
retrieving registry values,  90–92
setting default value for the key,  93–94

Variable,  96–97
WMI (Windows Management Instrumenta-

tion),  114–115
PSComputerName parameter,  105
PSISContainer property,  84
PSScheduledJob module,  154
PSStatus property set,  120
Push-Location cmdlet,  92

256

removing snippets (ISE)

DemoForLoop.ps1,  170
DemoForLoop.vbs,  170
DemoForWithoutInitOrRepeat.ps1,  170
demoIfElseIfElse.ps1,  170
DemoIfElseIfElse.vbs,  178
DemoIf.ps1,  176
DemoIf.vbs,  176
DemoSelectCase.vbs,  179
DemoSwitchArrayBreak.ps1,  182
DemoSwitchArray.ps1,  181
DemoSwitchCase.ps1,  180
DemoSwitchMultiMatch.ps1,  181
DemoTrapSystemException.ps1,  191–192
DemoWhileLessThan.ps1,  162
DirectoryListWithArguments.ps1,  154
DisplayCapitalLetters.ps1,  167
Do...Loop statement,  168–170
DotSourceScripts.ps1,  198
Do...Until statement,  168
DoWhileAlwaysRuns.ps1,  169–170
Do...While statement,  165–168

casting to ASCII values,  167–168
operating over an array,  166–167
range operator,  166

EndlessDoUntil.ps1,  169
FindLargeDocs.ps1,  196
ForEach statement,  172–175
ForEndlessLoop.ps1,  171
For statement,  170–172
fundamentals,  155–161

enabling support,  156–157
running scripts,  155, 159–160
transitioning from commandline to,  157–159
variables/constants,  160–161

Get-AllowedComputers.ps1,  224
Get-ChoiceFunction.ps1,  220
Get-DirectoryListingToday.ps1,  193
Get-EnabledBreakpointsFunction.ps1,  214
GetIPDemoSingleFunction.ps1,  197
Get-IPObjectDefaultEnabledFormatNonIPOutput.

ps1,  200
Get-IPObjectDefaultEnabled.ps1,  199
Get-OperatingSystemVersion.ps1,  185
Get-TextStatisticsCallChildFunction-DoesNOTWork-

MissingClosingBracket.ps1,  189
Get-TextStatisticsCallChildFunction.ps1,  188
If statement,  175–179

assignment and comparison operators,  177–178
multiple conditions,  178–179

removing snippets (ISE),  150–151
Resolve-ZipCode.ps1 script,  191
resources, WMI (Windows Management

Instrumentation),  113
responding to breakpoints,  211–212
Restricted level (script support),  36, 156
resultclassname parameter,  138
retrieving information, Get cmdlets,  6–12

Get-Culture,  10–11
Get-Date,  11
Get-Hotfix,  8
Get-NetAdapter,  9
Get-NetConnectionProfile,  10
Get-Process,  7–8
Get-Random,  12
Get-Service,  9

retrieving registry values, Registry provider,  90–92
RPC (remote procedure call),  99
running

ISE (Integrated Scripting Environment),  141–148
scripts,  155, 159–160

S
Save-Help cmdlet,  20
ScheduledTasks module,  154
scheduled tasks, scripts,  154
script blocks,  49, 162
Script pane (ISE),  145–147
Script parameter,  204
scripts

AccountsWithNoRequiredPassword.ps1,  154
BadScript.ps1,  206
BusinessLogicDemo.ps1,  194
debugging,  203–216

cmdlets,  203–204
deleting breakpoints,  215–216
listing breakpoints,  213–215
responding to breakpoints,  211–212
setting breakpoints,  204–211

DemoBreakFor.ps1,  174
DemoDoWhile.ps1,  166–168
DemoDoWhile.vbs,  165
DemoExitFor.ps1,  175
DemoExitFor.vbs,  174
DemoForEachNext.vbs,  172
DemoForEach.ps1,  173

257

Switch syntax, creating an ISE snippet

Description parameter, 13–14
Maximum parameter, 15–16
Name parameter, 14–15

Site property, 60
snippets (ISE), 148–151

creating, 149–150
creating code with, 148–149
removing, 150–151

sorting output, 42–44
Sort-Object cmdlet, 76

sorting dates, 47–48
sorting output from a cmdlet, 42

special variables, associated meanings, 161
starting

ISE, 141–142
ISE snippets, 148
transcripts, 24

Start-Transcript cmdlet, 24, 38
Start-VM cmdlet, 42
Start window, accessing PowerShell, 2–4
Status property, 66
StopNotepad.ps1 script, 157
StopNotepadSilentlyContinuePassThru.ps1 script, 159
StopNotepadSilentlyContinue.ps1 script, 158
stopping transcripts, 25
Stop-Transcript cmdlet, 25
storing output

.csv files, 73–76
NoTypeInformation parameter, 73–75
type information, 75–76

text files, 69–73
control, 72–73
redirecting and appending information, 70–71
redirecting and overwriting information, 71–72

XML, 76–78
strings

expanding, 163
literal, 163–164

Subject parameter, 85
Subject property, 83
support, scripts, 156–157
Switch statement, scripts, 179–182

controlling matching behavior, 182
Default condition, 180
evaluating arrays, 181
matching, 180–181

Switch syntax, creating an ISE snippet, 149

InLineGetIPDemo.ps1, 196
ListProcessesSortResults.ps1, 154
MandatoryParameter.ps1, 219
profiles, 37–38
reasons for writing, 153–154
Resolve-ZipCode.ps1, 191
Set-ExecutionPolicy cmdlet, 36–38
StopNotepad.ps1, 157
StopNotepadSilentlyContinuePassThru.ps1, 159
StopNotepadSilentlyContinue.ps1, 158
Switch statement, 179–182

controlling matching behavior, 182
Default condition, 180
evaluating arrays, 181
matching, 180–181

Test-ComputerPath, 222
TestTryCatchFinally.ps1, 227–228
WhileDoesNotRun.ps1, 170
WhileReadLine.ps1, 164
WhileReadLineWend.VBS, 164
While statement, 162–165

construction, 162–164
practical example, 164

Write statement, 164–165
searching specific certificates, 83–84
security issues, 4–6

administrator rights, 5–6
non-elevated users, 4–5

Select Case statement (VBScript), 179
Select-Object cmdlet, 115
select query, WMI (Windows Management

Instrumentation), 120–122
Select-String cmdlet, 118–120
Set-ExecutionPolicy cmdlet, 36–38, 156–157, 226
Set-Item cmdlet, 93
Set-ItemProperty cmdlet, 94
Set-Location cmdlet, 81, 87, 92
Set-PropertyItem cmdlet, 94
Set-PSBreakpoint cmdlet, 204
Set-PSDebug cmdlet, 203
setting breakpoints, debugging scripts, 204–211

commands, 209–211
line number, 204–205
variables, 206–209

Show Command Add-On, 2
Show-Command cmdlet, 34–35
SilentlyContinue value (ErrorAction parameter), 158
single parameters, cmdlets, 12–16

258

Tab Completion feature

V
Value parameter,  93
values, ErrorAction parameter,  24
Variable provider,  96–97
variables

$ary,  173
$_ automatic,  159
$caps,  167
$caption,  220
$choiceRTN,  221
$cn,  105
$cred,  105
$dc1,  107
$discount,  195
$fileContents,  164
$logon,  135
$message,  220
$noun,  223
$obj1,  227
$process,  159
scripts,  160–161
setting breakpoints,  206–209
special variables with associated meanings,  161

variable scope,  188
VBScript

Exit For statements,  174
For...Each...Next construction,  172
For...Next...Loop,  170
If...Else...End construction,  177
If…Then…End If statements,  175
Select Case statement,  179
While...Wend loop,  162
Wscript.Quit statements,  175

Verbose parameter (cmdlets),  22–23
verbs, functions,  187–188

W
WarningAction parameter (cmdlets),  22
WarningVariable parameter (cmdlets),  22
WhatIf parameter (cmdlets),  22
Where-Object filter,  46–47
WhileDoesNotRun.ps1 script,  170
WhileReadLine.ps1 script,  164
WhileReadLineWend.VBS script,  162

T
Tab Completion feature,  7
tab expansion,  146–148
tables, formatting output,  53–57

display,  55–57
ordering properties,  54–55

terminating errors,  226
Test-ComputerPath script,  222
Test-Connection cmdlet,  222
Test-Path cmdlet,  38, 92, 95
Test registry key,  93
TestTryCatchFinally.ps1 script,  227–228
Test-WSMan cmdlet,  103, 110
text files, storing output,  69–73

control,  72–73
redirecting and appending information,  70–71
redirecting and overwriting information,  71–72

Text parameter, snippets,  149
time, retrieving with Get-Date cmdlet,  11
Title parameter, snippets,  149
transcript log files, Notepad,  25
transcripts

starting,  24
stopping,  25

Trap keyword,  191
Try/Catch/Finally blocks,  227–228
type constraints, functions,  190–192
type information, .csv files,  75–76

U
UAC (User Account Control) dialog box,  5
UAC (User Account Control) feature,  225
UI (user interface) culture settings,  11
Undefined level (script support),  36, 156
Unrestricted level (script support),  36, 156
Update-Help cmdlet, Force parameter,  19–20
updating Help,  19–20
User Account Control (UAC) dialog box,  5
User Account Control (UAC) feature,  225
user-defined snippets (ISE),  149–151
user interface (UI) culture settings,  11
users

administrators, security issues,  5–6
non-elevated, security issues,  4–5

259

$zip input parameter

X
XML, storing output,  76–78

Z
$zip input parameter,  191

While statement, scripts,  162–165
construction,  162–164
practical example,  164

While...Wend loop (VBScript),  162
wide display

formatting output
AutoSize parameter,  61–62
customizing Format-Wide output,  62–63

lists,  61
wild card asterisk (*) parameter,  82
wildcard search pattern, Command Add-On,  143
wildcards, selecting properties to display,  59–61
Win32_PingStatus WMI class,  222
Win32_Process cmdlet,  135
windows

Command Add-on,  142–143
Start, accessing PowerShell,  2–4

Windows Management Instrumentation.  See WMI
Windows Remote Management (WinRm),  101
WinRm (Windows Remote Management),  101
WMI (Windows Management Instrumentation), 

113–125
classes,  115–117
classes, exploring with CIM cmdlets,  127–132
consumers,  113
filtering classes with CIM cmdlets,  130–132
finding class methods, CIM,  128–129
infrastructure,  113
objects and namespaces,  114
providers,  114–115
queries,  117–125

return a specific instance,  123–124
return only a few properties,  125–126
return only properties interested in,  122–123
select query,  120–122
Select-String cmdlet,  118–120

resources,  113
retrieving instances, CIM,  132

Wrap parameter,  57
Write-Host cmdlet,  209
Write-Path function,  188
Write statement, scripts,  164–165
writing scripts.  See scripts
Wscript.Quit statements (VBScript),  175

 Now that
you’ve
read the
book...

Was it useful?
Did it teach you what you wanted to learn?
Was there room for improvement?

Let us know at http://aka.ms/tellpress

Your feedback goes directly to the staff at Microsoft Press,
and we read every one of your responses. Thanks in advance!

Tell us what you think!

	Foreword
	Introduction
	Chapter 1: Overview of Windows PowerShell 3.0
	Understanding Windows PowerShell
	Working with Windows PowerShell
	Security issues with Windows PowerShell

	Using Windows PowerShell cmdlets
	The most common verb: Get

	Supplying options for cmdlets
	Using single parameters
	Introduction to parameter sets
	Using command-line utilities

	Working with Help options
	Summary

	Chapter 2: Using Windows PowerShell cmdlets
	Understanding the basics of cmdlets
	Common Windows PowerShell parameters
	Starting the Windows PowerShell transcript
	Stopping and reviewing the Windows PowerShell transcript

	Searching the Help topics
	Using the Get-Help cmdlet
	Using the About conceptual Help topics

	Using the Get-Command to find cmdlets
	Using the Get-Member cmdlet
	Exploring property members

	Using the Show-Command cmdlet
	Setting the Script Execution Policy
	Creating a basic Windows PowerShell profile
	Determining if a Windows PowerShell profile exists
	Creating a new Windows PowerShell profile

	Summary

	Chapter 3: Filtering, grouping, and sorting
	Introduction to the pipeline
	Sorting output from a cmdlet
	Grouping output after sorting
	Grouping information without element data

	Filtering output from one cmdlet
	Filtering by date
	Filtering to the left

	Filtering output from one cmdlet before sorting
	Summary

	Chapter 4: Formatting output
	Creating a table
	Choosing specific properties in a specific order
	Controlling the way the table displays

	Creating a list
	Choosing properties by name
	Choosing properties by wildcard

	Creating a wide display
	Using the -AutoSize parameter to configure the output
	Customizing the Format-Wide output

	Creating an output grid
	Sorting output by using the column buttons
	Filtering output by using the filter box

	Summary

	Chapter 5: Storing output
	Storing data in text files
	Redirect and append
	Redirect and overwrite
	Controlling the text file

	Storing data in .csv files
	No type information
	Using type information

	Storing data in XML
	The problem with complex objects
	Using XML to store complex objects

	Summary

	Chapter 6: Leveraging Windows PowerShell providers
	Understanding Windows PowerShell providers
	Understanding the Alias provider
	Understanding the Certificate provider
	Understanding the Environment provider
	Understanding the File System provider
	Understanding the Function provider
	Understanding the Registry provider
	Understanding the Variable provider

	Summary

	Chapter 7: Using Windows PowerShell remoting
	Using Windows PowerShell remoting
	Classic remoting

	Configuring Windows PowerShell remoting
	Running commands
	Creating a persisted connection

	Troubleshooting Windows PowerShell remoting
	Summary

	Chapter 8: Using WMI
	Understanding the WMI Model
	Working with objects and namespaces
	Listing WMI providers
	Working with WMI classes

	Querying WMI: The basics
	Tell me everything about everything
	Tell me selected things about everything
	Tell me everything about some things
	Tell me selected things about some things

	Summary

	Chapter 9: Using CIM
	Using CIM cmdlets to explore WMI classes
	Using the classname parameter
	Finding WMI class methods
	Filtering classes by qualifier
	Reducing returned properties and instances
	Cleaning up output from the command

	Working with associations
	Summary

	Chapter 10: Using the Windows PowerShell ISE
	Running the Windows PowerShell ISE
	Navigating the Windows PowerShell ISE
	Working with the Script pane
	Tab expansion and Intellisense

	Working with Windows PowerShell ISE snippets
	Using Windows PowerShell ISE snippets to create code
	Creating new Windows PowerShell ISE snippets
	Removing user-defined Windows PowerShell ISE snippets

	Summary

	Chapter 11: Using Windows PowerShell scripts
	Why write Windows PowerShell scripts?
	Scripting fundamentals
	Running Windows PowerShell scripts
	Enabling Windows PowerShell scripting support
	Transitioning from command line to script
	Running Windows PowerShell scripts
	Understanding variables and constants

	Using the While statement
	Constructing the While statement
	A practical example of using the While statement
	Using special features of Windows PowerShell

	Using the Do…While statement
	Using the range operator
	Operating over an array
	Casting to ASCII values

	Using the Do…Until statement
	Using the Windows PowerShell Do…Loop statement

	Using the For statement
	Creating a For…Loop
	Using the ForEach statement
	Exiting the ForEach statement early

	Using the If statement
	Using assignment and comparison operators
	Evaluating multiple conditions

	Using the Switch statement
	Using the basic Switch statement
	Controlling matching behavior

	Summary

	Chapter 12: Working with functions
	Understanding functions
	Using a type constraint

	Using multiple input parameters
	Using functions to encapsulate business logic
	Using functions to provide ease of modification
	Summary

	Chapter 13: Debugging scripts
	Understanding debugging in Windows PowerShell
	Debugging the script
	Setting breakpoints
	Setting a breakpoint on a line number
	Setting a breakpoint on a variable
	Setting a breakpoint on a command
	Responding to breakpoints
	Listing breakpoints
	Enabling and disabling breakpoints
	Deleting breakpoints

	Summary

	Chapter 14: Handling errors
	Handling missing parameters
	Creating a default value for the parameter
	Making the parameter mandatory

	Limiting choices
	Using PromptForChoice to limit selections
	Using Test-Connection to identify accessible computers
	Using the contains operator to examine contents of an array

	Handling missing rights
	Attempting and failing
	Checking for rights and exiting gracefully

	Using Try/Catch/Finally
	Summary

	Appendix A: Windows PowerShell FAQ
	Appendix B: Windows PowerShell 3.0 coding conventions
	General script construction
	Include functions in the script that uses the functions
	Use full cmdlet names and full parameter names
	Use Get-Item to convert path strings to rich types

	General script readability
	Formatting your code
	Working with functions
	Creating template files
	Writing your own functions
	Variables, constants, and naming

	Index

