
Didacticiel sur Iptables, version 1.2.0

Table des matières
Didacticiel sur Iptables, version 1.2.0..1

Oskar Andreasson..1
Dédicaces...1
A propos de l'auteur...1
Exploration de ce document...1
Préalables...2
Conventions utilisées dans ce document..2
Chapitre 1. Introduction...2
1.1. Motivations...2
1.2. Contenu...3
1.3. Termes spécifiques..3
Chapitre 2. Rappel TCP/IP..4
2.1. Couches TCP/IP..4
2.2. Caractéristiques IP..6
2.3. En−têtes IP..7
2.4. Caractéristiques TCP..10
2.5. En−têtes TCP..11
2.6. Caractéristiques UDP..13
2.7. En−têtes UDP...13
2.8. Caractéristiques ICMP..13
2.9. En−têtes ICMP..14

2.9.1. Écho requête/réponse ICMP..15
2.9.2. Destination Injoignable ICMP...15
2.9.3. Coupure de source...16
2.9.4. Redirection..16
2.9.5. TTL égale 0...17
2.9.6. Paramètre problème...17
2.9.7. Horodatage requête/réponse..18
2.9.8. Requête/réponse information..18

2.10. Destination TCP/IP par routage..19
2.11. Prochaine étape...19
Chapitre 3. Introduction au filtrage IP...19
3.1. Qu'est−ce qu'un filtre IP ?...19
3.2. Termes et expressions du filtrage IP...20
3.3. Comment configurer un filtre IP ?..22
3.4. Au prochain chapitre...24
Chapitre 4. Introduction à la Traduction d'adresse Réseau..24
4.1. Comment le Nat est utilisé et termes et expressions de base..24
4.2. Divergences sur l'utilisation du NAT..25
4.3. Exemple d'une machine NAT en théorie..25

4.3.1. Ce qui est nécessaire pour une machine NAT...25
4.3.2. Emplacement des machines NAT...26
4.3.3. Comment placer les proxies ?...27
4.3.4. Étape finale pour votre machine NAT..27

4.4. Prochain chapitre..28
Chapitre 5. Préparatifs...28
5.1. Obtenir Iptables ?..28
5.2. Configuration du noyau..28
5.3. Configuration du domaine utilisateur...31

5.3.1. Compilation des applications..32
5.3.2. Installation sur Red Hat 7.1...33

Chapitre 6. Traversée des tables et des chaînes...35

Didacticiel sur Iptables, version 1.2.0

i

Table des matières
Didacticiel sur Iptables, version 1.2.0

6.1. Généralités..35
6.2. La table mangle...38
6.3. La table nat..39
6.4. La table filter...40
Chapitre 7. La machine d'état..40
7.1. Introduction...40
7.2. Les entrées de conntrack...41
7.3. États de l'espace utilisateur...42
7.4. Connexions TCP...43
7.5. Connexions UDP..46
7.6. Connexions ICMP...47
7.7. Connexions par défaut..49
7.8. Protocoles complexes et traçage de connexion...49
Chapitre 8. Sauvegarde et restauration des tables de règles importantes..51
8.1. Considérations de vitesse..51
8.2. Inconvénients avec restore..51
8.3. iptables−save...52
8.4. iptables−restore...53
Chapitre 9. Création d'une règle..54
9.1. Bases de la commande iptables...54
9.2. Les tables..55
9.3. Commandes..56
Chapitre 10. Correspondances...59
10.1. Correspondances génériques...59
10.2. Correspondances implicites..62

10.2.1. Correspondances TCP...62
10.2.2. Correspondances UDP..64
10.2.3. Correspondances ICMP...65

10.3. Correspondances explicites...66
10.3.1. Correspondance AH/ESP..66
10.3.2. Correspondance conntrack..67
10.3.3. Correspondance DSCP..69
10.3.4. Correspondance ECN..69
10.3.5. Correspondance Helper...71
10.3.6. Correspondance de plage IP..71
10.3.7. Correspondance Length...72
10.3.8. Correspondance Limit...72
10.3.9. Correspondance MAC...73
10.3.10. Correspondance mark..74
10.3.11. Correspondance multiport...74
10.3.12. Correspondance owner..75
10.3.13. Correspondance type de paquet...76
10.3.14. Correspondance Recent...77
10.3.15. Correspondance state...80
10.3.16. Correspondance TCPMSS...80
10.3.17. Correspondance TOS..81
10.3.18. Correspondance TTL...81
10.3.19. Correspondance unclean..82

Chapitre 11. Iptables cibles et sauts...82
11.1. Cible ACCEPT...83
11.2. Cible CLASSIFY..83

Didacticiel sur Iptables, version 1.2.0

ii

Table des matières
Didacticiel sur Iptables, version 1.2.0

11.3. Cible DNAT..83
11.4. Cible DROP..86
11.5. Cible DSCP...86
11.6. Cible ECN...87
11.7. Options de la cible LOG...87
11.8. Cible MARK...89
11.9. Cible MASQUERADE...90
11.10. Cible MIRROR...90
11.11. Cible NETMAP..91
11.12. Cible QUEUE...91
11.13. Cible REDIRECT...91
11.14. Cible REJECT...92
11.15. Cible RETURN...93
11.16. Cible SAME..93
11.17. Cible SNAT..93
11.18. Cible TCPMSS...94
11.19. Cible TOS...95
11.20. Cible TTL...96
11.21. Cible ULOG..97
Chapitre 12. Débogage des scripts...98
12.1. Déboguer, une nécessité..98
12.2. Débogage en Bash...99
12.3. Outils système pour le débogage..101
12.4. Débogage d'Iptables..102
12.5. Autres outils de débogage...104

12.5.1. Nmap...104
12.5.2. Nessus..105

12.6. Le chapitre suivant..106
Chapitre 13. Fichier rc.firewall..107
13.1. Exemple de rc.firewall..107
13.2. Explication du rc.firewall..107

13.2.1. Options de configuration...107
13.2.2. Chargement initial des modules supplémentaires...107
13.2.3. Réglage du proc...109
13.2.4. Déplacement des règles vers différentes chaînes..109
13.2.5. Mise en place des actions par défaut...111
13.2.6. Implémentation des chaînes utilisateur dans la table filtre..112
13.2.7. Chaîne INPUT...115
13.2.8. Chaîne FORWARD...116
13.2.9. Chaîne OUTPUT...116
13.2.10. Chaîne PREROUTING de la table nat..116
13.2.11. Démarrage de SNAT et la chaîne POSTROUTING...117

Chapitre 14. Exemples de scripts...117
14.1. Structure du script rc.firewall.txt..117

14.1.1. La structure..118
14.2. rc.firewall.txt...120
14.3. rc.DMZ.firewall.txt...121
14.4. rc.DHCP.firewall.txt...123
14.5. rc.UTIN.firewall.txt..125
14.6. rc.test−iptables.txt...125
14.7. rc.flush−iptables.txt..126

Didacticiel sur Iptables, version 1.2.0

iii

Table des matières
Didacticiel sur Iptables, version 1.2.0

14.8. Limit−match.txt..126
14.9. Pid−owner.txt..126
14.10. Recent−match.txt..126
14.11. Sid−owner.txt..127
14.12. Ttl−inc.txt...127
14.13. Iptables−save..127
Chapitre 15. Interfaces utilisateur graphiques pour Iptables/netfilter..127
15.1. fwbuilder...127
15.2. Projet Turtle Firewall..128
15.3. Integrated Secure Communications System...130
15.4. IPMenu..131
15.5. Easy Firewall Generator...131
15.6. Partie suivante...132
Annexe A. Explication détaillée des commandes spéciales..132
A.1. Affichage de votre table de règles..132
A.2. Mise à jour et vidange des tables...133
Annexe B. Problèmes et questions courants..134
B.1. Problèmes de chargement des modules..134
B.2. Paquets état NEW sans bit SYN placé...135
B.3. SYN/ACK et les paquets NEW..135
B.4. Fournisseurs d'accès Internet qui utilisent des adresses IP assignées..136
B.5. Laissez les requêtes DHCP traverser iptables..137
B.6. Problèmes avec le DCC de mIRC..137
Annexe C. Types ICMP...137
Annexe D. Options TCP..139
Annexe E. Autres ressources et liens...140
Annexe F. Remerciements...142
Annexe G. History...142
Annexe H. GNU Free Documentation License...145
0. PREAMBLE..145
1. APPLICABILITY AND DEFINITIONS..145
2. VERBATIM COPYING..146
3. COPYING IN QUANTITY...146
4. MODIFICATIONS..147
5. COMBINING DOCUMENTS...148
6. COLLECTIONS OF DOCUMENTS..148
7. AGGREGATION WITH INDEPENDENT WORKS...148
8. TRANSLATION..149
9. TERMINATION..149
10. FUTURE REVISIONS OF THIS LICENSE...149
. How to use this License for your documents...149
Annexe I. GNU General Public License..150
0. Preamble..150
1. TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION........151
2. How to Apply These Terms to Your New Programs...154
Annexe J. Example scripts code−base...155
J.1. Example rc.firewall script...155
J.2. Example rc.DMZ.firewall script...161
J.3. Example rc.UTIN.firewall script...168
J.4. Example rc.DHCP.firewall script..174
J.5. Example rc.flush−iptables script...180

Didacticiel sur Iptables, version 1.2.0

iv

Table des matières
Didacticiel sur Iptables, version 1.2.0

J.6. Example rc.test−iptables script...181

Didacticiel sur Iptables, version 1.2.0

v

Didacticiel sur Iptables, version 1.2.0

vi

Didacticiel sur Iptables, version 1.2.0

Oskar Andreasson

<oan@frozentux.net>

Copyright © 2001−2005 Oskar Andreasson

La permission est accordée de copier, distribuer et/ou modifier ce document selon les termes de la "GNU Free
Ducomentation License", version 1.1; en précisant les sections "Introduction" et toutes les sous−sections, avec
les en−têtes "Auteur: Oskar Andreasson". Une copie de la licence est inclue dans la section intitulée "GNU
Free Documantation License".

Tous les scripts de ce tutoriel sont couverts par la GNU General Public License. Les scripts sont de source
libre; vous pouvez les redistribuer et/ou les modifier selon les termes de la GNU General Public License
publiée par la "Free Software Foundation", version 2.

Ces scripts sont distribués dans l'espoir qu'ils seront utiles, mais SANS AUCUNE GARANTIE; sans même la
garantie implicite qu'ils soient VENDABLES ou une QUELCONQUE APTITUDE POUR UN PROPOS
PARTICULIER. Voir la GNU General Public License pour plus de détails.

Vous devriez avoir une copie de la GNU General Public License dans ce tutoriel, dans la section intitulée
"GNU General Public License"; si ce n'est pas le cas, écrivez à la Free Software Foundation, Inc., 59 Temple
Place, Suite 330, Boston, MA 02111−1307 USA.

Dédicaces

Je voudrais dédier ce document à ma merveilleuse soeur pour m'avoir inspiré et donné ses conseils en retour.
Elle est une source de joie et un rayon de soleil quand j'ai besoin d'elle. Merci !

Ensuite, j'aimerais dédicacer ce travail à tous les courageux développeurs et mainteneurs de Linux. Ce sont
eux qui font exister ce fabuleux système d'exploitation.

A propos de l'auteur

Pour me présenter, je suis une personne qui détient beaucoup trop d'ordinateurs anciens. Je possède mon
propre réseau local (LAN) et je veux conserver toutes mes machines connectées à Internet, en assurant en
même temps que mon réseau reste sécurisé. De ce point de vue, le nouvel iptables est une amélioration
intéressante de l'ancien ipchains. Avec ipchains, vous pouviez correctement sécuriser un réseau en détruisant
les paquets non destinés à certains ports. Cependant, des échanges de type passif avec FTP ou sortants avec
DCC sous IRC engendraient des problèmes. Ils attribuent des ports sur le serveur, en informent le client, puis
laissent le client s'y connecter. Au départ, lorsque je me suis intéressé au code d'iptables, il avait quelques
défauts de jeunesse, et à certains égards j'ai trouvé que ce code n'était pas tout à fait mûr pour une utilisation
en production. Aujourd'hui, je recommande à tous les utilisateurs d'ipchains, ou même du vénérable ipfwadm,
etc., d'effectuer une mise à jour − à moins qu'ils soient satisfaits des possibilités de leur code actuel et que
celui−ci corresponde à leur besoin.

Exploration de ce document

Didacticiel sur Iptables, version 1.2.0 1

mailto:oan@frozentux.net

Cet ouvrage a été rédigé simplement afin que tous puissent accéder au monde merveilleux d'iptables. Il n'a
jamais été destiné à rassembler des informations de bogues de sécurité sur iptables ou Netfilter. Si vous
trouvez des bogues ou des comportements insolites dans iptables ou une de ses composantes, vous devriez
contacter la liste de diffusion de Netfilter et signaler le problème. On vous informera alors de la validité d'un
bogue et de son éventuelle correction. Il y a très rarement de véritables bogues de sécurité identifiés dans
iptables ou Netfilter, malgré tout, un ou deux peuvent se faufiler de temps en temps. Ils sont mis en évidence
sur la page principale du site de Netfilter, et c'est là que vous devriez vous rendre pour rassembler de
l'information sur ce sujet.

Ainsi, les exemples de règles fournis avec ce didacticiel ne sont pas écrits pour tenir compte des bogues
actuels de Netfilter. L'objectif majeur est de rendre la méthode de configuration des règles suffisamment
simple pour être en mesure de résoudre tous les problèmes rencontrés. Par exemple, ce didacticiel n'apprend
pas comment fermer le port HTTP pour répondre à une vulnérabilité d'Apache dans la version 1.2.12 (ce cas
est néanmoins traité mais pour une autre raison).

Ce document a été écrit afin de fournir à tous une introduction efficace et simple pour bien démarrer avec
iptables, mais en même temps il a été créé pour être aussi complet que possible. Il ne contient aucune cible ou
correspondance appartenant à patch−o−matic pour la simple raison qu'il serait trop fastidieux de tenir une telle
liste à jour. Si vous êtes intéressés par les mises à jour de patch−o−matic, vous devriez lire les informations
fournies avec, ainsi que les autres documentations disponibles sur le site de Netfilter.

Préalables

Des connaissances préalables sur Linux/Unix sont nécessaires, en particulier l'écriture de scripts shell, la
compilation de son propre noyau, et quelques notions sur son fonctionnement interne.

J'ai essayé autant que possible d'éliminer tous les préalables nécessaires pour comprendre pleinement ce
document, mais en pratique il est inévitable de posséder un minimum de connaissances.

Conventions utilisées dans ce document

Les conventions suivantes sont utilisées dans ce document lorsqu'il s'agit de commandes, de fichiers ou
d'autres informations spécifiques.

Les extraits de code ou les résultats de commandes sont affichés comme suit, avec une police de
largeur constante, et les commandes entrées par l'utilisateur en caractères gras :

[blueflux@work1 neigh]$ ls
default eth0 lo
[blueflux@work1 neigh]$

♦

Dans ce didacticiel, les noms de commandes et de programmes sont tous indiqués en caractères gras.♦
Les éléments du système, comme le matériel mais aussi les composantes internes du noyau comme
l'interface de bouclage, sont tous indiqués en caractères italiques.

♦

Une sortie d'écran est mise en forme de cette façon dans le texte.♦
Les noms de fichiers ou de chemins dans le système de fichiers sont indiqués comme
/usr/local/bin/iptables.

♦

Chapitre 1. Introduction

1.1. Motivations

A l'origine, j'ai constaté un vide important dans les guides pratiques (« Howto's ») disséminés un peu partout,

Didacticiel sur Iptables, version 1.2.0

2 Exploration de ce document

http://www.netfilter.org
http://www.netfilter.org

avec un manque d'informations notable sur les fonctions d'iptables et de Netfilter pour les nouveaux noyaux
Linux de la famille 2.4.x. Par conséquent, je vais tenter de répondre à des interrogations courantes concernant
de nouvelles possibilités comme la correspondance d'état. La plupart du temps, les situations seront appuyées
par un fichier d'exemple rc.firewall.txt que vous pourrez utiliser dans vos scripts /etc/rc.d/.
Effectivement, ce fichier était à l'origine issu du guide pratique du camouflage, pour ceux d'entre−vous qui
l'auraient reconnu.

Par la même occasion, il existe un petit script que j'ai écrit au cas où vous peiniez autant que moi lors de la
configuration. Il est disponible sous le nom rc.flush−iptables.txt.

1.2. Contenu

Initialement rédigé pour boingworld.com, qui fût un site de news consacré à Amiga/linux pour un petit
nombre de personnes, y compris moi, il s'agissait d'un très petit didacticiel. En fonction du grand nombre de
lecteurs et de commentaires que j'ai reçu, j'ai continué à écrire sur ce sujet. Le version originale faisait à peu
près 10−15 pages au format A4 dans sa version imprimée. Un grand nombre de personnes m'ont aidé, pour la
correction orthographique, bugs, etc. Au moment où j'écris ceci, le site http://iptables−tutorial.frozentux.net a
enregistré plus de 600.000 connections.

Ce document est conçu pour vous guider pas−à−pas dans la méthode de configuration et il devrait vous aider
à comprendre davantage le paquetage d'iptables. La plupart des exemples s'appuie sur le fichier rc.firewall,
puisqu'il m'a semblé être un bon point de départ pour apprendre à se servir d'iptables. J'ai décidé de suivre
simplement les chaînes fondamentales, et à partir de là, de poursuivre en approfondissant chacune des chaînes
traversées dans l'ordre logique. Cette approche rend le didacticiel un peu plus difficile à suivre, mais elle a
l'avantage d'être plus cohérente. Chaque fois que quelque−chose vous semble difficile à comprendre,
replongez−vous dans ce didacticiel.

1.3. Termes spécifiques

Dans ce document, certains termes méritent des explications détaillées avant d'être abordés. Cette section
cherche à couvrir les plus évidents et présente la façon dont ils sont utilisés ici.

Connexion − Se réfère généralement, dans ce document, à une série de paquets en relation entre eux. Ces
paquets interragissent entre eux en établissant une sorte de connexion. Une connexion est en d'autres termes
une série de paquets échangés.

DNAT − Traduction d'adresse réseau de destination ou « Destination Network Address Translation ». Le
DNAT fait référence à la technique de traduction de l'adresse IP de destination d'un paquet. On l'utilise
conjointement avec du SNAT pour permettre à plusieurs hôtes de partager une même adresse IP connectée à
Internet, et pour continuer à offrir des services de type serveur. Typiquement, il suffit d'attribuer des ports
différents avec une adresse IP utilisable sur Internet, puis de signaler au routeur Linux où expédier le trafic.

Espace noyau − C'est plus ou moins l'opposé de l'espace utilisateur. Ceci implique les actions effectuées dans
le noyau, et non en dehors du noyau.

Flux (« Stream ») − Ce terme fait référence à une connexion qui envoie et reçoit des paquets qui sont d'une
certaine manière en relation les uns avec les autres. Typiquement, j'ai employé ce terme pour toute connexion
qui envoie deux paquets ou plus dans les deux sens. Pour le protocole TCP, ce terme peut désigner une
connexion qui envoie un paquet SYN, puis répond avec un autre de type SYN/ACK; mais il peut aussi
désigner une connexion qui envoie un paquet SYN, puis répond avec un paquet ICPM de type hôte
inaccessible (« ICMP Host unreachable »). Bref, j'ai souvent utilisé ce terme avec inexactitude.

SNAT − Traduction d'adresse réseau de source ou « Source Network Address Translation ». Ce terme fait
référence aux techniques mises en oeuvre pour traduire une adresse de source en une autre dans un paquet.

Didacticiel sur Iptables, version 1.2.0

1.1. Motivations 3

Ceci permet à plusieurs hôtes de partager une même adresse IP connectée à Internet, c'est utile pour
compenser le manque d'adresses IP disponibles avec le protocole IPv4 (mais IPv6 vient résoudre ce
problème).

État − Ce terme fait référence à l'état d'un paquet, en accord avec la RFC 793 − Transmission Control Protocol
ou avec les états utilisateur utilisés dans Netfilter/iptables. Notez que les états utilisés, en interne et en externe,
ne respectent pas scrupuleusement la spécification de la RFC 793. La raison principale provient du fait que
Netfilter a dû faire plusieurs hypothèses sur les connexions et les paquets.

Espace utilisateur (« User space ») − Cette expression permet de d'assigner tout ce qui a lieu à l'extérieur du
noyau. Par exemple, la commande iptables −h s'exécute en dehors du noyau, alors que iptables −A
FORWARD −p tcp −j ACCEPT se déroule (en partie) à l'intérieur, puisqu'une nouvelle règle est ajoutée à la
table de règles.

Domaine de l'utilisateur − Voir Espace utilisateur.

Paquet − Une unité envoyée sur le réseau, contenant une partie en−tête et une partie de données. Par exemple,
un paquet IP sur un paquet TCP. Dans les RFC (Request For Comments) un paquet n'est pas généralisé ainsi,
au lieu de cela les paquets sont appelés datagrammes, tandis que les paquets TCP sont appelés segments. J'ai
choisi de tout nommer paquet dans ce document pour simplifier.

Segment − Un segment TCP est à peu près la même chose qu'un paquet, c'est en fait un paquet TCP.

Chapitre 2. Rappel TCP/IP

Iptables est un outil d'apprentissage très puissant. Parmi d'autres choses, vous devez avoir une très bonne
compréhension du protocole TCP/IP.

Ce chapitre a pour but l'explication de ce que vous « devez savoir » sur TCP/IP avant de commencer à utiliser
iptables. Les choses que nous allons aborder concernent les protocoles IP, TCP, UDP et ICMP, leurs en−têtes,
et l'utilisation générale de chacun des ces protocoles et comment ils sont corrélés entre eux. Iptables
fonctionne au niveau des couches Internet et transport, et à cause de ça, ce chapitre mettra l'accent sur ces
couches.

Iptables peut aussi fonctionner sur des couches plus hautes, comme la couche application. Cependant, il n'a
pas été conçu pour ça, et ne devrait pas être utilisé pour ce genre d'usage. J'en parlerai d'avantage dans le
chapitre Introduction au filtrage IP.

2.1. Couches TCP/IP

Comme déja établi, TCP/IP est multi−couches. Ceci indique que nous avons une fonctionnalité sur un niveau,
et une autre à un autre niveau, etc. La raison pour laquelle nous avons toutes ces couches est très simple.

La raison principale est que l'architecture globale est très extensible. Nous pouvons ajouter de nouvelles
fonctionnalités aux couches application, par exemple, sans avoir a réimplémenter l'ensemble du code TCP/IP,
ou inclure une pile TCP/IP complète dans l'application. Ainsi il est inutile de réécrire chaque programme
chaque fois que nous installons une nouvelle carte d'interface réseau.

Note
Quand nous parlons de code TCP/IP lequel est intégré dans le noyau, nous parlons souvent de pile
TCP/IP. La pile TCP/IP indique toutes les sous−couches utilisées, depuis la couche réseau jusqu'à la
couche application.

Didacticiel sur Iptables, version 1.2.0

4 1.3. Termes spécifiques

Il existe deux architectures de base lorsque nous parlons de couches. Une des deux est le modèle OSI (Open
System Interconnect) et consiste en 7 couches. Nous les verrons superficiellement ici, nous nous intéressons
plus particulièrement aux couches TCP/IP. Cependant, sur un plan historique il est intéressant de le connaître,
en particulier si vous travaillez avec plusieurs types de réseaux différents. Voir la liste dans le OSI Reference
Model.

Couche Application1.
Couche Présentation2.
Couche Session3.
Couche Transport4.
Couche Réseau5.
Couche Liaison6.
Couche Physique7.

Un paquet que nous envoyons, parcourt du sommet à la base cette liste, chaque couche ajoutant ses propres
en−têtes au paquet, ce que nous appelons la phase d'encapsulation. Lorsque le paquet rejoint sa destination il
parcourt en sens inverse la liste et les en−têtes sont supprimés du paquet, un à un, chaque en−tête donnant à
l'hôte de destination toute l'information nécessaire jusqu'à ce que le paquet joigne l'application ou le
programme pour lequel il était destiné.

Le second et plus intéressant standard est le protocole TCP/IP, comme indiqué dans la liste TCP/IP
architecture. Il n'y a pas d'accord universel en ce qui concerne le nombre de couches dans l'architecture
TCP/IP. Cependant, on considère généralement qu'il y a de 3 à 5 couches disponibles, nous en verrons 4 pour
simplifier.

Couche Application1.
Couche Transport2.
Couche Internet3.
Couche Réseau4.

Comme vous pouvez le voir, l'architecture du protocole TCP/IP est très proche du modèle OSI. De même
qu'avec le modèle OSI, nous ajoutons et soustrayons les en−têtes pour chaque couche.

Par exemple, utilisons une des analogies les plus communes pour les machines modernes en réseau, la lettre
par courrier postal. Chaque chose est effectuée par étape, identique en TCP/IP.

Vous désirez envoyer une lettre à quelqu'un en lui demandant comment il va, et qu'est−ce qu'il fait. Pour celà,
vous devez poser des questions. Les questions seront situées à l'intérieur de la couche Application.

Après ceci vous écrirez les questions sur une feuille de papier que vous mettrez dans une enveloppe sur
laquelle vous écrirez l'adresse de destination. Peut−être quelque chose comme :

Attn: John Doe

C'est l'équivalent de la couche Transport en TCP/IP.

À ce niveau nous écrivons l'adresse sur l'enveloppe, comme ceci :

V. Andersgardsgatan 2
41715 Gothenburg

Didacticiel sur Iptables, version 1.2.0

2.1. Couches TCP/IP 5

Ça se passe dans l'analogie comme dans la couche Internet. La couche Internet contient les informations
indiquant comment joindre le destinataire, ou l'hôte, dans un réseau TCP/IP. De la même façon qu'une
enveloppe avec une adresse.

L'étape finale est de poster l'enveloppe dans une boîte aux lettres. Ce qui équivaut à peu près à envoyer un
paquet dans la couche Réseau. La couche Réseau contient les fonctions et les routines pour accéder au réseau
physique par lequel le paquet sera transporté.

Quand finalement nous recevons la lettre, nous la retirerons de l'enveloppe (décapsulation). La lettre que nous
recevons peut parfois demander une réponse ou non. Dans certains cas il peut y avoir une réponse du
destinataire, alors le destinataire devient expéditeur, et l'expéditeur devient destinataire.

Note
Il est très important de comprendre que Iptables est spécifiquement construit pour travailler à l'intérieur
des en−têtes des couches Internet et Transport. Il est possible de créer quelques filtres très basiques avec
Iptables dans les couches Application et Réseau, mais il n'a pas été conçu pour cela, ni approprié.

Par exemple, si nous utilisons une correspondance de chaîne et l'apparions pour une chaîne spécifique
dans le paquet, disons get /index.html. Ceci fonctionnera ? Normalement oui. Cependant, si la taille du
paquet est très petite, cela ne marchera pas. La raison en est que Iptables est construit pour fonctionner
sur une base par paquet, qui indique que si la chaîne est divisée en plusieurs paquets séparés, Iptables ne
verra pas l'ensemble de la chaîne. Pour cette raison, il est mieux d'utiliser un proxy pour filtrer au niveau
de la couche Application. Nous verrons ces problèmes en détail plus tard dans Introduction au filtrage IP.

Étant donné que Iptables et Netfilter opèrent principalement sur les couches Internet et Transport, ce sont les
couches sur lesquelles nous insisterons le plus dans ce chapitre. Sous la couche Internet, nous verrons presque
exclusivement le protocole IP. Il existe quelques ajouts à ceci, comme, par exemple, le protocole GRE, mais
ils sont très rares. À cause de tous ces facteurs nous nous concentrerons sur le protocole IP de la couche
Internet, et TCP, UDP, ICMP de la couche Transport.

Note
Le protocole ICMP est actuellement une sorte de mélange entre les deux couches. Il fonctionne dans la
couche Internet, mais il possède exactement les mêmes en−têtes que le protocole IP, mais aussi quelques
en−têtes supplémentaires. Nous verrons ceci plus en détail plus loin dans Caractéristiques ICMP.

2.2. Caractéristiques IP

Le protocole IP résides dans la couche Internet, comme nous l'avons déjà dit. Le protocole IP est le protocole
dans la pile TCP/IP qui permet à votre machine, routeur, switch, etc. de savoir où un paquet spécifique est
envoyé. Ce protocole est véritablement le coeur de toute la pile TCP/IP, et la base de tout sur Internet.

Le protocole IP encapsule le paquet de la couche Transport avec l'information du procole de la couche
Transport, ainsi que d'autres informations utiles. Tout ceci, bien sûr, très précisément standardisé. Nous allons
en parler dans ce chapitre.

Le protocole IP possède un couple de fonctionnalités de base qu'il doit être capable de traiter. Il doit être
capable de définir le datagramme, lequel est le bloc de construction suivant créé par la couche Transport (ce
qui en d'autres termes peut être TCP, UDP ou ICMP par esemple). Le Protocole IP définit aussi le système
d'adressage Internet que nous utilisons aujourd'hui. Ceci indique que le protocole IP définit comment les hôtes
peuvent se joindre entre eux, il indique aussi comment nous pouvons router les paquets, bien sûr. Les adresses
dont nous parlons sont généralement appelées adresses IP. Usuellement, quand nous parlons d'adresses IP,
nous parlons de chiffres avec des points (ex. 127.0.0.1). C'est principalement pour rendre l'adresse IP plus
lisible pour l'oeil humain, car l'adresse IP est actuellement un champ de 32 bits de 1 et de 0 (127.0.0.1 pourrait
désormais être lu comme 01111111000000000000000000000001 dans l'en−tête IP).

Didacticiel sur Iptables, version 1.2.0

6 2.2. Caractéristiques IP

Le protocole IP doit aussi pouvoir décapsuler et encapsuler le datagramme IP (donnée IP) et envoyer ou
recevoir le datagramme d'une couche Réseau, ou d'une couche Transport. Ceci peut sembler évident, mais
parfois ce ne l'est pas. Au sommet de tout ça, il possède deux fonctions qu'il doit exécuter correctement, ce qui
est particulièrement intéressant pour le pare−feu et le routage. Le protocole IP est responsable du routage des
paquets depuis un hôte vers un autre. La plupart du temps sur des réseaux uniques, c'est un processus simple.
Nous avons deux options différentes, soit le paquet est destiné au réseau local, soit passe par une passerelle.
Mais lorsque vous commencez à travailler avec des pare−feux et des politiques de sécurité conjointement avec
de multiples interfaces réseau et différentes routes, ce peut être casse−tête pour les administrateurs. La
dernière des responsabilités du protocole IP est qu'il doit fragmenter et ré−assembler les datagrammes qui ont
préalablement été fragmentés, ou qui nécessitent d'être fragmentés pour s'adapter à la taille du paquet pour la
topologie du réseau où nous sommes connectés. Si ces fragments de paquet sont suffisamment petits, ils
peuvent causer d'horribles maux de tête aux administrateurs réseau. Le problème est, qu'une fois qu'ils sont
fragmentés, nous commençons à avoir des soucis pour lire même les en−têtes du paquet.

Astuce
Dans les séries 2.4 du noyau Linux, et Iptables, ceci ne représente pas un problème pour la plupart
des pare−feux Linux. Le système de traçage de connexion utilisé par Iptables pour la vérification
d'état, la traduction d'adresse, etc. doit être capable de lire les paquets défragmentés. À cause de ça,
conntrack défragmente automatiquement tous les paquets avant qu'ils rejoignent la structure
netfilter/iptables dans le noyau.

Le protocole IP est aussi un protocole en mode datagramme, ce qui indique que IP ne "négocie" pas une
connexion. Un protocole orienté−connexion, en d'autres termes, négocie une "connexion" (appelée poignée de
main) et lorsque toutes les données ont été envoyées, stoppe la connexion. TCP est un exemple de ce genre de
protocole, cependant, il est implémenté au sommet du protocole IP. Il y a plusieurs raisons pour lesquelles il
n'est pas orienté−connexion, mais parmi d'autres, une poignée de main n'est pas nécessaire à ce moment ce qui
ne ferait qu'ajouter du temps système. Comme vous pouvez le voir, envoyer une requête et ensuite attendre un
moment pour la réponse est préférable à envoyer un paquet pour dire que nous voulons établir une connexion,
ensuite recevoir le réponse nous disant que la connexion est ouverte, et finalement accuser réception que nous
sommes au courant que la connexion est ouverte, et alors envoyer la requête, et après renvoyer un autre
paquet pour couper la connexion et attendre une autre réponse.

IP est également connu comme un protocole incertain, c'est à dire, il ne permet pas de savoir si un paquet a
été reçu ou non. Il reçoit simplement un paquet depuis la couche transport et le passe à la couche réseau, et ne
fait rien de plus. il peut recevoir un paquet en retour, lequel passe de la couche réseau au protocole IP et
ensuite à la couche transport. Cependant, il ne vérifie pas si c'est un paquet en réponse ou si le paquet a été
reçu dans un autre but. La même chose s'applique en terme d'incertitude IP comme pour le mode datagramme,
ce qui nécessitera l'envoi d'un paquet supplémentaire en retour pour chaque paquet envoyé. Par exemple,
considérons une consultation de table DNS. Nous envoyons une requête DNS au serveur de nom. Si nous ne
recevons pas de réponse, nous savons que quelque chose ne fonctionne pas et renvoyons une requête de
consultation, mais dans l'usage normal nous envoyons une requête et obtenons une réponse en retour. Ajouter
de la fiabilité à ce protocole signifierait que la requête nécessite deux paquets (une requête et une confirmation
que le paquet a été reçu) et ensuite deux paquets pour la réponse (une réponse et un accusé−réception comme
quoi le paquet a été reçu). En d'autres termes, nous doublons le nombre de paquets nécessaires, et bien sûr
doublons le nombre de données à transmettre.

2.3. En−têtes IP

Comme vous avez pû le comprendre dans l'introduction sur le protocole IP, un paquet IP contient différentes
parties dans l'en−tête. Celui−ci est méticuleusement divisé en plusieurs parties, et chaque partie de l'en−tête
est aussi petite que possible pour faire ce travail, ceci pour limiter le temps système au minimum. Vous verrez
la configuration exacte d'une en−tête IP dans l'image En−têtes IP.

Note

Didacticiel sur Iptables, version 1.2.0

2.3. En−têtes IP 7

Comprenez que les explications des différents en−têtes sont très brèves et que nous ne parlerons que des
bases de ceux−ci. Pour chaque type d'en−tête dont nous parlons, nous indiquerons aussi sa RFC
correspondante que vous devriez lire pour une meilleure compréhension et des explications techniques
du protocole en question. En note marginale, les RFC (Request For Comments), ont aujourd'hui une
signification totalement différente dans la communauté Internet. Elles définissent et standardisent
l'ensemble de l'Internet, par rapport à ce pourquoi elles ont été écrites à l'origine. Au départ, il ne
s'agissait que de simples RFC dont le but était de poser des questions pour avoir l'avis des autres
chercheurs.

Le protocole IP est décrit principalement dans RFC 791 − Internet Protocol. Cependant, cette RFC est aussi
mise à jour par la RFC 1349 − Type of Service in the Internet Protocol Suite, rendue obsolète par RFC 2474 −
Definition of the Differentiated Services Field (DS Field) in the IPv4 and IPv6 Headers, mise à jour par RFC
3168 − The Addition of Explicit Congestion Notification (ECN) to IP et RFC 3260 − New Terminology and
Clarifications for Diffserv.

Astuce
Comme vous pouvez le voir, tous ces standards peuvent être un peu difficiles à suivre. Un
tuyau pour trouver les différentes RFC est d'utiliser les fonctions recherche disponibles sur
RFC−editor.org. Dans le cas de IP, considérez que la RFC 791 est la RFC de base, toutes les
autres sont simplement des mises à jour par rapport au standard. Nous parlerons de ceci plus
en détail quand nous verrons les en−têtes spécifiques modifiés par ces nouvelles RFC.

Une chose à retenir est que, quelquefois, une RFC peut être obsolète (plus utilisée du tout).
Normalement ceci signifie que la RFC a été si rigoureusement mise à jour, qu'il est mieux de
tout revoir. Elle peut aussi devenir obsolète pour d'autres raisons. Quand une RFC devient
obsolète, un champ est ajouté à la RFC d'origine qui pointe vers la nouvelle.

Version − bits 0−3. C'est le numéro de version du protocole IP en binaire. IPv4 est nommé par 0100, tandis
que IPv6 par 0110. Ce champ n'est généralement pas très utilisé pour le filtrage. La version décrite dans la
RFC 791 est IPv4.

IHL (Longueur d'en−tête Internet) − bits 4−7. Ce champ nous indique la longueur de l'en−tête IP en 32 bits.
Comme vous pouvez le voir, nous avons partagé l'en−tête (32 bits par ligne) dans l'image. Le champ Options
est de longueur variable, ainsi nous ne pouvons jamais être absolument sûrs de la longueur totale de l'en−tête
sans ce champ.

Type de Service, DSCP, ECN − bits 8−15. C'est une des zones les plus complexes de l'en−tête IP pour la
simple raison qu'elle a été mise à jour 3 fois. Elle a toujours eu la même utilisation de base, mais
l'implémentation a changé plusieurs fois. En premier le champ fut appelé Type de Service. Le Bit 0−2 du
champ fut appelé champ Précédence. Le Bit était de délai normal/bas, le Bit 4 de débit normal/haut, le Bit 5
de fiabilité normale/haute et le Bit 6−7 réservé pour un usage futur. Ceci est toujours en usage sur de
nombreux sites qui ont du matériel ancien, ce qui cause toujours certains problèmes pour l'Internet. Parmi
d'autres choses, le Bit 6−7 est spécifié pour être placé à 0. Dans les mises à jour ECN (RFC, nous partons du
principe que ces bits réservés sont désormais placés à la valeur 0. Mais nombre de pare−feux et routeurs ont
été programmés pour vérifier si ces bits sont placés à 1, et si les paquets le sont, le paquet est supprimé.
Aujourd'hui, c'est clairement une violation de la RFC, mais vous ne pouvez pas faire grand chose, excepté
vous plaindre.

Didacticiel sur Iptables, version 1.2.0

8 2.3. En−têtes IP

La seconde itération fut lorsque le champ a été modifié dans le champ DS comme spécifié dans la RFC 2474.
DS pour Differentiated Services. Selon ce standard les bits 8−14 sont Differentiated Services Code Point
(DSCP) et les deux bits restants (15−16) sont toujours inutilisés. Le champ DSCP est à peu près utilisé comme
le champ ToS avant, pour marquer pour quel type de service ce paquet serait traité comme si le routeur en
question ne faisait pas de différence entre eux. Un gros changement est que le matériel doit ignorer les bits
inutilisés pour être pleinement conforme à la RFC 2474, ce qui signifie que nous somme délivrés des disputes
comme expliqué précédemment, aussi longtemps que les fabriquants de matériel suivent cette RFC.

Le troisième, et pratiquement dernier, changement du champ ToS a été quand les deux bits inutilisés furent
utilisés par ECN (Explicit Congestion Notification), comme défini dans la RFC 3168. ECn est utilisé pour
permettre de savoir s'il existe une congestion des routeurs, avant il démarre la suppression des paquets, ainsi le
noeud final pourra ralentir la transmission des données. Précédemment, la suppression de données était le seul
moyen qu'avait un routeur pour annoncer qu'il était en surcharge, et les noeuds terminaux devaient faire un
redémarrage lent pour chaque paquet supprimé, et ensuite accélérer de nouveau. Les deux bits sont appelés
ECT (ECN Capable Transport) et CE (Congestion Experienced).

L'itération finale de l'ensemble est la RFC 3260 qui apporte quelques terminologies et clarifications nouvelles
pour l'utilisation du système DiffServ. Elle n'améliore pas énormément de choses, sauf la terminologie. La
RFC est également utilisée pour clarifier certains points qui ont été discutés entre développeurs.

Longueur totale − bits 16 − 31. Ce champ nous renseigne sur la taille des paquets en octets, incluant les
en−têtes. La taille maximum est 65535 octets. La taille minimum d'un paquet est de 576 octets, sans prendre
en compte si le paquet arrive en fragments ou non. Il est recommandé d'envoyer des paquets plus gros que
cette limite seulement si il est garanti que l'hôte puisse les recevoir, selon la RFC 791. Cependant,
actuellement la plupart des réseaux fonctionnent avec des tailles de paquets de 1500 octets. Ceci inclut la
majorité des connexions ethernet et Internet.

Identification − bits 32 − 46. Ce champ est utilisé pour aider a réassembler les paquets fragmentés.

Fanions − bits 47 − 49. Ce champ contient des fanions mélangés appartenant à la fragmentation. Le premier
bit est réservé, mais toujours inutilisé, et doit être placé à 0. Le second bit est placé à 0 si le paquet peut être
fragmenté, et à 1 s'il ne peut pas être fragmenté. Le troisième et dernier bit peut être placé à 0 si il était le
dernier fragment, et à 1 s'il n'y a pas de fragments supplémentaires de ce même paquet.

Fragment décalé − bits 50 − 63. Le champ fragment décalé indique de quel datagramme le paquet dépend. Les
fragments sont calculés sur 64 bits, et le premier fragment a un décalage zéro.

Durée de vie − bits 64 − 72. Le champ TTL (Time To Live) nous indique le durée de vie d'un paquet, ou
combien de "sauts" (hops) il peut réaliser sur l'Internet. Chaque processus qui touche le paquet doit supprimer
un point du champ TTL, et si le TTL atteint zéro, le paquet doit être détruit ou écarté. C'est un usage de base
fonctionnant comme une sécurité car si le paquet n'est pas supprimé/écarté il peut se transformer en boucle
incontrôlable entre un ou plusieurs hôtes. Pour la destruction l'hôte renverra un message ICMP "Destination
Unreachable" à l'expéditeur.

Protocole − bits 73 − 80. Dans ce champ le protocole du niveau de la couche suivante est indiqué. Par
exemple, ce peut être TCP, UDP ou ICMP parmi d'autres. Tous ces nombres sont définis par la Internet
Assigned Numbers Authority (IANA). Ces nombres peuvent être retrouvés sur le site Internet Assigned
Numbers Authority.

Somme de contrôle d'en−tête − bits 81 − 96. C'est un contrôle de l'en−tête IP du paquet. Ce champ est
recalculé au niveau de chaque hôte qui modifie l'en−tête, ce qui signifie à peu près chaque hôte que le paquet
traverse, la modification se faisant le plus souvent au niveau du champ TTL.

Adresse de l'expéditeur − bits 97 − 128. C'est le champ adresse de la source. Elle est généralement écrite sur 4

Didacticiel sur Iptables, version 1.2.0

2.3. En−têtes IP 9

octets, traduite du binaire en nombres décimaux avec des points entre eux. Par exemple, 127.0.0.1. Le champ
permet au destinataire de connaître l'adresse d'expédition du paquet.

Adresse de destination − bits 129 − 160. Le champ adresse contient l'adresse de destination, et surprise, il est
formaté de la même façon que l'adresse de l'expéditeur.

Options − bits 161 − 192 <> 478. Le champ options n'est pas optionnel, comme il pourrait le sembler. C'est un
des champs les plus complexes dans les en−têtes IP. Le champ options contient divers réglages optionnels à
placer dans l'en−tête, comme minuterie Internet, SACK ou enregistrement de route. Ces options sont toutes
optionnelles, le champ options peut avoir des longueurs différentes, et donc l'en−tête IP complet. Cependant,
nous calculons toujours l'en−tête IP sur 32 bits, nous devons toujours clore l'en−tête sur un même nombre, qui
est un multiple de 32. Le champ peut contenir zéro ou plusieurs options.

Le champ options démarre avec un champ de 8 bits qui nous permet de savoir quelles options ont été utilisées
dans le paquet. Les options sont toutes listées dans la table Options TCP, dans l'appendice Options TCP. Pour
plus d'information sur les différentes options, lisez les RFC correspondantes. Pour une liste des options IP
mises à jour, voir Internet Assigned Numbers Authority.

Remplissage − bits variables. C'est un champ de remplissage utilisé pour la fin de l'en−tête à la frontière des
32 bits. Le champ doit toujours être une ligne de zéros jusqu'à la fin.

2.4. Caractéristiques TCP

le protocole TCP réside au sommet du protocole IP. C'est un protocole architecture qui possède des fonctions
natives pour vérifier si les données sont reçues correctement par les hôtes destinataires. Les buts principaux du
protocole TCP sont de vérifier que les données sont envoyées et reçues de façon fiable, que les données sont
transportées entre la couche Internet et la couche Application correctement, et que les paquets joignent le bon
programme dans la couche application, et dans le bon ordre. Tout ceci est possible grâce aux en−têtes TCP du
paquet.

Le protocole TCP considère les données comme un flux continu avec un signal de début et de fin. Le signal
qui indique qu'un nouveau flux est en attente d'ouverture est appelé une poignée de main SYN à trois voies
dans TCP, et consiste en un paquet envoyé avec le bit SYN. Les réponses se font soit avec SYN/ACK soit
avec SYN/RST pour permettre au client de savoir si la connexion a été acceptée ou refusée respectivement. Si
le client reçoit un paquet SYN/ACK, il peut de nouveau répondre, cette fois avec un paquet ACK. À ce
moment, la connexion est établie et les données peuvent être envoyées. Pendant la poignée de main
(handshake) initiale, toutes les options spécifiques qui seront utilisées à travers la connexion TCP sont aussi
négociées, comme ECN, SACK, etc.

Tandis que le flux de données est actif, nous avons d'autres mécanismes à voir. C'est la partie fiabilité de TCP.
Ceci est réalisé de façon simple, en utilisant un numéro d'interclassement (sequence) dans le paquet. Chaque
fois que nous envoyons un paquet, nous donnons une nouvelle valeur au numéro d'interclassement, et quand
le destinataire reçoit le paquet, il envoie en retour un paquet ACK à l'expéditeur. Le paquet ACK accuse
réception que le paquet a été reçu correctement. Le numéro d'interclassement vérifie aussi que le paquet inséré
dans un flux de données est en bon ordre.

Ensuite la connexion est fermée, ce qui est fait en envoyant un paquet FIN comme point final. Le destinataire
répond alors en envoyant un paquet FIN/ACK. Plus aucune donnée ne peut alors être envoyée, mais
l'expéditeur ou le destinataire peuvent toujours finir d'envoyer leurs données. Une fois que l'expéditeur ou le
destinataire désire clore la connexion complètement, il envoie un paquet FIN en retour, et le correspondant
répond avec un paquet FIN/ACK. Une fois cette procédure complète effectuée, la connexion est coupée
proprement.

Didacticiel sur Iptables, version 1.2.0

10 2.4. Caractéristiques TCP

Comme nous le verrons plus tard, les en−têtes TCP contiennent des sommes de contrôle. La somme de
contrôle consiste en une simple empreinte numérique du paquet. Avec cette empreinte numérique, nous
pouvons avec une grande exactitude voir si la paquet a été corrompu d'une façon ou d'une autre pendant le
transit entre les hôtes.

2.5. En−têtes TCP

Les en−têtes TCP doivent être capables d'exécuter toutes les tâches ci−dessus. Nous avons déjà expliqué
quand et où certains de ces en−têtes sont utilisés, mais il y a encore d'autres zones que nous n'avons pas vu en
détail. Ci−dessous vous avez une image de l'ensemble des en−têtes TCP. Il est formaté en mots de 32 bits par
ligne, comme vous pouvez le voir.

Port expéditeur − bit 0 − 15. C'est le port source du paquet. Le port source était à l'origine lié directement au
processus du système d'expédition. Aujourd'hui, nous utilisons une empreinte numérique entre les adresses IP,
et les ports source et destination pour pouvoir les lier en une seule application ou programme.

Port destinataire − bit 16 − 31. C'est le port de destination du paquet TCP. Avec le port source, il était lié à
l'origine directement au processus du système de réception. Aujourd'hui, une empreinte numérique est utilisée,
qui nous permet d'avoir d'avantage de connexions ouvertes en même temps. Quand un paquet est reçu, les
ports source et destination sont renversés dans la réponse à l'hôte d'origine, ainsi le port de destination est
maintenant le port source, et le port source devient le port de destination.

Numéro d'interclassement − bit 32 − 63. le champ numéro d'interclassement est utilisé pour mettre en place un
numéro sur chaque paquet TCP de façon que le flux TCP puisse être proprement ordonnancé (i.e. les paquets
s'ordonnent dans le bon ordre). Le numéro d'interclassement est alors renvoyé dans le champ ACK pour
accuser réception que le paquet a été correctement reçu.

Numéro d'accusé−reception − bit 64 − 95. Ce champ est utilisé quand nous accusons réception d'un paquet
spécifique qu'un hôte a reçu. Par exemple, nous recevons un paquet avec un numéro d'interclassement, et si
tout est ok avec le paquet, nous répondons avec un paquet ACK et le numéro d'interclassement identique au
numéro d'interclassement d'origine.

Décalage de données − bit 96 − 99. Ce champ indique la longueur de l'en−tête TCP, et où la partie données du
paquet démarre. Il est codé sur 4 bits, et mesure l'en−tête TCP en 32 bits. L'en−tête se termine toujours sur
une limite de 32 bits, même avec différentes options.

Réservé − bit 100 − 103. Ces bits sont réservés pour un usage futur. Dans la RFC 793 les bits CWR et ECE
sont également inclus. Selon la RFC 793 les bits 100−105 (i.e. ceci et les champs CWR et ECE) doivent être
placés à zéro pour être pleinement compatibles. Plus tard, nous verrons cela quand nous commencerons
l'introduction de ECN. Ceci a causé nombre de désagréments à cause de machines Internet comme des
pare−feux et routeurs qui suppriment des paquets. C'est toujours vrai lors de la rédaction de ces lignes.

CWR − bit 104. ce bit a été rajouté dans la RFC 3268 et est utilisé par ECN. CWR pour Congestion Window
Reduced, est utilisé par la partie des données envoyées au destinataire pour l'informer que la fenêtre
d'encombrement a été réduite. Quand la fenêtre d'encombrement est réduite, nous envoyons moins de données

Didacticiel sur Iptables, version 1.2.0

2.5. En−têtes TCP 11

par unité de temps, pour pouvoir assurer la charge totale du réseau.

ECE − bit 105. Ce bit a aussi été rajouté avec la RFC 3268 et il est utilisé par ECN. ECE pour ECN Echo. Il
est utilisé par la pile TCP/IP sur l'hôte destinataire qui permet à l'expéditeur de savoir si un paquet CE a été
reçu. La même chose s'applique ici, comme pour le bit CWR, qui était à l'origine une partie du champ réservé
et à cause de ça, certains matériels réseau supprimaient les paquets si les champs contenaient autre chiose que
des zéros. C'est actuellement toujours vrai pour beaucoup de matériels malheureusement.

URG − bit 106. Ce bit nous indique si nous utilisons le champ Urgent Pointer ou non. S'il est placé à 0, pas
d'utilisation de Urgent Pointer, s'il est placé à 1, utilisation de Urgent Pointer.

ACK − bit 107. Ce bit est placé dans un paquet pour indiquer qu'il s'agit d'une réponse à un autre paquet que
nous avons reçu, et qui contient des données. Un paquet accusé−réception est toujours envoyé pour indiquer
que nous avons reçu le paquet, et qu'il ne contient pas d'erreurs. Si ce bit est placé, l'expéditeur des données
d'origine vérifiera le numéro d'accusé−réception pour voir quel paquet est actuellement en accusé−réception,
et ensuite videra les tampons.

PSH − bit 108. Le fanion PUSH est utilisé pour prévenir le protocole TCP sur des hôtes intermédiaires
d'envoyer les données à l'utilisateur actuel, incluant l'implémentation TCP sur l'hôte destinataire. Ceci expédie
toutes les données.

RST − bit 109. Le fanion RESET est placé pour indiquer à l'hôte de relancer la connexion TCP. Ceci est dû à
divers scénarios, les principales raisons étant que la connexion a été coupée, la connexion n'existe pas, ou le
paquet contient des erreurs.

SYN − bit 110. Le SYN (Synchronize Sequence Numbers) est utilisé pendant l'établissement initial de la
connexion. Il est placé dans deux circonstances, le paquet initial qui ouvre la connexion, et le paquet
SYN/ACK en réponse. Il ne doit jamais être utilisé en dehors de ces cas.

FIN − bit 111. Le bit FIN indique que l'hôte qui envoie le bit FIN n'a plus de données à expédier. Quand l'hôte
voit le bit FIN, il répond avec un un FIN/ACK. Une fois cela fait, l'expéditeur du bit FIN ne peut plus envoyer
de données. Cependant, l'hôte peut continuer à expédier les données jusqu'à ce qu'il ait fini, et ensuite enverra
un paquet FIN en retour, et attendra le FIN/ACK final, après ça la connexion est en état CLOSED.

Window − bit 112 − 127. Le champ fenêtre est utilisé par l'hôte destinataire pour dire à l'expéditeur combien
de données il autorise à cet instant. Ceci est fait en envoyant un ACK en retour, qui contient un numéro
d'interclassement nécessaire pour l'accusé−réception, le champ fenêtre contient alors les numéros
d'interclassement maximum acceptés que l'expéditeur peut utiliser avant de recevoir le prochain paquet ACK.
Le paquet ACK suivant met à jour la fenêtre que l'expéditeur peut utiliser.

Checksum − bit 128 − 143. Ce champ contient la somme de contrôle de l'en−tête TCP complet. C'est un
complément d'une somme de chaque mot de 16 bits dans l'en−tête. Si l'en−tête ne finit pas sur une limite de
16 bits, le bit additionnel est placé à zéro. Tandis que la somme de contrôle est calculée, le champ somme de
contrôle est placé à zéro. La somme de contrôle couvre également une pseudo en−tête de 96 bits contenant la
Destination, Adresse source, protocole, et longueur TCP. Ceci pour des raisons de sécurité.

Pointeur urgent − bit 144 − 159. Pointeur placé à la fin des données considérées comme urgentes. Si la
connexion a d'importantes données qui doivent être exécutées le plus tôt possible par le destinataire,
l'expéditeur peut placer un drapeau URG pour indiquer où les données urgentes finissent.

Options − bit 160 − **. le champ Options est un champ de longueur variable qui contient des en−têtes
optionnels. De façon basique, ce champ contient 3 sous−champs chaque fois. Un champ initial nous indique la
longueur du champ Options, un second indique quelles options sont utilisées, et quand nous obtenons les
options. Une liste complète de toutes les options TCP se trouve dans Options TCP.

Didacticiel sur Iptables, version 1.2.0

12 2.5. En−têtes TCP

Padding − bit **. Le champ remplissage complète l'en−tête TCP jusqu'à ce que tout l'en−tête atteigne la limite
de 32 bits. Ceci assure que la partie données du paquet débute sur une limite de 32 bits, et qu'aucune donnée
n'est perdue dans le paquet. Le remplissage ne contient toujours que des zéros.

2.6. Caractéristiques UDP

Le User Datagram protocol (UDP protocol) est un protocole très basique et simple au sommet du protocole IP.
Il a été développé pour permettre une transmission de données très simple sans détection d'erreur d'aucune
sorte. Cependant, il est très bien adapté pour les applications de type requête/réponse, comme par exemple
DNS, etc. car nous savons qu'à moins d'obtenir une réponse du serveur DNS, la requête sera perdue quelque
part. Parfois il peut être utile de se servir du protocole UDP au lieu de TCP, comme lorsque nous voulons
seulement une détection d'erreurs/pertes mais sans faire attention à l'ordre d'interclassement des paquets. Ceci
supprime quelques en−têtes présents dans le protocole TCP. Nous pouvons aussi faire d'autres choses, créer
notre propre protocole au sommet de UDP qui ne contient que l'interclassement, mais pas d'erreur ni de perte.

Le protocole UDP est spécifié dans la RFC 768 − User Datagram Protocol. C'est une très brève RFC.

2.7. En−têtes UDP

On peut dire que l'en−tête UDP est un en−tête TCP très basique et simplifié. Il contient la destination, le port
source, la longueur d'en−tête et une somme de contrôle comme indiqué dans l'image ci−dessous.

Port source − bit 0−15. C'est le port source du paquet, décrivant où un paquet en réponse sera envoyé. Par
exemple, quelquefois nous n'exigeons pas de paquet en réponse, le paquet peut alors être placé à zéro en port
source. Dans la plupart des implémentations, il est placé à un nombre quelconque.

Port destination − bit 16−31. Le port de destination du paquet. Nécessaire pour tous les paquets, à l'opposé du
port source d'un paquet.

Length − bit 32−47. Le champ longueur spécifie la taille de l'ensemble du paquet en octets, incluant les
en−têtes et les données. Le plus petit paquet possible est de 8 octets.

Checksum − bit 48−63. La somme de contrôle est du même type que celle utilisée dans les en−têtes TCP, sauf
qu'elle contient un ensemble de données différent. En d'autres termes, c'est un complément d'un complément
de parties de l'en−tête IP, de l'ensemble de l'en−tête UDP, les données UDP et le remplissage avec des zéros
lorsque nécessaire.

2.8. Caractéristiques ICMP

Les messages ICMP sont utilisés pour les types d'erreurs basiques rapportées entre hôtes, ou entre hôte et
passerelle. Entre passerelles, un protocole appelé GGP (Gateway to gateway protocol) ou passerelle à
passerelle doit normalement être utilisé pour le rapport d'erreur. Comme nous l'avons déjà vu, le protocole IP
n'a pas été conçu pour parfaire le maniement d'erreur, mais les messages ICMP résolvent une partie de ces
problèmes. Le gros problème de ce point de vue est que les en−têtes des messages ICMP sont plutôt
compliqués, et diffèrent de message en message. Cependant, ce n'est pas un gros problème du point de vue
filtrage la plupart du temps.

Didacticiel sur Iptables, version 1.2.0

2.6. Caractéristiques UDP 13

La forme de base du message contient l'en−tête IP standard, le type, le code et la somme de contrôle. Tous les
messages ICMP contiennent ces champs. Le type spécifie le genre d'erreur du message de réponse, comme
par exemple, destination injoignable, écho, réponse d'écho, ou message redirigé. Le code donne plus
d'information si nécessaire. Si le paquet est de type destination injoignable, il y a plusieurs valeurs possibles
comme réseau injoignable, hôte injoignable, ou port injoignable. La somme de contrôle est simplement une
somme pour l'ensemble du paquet.

Comme vous avez pû le noter, j'ai mentionné explicitement l'en−tête IP pour la paquet ICMP. C'est dû au fait
que l'en−tête IP actuel est une partie intégrale du paquet ICMP, et que le protocole ICMP est au même niveau,
dans un sens, que le protocole IP. ICMP utilise le protocole IP comme s'il était à un niveau plus haut, mais en
même temps ce n'est pas le cas. ICMP est une partie intégrale de IP, et ICMP doit être implémenté dans
chaque implémentation de IP.

2.9. En−têtes ICMP

Comme déjà expliqué, les en−têtes de type ICMP diffèrent légèrement du type IP. La plupart des types ICMP
permettent de les grouper par leurs en−têtes. À cause de cela, nous verrons en premier l'en−tête de base, et
ensuite chaque groupe de type spécifique.

Tous les paquets contiennent des valeurs de base des en−têtes IP comme nous l'avons vu précédemment.

Version − Doit toujours être placé à 4.♦
Longueur en−tête Internet − Longueur de l'en−tête en mots de 32 bits.♦
Type de Service − Voir au−dessus. Doit être placé à 0, seule légitimité selon la RFC 792 − Internet
Control Message Protocol.

♦

Longueur totale − Longueur totale de l'en−tête et de la partie données du paquet, compté en octets.♦
Décalages d'Identification, de fanions et fragments − Issu du protocole IP.♦
Durée de vie − Nombre de sauts que le paquet peut effectuer.♦
Protocole − Quelle version de ICMP est utilisée (doit toujours être à 1).♦
En−tête somme de contrôle − Voir l'explication IP.♦
Addresse source − L'adresse de la source qui a envoyé le paquet. Ce n'est pas entièrement vrai, car le
paquet peut avoir une autre adresse source, que celle située sur la machine en question. Les types
ICMP peuvent produire cet effet, ce sera noté si nécessaire.

♦

Addresse destination − L'adresse de destination du paquet.♦

Il existe aussi de nouvelles en−têtes utilisés par les types ICMP. Ce sont les suivantes :

Type − Le champ type contient le type ICMP du paquet. Par exemple les paquets ICMP Destination
Injoignable auront un type 3 placé. Pour une liste complète des différents types ICMP voir Types
ICMP. Ce champ contient 8 bits au total.

♦

Code − Tous les types ICMP contiennent différents codes. Certains types ont un code unique, tandis
que d'autres ont plusieurs codes qu'ils peuvent utiliser. Par exemple, le type ICMP Destination
Injoignable peut avoir au moins les codes 0, 1, 2, 3, 4 ou 5. Chaque code aura un comportement
différent selon le contexte. Pour une liste complète des différents codes, voir Types ICMP. Ce champ
est de 8 bits de longueur totale. Nous verrons les différents codes un peu plus en détail plus tard dans
cette section.

♦

Didacticiel sur Iptables, version 1.2.0

14 2.8. Caractéristiques ICMP

Somme de contrôle − La somme de contrôle est un champ de 16 bits contenant un complément de
complément des en−têtes démarrant avec le type ICMP. Tandis que le calcul de la somme de contrôle
s'effectue, le champ de celle−ci sera placé à zéro.

♦

À ce point les en−têtes peuvent présenter un visage différent. Nous décrirons les types ICMP les plus
communs un par un, avec un bref apperçu de leurs différentes en−têtes et codes.

2.9.1. Écho requête/réponse ICMP

J'ai choisi de parler des paquets ICMP écho requête et réponse, ils sont très proches l'un par rapport à l'autre.
La différence est que l'écho requête est de type 8, alors que l'écho réponse est de type 0. Quand un hôte reçoit
un type 8, il répond avec un type 0.

Quand la réponse est envoyée, les adresses source et destination sont permutées. Après les deux changements
effectués, la somme de contrôle est recalculée, et la réponse envoyée. Il y a un seul code pour les deux types,
ils sont toujours placés à 0.

Identifiant − Il est placé dans le paquet requête, et se retrouve en retour dans la réponse, il permet de
synchroniser les différents pings de requête et de réponse.

♦

Checksum − Le numéro d'interclassement pour chaque hôte démarre généralement à 1 et est
incrémenté de 1 pour chaque paquet.

♦

Les paquets contiennent aussi une partie de données. Par défaut, la partie de données est généralement vide,
mais elle peut contenir des données au hasard spécifiées par l'utilisateur.

2.9.2. Destination Injoignable ICMP

Les trois premiers champs montrés dans l'image sont les mêmes que ceux précédemment décrits. Le type
Destination Injoignable possède six codes de base qui peuvent être utilisés, comme indiqué ci−dessous.

Code 0 − Réseau injoignable − Vous indique si un réseau spécifique est actuellement injoignable.♦
Code 1 − Hôte injoignable − Un hôte spécifique est actuellement injoignable.♦
Code 2 − Protocole injoignable − Ce code vous indique si un protocole spécifique (TCP, UDP, etc.)
ne peut être joint pour l'instant.

♦

Code 3 − Port injoignable − Si un port (ssh, http, ftp, etc.) n'est pas joignable vous obtenez ce
message.

♦

Code 4 − Fragmentation nécessaire et placement de DF − Si le paquet nécessite d'être fragmenté pour
être délivré, mais que le bit "Do not Fragment" est placé dans le paquet, la passerelle retourne ce
message.

♦

Code 5 − Échec de la route source − Si la route source échoue pour quelque raison, ce message est
retourné.

♦

Code 6 − Destination réseau inconnue − S'il n'y a pas de route vers un réseau spécifique, ce message
est retourné.

♦

Didacticiel sur Iptables, version 1.2.0

2.9. En−têtes ICMP 15

Code 7 − Hôte de destination inconnu − S'il n'y a pas de route vers l'hôte spécifique, ce message est
retourné.

♦

Code 8 − Hôte source isolé (obsolète) − Si l'hôte est isolé, ce message sera retourné. Ce code est
obsolète aujourd'hui.

♦

Code 9 − Réseau de destination administrativement interdit − Si un réseau est bloqué au niveau de la
passerelle et que votre paquet est incapable de le joindre à cause de ça, vous obtiendrez ce code ICMP
en retour.

♦

Code 10 − Hôte de destination administrativement interdit − Si vous ne pouvez joindre l'hôte parce
qu'il a été interdit administrativement (ex. administration du routage), vous obtenez ce message.

♦

Code 11 − Réseau injoignable pour TOS (Type de Service) − Si un réseau est injoignable à cause d'un
mauvais TOS placé dans votre paquet, ce code sera généré en retour.

♦

Code 12 − Hôte injoignable pour TOS − Si votre paquet est incapable de joindre l'hôte à cause du
TOS du paquet, ce message sera renvoyé.

♦

Code 13 − Communication administrativement interdite par filtrage − Si le paquet est interdit pour
une raison (ex. pare−feu) de filtrage, vous obtenez le code 13 en retour.

♦

Code 14 − Violation de loi de précédence − Envoyé par le premier routeur pour notifier à un hôte
connecté que la précédence utilisée n'est pas autorisée pour la combinaison spécifique
source/destination.

♦

Code 15 − Effet de coupure de précédence − Le premier routeur peut envoyer ce message à un hôte si
le datagramme reçu a un niveau de précédence trop bas.

♦

Au sommet de tout ça, il existe également une petite partie "données", qui devrait être l'en−tête Internet et le
datagramme IP d'origine en 64 bits. Si le protocole de niveau suivant contient des ports, etc. il est supposé que
les ports seront disponibles dans les 64 bits supplémentaires.

2.9.3. Coupure de source

Un paquet coupure de source peut être envoyé à l'expéditeur d'un paquet ou d'un flux de paquets trop lents
pour permettre de continuer à envoyer des données. Notez que la passerelle ou l'hôte que les paquets
traversent peuvent aussi décharger les paquets sans prévenir, au lieu d'envoyer des paquets coupure de source.

Ces paquets ne contiennent pas d'en−têtes supplémentaires sauf la partie données, laquelle contient l'en−tête
Internet plus les 64 bits du datagramme de données d'origine. Ceci est utilisé pour harmoniser le message de
coupure source au processus correct, lequel envoie des données à travers la passerelle ou vers l'hôte de
destination.

Tous les paquets coupure source ont leurs type ICMP placé à 4. Ils n'ont pas de codes sauf le 0.

Note
Aujourd'hui, il existe de nouveaux moyens de notifier à l'expéditeur ou au destinataire qu'une passerelle
ou un hôte est en surcharge. Par exemple avec le système ECN (Explicit Congestion Notification).

2.9.4. Redirection

Didacticiel sur Iptables, version 1.2.0

16 2.9.2. Destination Injoignable ICMP

Le type redirection est envoyé dans un seul cas. Considerez ceci, vous avez un réseau (192.168.0.0/24) avec
plusieurs clients et hôtes, et deux passerelles. Une passerelle sur un réseau 10.0.0.0/24, et une passerelle par
défaut pour le reste de l'Internet. Maintenant considerez qu'un des hôtes soit sur le réseau 192.168.0.0./24 et
n'ait pas de route vers 10.0.0.0/24, mais ait accès à la passerelle par défaut. Il envoie un paquet à la passerelle
par défaut, laquelle bien sûr connait le réseau 10.0.0.0/24. Cette passerelle par défaut peut déduire qu'il est
plus facile d'envoyer le paquet directement à la passerelle 10.0.0.0/24 car ce paquet entrera et quittera la
passerelle par la même interface. La passerelle par défaut enverra désormais un paquet ICMP Redirect unique
à l'hôte, à travers la passerelle 10.0.0.0/24. L'hôte saura maintenant que la passerelle la plus proche est
10.0.0.0/24, et l'utilisera dans le futur.

L'en−tête principale du type Redirect est le champ Gateway Internet Address. Ce champ indique à l'hôte la
passerelle correcte, qui sera réellement utilisée. Le paquet contient aussi l'en−tête IP du paquet original, et les
premiers 64 bits de données dans le paquet d'origine, lequel est utilisé pour se connecter au processus qui
envoie les données.

Le type Redirection possède 4 codes, qui sont les suivants.

Code 0 − Redirection pour le réseau − Seulement utilisé pour rediriger l'ensemble du réseau (voir
l'exemple ci−dessus).

♦

Code 1 − Redirection pour l'hôte − Seulement utilisé pour les redirections d'un hôte spécifique.♦
Code 2 − Redirection pour TOS et réseau − Seulement utilisé pour rediriger un Type de Service
spécifique et vers un ensemble réseau. Utilisé comme le code 0, mais aussi basé sur TOS.

♦

Code 3 − Redirection pour TOS et hôte − Seulement utilisé pour rediriger vers un Type de Service
spécifique vers un hôte spécifique. utilisé comme le code 1, mais aussi basé sur le TOS.

♦

2.9.5. TTL égale 0

Le type ICMP TTL égale 0 est également connu comme "Time Exceeded Message" et possède le type 11, il a
aussi 2 codes ICMP disponibles. Si le champ TTL atteint 0 pendant le transit à travers une passerelle ou un
fragment réassemblé sur l'hôte de destination, le paquet doit être supprimé. Pour notifier ce problème à l'hôte
expéditeur, nous pouvons envoyer un paquet ICMP TTL égale 0. L'expéditeur peut augmenter le TTL des
paquets sortants si nécessaire.

Le paquet contient seulement la partie supplémentaire des données. Le champ données contient l'en−tête
Internet plus 64 bits de données du paquet IP. Comme précédemment mentionné, le type TTL égale 0 peut
avoir deux codes.

Code 0 − TTL égale 0 pendant le transit − Envoyé par l'expéditeur si le paquet TTL d'origine atteint 0
quand il est transféré par une passerelle.

♦

Code 1 − TTL égale 0 pendant le ré−assemblage − Envoyé si le paquet d'origine était fragmenté, et
que le TTL atteint 0 pendant le ré−assemblage des fragments. Ce code doit être envoyé uniquement
depuis le destinataire.

♦

2.9.6. Paramètre problème

Didacticiel sur Iptables, version 1.2.0

2.9.4. Redirection 17

Le paramètre problème ICMP utilise le type 12 et possède deux codes qu'il peut utiliser indifféremment. Les
messages du paramètre problème sont utilisés pour indiquer à l'hôte que la passerelle ou le destinataire ont des
problèmes de compréhension sur des parties d'en−tête IP, ou nécessitent des options qui ont été omises.

Le type paramètre problème contient une en−tête spéciale, qui est un pointeur vers le champ qui a causé
l'erreur dans le paquet d'origine, si le code est à 0. Les codes suivants sont disponibles:

Code 0 − Mauvaise en−tête IP (catchall error) − Nous avons vu ce message d'erreur ci−dessus. Avec
le pointeur ce code est utilisé pour indiquer quelle partie de l'en−tête IP contient l'erreur.

♦

Code 1 − Options nécessaires omises − Si une option IP nécessaire est omise, ce code est utilisé pour
l'indiquer.

♦

2.9.7. Horodatage requête/réponse

Le type horodatage est aujoud'hui obsolète, mais nous le verrons brièvement. La réponse et la requête ont un
code unique (0). La requête est de type 13 tandis que la réponse est de type 14. Les paquets horodatage
contiennent 3 fois 32 bits comptant les millisecondes depuis minuit en temps universel (UT).

Le premier horodatage est l'horodatage d'origine, qui contient la dernière information sur l'expéditeur du
paquet. L'horodatage de réception est l'information sur le premier hôte qui a reçu le paquet et l'horodatage de
transmission le dernier horodatage sur l'envoi du paquet.

Chaque message d'horodatage contient aussi les mêmes identifiants et numéros d'ordre que les paquets ICMP
écho.

2.9.8. Requête/réponse information

Les types requête/réponse information sont obsolètes depuis que les protocoles au sommet du protocole IP
peuvent maintenant jouer ce rôle lorsque nécessaire (DHCP, etc.). La requête information génère une réponse
depuis n'importe quel hôte interrogé sur le réseau.

L'hôte qui désire recevoir l'information crée un paquet avec l'adresse source du réseau dans lequel il est lié
(exemple, 192.168.0.0), et le réseau destinataire est placé à 0. La réponse contiendra l'information au sujet du
masque de réseau et de l'adresse IP.

La requête information est lancée à travers un type ICMP 15 alors que la réponse est envoyée via un type 16.

Didacticiel sur Iptables, version 1.2.0

18 2.9.6. Paramètre problème

2.10. Destination TCP/IP par routage

TCP/IP s'est accru en complexité quand il est devenu une partie du routage. Au début, la plupart des gens
pensaient que la destination donnée par le routage était suffisante. Ces dernières années, c'est devenu de plus
en plus complexe. Aujourd'hui, Linux peut router de façon basique chaque champ ou bit dans l'en−tête IP, et
également les en−têtes basées sur TCP, UDP ou ICMP. Ceci est appelé gestion de réseau à base de règles, ou
routage avancé.

Il ne s'agit ici que d'un survol du routage. Quand nous envoyons un paquet depuis un expéditeur, le paquet est
créé. Après ça, l'ordinateur regarde l'adresse de destination du paquet et la compare à sa table de routage. Si
l'adresse de destination est locale, le paquet est envoyé directement via l'adresse MAC du matériel (Ndt.
interface réseau). Si le paquet est de l'autre côté de la passerelle il est envoyé via l'adresse MAC de la
passerelle. Celle−ci regardera alors les en−têtes IP et verra l'adresse de destination du paquet. L'adresse de
destination est consultée dans la table de routage, et le paquet envoyé à la passerelle suivante, etc. jusqu'à sa
destination finale.

Comme vous pouvez le voir, ce routage est très basique. Avec le routage avancé, et la gestion de réseau à base
de règles, ceci devient plus complexe. Nous pouvons router des paquets qui diffèrent dans leur adresse source
par exemple, ou leur valeur TOS, etc.

2.11. Prochaine étape

Nous avons vu les points suivants :

Structure TCP/IP♦
Fonctionnalité du protocole IP et en−têtes.♦
Fonctionnalité du protocole TCP et en−têtes.♦
Fonctionnalité du protocole UDP et en−têtes.♦
Fonctionnalité du protocole ICMP et en−têtes.♦
Destination TCP/IP par routage.♦

Tout ceci sera revu plus tard quand nous aborderons les tables de règles des pare−feux. Toute ces
informations s'imbriquent ensemble, pour permettre une meilleure configuration de pare−feu.

Chapitre 3. Introduction au filtrage IP

Dans ce chapitre nous verrons en détail la théorie du filtrage IP, ce que c'est, comment ça fonctionne et
certaines choses basiques comme où placer les pare−feux, les règles de filtrage, etc.

Les questions de ce chapitre pourront être, où placer un pare−feu ? Dans la plupart des cas, c'est une question
simple, mais dans des réseaux étendus cela peut devenir ardu. Quelles seraient les règles ? Qui aurait accès et
où ? Qu'est−ce qu'un filtre IP ? Nous y répondrons ici.

3.1. Qu'est−ce qu'un filtre IP ?

Il est important de bien comprendre ce qu'est un filtre IP. Iptables est un filtre IP, et si vous ne comprenez pas
complètement cela, vous irez au devant de sérieux problèmes dans la conception de vos pare−feux.

Un filtre IP opère principalement au niveau de la couche 2 de la pile de référence TCP/IP. Iptables cependant
peut également travailler au niveau de la couche 3. Mais par définition un filtre IP travaille sur la seconde
couche.

Didacticiel sur Iptables, version 1.2.0

2.10. Destination TCP/IP par routage 19

Si l'implémentation du filtre IP suit strictement la définition, il devrait être capable, en d'autres termes, de
filtrer les paquets basés sur leurs en−têtes IP (adresses source et destination, TOS/DSCP/ECN, TTL,
protocole, etc.). Toutes choses actuellement dans l'en−tête IP. Cependant, l'implémentation de Iptables n'est
pas strictement en accord avec la définition, il est aussi capable de filtrer les paquets basés sur d'autres
en−têtes se trouvant dans le paquet (TCP, UDP, etc.), et l'adresse MAC.

Il y a une chose cependant sur laquelle Iptables est très strict aujourd'hui. Il ne "suit" pas les flux ou les
morceaux de données ensemble. Ce serait une grosse perte de temps. Il garde la trace des paquets et regarde si
ils font partie du même flux de données (via numéros d'interclassement, numéros de port, etc.) à peu près
comme la vraie pile TCP/IP. Ceci est appelé traçage de connexion, et grâce à ça nous pouvons effectuer de la
translation (masquage/traduction) d'adresse source et destination (généralement appelé DNAT et SNAT),
aussi bien que de la vérification d'état de paquets.

Comme nous avons vu ci−dessus, Iptables ne peut pas connecter des données provenant de différents paquets
entre eux, et donc vous ne pourrez jamais être tout à fait certains que vous verrez la totalité des données à tout
moment. Je mentione ça car il y a constamment des questions sur les différentes listes de discussion
concernant netfilter et iptables à ce sujet. Par exemple, chaque fois qu'il survient un nouveau virus basé sur
Windows, diverses personnes me demandent comment supprimer tous les flux contenant une chaîne
spécifique. Par exemple, si nous regardons quelque chose comme ça :

cmd.exe

Que se passe−t−il si l'auteur du virus/exploit est suffisamment malin pour rendre la taille du paquet si petite
que cmd tienne dans un seul paquet et .exe dans le paquet suivant ? Les fonctions d'appariement de chaîne
sont incapables de passer à travers les frontières de paquet, le paquet continuera sa route.

Certains pourront se poser la question, pourquoi ne pas faire simplement des vérifications de chaîne ? C'est
actuellement très simple. Ce serait trop coûteux en temps processeur. Le traçage de connexion prend déjà
beaucoup de temps processeur. Ajouter une autre couche complexe au traçage de connexion, surchargerait la
plupart des pare−feux. Sans parler de la quantité de mémoire supplémentaire qui serait nécessaire pour
effectuer cette tâche pour chaque machine.

Il existe une seconde raison pour que cette fonctionnalité ne soit pas développée. Il existe une technique
appelée proxy (mandataire). Les proxies ont été développés pour le traffic dans les couches les plus hautes, et
donc répondent au mieux à ces besoins. Les proxies ont été créés à l'origine pour gérer les téléchargements et
les pages les plus souvent utilisées et accélérer les transferts avec des connexions Internet lentes. Par exemple,
Squid est un proxy pour le web. Une personne qui désire charger une page envoie la requête, le proxy soit
extrait la requête soit reçoit la requête et ouvre la connexion au navigateur, et ensuite le connecte au serveur
web et charge le fichier, et une fois chargé le fichier ou la page, l'envoie au client. Maintenant, si un second
navigateur désire lire la même page, le fichier ou la page sont déja chargés par le proxy, et peuvent être
envoyés directement, vous économisant du temps (et de la bande passante).

Comme vous pouvez le comprendre, les proxies ont un ensemble de fonctionnalités leur permettant de voir le
contenu des fichiers qu'ils chargent. À cause de ça, ils sont bien meilleurs pour visualiser l'ensemble des flux,
fichiers, pages, etc.

3.2. Termes et expressions du filtrage IP

Pour pleinement comprendre les chapitres suivants il y a quelques termes et expressions généraux que vous
devez connaître, incluant nombre de détails par rapport au chapitre TCP/IP. Voici une liste des termes les plus
couramment utilisés dans le filtrage IP.

Effacement/refus (Drop/Deny) − Quand un paquet est effacé ou refusé, il est tout simplement
supprimé. Aucune réponse n'est faite s'il est effacé, de même l'hôte destinataire du paquet ne sera pas

♦

Didacticiel sur Iptables, version 1.2.0

20 3.1. Qu'est−ce qu'un filtre IP ?

prévenu. Le paquet disparaît simplement.
Rejet (Reject) − De façon basique, c'est la même chose que effacer/refuser, sauf qu'une notification
est envoyée à l'hôte expéditeur du paquet rejeté. La réponse peut être spécifiée ou automatiquement
calculée pour une certaine valeur. Actuellement, il n'y a malheureusement pas de fonctionnalité dans
Iptables qui permette de prévenir l'hôte destinataire que le paquet a été rejeté. Ce serait très bien dans
certaines circonstances, car l'hôte destinataire n'a pas la possibilité d'arrêter une attaque par DoS
(Denial of Service) quand ça se produit.

♦

État (State) − Un état spécifique d'un paquet par rapport à l'ensemble d'un flux de paquets. Par
exemple, si le paquet est le premier que voit le pare−feu ou dont il a connaissance, il est considéré
comme nouveau (le paquet SYN dans une connexion TCP), ou s'il fait partie d'une connexion déja
établie dont a connaissance le pare−feu. Les états sont connus par le traçage de connexion, qui garde
les traces de toutes les sessions.

♦

Chaîne − Une chaîne contient un ensemble de règles qui sont appliquées aux paquets qui traversent la
chaîne. Chaque chaîne a un but spécifique (ex. quelle table est connectée et à qui, qui spécifie que
cette chaîne est habilitée à le faire), et une zone d'application spécifique (ex. seulement les paquets
transmis, ou seulement les paquets destinés à un hôte). Dans Iptables il existe plusieurs chaînes
différentes, comme nous le verrons plus loin.

♦

Table − Chaque table possède une fonctionnalité spécifique, et Iptables possède trois tables. Les
tables nat, mangle et filter. Par exemple, la table filter est destinée à filtrer les paquets, tandis que la
table nat est destinée aux paquets NAT (Network Address Translation).

♦

Match − Ce terme peut avoir deux sens différents quand il est employé avec iptables. Le premier sens
est une simple correspondance qui indique à la règle ce que l'en−tête doit contenir. Par exemple, la
correspondance −−source nous indique que l'adresse source doit être une plage réseau spécifique ou
une adresse hôte. Le second indique si la règle entière est une correspondance. Si le paquet apparie
toute la règle, les instructions saut et cible seront exécutées (ex. le paquet sera supprimé).

♦

Cible (Target) − C'est généralement une cible placée pour chaque règle dans une table de règles. Si la
règle est pleinement appariée, la spécification de cible nous indique que faire avec le paquet. Par
exemple, si nous l'effaçons, l'acceptons, le traduisons (nat), etc. Il existe aussi une chose appelée
spécification de saut, pour plus d'information voir la description de saut dans la liste. Enfin, il peut ne
pas y avoir de cible ou de saut dans chaque règle.

♦

Règle (Rule) − Une règle est un ensemble de correspondances avec cible unique dans la plupart des
implémentations de filtres IP, incluant l'implémentation d'Iptables. Il existe certaines implémentations
qui nous permettent d'utiliser plusieurs cibles/actions par règle.

♦

Table de règles (Ruleset) − Une table de règles est un ensemble complet de règles placé dans une
implémentation de filtre IP. Dans le cas d'Iptables, ceci inclut toutes les règles placées dans le filtre,
nat et mangle, et toutes les chaînes qui suivent. La plupart du temps, elles sont écrites dans un fichier
de configuration.

♦

Saut (Jump) − L'instruction jump est très proche d'une cible. Une instruction jump est écrite
exactement de la même façon qu'une cible dans Iptables, sauf que au lieu d'écrire un nom de cible,
vous écrivez un nom de chaîne. Si la règle apparie, le paquet sera désormais envoyé à la seconde
chaîne et exécuté comme d'habitude dans cette chaîne.

♦

Traçage de connexion − Un pare−feu qui implémente le traçage de connexion est capable de suivre
les connexions/flux. La possibilité de faire ceci a un impact sur le processeur et l'usage mémoire. C'est
malheureusement vrai également dans Iptables, mais beaucoup de travail a été fait sur ce sujet.
Cependant, le bon côté de la chose est que le pare−feu sera beaucoup plus sécurisé avec un traçage de
connexion bien utilisé par celui qui en établira les règles.

♦

Acceptation (Accept) − Pour accepter un paquet et le laisser passer à travers les règles du pare−feu.
C'est l'opposé des cibles effacement et refus, de même pour la cible rejet.

♦

Gestion des règles (Policy) − Il existe deux sortes de gestion des règles dans l'implémentation d'un
pare−feu. En premier nous avons la gestion des chaînes, qui indiquent le comportement par défaut du
pare−feu. C'est l'usage principal du terme que nous utiliserons dans ce didacticiel. Le second type de
gestion des règles est la gestion de sécurité établie par une stratégie d'ensemble d'une entreprise par
exemple, ou pour un segment de réseau spécifique. Les stratégies de sécurité sont des documents a
étudier de près avant de commencer l'implémentation d'un pare−feu.

♦

Didacticiel sur Iptables, version 1.2.0

3.2. Termes et expressions du filtrage IP 21

3.3. Comment configurer un filtre IP ?

Une des premières choses à considérer lors de la configuration d'un pare−feu est son emplacement. Un des
premiers endroits qui vient à l'esprit est la passerelle entre votre réseau local et l'Internet. C'est un endroit qui
devrait être très sécurisé. Ainsi, dans les grands réseaux ce peut−être une bonne idée de séparer différentes
divisions entre elles par des pare−feux. Par exemple, pourquoi l'équipe de développement aurait accès au
réseau des ressources humaines, ou pourquoi ne pas protéger le département comptabilité des autres ?

Ceci indique que vous devriez configurer vos réseaux aussi bien que possible, et les planifier pour qu'ils soient
isolés. Spécialement si le réseau est de taille moyenne ou grande (100 stations de travail ou plus, basé sur
différents aspects du réseau). Dans les petits réseaux, essayez de configurer les pare−feux pour seulement
autoriser le genre de trafic que vous désirez.

Ce peut être aussi une bonne idée de créer une "zone démilitarisée" (DMZ) dans votre réseau dans le cas où
vous avez des serveurs qui sont connectés à l'Internet. Une DMZ est un petit réseau physique avec des
serveurs, qui est isolé à l'extrême. Ceci réduit le risque que quelqu'un puisse s'introduire dans les machines de
la DMZ, et également puisse y implanter des chevaux de Troie ou autre depuis l'extérieur. La raison pour
laquelle nous l'appelons zone démilitarisée est qu'elle doit être joignable depuis l'intérieur et l'extérieur, et
donc être une sorte de zone grise.

Il existe deux moyens pour configurer le comportement d'un pare−feu, et dans cette section nous verrons ce
que vous devriez considérer avant d'implémenter votre pare−feu.

Avant de commencer, vous devriez comprendre que la plupart des pare−feux ont des comportements par
défaut. Par exemple, si aucune règle n'est spécifiée dans une chaîne, elle peut−être acceptée ou effacée par
défaut. Malheureusement, il y a seulement une gestion de règles par chaîne, mais il est souvent facile de les
contourner si vous voulez avoir différentes gestions des règles par interface réseau, etc.

Il existe deux stratégies de base que nous utilisons habituellement. Soit nous supprimons (DROP) tout sauf ce
que nous spécifions, soit nous acceptons tout excepté ce que nous spécifions comme devant être supprimé. La
plupart du temps nous sommes principalement intéressés par la stratégie de suppression, et ensuite accepter ce
que nous désirons de façon spécifique. Ceci indique que le pare−feu est plus sécurisé par défaut, mais il peut
aussi indiquer que nous aurons plus de travail pour simplement obtenir un pare−feu qui fonctionne
correctement.

Votre première décision à prendre est de simplement savoir quel type de pare−feu vous allez utiliser. Quel
niveau de sécurité ? Quelles sortes d'applications pourront passer à travers le pare−feu ? Certaines applications
sont horribles pour les pare−feux pour la simple raison qu'elles négocient les ports à utiliser pour les flux de
données dans une session. Ceci rend extrêmement ardu pour le pare−feu de savoir quel port ouvrir. Les
applications les plus communes fonctionnent avec Iptables, mais les rares autres ne fonctionnent pas à ce jour,
malheureusement.

Note
Il y a aussi quelques applications qui fonctionnent en partie, comme ICQ. L'utilisation normale d'ICQ
fonctionne correctement, mais pas les fonctions de chat (discussions) et d'envoi de fichiers, car elles
nécessitent un code spécifique pour décrire le protocole. Comme les protocoles ICQ ne sont pas
standardisés (ils sont propriétaires et peuvent être modifiés à tout moment) la plupart des filtres ont
choisis soit de ne pas le gérer, soit d'utiliser un programme de correction (patch) qui peut être appliqué
aux pare−feux. Iptables a choisi de les utiliser comme programmes séparés.

Ce peut être également une bonne idée d'appliquer des mesures de sécurité en couche, ce dont nous avons
discuté plus haut. Ce qui veut dire, que vous pourriez utiliser plusieurs mesures de sécurité en même temps, et
pas sur un seul concept de sécurité. En prenant ceci comme concept ça décuplera vos mesures de sécurité.
Pour un exemple, voir la figure :

Didacticiel sur Iptables, version 1.2.0

22 3.3. Comment configurer un filtre IP ?

Comme vous pouvez le voir, dans cet exemple j'ai choisi de placer un pare−feu Cisco PIX dans le périmètre
des trois connexions réseau. Je peux faire du NAT sur le réseau local (LAN), comme sur la DMZ si
nécessaire. Il bloquera aussi tout le trafic sortant sauf les retours http ou ftp ou ssh. Il permet également le
trafic http entrant depuis le LAN et l'Internet, de même pour le trafic ftp et ssh depuis le LAN. De plus, nous
pouvons noter que chaque serveur web est basé sur Linux, avec Iptables et netfilter sur les machines avec les
mêmes stratégies de sécurité.

En plus de tout ça, nous pouvons ajouter Snort sur chacune des machines. Snort est un excellent système de
détection d'intrusion dans un réseau (NDIS) qui vérifie les signatures dans les paquets, et il peut soit envoyer
un courrier à l'administrateur ou même répondre de façon active à l'attaque en bloquant l'IP expéditeur. Il faut
noter que la réponse active ne doit pas être utilisée à la légère, car Snort a un comportement un peu extrême
dans le rapport d'attaques (ex. rapport sur une attaque qui n'en est pas réellement une).

Une bonne idée est aussi d'ajouter un proxy en face des serveurs web pour capturer les mauvais paquets, avec
la même possibilité pour toutes les connexions web générées localement. Avec un proxy web vous pouvez
gérer de façon plus précise le trafic web de vos employés, aussi bien que restreindre leur usage à certaines
extensions. Avec un proxy web sur vos propres serveurs, vous pouvez l'utiliser pour bloquer certaines
connexions. Un bon proxy qu'il peut être intéressant d'utiliser est Squid.

Une autre précaution qui peut être prise est d'installer Tripwire. Qui est une excellente ligne de défense en
dernier ressort pour ce type d'application. Il effectue une somme de contrôle sur tous les fichiers spécifiés
dans le fichier de configuration, et ensuite l'exécute depuis cron pour vérifier s'ils sont identiques, ou n'ont pas
changés de façon illégale. Ce programme est capable de savoir si quelqu'un a pénétré dans le système pour le
modifer. Une suggestion est de l'exécuter sur tous les serveurs web.

Une dernière chose à noter est qu'il est toujours bon de suivre les standards. Comme vous l'avez déja vu avec
ICQ, si vous ne suivez pas les systèmes standardisés, ça peut provoquer de grosses erreurs. Dans votre propre
environnement ceci peut être ignoré pour certains domaines, mais si vous êtes sur une large bande ou une baie
de modems, ça peut devenir très important. Les personnes qui se connectent doivent toujours pouvoir accéder
aux services, et vous ne pouvez pas espérer que ces personnes utilisent le système d'exploitation de votre
choix. Certaines personnes travaillent sous Windows, certaines autres sous Linux ou même VMS, etc. Si vous
fondez votre sécurité sur des systèmes propriétaires, vous allez au devant de problèmes.

Un bon exemple de ceci est certains services à large bande qui sont apparus en Suède et qui fondent leur
sécurité sur des ouvertures de session réseau Microsoft. Ceci peut sembler une bonne idée au départ, mais
lorsque vous considerez d'autres systèmes d'exploitation, ce n'est pas une si bonne idée. Comment quelqu'un
tournant sous Linux fera−t−il ? Ou VAX/VMS ? Ou HP/UX ? Avec Linux on peut le faire bien sûr, si
l'administrateur réseau ne refuse pas à quiconque d'utiliser le service s'ils utilisent Linux. Cependant, ce
didacticiel n'est pas une discussion théologique pour savoir qui est le meilleur, c'est simplement un exemple
pour vous faire comprendre que c'est une mauvaise idée de ne pas utiliser les standards.

Didacticiel sur Iptables, version 1.2.0

3.3. Comment configurer un filtre IP ? 23

3.4. Au prochain chapitre

Ce chapitre vous a montré certains éléments de base du filtrage IP et des mesures de sécurité que vous pouvez
appliquer pour sécuriser vos réseaux, stations de travail et serveurs. Les sujets suivants ont été approchés :

Utilisation du filtrage IP♦
Stratégies de filtrage IP♦
Planification de réseau♦
Planification de pare−feu♦
Techniques de sécurité en couche♦
Segmentation de réseau♦

Dans le prochain chapitre nous verrons rapidement la Translation d'Adresse Réseau (NAT), et ensuite
regarderons de plus près Iptables et ses fonctionnalités.

Chapitre 4. Introduction à la Traduction d'adresse Réseau

Le NAT est une des plus grosses attractions de Linux et Iptables aujourd'hui. Au lieu d'utiliser une troisième
solution coûteuse comme Cisco PIX, etc. nombre de petites entreprises et d'utilisateurs privés ont choisi de
fonctionner avec ces solutions. Une des principales raisons est qu'elle est bon marché et sûre. Elle peut
fonctionner sur un ordinateur ancien, une distribution Linux récente que vous pouvez télécharger gratuitement
sur l'Internet, une carte réseau ou deux, et le cablage.

Ce chapitre décrira la théorie de base sur le NAT, comment il peut être utilisé, comment fonctionne−t−il et ce
à quoi vous devez réfléchir avant de commencer à travailler sur ces sujets.

4.1. Comment le Nat est utilisé et termes et expressions de base

De façon basique, le NAT permet à un ou plusieurs hôtes de partager la même adresse IP. Par exemple, vous
avez un réseau local composé de 5−10 clients. Leur adresse de passerelle par défaut pointe vers un serveur
NAT. Normalement le paquet sera simplement transmis par la machine passerelle, mais dans le cas d'un
serveur NAT c'est un peu différent.

Les serveurs NAT traduisent les adresses source et destination des paquets en adresses différentes. Le serveur
NAT reçoit le paquet, réécrit les adresses source et/ou destination et ensuite recalcule la somme de contrôle du
paquet. Une des utilisations les plus courantes du NAT est la fonction SNAT (Traduction d'Adresse Réseau
Source). De façon basique, il est utilisé dans l'exemple au−dessus si nous n'avons pas les moyens ou ne
voyons pas l'intérêt d'avoir une adresse IP publique pour chacun des clients. Dans ce cas, nous utilisons une de
nos IP privées du réseau local (par exemple, 192.168.1.0/24). SNAT traduira toutes les adresses 192.168.1.0
en sa propre IP publique (par exemple, 217.115.95.34). De cette façon, il y aura 5−10 clients ou beaucoup
plus qui utiliserons la même IP partagée.

Il existe aussi une chose appelée DNAT, qui peut être extrêment utile quand elle est utilisée avec la
configuration des serveurs. En premier, vous pouvez en attendre le plus grand bien pour économiser de
l'espace IP, ensuite, vous pouvez rendre plus ou moins impénétrable un pare−feu entre votre serveur et le
serveur réel de façon aisée, ou simplement partager une IP entre plusieurs serveurs séparés physiquement. Par
exemple, nous pouvons faire tourner un serveur web et ftp sur la même machine, tandis qu'il existe une
machine physiquement distincte contenant différents services de chat que les employés travaillant à domicile
ou étant sur la route peuvent utiliser en relation avec le personnel sur le site de l'entreprise. Nous pouvons
alors faire fonctionner tous ces services sur la même IP depuis l'extérieur via DNAT.

L'exemple ci−dessus est aussi basé sur des ports séparés, souvent appelé PNAT. Nous ne nous référons pas
très souvent à ce terme car il est inclu dans les fonctionnalités DNAT et SNAT de netfilter.

Didacticiel sur Iptables, version 1.2.0

24 3.4. Au prochain chapitre

Dans Linux, il existe actuellement deux types séparés de NAT, Fast−NAT ou Netfilter−NAT. Fast−NAT est
implémenté dans le code du routage IP du noyau Linux, tandis que Netfilter−NAT est aussi implémenté dans
le noyau, mais à l'intérieur du code netfilter. Dans ce didacticiel nous ne verrons pas en détail le code du
routage IP, sauf pour quelques notes. Fast−NAT est généralement appelé par ce nom car il est plus rapide que
le code NAT netfilter. Il ne garde pas la trace des connexions. Le traçage de connexion prend de la puissance
processeur, et le ralenti, ce qui est une des principales raisons pour laquelle Fast−NAT soit plus rapide que
Netfilter−NAT. Comme nous l'avons dit, le mauvais côté de Fast−NAT est qu'il ne trace pas les connexions,
ce qui indique qu'il ne sera pas capable de faire du SNAT correctement pour l'ensemble des réseaux, ni
capable de faire du NAT sur des protocoles complexes comme FTP, IRC et d'autres que Netfilter−NAT est
capable de faire très bien.

Un mot, pour finir, qui est un synonyme de SNAT, est le terme Masquerade (masquage/usurpation). Dans
Netfilter, masquerade est à peu près la même chose que SNAT avec la différence que le masquerading
traduira automatiquement la nouvelle IP source en adresse IP par défaut de l'interface réseau externe.

4.2. Divergences sur l'utilisation du NAT

Comme nous l'avons vu, il existe quelques divergences mineures sur l'utilisation du NAT. Le problème
principal est que certains protocoles et applications peuvent ne pas fonctionner du tout. Heureusement, ces
applications ne sont pas très communes dans les réseaux que vous administrez, et dans certains cas, ça ne
créera pas de soucis.

Le second problème est que les applications et protocoles ne fonctionneront que partiellement. Ces protocoles
sont plus communs que ceux qui ne fonctionnent pas du tout. Si des protocoles complexes continuent à être
développés, c'est un problème continuel avec lequel nous devrons vivre. Spécialement si les protocoles ne
sont pas standardisés.

Le troisième, et plus gros problème, à mon point de vue, est que l'utilisateur qui est situé derrière un serveur
NAT pour accéder à une connexion Internet, aura du mal à exécuter son propre serveur. Il pourra le faire, mais
ça lui coûtera beaucoup de temps et de travail pour le mettre en place. Dans les entreprises, ceci est préférable
plutôt que d'avoir des tonnes de serveurs lancés par différents employés joignables depuis l'Internet, sans
aucune supervision.

En dernière remarque sur les divergences à propos du NAT, il devrait être fait mention que le NAT est
actuellement plus ou moins du bidouillage. Le NAT est une bouée de sauvetage car le IANA et d'autres
organisations ont prévenus que l'Internet croissant de façon exponentielle, les adresses IP seront bientôt
limitées. Le NAT est une solution au problème d'IPv4 (IP dont nous parlons jusqu'à présent fait partie d'IPv4,
c'est à dire Internet Protocol version 4). La solution à long terme est le protocole IPv6, qui résout également
beaucoup d'autres problèmes. IPv6 assigne les adresses sur 128 bits, tandis que IPv4 sur 32 bits seulement.
C'est un énorme accroissement d'espace d'adressage. Il peut sembler ridicule d'avoir suffisamment d'adresses
pour fournir une adresse IP à chaque atome de la planète, mais d'un autre côté, l'adressage IPv4 est trop réduit
maintenant.

4.3. Exemple d'une machine NAT en théorie

Un petit scenario théorique dans lequel nous voulons faire du NAT entre 2 réseaux différents et une
connexion Internet. Nous voulons connecter les deux réseaux ensemble, ces deux réseaux ayant accès l'un à
l'autre et à l'Internet. Nous verrons les questions de matériel auxquelles vous devrez penser avant
d'implémenter une machine NAT.

4.3.1. Ce qui est nécessaire pour une machine NAT

Avant d'aller plus loin, regardons d'abord quel type de matériel est nécessaire pour assembler une machine

Didacticiel sur Iptables, version 1.2.0

4.1. Comment le Nat est utilisé et termes et expressions de base 25

Linux faisant du NAT. Pour la plupart des petits réseaux, ce n'est pas un problème, mais si vous considérez
des grands réseaux ça peut en devenir un. Le plus gros problème avec le NAT est qu'il consomme des
ressources très rapidement. Pour un petit réseau privé avec 1−10 utilisateurs, un 486 avec 32 Mo de RAM
devrait suffire. Cependant, si vous avez 100 ou d'avantage d'utilisateurs, vous devrez reconsiderez le choix du
matériel. Bien sûr, il faut aussi considérer la bande passante, et combien de connexions seront ouvertes en
même temps. Généralement, des ordinateurs anciens et mis au rebus, devraient faire l'affaire. En utilisant un
ordinateur ancien, vous aurez un pare−feu très bon marché en comparaison d'autres pare−feux.

Vous devez également penser au problème des cartes réseau. Combien de réseaux séparés seront connectés à
votre machine NAT/pare−feu ? La plupart du temps il est simplement suffisant de connecter un réseau à une
connexion Internet. Si vous vous connectez à l'Internet via ethernet, vous devrez en principe avoir deux cartes
ethernet, etc. Ce peut être une bonne idée de choisir des cartes réseau 10/100 mbits de bonne marque pour
l'extensibilité, mais la plupart des cartes réseau feront l'affaire pour autant que les pilotes soient intégrés dans
le noyau Linux. Un mot sur ce sujet : évitez d'utiliser des cartes réseau qui n'ont pas de pilote intégré dans le
noyau des distributions Linux. J'ai trouvé en plusieurs occasions des cartes réseau de marques qui distribuent
séparément les drivers et qui fonctionnent mal. Ils ne sont souvent pas très bien maintenus, et si vous utilisez
ce type de matériel vous avez une chance très mince qu'il fonctionne correctement avec les mises à jour
prochaines des noyaux Linux. Ce qui veut dire, que vous avez intérêt à payer un petit peu plus cher pour vos
cartes réseau, mais ça se justifiera.

Notez que, si vous installez un pare−feu sur du matériel très ancien, essayez au moins d'utiliser les bus PCI ou
mieux si possible. En priorité, les cartes réseau pourront être utilisées dans le futur lorsque vous ferez des
mises à jour. Ainsi, les bus ISA sont extrêmement lent et lourds en usage CPU.

Enfin, une chose à considérer est combien de mémoire vous mettrez sur la machine NAT/pare−feu. Le mieux
est de mettre au moins 64 Mo, même s'il est possible de tourner avec 32 Mo. Le NAT ne consomme pas
énormément de mémoire, mais il peut être prudent d'en ajouter juste dans le cas où le trafic serait plus
important que prévu.

Comme vous pouvez le voir, il y a plusieurs choses à considérer quand on parle de matériel. Mais, pour être
honnête, dans la plupart des cas ça ne posera pas de problème, à moins que vous installiez une machine NAT
pour un gros réseau. Pour un usage domestique vous pouvez plus ou moins utiliser le matériel que vous avez
sous la main.

4.3.2. Emplacement des machines NAT

Ceci pourrait sembler simple, cependant, ce peut être plus ardu qu'on ne le penserait sur des gros réseaux. En
général, la machine NAT devrait être située en périphérie du réseau. Ceci, la plupart du temps, veut dire que
les machines NAT et de filtrage sont les mêmes machines, bien sûr. Ainsi, si vous avez de très grands réseaux,
il peut être utile de séparer le réseau en plusieurs réseaux plus petits et assigner une machine NAT pour
chacun de ces réseaux. Le NAT prenant beaucoup de temps processeur, ceci vous aidera à conserver la durée
de rotation (RTT, Round Trip Time : temps que met un paquet pour joindre sa destination et envoyer un
paquet en retour), la plus courte possible.

Dans notre exemple de réseau décrit ci−dessus, avec deux réseaux et une connexion Internet, nous devrons
considérer la taille des deux réseaux. Si nous les considérons comme petits, 200 clients ne seront pas un
problème pour une machine NAT décente. D'un autre côté, nous auront à fractionner la charge sur plusieurs
machines en plaçant les IP publiques sur des machines NAT plus petites, chacune maintenant leur propre
segment de réseau et laissant se rassembler le trafic sur une seule machine de routage spécifique. Ceci bien
sûr, prenant en considération le fait que vous devez avoir suffisamment d'IP publiques pour toutes vos
machines NAT, et qu'elles sont routées à travers votre machine routeur.

Didacticiel sur Iptables, version 1.2.0

26 4.3.1. Ce qui est nécessaire pour une machine NAT

4.3.3. Comment placer les proxies ?

Les proxies sont généralement un problème lorsqu'ils sont accompagnés de NAT dans beaucoup de cas
malheureusement, spécialement les proxies transparents. Un proxy normal ne causera pas trop de problèmes,
mais en créant un proxy transparent c'est plus compliqué, spécialement dans les grands réseaux. Le premier
problème est que les proxies prennent beaucoup de temps processeur, comme le NAT. Placer les deux sur la
même machine n'est pas judicieux si vous avez à assurer un gros trafic réseau. Le second problème est que si
vous traduisez l'IP source ainsi que l'IP destination, le proxy ne sera pas capable de savoir quel hôte contacter.
Exemple, quel serveur est le client à contacter ? Localement, ceci a été résolu en ajoutant de l'information
dans les structures internes de données créées pour les paquets, et ainsi les proxies comme Squid peuvent
obtenir cette information.

Comme vous pouvez le voir, le problème est que vous n'avez pas beaucoup de choix si vous voulez utiliser un
proxy transparent. Il existe, bien sûr, des possibilités mais elles ne sont pas réellement recommandables. Une
possibilité est d'installer un proxy à l'extérieur du pare−feu et créer une entrée qui route tout le trafic web à
travers cette machine, et localement NATer les paquets sur les bons ports pour le proxy. De cette façon,
l'information est préservée pour le proxy et toujours disponible pour lui.

Le seconde possibilité est de simplement créer un proxy à l'extérieur du pare−feu, qui bloque tout le trafic web
sauf le trafic venant du proxy. Comme ça, vous forcerez tous les utilisateurs à passer par le proxy. C'est un
peu fruste comme moyen de faire, mais ça peut fonctionner.

4.3.4. Étape finale pour votre machine NAT

Dernière étape, réunissons toutes ces informations ensemble, et voyons comment nous pouvons installer une
machine NAT. Regardons la figure des réseaux et voyons ce qu'elle dit. Nous avons décidé de placer un proxy
à l'extérieur d'une machine NAT comme décrit plus haut. Cette zone peut être considérée comme une DMZ
dans un sens, avec la machine NAT faisant routeur entre la DMZ et les deux réseaux de l'entreprise. Vous
pouvez voir la topologie exacte dans l'image ci−dessous.

Tout le trafic normal provenant des réseaux NATés seront envoyés, à travers la DMZ, directement au routeur,
qui adressera le trafic vers l'Internet. Sauf, le trafic web de la partie netfilter de la machine NAT, routé vers la
machine proxy. De quoi parlons nous ? Un paquet http est analysé par la machine NAT. La table Mangle peut
alors être utilisée pour marquer le paquet avec une marque de filtrage (nfmark). Même plus tard quand nous

Didacticiel sur Iptables, version 1.2.0

4.3.3. Comment placer les proxies ? 27

voudrons router des paquets vers notre routeur, nous pourrons vérifier la marque de filtrage dans les tables de
routage, et basé sur cette marque, nous pourrons choisir de router les paquets http vers le serveur proxy. Le
serveur proxy fera alors son travail sur les paquets. Nous verrons ce sujet en détail plus loin.

La machine NAT possède une IP réelle disponible sur Internet, de même que le routeur et n'importe quelle
autre machine présente sur l'Internet. Toutes les machines à l'intérieur de réseaux NATés auront des adresses
IP privées, économisant de l'argent, et des adresses Internet.

4.4. Prochain chapitre

Nous avons expliqué dans ce chapitre le NAT et sa théorie. En particulier les divers points de vue, et quelques
uns des problèmes pouvant survenir de l'utilisation du NAT et des proxies ensemble. les zones suivantes :

Utilisation du NAT♦
Composants du NAT♦
Histoire du NAT♦
Termes utilisés à propos du NAT♦
Examens du matériel en rapport avec le NAT♦
Problèmes avec le NAT♦

Tout ceci sera utilisé quand nous travaillerons avec Netfilter et Iptables. Le NAT est très largement utilisé
dans les réseaux aujourd'hui, même si c'est seulement une solution intermédiaire pour un problème inattendu.
Nous parlerons plus en détail du NAT plus loin lorsque nous verrons l'implémentation de Netfilter et Iptables.

Chapitre 5. Préparatifs

Ce chapitre est destiné à vous permettre de démarrer et vous aider à prendre conscience du rôle que Netfilter
et iptables jouent aujourd'hui dans Linux. Idéalement, ce chapitre devrait vous conduire à configurer et
finaliser l'expérimentation et l'installation de votre pare−feu. Avec du temps et de la persévérance, vous
parviendrez à accomplir exactement ce que vous désirez.

5.1. Obtenir Iptables ?

Le paquetage iptables de l'espace utilisateur peut être téléchargé à partir de http://www.netfilter.org/. Le
paquetage iptables nécessite des ressources de l'espace du noyau, qui doivent être configurées au sein de
celui−ci pendant la phase make configure. Sur ce sujet, les étapes indispensables seront approfondies un peu
plus loin dans ce document.

5.2. Configuration du noyau

Pour exécuter les fonctions les plus élémentaires d'iptables, vous devez configurer les options suivantes dans
le noyau, pendant la phase make config ou une autre commande apparentée:

CONFIG_PACKET − Cette option autorise les applications et les utilitaires à accéder directement aux
périphériques réseau. Ces utilitaires sont par exemple tcpdump ou snort.

Note
Rigoureusement parlant, CONFIG_PACKET n'est pas indispensable pour faire fonctionner iptables,
mais puisqu'il est énormément utilisé, j'ai choisi de l'inclure ici. Si vous ne le souhaitez pas, ne l'ajoutez
pas.

CONFIG_NETFILTER − Cette option est nécessaire si vous comptez utiliser votre ordinateur en tant que
pare−feu ou passerelle vers Internet. En définitive, c'est indispensable pour faire fonctionner tout ce qui se

Didacticiel sur Iptables, version 1.2.0

28 4.3.4. Étape finale pour votre machine NAT

trouve dans ce didacticiel. Je présume que vous le souhaitez, puisque vous lisez ceci.

Bien sûr, vous devez ajouter les pilotes spécifiques à votre interface pour obtenir un fonctionnement correct,
i.e. pour les interfaces de type adaptateur Ethernet, PPP ou SLIP. Cette option ajoute seulement
quelques−uns des organes élémentaires présents dans iptables. Pour être honnête, vous ne pourrez pas être
véritablement productif car ceci n'ajoute qu'une architecture au noyau. Si vous voulez utiliser des options plus
évoluées d'iptables, il vous faudra configurer les options adéquates dans votre noyau. Voici celles disponibles
pour un simple noyau 2.4.9 accompagnées d'une courte explication:

CONFIG_IP_NF_CONNTRACK − Ce module permet de faire du traçage de connexion. Entre autres, le
traçage de connexion est utilisé par le NAT et le camouflage. Si vous voulez protéger les machines d'un
LAN derrière un pare−feu, vous devriez à coup sûr sélectionner cette option. Par exemple, ce module est
obligatoire pour que le script rc.firewall.txt puisse fonctionner.

CONFIG_IP_NF_FTP − Ce module permet de faire du traçage de connexion sur du FTP. Comme il est
habituellement difficile d'effectuer du traçage de connexion sur des connexions FTP, le module conntrack
requiert le bien−nommé module d'assistance « helper ». Et cette option compile justement le module helper.

CONFIG_IP_NF_IPTABLES − Cette option est nécessaire pour effectuer n'importe quel type de filtrage, du
camouflage ou du NAT. Elle insère dans le noyau toute l'architecture d'identification d'iptables. Sans cela,
vous ne pourrez rien faire avec iptables.

CONFIG_IP_NF_MATCH_LIMIT − Ce module est facultatif, mais il est utilisé dans l'exemple
rc.firewall.txt. Cette option fournit la correspondance LIMIT. Elle donne la possibilité de contrôler le nombre
de paquets par minute avec lesquels autoriser la correspondance, suivant la définition d'une règle. Par
exemple, la commande −m limit −−limit 3/minute autorise une correspondance avec un maximum de 3
paquets par minute. Ce module permet aussi d'éviter certaines attaques de type déni de service (DoS).

CONFIG_IP_NF_MATCH_MAC − Ceci permet de faire correspondre des paquets à partir des adresses MAC.
Chaque adaptateur Ethernet possède sa propre adresse MAC. Il est possible de bloquer des paquets en
identifiant l'adresse MAC utilisée et par conséquent, bloquer efficacement un ordinateur particulier, puisque
l'adresse MAC est rarement modifiée. Cette option n'est utilisée ni dans l'exemple rc.firewall.txt, ni ailleurs.

CONFIG_IP_NF_MATCH_MARK − Ceci permet d'utiliser la correspondance MARK. A titre d'exemple, on
peut utiliser la cible MARK afin de marquer un paquet, et s'appuyer sur ce marquage plus loin dans la table
pour éventuellement établir une correspondance. Cette option est la correspondance MARK, et un peu plus
loin sera décrite la cible MARK.

CONFIG_IP_NF_MATCH_MULTIPORT − Ce module permet de faire correspondre des paquets sur un
intervalle étendu de ports source ou destination. Normalement, c'est impossible, mais pas avec cette
correspondance.

CONFIG_IP_NF_MATCH_TOS − Avec cette correspondance, on peut faire correspondre des paquets à partir
du champ TOS qu'ils contiennent. TOS signifie Type de Service (« Type Of Service »). Il peut être défini par
certaines règles dans la table mangle et grâce aux commandes ip/tc.

CONFIG_IP_NF_MATCH_TCPMSS − Cette option introduit la possibilité de faire correspondre les paquets
TCP en fonction de leur champ MSS.

CONFIG_IP_NF_MATCH_STATE − Il s'agit d'une des plus importantes nouveautés vis−à−vis d'ipchains. Ce
module permet de faire de la correspondance d'état sur les paquets. Par exemple, si vous avez déjà observé un
trafic dans les deux directions sur une connexion TCP, les paquets concernés seront repérés par la mention
ESTABLISHED. Ce module est employé de manière intensive dans l'exemple rc.firewall.txt.

Didacticiel sur Iptables, version 1.2.0

5.2. Configuration du noyau 29

CONFIG_IP_NF_MATCH_UNCLEAN − Ce module introduit la possibilité d'établir une correspondance avec
les paquets IP, TCP, UDP et ICMP, qui s'avèrent non−conformes à leur spécification ou invalides. Ces
paquets pourront être détruits, mais il sera impossible alors de vérifier leur légitimité. Sachez que cette
correspondance est encore expérimentale, donc qu'elle peut ne pas fonctionner parfaitement dans toutes les
situations.

CONFIG_IP_NF_MATCH_OWNER − Cette option offre la possibilité d'établir une correspondance en se
référant au propriétaire d'un connecteur réseau. A titre d'exemple, on peut autoriser l'accès Internet
uniquement à l'utilisateur root. Ce module a été écrit à l'origine pour illustrer les possibilités du nouvel outil
iptables. Notez que cette correspondance est encore expérimentale, donc qu'elle pourrait ne pas fonctionner
pour tout le monde.

CONFIG_IP_NF_FILTER − Ce module ajoute la table fondamentale filter qui permet d'effectuer le
moindre filtrage IP. Dans la table filter, on trouve les chaînes INPUT, FORWARD et OUTPUT. Ce module
est indispensable si vous envisagez de faire n'importe quel type de filtrage sur des paquets reçus ou envoyés.

CONFIG_IP_NF_TARGET_REJECT − Cette cible permet de spécifier qu'un message d'erreur ICMP doit
être expédié en réponse à des paquets entrants, plutôt que de simplement les détruire. Gardez à l'esprit que les
connexions TCP, à contrario des connexions ICMP et UDP, sont toujours réinitialisées ou refusées avec un
paquet de type TCP RST.

CONFIG_IP_NF_TARGET_MIRROR − Ceci permet de renvoyer des paquets à leur expéditeur. Par exemple,
si vous configurez une cible MIRROR sur le port destination HTTP dans votre chaîne INPUT, et que quelqu'un
tente d'accéder à ce port, vous lui renverrez ses paquets, et il devrait probablement visualiser au final sa propre
page web.

Avertissement
La cible MIRROR n'est pas à utiliser à la légère. Elle a été écrite à l'origine comme un module de
test, et il serait sans doute très dangereux de l'utiliser (risque de DoS sérieux entre autre).

CONFIG_IP_NF_NAT − Ce module permet d'effectuer de la traduction d'adresse réseau, ou
NAT, dans ses différentes formes. Il vous donne accès à la table nat d'iptables. Cette option est nécessaire pour
réaliser de la redirection de port, du camouflage d'adresse IP, etc. Notez que cette option n'est pas
indispensable pour installer un pare−feu et camoufler un réseau local, mais elle devrait vous être utile sauf si
vous pouvez fournir une adresse IP unique pour chacun des hôtes. Par conséquent, cette option est nécessaire
d'une part pour que le script d'exemple rc.firewall.txt puisse fonctionner correctement, et d'autre part pour
votre réseau si vous n'êtes pas en mesure d'ajouter des adresses IP uniques.

CONFIG_IP_NF_TARGET_MASQUERADE − Ce module ajoute la cible MASQUERADE. Par exemple, si
vous ne connaissez pas l'adresse IP de votre connexion Internet, cette méthode permet de la récupérer en
évitant le recours à du DNAT ou du SNAT. En d'autres termes, si vous utilisez DHCP, PPP, SLIP ou un autre
moyen de connexion qui attribue lui−même l'adresse IP, vous aurez besoin d'utiliser cette cible plutôt que du
SNAT. Le camouflage génère sur la machine une charge légèrement supérieure à du NAT, mais fonctionne
sans connaître à l'avance l'adresse IP.

CONFIG_IP_NF_TARGET_REDIRECT − Cette cible est utile associée avec des proxies
d'application par exemple. Au lieu de laisser passer un paquet directement, on peut le rediriger vers une
machine locale. Autrement dit, on a la possibilité de réaliser un proxy transparent de cette manière.

CONFIG_IP_NF_TARGET_LOG − Ceci ajoute à iptables la cible LOG avec ses fonctionnalités. Ce module
peut être employé pour journaliser des paquets dans syslogd, et découvrir ainsi ce qu'il advient d'eux. Cette
possibilité se révèle inestimable dans le cas d'audits de sécurité, d'expertises ou pour déboguer un script en
cours d'écriture.

Didacticiel sur Iptables, version 1.2.0

30 5.2. Configuration du noyau

CONFIG_IP_NF_TARGET_TCPMSS − Cette option permet de contrecarrer les Fournisseurs d'Accès à
Internet (FAI) et les serveurs qui bloquent les paquets ICMP de type Fragmentation nécessaire
(« Fragmentation Needed »). La conséquence de ceci est que des pages web ne passeront pas, des petits
messages sont envoyés mais pas les gros, ssh fonctionne mais scp s'arrête après l'établissement de la liaison
(« handshake »), etc. Dans cette situation, on peut utiliser la cible TCPMSS pour contourner cette difficulté en
limitant le MSS (« Maximum Segment Size » ou taille maximum de segment) à la valeur du PMTU (« Path
Maximum Transmit Unit » ou unité de transfert maximum de liaison). De cette façon, il est possible de
surmonter ce que les auteurs de Netfilter appellent eux−mêmes les « FAI ou serveurs à tendance criminelle »
dans l'aide de la configuration du noyau.

CONFIG_IP_NF_COMPAT_IPCHAINS − Ajoute un mode de compatibilité avec l'outil ipchains qui est
devenu obsolète. Ne considérez pas ceci comme une solution sérieuse à long terme pour dénouer les
problèmes de migration des noyaux Linux 2.2 vers 2.4, puisque ce mode pourrait bien disparaître dans le
noyau 2.6.

CONFIG_IP_NF_COMPAT_IPFWADM − Ajoute un mode de compatibilité avec l'outil ipfwadm, qui est
également obsolète. Encore une fois, ne considérez pas ceci comme une solution sérieuse à long terme.

Comme vous le constatez, il existe un large éventail d'options. J'ai expliqué brièvement leur intérêt et ce qu'on
pouvait attendre de chaque module. Cependant, seules sont décrites ici les options disponibles pour un noyau
Linux 2.4.9 standard (saveur « vanilla »). Si vous souhaitez connaître d'autres options, je vous suggère de
vous orienter vers les fonctions de patch−o−matic (POM) présentes dans l'espace utilisateur de
Netfilter, qui apportent d'innombrables options supplémentaires. Les correctifs de POM sont des ajouts
qu'il est envisagé d'intégrer au noyau à l'avenir, mais ils ne l'ont pas encore atteint. Les raisons sont variées −
entre le patch qui n'est pas tout à fait stable, l'impossibilité à Linus Torvalds de le maintenir, ou son refus de
l'ajouter à la branche principale de développement du noyau puisqu'il semble encore expérimental.

La liste d'options suivante devra être compilée dans votre noyau, ou ajoutée en tant que modules, pour que le
script rc.firewall.txt fonctionne. Si vous avez besoin d'aide pour les options requises par les autres scripts,
lisez la section sur les exemples de scripts de pare−feux.

CONFIG_PACKET♦
CONFIG_NETFILTER♦
CONFIG_IP_NF_CONNTRACK♦
CONFIG_IP_NF_FTP♦
CONFIG_IP_NF_IRC♦
CONFIG_IP_NF_IPTABLES♦
CONFIG_IP_NF_FILTER♦
CONFIG_IP_NF_NAT♦
CONFIG_IP_NF_MATCH_STATE♦
CONFIG_IP_NF_TARGET_LOG♦
CONFIG_IP_NF_MATCH_LIMIT♦
CONFIG_IP_NF_TARGET_MASQUERADE♦

Une dernière fois, tout ceci est indispensable pour le script rc.firewall.txt. Pour les autres scripts d'exemple,
leurs conditions d'utilisation sont précisées dans leurs sections respectives. Pour l'instant, concentrez−vous sur
le script principal que vous devriez déjà être en train d'étudier.

5.3. Configuration du domaine utilisateur

Avant tout, apprenons à compiler le paquetage iptables. Il est important de réaliser que la configuration et la
compilation d'iptables sont étroitement liées à celles du noyau. Certaines distributions sont fournies avec le
paquetage iptables préinstallé, Red Hat en fait partie. Cependant, sous Red Hat, il est désactivé par défaut.
Nous montrerons comment l'activer, et nous verrons d'autres distributions au cours de ce chapitre.

Didacticiel sur Iptables, version 1.2.0

5.3. Configuration du domaine utilisateur 31

5.3.1. Compilation des applications

Tout d'abord, dépaquetez l'archive d'iptables. Dans le cas présent, le paquetage iptables 1.2.6a est utilisé, ainsi
que le noyau 2.4 (vanilla). Dépaquetez le de manière classique, avec la commande bzip2 −cd
iptables−1.2.6a.tar.bz2 | tar −xvf − (ou avec tar −xjvf iptables−1.2.6a.tar.bz2, qui devrait aboutir au même
résultat ; cependant, ça peut ne pas marcher avec d'anciennes versions de la commande tar). Cette archive doit
être dépaquetée dans un répertoire appelé iptables−1.2.6a. N'hésitez pas à lire le fichier
iptables−1.2.6a/INSTALL qui contient des informations pertinentes sur la compilation et la
préparation à l'exécution du programme.

Ensuite, vous avez la possibilité de configurer et installer les modules et options supplémentaires du noyau.
L'étape décrite à présent vérifie et installe les patches standards en attente d'être intégrés au noyau. Il y a
d'autres patches encore plus expérimentaux, qui devraient être disponibles seulement après certaines étapes.

Note
Certains de ces patches sont particulièrement expérimentaux et les installer pourrait ne pas être une très
bonne idée. Pourtant, il y a une quantité de correspondances et de cibles extrèmement intéressantes lors
de cette étape d'installation, donc n'ayez pas peur d'y jeter un oeil.

Pour finaliser cette étape, il suffit d'exécuter ceci à partir de la racine de l'archive d'iptables :
make pending−patches KERNEL_DIR=/usr/src/linux/

La variable KERNEL_DIR devrait pointer sur l'emplacement des sources du noyau. Normalement, il s'agit de
/usr/src/linux/, mais ça peut changer et vous connaissez sûrement leur localisation.

On vous interroge seulement sur certains patches qui, de toute façon, sont presque entrés dans le noyau. Il
peut y avoir davantage de patches et d'ajouts que les développeurs de Netfilter aimeraient voir ajouter au
noyau, mais qui en sont encore un peu éloignés actuellement. Voici une façon de les installer :

make most−of−pom KERNEL_DIR=/usr/src/linux/

La commande précédente vous interroge sur les éléments à installer − ce que l'on appelle patch−o−matic dans
le monde de Netfilter, mais éviter les patches les plus extrêmes, qui peuvent causer des ravages dans votre
noyau. Observez qu'il est écrit « interroge », parce que c'est le comportement actuel de ces commandes. Elles
vous interrogent avant de modifier quoi que ce soit dans les sources du noyau. Afin de forcer l'installation de
tous les éléments de patch−o−matic, vous devez exécuter la commande suivante :

make patch−o−matic KERNEL_DIR=/usr/src/linux/

N'oubliez pas de lire attentivement l'aide de chaque patch avant de faire quoi que ce soit. Certains patches en
détruisent d'autres, alors que d'autres encore détruisent votre noyau si vous les associez avec certains patches
de patch−o−matic, etc.

Note
Vous pouvez ignorer complètement les étapes précédentes si vous ne souhaitez pas patcher
votre noyau, autrement dit, elles ne sont pas obligatoires. Toutefois, quelques éléments de
patch−o−matic sont tellement intéressants qu'ils méritent votre attention, et il n'y a aucun
danger à exécuter ces commandes pour visualiser leur contenu.

Après cela, vous en avez fini avec l'installation des éléments de patch−o−matic. Vous pouvez maintenant
compiler un nouveau noyau pour vous servir des nouveaux patches que vous avez inclus dans les sources.
N'oubliez pas de reconfigurer le noyau puisque les nouveaux patches ne font certainement pas partie des
options définies. Vous pouvez procéder à la compilation du noyau après celle du programme iptables de
l'espace utilisateur, si ça vous chante.

Didacticiel sur Iptables, version 1.2.0

32 5.3.1. Compilation des applications

Poursuivez en compilant l'application iptables. Pour lancer cette compilation, vous entrez une simple
commande comme ceci :

make KERNEL_DIR=/usr/src/linux/

L'application du domaine utilisateur devrait se compiler sans difficulté. Si ce n'est pas le cas, vous êtes face à
vous−même, ou vous pouvez vous inscrire à la liste de diffusion de Netfilter , où vous avez la chance de
pouvoir demander de l'aide sur vos problèmes. Il y a peu de choses qui peuvent mal tourner dans l'installation
d'iptables, donc ne paniquez pas si ça ne fonctionne pas. Soyez logique et découvrez ce qui cloche, ou bien
trouvez quelqu'un susceptible de vous aider.

Si tout s'est passé en douceur, vous êtes prêt désormais à installer les fichiers binaires. Pour ce faire, vous
devez appliquer la commande suivante :

make install KERNEL_DIR=/usr/src/linux/

Soyons optimiste, tout doit maintenant fonctionner parfaitement dans le programme. Pour exploiter toute
modification de l'application iptables, vous devez à présent recompiler et réinstaller vos noyau et modules, si
ce n'est pas déjà fait. Pour approfondir l'installation des applications à partir des sources, lisez le fichier
INSTALL qui accompagne les sources et contient d'excellentes informations sur le sujet.

5.3.2. Installation sur Red Hat 7.1

Red Hat 7.1 est fournie avec un noyau 2.4.x précompilé avec Netfilter et iptables. Il contient aussi tous
les programmes élémentaires du domaine utilisateur et les fichiers de configuration exigés pour l'exécution.
Cependant, l'équipe de Red Hat a désactivé la totalité en optant pour la rétrocompatibilité avec le module
ipchains. Ennuyé de répéter la même chose, et comme nombre de gens continuent à demander sur différentes
listes de diffusion pourquoi iptables ne marche pas, abordons rapidement comment désactiver le module
d'ipchains pour le remplacer par iptables.

Note
L'installation par défaut de Red Hat 7.1 donne malheureusement une vieille version des applications de
l'espace utilisateur. De fait, vous désirerez certainement compiler une nouvelle version des applications,
associée à un noyau récent et personnalisé avant d'exploiter complètement iptables.

En premier lieu, il faut arrêter le module ipchains de telle sorte qu'il ne démarre plus à l'avenir. Pour cela,
quelques noms de fichiers doivent être changés dans l'arborescence /etc/rc.d/. La commande suivante
devrait suffire :

chkconfig −−level 0123456 ipchains off

Avec ceci, tous les liens symboliques qui pointent vers le script /etc/rc.d/init.d/ipchains sont
déplacés vers K92ipchains. La première lettre, S par défaut, indique de lancer le script de démarrage
(« initscript ») correspondant. La conversion du S en K stipule d'interrompre (« Kill ») le service, ou de ne pas
exécuter le script si le service n'a pas déjà démarré. Dorénavant, le script ne démarrera plus.

D'autre part, pour arrêter dès maintenant le service en cours d'exécution, il est nécessaire de lancer une autre
commande. Il s'agit de la commande service qui permet de manipuler des services en cours d'exécution. Ainsi,
pour stopper le service ipchains, il suffit de faire :

service ipchains stop

Maintenant, il reste à démarrer le service iptables. Tout d'abord, il faut connaître les niveaux d'exécution
(« run−levels ») où l'on veut positionner ce service. Normalement, ça devrait être les niveaux 2, 3 et 5. Ils
servent aux choses suivantes :

Didacticiel sur Iptables, version 1.2.0

5.3.2. Installation sur Red Hat 7.1 33

2. Multi−utilisateur sans NFS ou identique à 3 en l'absence de réseau.♦
3. Mode multi−utilisateur intégral, c.−à−d. le niveau d'exécution normal à lancer♦
5. X11. Utilisé si vous démarrez automatiquement sous Xwindow.♦

On impose de lancer iptables dans ces niveaux d'exécution avec la commande :

chkconfig −−level 235 iptables on

La commande ci−dessus permet de lancer le service iptables dans les niveaux d'exécution 2, 3 et 5. Si vous
désirez qu'il en soit autrement, modifiez la commande en conséquence. Toutefois, aucun des autres niveaux
d'exécution ne devrait être sélectionné, donc vous n'avez pas besoin d'activer iptables pour ces niveaux−là. Le
niveau 1 concerne le mode un seul utilisateur, c−à−d. quand vous devez réparer une machine
dysfonctionnante. Le niveau 4 devrait être inutilisé, et le niveau 6 est réservé à l'extinction de l'ordinateur.

Pour activer le service iptables, lancez simplement la commande :

service iptables start

Initialement, il n'y a aucune règle dans le script iptables. Pour ajouter des règles sur une Red Hat 7.1, il existe
deux méthodes. Premièrement, vous pouvez éditer le script /etc/rc.d/init.d/iptables. Cette
approche a un désagréable inconvénient, celui de voir toutes ses règles effacées si vous mettez à jour le
paquetage iptables par RPM. La deuxième méthode consiste à charger le livre de règles, puis à le sauvegarder
par le biais de la commande iptables−save, et enfin à automatiser son chargement au démarrage avec les
scripts de rc.d.

Tout d'abord, sera décrite la configuration d'iptables avec des manipulations de copier/coller dans le script
iptables du répertoire init.d. Pour ajouter des règles qui seront appliquées au démarrage du service, vous
pouvez les insérer soit derrière la section "start)", soit à l'intérieur de la fonction "start()". Si vous choisissez la
section "start)", vous devez penser à empêcher l'exécution de la fonction "start()" dans cette section. A propos,
songez également à éditer la section "stop)" pour préciser au script les actions à entreprendre soit lorsqu'on
éteint l'ordinateur, soit lorsqu'on active un niveau d'exécution qui ne nécessite pas iptables. Par la même
occasion, n'oubliez pas de vérifier les sections "restart" et "condrestart". Sachez que tout votre travail sera
sûrement effacé si vous avez opté pour "Red Hat Network" qui met à jour automatiquement vos paquetages.
Ce sera aussi le cas avec une mise à jour du paquetage RPM iptables.

La seconde méthode de configuration est décrite ici. En premier lieu, créez un livre de règles qui répond à
votre besoin, et écrivez−le dans un fichier de script shell ou utilisez−le directement avec iptables, mais
n'oubliez pas de l'expérimenter. Lorsque vous trouvez une configuration qui fonctionne sans problème et sans
faille, utilisez la commande iptables−save. Typiquement, vous pouvez faire iptables−save >
/etc/sysconfig/iptables, pour sauvegarder le livre de règles dans le fichier /etc/sysconfig/iptables.
Ce fichier est lu automatiquement par le script iptables de rc.d pour restituer le livre de règles à la demande.
Une autre possibilité est de sauvegarder le script en exécutant service iptables save, qui sauvegarde
automatiquement vers le fichier /etc/sysconfig/iptables. Au prochain démarrage de votre
ordinateur, le script iptables de rc.d fera appel à la commande iptables−restore pour restituer le livre de règles
à partir du fichier sauvegardé /etc/sysconfig/iptables. Ne mélangez pas ces deux méthodes,
susceptibles de se nuire mutuellement et rendre votre pare−feu inopérant.

Une fois toutes ces étapes achevées, vous pouvez désinstaller les paquetages ipchains et iptables. En effet,
ceci permet d'éviter au système tout risque de confusion entre l'application iptables préinstallée et l'application
iptables de l'espace utilisateur. Cette étape n'est utile que si vous installez iptables à partir des fichiers sources.
Il n'y a rien d'inhabituel à voir le nouveau et l'ancien paquetage se mélanger, puisque l'installation à partir de
rpm positionne les fichiers à des emplacements non standards qui ne seront pas écrasés par l'installation du
nouveau paquetage iptables. Pour procéder à la désinstallation, exécutez ceci :

Didacticiel sur Iptables, version 1.2.0

34 5.3.2. Installation sur Red Hat 7.1

rpm −e iptables

D'ailleurs, pourquoi conserver également ipchains s'il n'a plus d'utilité ? Supprimez−le de la même manière
que les vieux fichiers binaires d'iptables avec la commande :

rpm −e ipchains

Finalement, vous avez terminé la mise à jour du paquetage d'iptables à partir des sources, en suivant les
instructions d'installation. Maintenant, plus un seul fichier binaire, de bibliothèque ou de directive d'inclusion
ne devrait résider sur le système.

Chapitre 6. Traversée des tables et des chaînes

Ce chapitre décrit la façon dont les paquets traversent les différentes chaînes, et dans quel ordre. De même, il
explique l'ordre dans lequel les tables sont traversées. Vous percevrez l'importance de ce fonctionnement plus
loin, lors de l'écriture de vos propres règles. D'autres points seront examinés, liés à des éléments dépendants
du noyau, car ils entrent également en considération dans ce chapitre. Entre autres, les différentes décisions de
routage. C'est particulièrement utile si vous voulez écrire des règles pour iptables qui peuvent modifier les
consignes/règles de routage des paquets, c−à−d. pourquoi et comment les paquets sont routés; le DNAT et le
SNAT sont des exemples caractéristiques. Bien sûr, il ne faut pas oublier les bits de TOS.

6.1. Généralités

Quand un paquet arrive pour la première fois dans un pare−feu, il rencontre le niveau matériel, puis il est
recueilli par le pilote de périphérique approprié au sein du noyau. Ensuite, le paquet enchaîne une succession
d'étapes dans le noyau, avant d'être envoyé à l'application adéquate (localement), ou expédié à un autre hôte −
ou quoi que ce soit d'autre.

D'abord, analysons un paquet destiné à la machine locale. Il enchaîne les étapes suivantes avant d'être
réellement délivré à l'application qui le reçoit :

Tableau 6.1. Hôte local destinataire (votre propre machine)

Étape Table Chaîne Commentaire

1 Sur le câble (ex. Internet)

2 Arrive sur l'interface (ex. eth0)

3 mangle PREROUTING Cette chaîne sert normalement à modifier les paquets, i.e. changer les bits
de TOS, etc.

4 nat PREROUTING Cette chaîne sert principalement au DNAT. Évitez de filtrer dans cette
chaîne puisqu'elle est court−circuitée dans certains cas.

5 Décision de routage, i.e. le paquet est−il destiné à notre hôte local, doit−il
être réexpédié et où ?

6 mangle INPUT
Ici, il atteint la chaîne INPUT de la table mangle. Cette chaîne permet de
modifier les paquets, après leur routage, mais avant qu'ils soient
réellement envoyés au processus de la machine.

7 filter INPUT

C'est l'endroit où est effectué le filtrage du trafic entrant à destination de la
machine locale. Notez bien que tous les paquets entrants et destinés à votre
hôte passent par cette chaîne, et ceci quelle que soit leur interface ou leur
provenance d'origine.

Didacticiel sur Iptables, version 1.2.0

Chapitre 6. Traversée des tables et des chaînes 35

8 Processus/application local (i.e. programme client/serveur)

Remarquez que cette fois, le paquet est transmis à travers la chaîne INPUT au lieu de la chaîne FORWARD.
C'est parfaitement logique. Et c'est certainement la seule chose logique à vos yeux dans le parcours des tables
et des chaînes pour le moment, mais si vous continuez d'y réfléchir, vous trouverez ceci de plus en plus clair
au fur et à mesure.

À présent, analysons les paquets sortant de notre hôte local et les étapes qu'ils enchaînent.

Tableau 6.2. Hôte local source (votre propre machine)

Étape Table Chaîne Commentaire

1 Processus/application local (i.e. programme client/serveur)

2
Décision de routage. Quelle adresse source doit être utilisée, quelle
interface de sortie, et d'autres informations nécessaires qui doivent être
réunies.

3 mangle OUTPUT

C'est là où les paquets sont modifiés. Il est conseillé de ne pas filtrer dans
cette chaîne, à cause de certains effets de bord. C'est aussi où le traçage
de connexion généré localement prend place, nous verrons celà dans le
chapitre La machine d'état.

4 nat OUTPUT Cette chaîne permet de faire du NAT sur des paquets sortant du
pare−feu.

5 Décision de routage, comment les modifications des mangle et nat
précédents peuvent avoir changé la façon dont les paquets seront routés.

6 filter OUTPUT C'est de là que les paquets sortent de l'hôte local.

7 mangle POSTROUTING

La chaîne POSTROUTING de la table mangle est principalement utilisée
lorsqu'on souhaite modifier des paquets avant qu'ils quittent la machine
mais après les décisions de routage. Cette chaîne est rencontrée d'une
part par les paquets qui ne font que transiter par le pare−feu, d'autre part
par les paquets créés par le pare−feu lui−même.

8 nat POSTROUTING
C'est ici qu'est effectué le SNAT. Il est conseillé de ne pas filtrer à cet
endroit à cause des effets de bord, certains paquets peuvent se faufiler
même si un comportement par défaut a été défini pour la cible DROP.

9 Sort par une certaine interface (ex. eth0)

10 Sur le câble (ex. Internet)

Dans cet exemple, on suppose que le paquet est destiné à un autre hôte sur un autre réseau. Le paquet parcourt
les différentes étapes de la façon suivante :

Tableau 6.3. Paquets redirigés

Étape Table Chaîne Commentaire

1 Sur le câble (ex. Internet)

2 Arrive sur l'interface (ex. eth0)

3 mangle PREROUTING

Cette chaîne est typiquement utilisée pour modifier les
paquets, i.e. changer les bits de TOS, etc. C'est ici aussi que
le traçage de connexion généré non−localement prend place,
nous verrons celà dans le chapitre La machine d'état.

Didacticiel sur Iptables, version 1.2.0

36 6.1. Généralités

4 nat PREROUTING
Cette chaîne sert principalement à réaliser du DNAT. Le
SNAT est effectué plus loin. Evitez de filtrer dans cette
chaîne car elle peut être court−circuitée dans certains cas.

5 Décision de routage, c−à−d. le paquet est−il destiné à votre
hôte local, doit−il être redirigé et où ?

6 mangle FORWARD

Le paquet est alors envoyé à la chaîne FORWARD de la table
mangle. C'est utile pour des besoins très spécifiques, lorsque
l'on souhaite modifier des paquets après la décision de
routage initiale, mais avant la décision de routage finale
effectuée juste avant l'envoi du paquet.

7 filter FORWARD

Le paquet est routé vers la chaîne FORWARD. Seuls les
paquets réexpédiés arrivent ici, et c'est ici également que
tout le filtrage est effectué. Notez bien que tout trafic
redirigé passe par ici (et pas seulement dans un sens), donc
vous devez y réfléchir en rédigeant vos règles.

8 mangle POSTROUTING

Cette chaîne est employé pour des formes particulières de
modification de paquets, que l'on veut appliquer
postérieurement à toutes les décisions de routage, mais
toujours sur cette machine.

9 nat POSTROUTING

Cette chaîne est employé pour des formes particulières de
modification de paquets, que l'on veut appliquer
postérieurement à toutes les décisions de routage, mais
toujours sur cette machine

10 Sort par l'interface de sortie (ex. eth1).

11 Sort de nouveau par le câble (ex. LAN).

Comme vous pouvez le constater, il y a de nombreuses étapes à franchir. Un paquet peut être arrêté dans
n'importe quelle chaîne d'iptables, et même ailleurs s'il est malformé. Pourtant, il est intéressant de se pencher
sur le sort du paquet vu par iptables. Remarquez qu'aucune chaîne ou table spécifique n'est définie pour des
interfaces différentes, ou quoi que ce soit de semblable. La chaîne FORWARD est systématiquement parcourue
par les paquets qui sont redirigés par l'intermédiaire de ce pare−feu/routeur.

Attention
N'utilisez pas la chaîne INPUT pour filtrer dans le scénario précédent ! INPUT n'a de sens que pour des
paquets destinés à votre hôte local, autrement dit qui ne seront routés vers aucune autre destination.

Maintenant, vous avez découvert comment les différentes chaînes sont traversées selon trois scénarios
distincts. On peut en donner une représentation graphique :

Didacticiel sur Iptables, version 1.2.0

6.1. Généralités 37

Pour être plus clair, ce dessin mérite quelques explications. Si un paquet atteignant la première décision de
routage n'est pas destiné à la machine locale, il sera orienté vers la chaîne FORWARD. Par contre, s'il est
destiné à une adresse IP que la machine écoute, ce paquet sera envoyé vers la chaîne INPUT, et donc à la
machine locale.

Il est important de remarquer que même si des paquets sont destinés à la machine locale, leur adresse de
destination peut être modifiée à l'intérieur de la chaîne PREROUTING par une opération de NAT. En effet,
puisque ceci a lieu avant la première décision de routage, le paquet ne sera examiné qu'après un éventuel
changement. A cause de cette particularité, le routage peut être altéré avant que la décision de routage ne soit
prise. Notez bien que tous les paquets transiteront par l'un ou l'autre des chemins de ce dessin. Si vous réalisez
du DNAT sur un paquet pour le renvoyer sur le réseau duquel il provient, il continuera malgré tout sa route à
travers les chaînes restantes jusqu'à ce qu'il retourne sur le réseau externe.

Astuce
Si vous pensez avoir besoin d'informations supplémentaires, vous pouvez utiliser le script
rc.test−iptables.txt. Ce script de test devrait vous procurer des règles suffisantes pour expérimenter et
comprendre de quelle façon les tables et les chaînes sont traversées.

6.2. La table mangle

Comme il a déjà été précisé, le rôle principal de cette table devrait être de modifier des paquets. En d'autres
termes, vous pouvez utiliser en toute liberté les correspondances de la table mangle, qui permettent de changer
les champs de TOS (type de service), et d'autres.

Attention
Vous avez été suffisamment prévenus de ne pas utiliser cette table pour effectuer du filtrage ; de même,
les opérations de DNAT, de SNAT ou de camouflage ne fonctionnent pas dans cette table.

Les cibles suivantes sont valides uniquement dans la table mangle :

TOS♦

Didacticiel sur Iptables, version 1.2.0

38 6.2. La table mangle

TTL♦
MARK♦

La cible TOS permet de définir et/ou modifier le champ de Type de Service d'un paquet. C'est utile pour
définir des stratégies réseau concernant le choix de routage des paquets. Sachez que, d'une part ceci n'a pas été
perfectionné, d'autre part ce n'est pas vraiment implémenté sur Internet car la majorité des routeurs ne se
préoccupe pas de ce champ, et quelquefois même, ils adoptent un comportement erroné. Bref, ne configurez
pas ce champ sur les paquets qui naviguent sur Internet, sauf si vous souhaitez leur appliquer des décisions de
routage, avec iproute2.

La cible TTL permet de modifier le champ durée de vie ou TTL ("Time To Live") d'un paquet. Il est possible
par exemple de spécifier aux paquets d'avoir un champ TTL spécifique. Ceci peut se justifier lorsque vous ne
souhaitez pas être rejeté par certains Fournisseurs d'Accès à Internet (FAI) trop indiscrets. En effet, il existe
des FAI qui désapprouvent les utilisateurs branchant plusieurs ordinateurs sur une même connexion, et de fait,
quelques−uns de ces FAI sont connus pour inspecter si un même hôte génère différentes valeurs TTL,
supposant ainsi que plusieurs machines sont branchées sur la même connexion.

La cible MARK permet d'associer des valeurs de marquage particulières aux paquets. Elles peuvent ensuite
être identifiées par les programmes iproute2 pour appliquer un routage différent en fonction de l'existence ou
l'absence de telle ou telle marque. On peut ainsi réaliser de la restriction de bande passante et de la gestion
de priorité ("Class Based Queuing").

6.3. La table nat

Cette table devrait être utilisée seulement pour effectuer de la traduction d'adresse réseau (NAT) sur différents
paquets. Autrement dit, elle ne devrait servir qu'à traduire le champ de l'adresse source d'un paquet ou celui de
l'adresse destination. Précisons à nouveau que seul le premier paquet d'un flux rencontrera cette chaîne.
Ensuite, les autres paquets subiront automatiquement le même sort que le premier. Voici les cibles actuelles
capables d'accomplir ce genre de choses :

DNAT♦
SNAT♦
MASQUERADE♦
REDIRECT♦

La cible DNAT est généralement utile dans le cas où vous détenez une adresse IP publique et que vous désirez
rediriger les accès vers un pare−feu localisé sur un autre hôte (par exemple, dans une zone démilitarisée ou
DMZ). Concrètement, on change l'adresse de destination du paquet avant de le router à nouveau vers l'hôte
désigné.

La cible SNAT est quant à elle employée pour changer l'adresse de source des paquets. La plupart du temps,
vous dissimulerez votre réseau local ou votre DMZ, etc. Un très bon exemple serait donné par un pare−feu
pour lequel l'adresse externe est connue, mais qui nécessite de substituer les adresses IP du réseau local avec
celle du pare−feu. Avec cette cible, le pare−feu effectuera automatiquement sur les paquets du SNAT dans un
sens et du SNAT inverse dans l'autre, rendant possible les connexions d'un réseau local sur Internet. A
titre d'exemple, si votre réseau utilise la famille d'adresses 192.168.0.0/masque_réseau, les paquets envoyés
sur Internet ne reviendront jamais, parce que l'IANA (institut de régulation des adresses) a considéré ce réseau
(avec d'autres) comme privé, et a restreint son usage à des LANs isolés d'Internet.

La cible MASQUERADE s'utilise exactement de la même façon que la cible SNAT, mais la cible
MASQUERADE demande un peu plus de ressources pour s'exécuter. L'explication vient du fait que chaque
fois qu'un paquet atteint la cible MASQUERADE, il vérifie automatiquement l'adresse IP à utiliser, au lieu de
se comporter comme la cible SNAT qui se réfère simplement à l'unique adresse IP configurée. Par
conséquent, la cible MASQUERADE permet de faire fonctionner une système d'adressage IP dynamique sous

Didacticiel sur Iptables, version 1.2.0

6.3. La table nat 39

DHCP, que votre FAI devrait vous procurer pour des connexions à Internet de type PPP, PPPoE ou SLIP.

6.4. La table filter

La table filter sert principalement à filtrer les paquets. On peut établir une correspondance avec des
paquets et les filtrer comme on le désire. C'est l'endroit prévu pour intervenir sur les paquets et analyser leur
contenu, c'est−à−dire les détruire (avec la cible DROP) ou les accepter (avec ACCEPT) suivant leur contenu.
Bien entendu, il est possible de réaliser préalablement du filtrage ; malgré tout, cette table a été spécialement
conçue pour ça. Presque toutes les cibles sont utilisables dans celle−ci. D'autres informations seront données
sur la table filter, cependant vous savez maintenant que c'est l'emplacement idéal pour effectuer votre filtrage
principal.

Chapitre 7. La machine d'état

Ce chapitre aborde et explique en détails la machine d'état. Après avoir lu ceci, vous devriez avoir pleinement
compris son fonctionnement. Vous parcourerez un nombre important d'exemples sur la façon dont les états
sont traités par la machine d'état elle−même. Ces cas concrets devraient vous éclairer parfaitement.

7.1. Introduction

La machine d'état correspond à une partie spéciale à l'intérieur d'iptables. En fait, elle porte très mal son nom
puisqu'il s'agit en réalité d'une machine de traçage de connexion. Cependant, la plupart des gens la connaissent
sous la première appellation. Au cours de ce chapitre, les deux noms sont utilisés indistinctement comme ils
sont synonymes. Ceci ne devrait pas trop vous perturber. Le traçage de connexion est effectué afin que
l'architecture de Netfilter puisse connaître l'état d'une connexion spécifique. Les pare−feux qui implémentent
ceci sont habituellement appelés pare−feux à état. Un pare−feu à état est généralement bien plus sûr qu'un
pare−feu sans état, puisqu'il impose une plus grande rigueur sur l'écriture des livres de règles.

Dans iptables, les paquets peuvent être reliés aux connexions tracées dans quatre états différents, qui sont
connus sous les noms de NEW, ESTABLISHED, RELATED et INVALID. Chacun de ces états sera
approfondi plus loin. Avec la correspondance −−state, il est facile de contrôler qui, ou ce qui, est autorisé à
démarrer de nouvelles sessions.

L'intégralité du traçage de connexion est effectué par une structure particulière à l'intérieur du noyau appelée
conntrack. La structure conntrack peut soit être chargée comme un module, soit être interne au noyau. La
plupart du temps, on a besoin de fonctions supplémentaires de traçage de connexion autres que celles
proposées par défaut dans le moteur conntrack. De ce fait, des parties spécifiques de conntrack prennent en
charge les protocoles TCP, UDP et ICMP. Ces modules capturent des informations spécifiques et uniques sur
les paquets, afin de pouvoir tracer chaque flux de données. L'information récupérée par conntrack lui permet
de connaître l'état dans lequel se trouve chaque flux actuellement. Par exemple, un flux UDP est, en général,
identifié uniquement par son adresse IP destination , son adresse IP source, son port
destination et son port source .

Dans les noyaux précédents, il était possible d'activer ou désactiver la défragementation. Cependant, depuis
qu'iptables et Netfilter ont été incorporés avec, en particulier, le traçage de connexion, cette option a disparu.
La raison en est simple, le traçage de connexion ne peut pas fonctionner correctement sans défragmenter les
paquets, par conséquent la défragmentation a été intégrée dans conntrack, et elle est réalisée automatiquement.
Elle ne peut donc plus être désactivée, sauf en désactivant le traçage de connexion. En définitive, la
défragmentation a toujours cours si le traçage de connexion est actif.

Le traçage de connexion est entièrement pris en charge dans la chaîne PREROUTING, sauf pour les paquets
générés en local, qui sont pris en charge dans la chaîne OUTPUT. Ceci signifie qu'iptable effectue tous les
calculs d'état dans la chaîne PREROUTING. Si on envoie le premier paquet d'un flux, l'état est défini comme

Didacticiel sur Iptables, version 1.2.0

40 6.4. La table filter

NEW dans la chaîne OUTPUT, et quand on reçoit un paquet de réponse, l'état passe à ESTABLISHED, et
ainsi de suite. Si le premier paquet n'est pas envoyé par nous−mêmes, l'état NEW est naturellemt défini dans
la chaîne PREROUTING. Ainsi, tous les changements d'état et calculs sont réalisés dans les chaînes
PREROUTING et OUTPUT de la table nat.

7.2. Les entrées de conntrack

Examinons rapidement le contenu d'une donnée d'entrée de conntrack et lisons−la dans
/proc/net/ip_conntrack. Ce lien contient une liste de toutes les entrées actuelles de la base de
données de conntrack. Si vous avez chargé le module ip_conntrack, faites un cat de
/proc/net/ip_conntrack pour obtenir quelque−chose comme ceci :

tcp 6 117 SYN_SENT src='1'92.168.1.6 dst='1'92.168.1.9 sport=32775 \
 dport='2'2 [UNREPLIED] src='1'92.168.1.9 dst='1'92.168.1.6 sport='2'2 \
 dport=32775 [ASSURED] use='2'

Cet exemple contient toute l'information gérée par le module conntrack pour savoir dans quel état se trouve
une connexion. Tout d'abord, il y a le protocole, ici tcp. Ensuite, encore le protocole mais codé en décimal.
Après cela, on voit combien de temps doit survivre cette entrée de conntrack. La valeur à cet instant est de 117
secondes, et elle est decrémentée régulièrement jusqu'à ce qu'on voit à nouveau du trafic pour cette connexion.
Cette valeur est alors réinitialisée à la valeur par défaut pour l'état en question à cet instant donné. Ensuite
vient l'état actuel de cette entrée. Dans le cas présenté ci−dessus, on visualise une connexion qui est dans l'état
SYN_SENT. La valeur interne d'une connexion est légèrement différente de celles utilisées en externe avec
iptables. La valeur SYN_SENT indique que cette connexion a seulement vu un paquet TCP SYN dans une
direction. Puis, on voit l'adresse IP source, l'adresse IP destination, le port source et le
port destination. Arrivé à ce niveau, on voit un mot−clé spécifique qui signale qu'aucun trafic n'a été
observé en retour pour cette connexion. Enfin, on voit ce qui est attendu pour les paquets de réponse. Entre
autres, l'adresse IP source et l'adresse IP destination (qui sont inversées, puisque le paquet
attendu doit être dirigé dans l'autre sens). La même chose s'applique aux port source et port
destination de la connexion. Ces valeurs nous intéressent particulièrement.

Les entrées du traçage de connexion peuvent prendre un ensemble de valeurs différentes, toutes spécifiées
dans les en−têtes de conntrack et disponibles dans les fichiers
linux/include/netfilter−ipv4/ip_conntrack*.h. Ces valeurs dépendent du sous−protocole
IP qu'on utilise. Les protocoles TCP, UDP et ICMP correspondent à des valeurs fixées et spécifiées dans le
fichier linux/include/netfilter−ipv4/ip_conntrack.h. Ceci sera analysé plus en détails lors
de l'analyse de chaque protocole ; cependant, ils ne seront pas employés intensivement dans ce chapitre,
puisqu'ils ne sont pas utilisés en dehors du fonctionnement interne de conntrack. Ainsi, en fonction de
l'évolution de cet état, on change la valeur du temps restant avant la destruction de la connexion.

Note
Récemment, un nouveau patch est devenu disponible dans patch−o−matic,
appelé tcp−window−tracking. Il ajoute, entre autres, toutes les temporisations
précitées aux variables spéciales sysctl, ce qui signifie qu'elles peuvent être
modifiées à la volée, alors que le système est toujours en fonctionnement. Par
conséquent, il ne devient plus indispensable de recompiler le noyau à chaque
changement dans les temporisations.

Tout ceci peut être modifié par le biais d'appels système spécifiques,
disponibles dans le répertoire /proc/sys/net/ipv4/netfilter. Vous
devriez regarder en particulier les variables
/proc/sys/net/ipv4/netfilter/ip_ct_*.

Didacticiel sur Iptables, version 1.2.0

7.1. Introduction 41

Quand une connexion a observé du trafic dans les deux directions, l'entrée de conntrack efface le fanion
[UNREPLIED] , et donc le réinitialise. Elle le remplace par le fanion [ASSURED], vers la fin. Il signale que
cette connexion est confirmée, donc elle ne sera pas supprimée si on atteint le maximum de connexions
tracées possible. En fait, les connexions estampillées [ASSURED] ne seront pas supprimées, au contraire des
connexions non confirmées (sans le fanion [ASSURED]). Le nombre maximum de connexions gérées par la
table de traçage de connexion dépend d'une variable qui peut être définie à l'aide de la fonction ip−sysctl dans
les noyaux récents. La valeur par défaut prise en charge varie fortement avec la quantité de mémoire
disponible. Avec 128 Mo de RAM, vous pourrez avoir 8192 entrées possibles, et avec 256 Mo, ce sera 16376
entrées. Vous pouvez lire et définir vos réglages à l'aide de
/proc/sys/net/ipv4/ip_conntrack_max.

Un moyen différent de faire ceci, plus efficace, est de placer la taille de la fonction de hachage pour le module
ip_conntrack une fois qu'il est chargé. Dans des circonstances normales ip_conntrack_max égale 8 * la
taille de la fonction de hachage. En d'autres termes, placer cette taille à 4096 fera que ip_conntrack_max aura
32768 entrées conntrack. Un exemple de ce qui pourrait être :

work3:/home/blueflux# modprobe ip_conntrack hashsize=4096
work3:/home/blueflux# cat /proc/sys/net/ipv4/ip_conntrack_max
32768
work3:/home/blueflux#

7.3. États de l'espace utilisateur

Comme vous l'avez vu, les paquets peuvent prendre différents états à l'intérieur du noyau, en fonction du
protocole considéré. Cependant, à l'extérieur du noyau, seuls 4 états sont disponibles, comme c'est expliqué
précédemment. Ces états peuvent être associés à la correspondance state qui est capable de sélectionner les
paquets à partir de l'état actuel du traçage de connexion. Les états valides sont NEW, ESTABLISHED,
RELATED et INVALID. Le tableau suivant décrit brièvement chacun d'eux.

Tableau 7.1. États de l'espace utilisateur

État Explication

NEW

L'état NEW indique que le paquet est le premier de la connexion. Cela signifie que, pour
une connexion donnée, le premier paquet que le module conntrack aperçoit est
sélectionné. Par exemple, si on rencontre un paquet SYN et que c'est le premier paquet
d'une connexion, on établit la correspondance. Cependant, le paquet peut aussi ne pas être
de type SYN et considéré tout de même dans l'état NEW. Ceci peut s'avérer problématique
dans certaines situations, mais peut aussi être extrêmement utile quand on doit récupérer
les connexions perdues issues d'autres pare−feux, ou quand une connexion a dépassé son
temps de survie, mais n'est pas réellement fermée.

ESTABLISHED

L'état ESTABLISHED résulte de l'observation d'un trafic dans les deux sens, et donc
établit une correspondance avec ce type de paquets. Les connexions établies
(ESTABLISHED) sont particulièrement simple à comprendre. La seule condition pour
entrer dans l'état ESTABLISHED est qu'un hôte ayant envoyé un paquet reçoive plus tard
une réponse de l'hôte destinataire de ce paquet. A la réception du paquet de réponse, l'état
NEW est transformé en ESTABLISHED. Les messages d'erreur et de redirection ICMP
peuvent aussi être considérés comme ESTABLISHED, si on a généré un paquet qui en
retour génère le message ICMP.

RELATED L'état RELATED est un des états les plus astucieux. Une connexion est considérée
comme RELATED quand elle est liée à une autre connexion déjà établie, donc dans l'état
ESTABLISHED. Ainsi, pour qu'une connexion soit identifiée comme RELATED, on
doit tout d'abord disposer d'une autre dans l'état ESTABLISHED. La connexion

Didacticiel sur Iptables, version 1.2.0

42 7.2. Les entrées de conntrack

ESTABLISHED crée alors une connexion extérieure à la connexion principale. La
nouvelle connexion créée est donc considérée comme RELATED, si le module conntrack
l'identifie comme en relation avec l'autre. Les exemples suivants peuvent être considérés
comme RELATED : les connexions FTP−data sont liées au port FTP control, et les
connexions DCC interviennent par l'intermédiaire de IRC. Ceci permet d'utiliser des
réponses ICMP, des transferts FTP et des DCC pour travailler convenablement à travers
un pare−feu. Remarquez que la plupart des protocoles TCP et certains protocoles UDP qui
reposent sur ce mécanisme sont particulièrement complexes. Ils envoient des informations
de connexion à l'intérieur des données utiles, qui par conséquent requièrent des modules
helper spécifiques pour être correctement interprétées.

INVALID

L'état INVALID signifie que le paquet ne peut pas être identifié ou qu'il n'a aucun état
connu. Il peut y avoir plusieurs raisons à cela : par exemple, un système en dépassement
de mémoire ou des messages d'erreur ICMP ne répondant à aucune connexion connue.
Généralement, il est préférable de détruire tout ce qui se trouve dans cet état.

Ces états peuvent être utilisés avec la correspondance −−state pour sélectionner des paquets à partir de leur
état de traçage de connexion. C'est ce qui rend la machine d'état si puissante et efficace pour votre pare−feu.
Auparavant, nous devions souvent ouvrir tous les ports supérieurs à 1024 pour permettre le trafic inverse à
destination de notre réseau local. Avec la machine d'état à l'oeuvre, ce n'est plus nécessaire, puisqu'il est
possible d'ouvrir le pare−feu pour les réponses sans l'ouvrir pour le reste du trafic.

7.4. Connexions TCP

Dans cette section et les suivantes, nous examinons davantage les états et comment ils sont gérés pour les trois
protocoles élémentaires TCP, UDP et ICMP. Nous verrons aussi comment les états sont gérés par défaut, s'ils
ne peuvent être assimilés à un quelconque de ces trois protocoles. Nous choisissons de démarrer avec le
protocole TCP comme c'est un protocole à état en lui−même, avec nombre de caractéristiques intéressantes en
rapport avec la machine d'état d'iptables.

Une connexion TCP démarre toujours avec l'établissement d'une liaison en 3 phases, qui met en place et
négocie la connexion qui servira pour le transfert des données. Toute la session commence par un paquet SYN,
suivi d'un paquet SYN/ACK et se termine par un paquet ACK pour accuser réception de l'établissement de la
session. A cet instant, la connexion est établie et prête à envoyer des données. La problème est le suivant :
comment le traçage de connexion peut−il s'accrocher à cette étape ? En fait, très simplement.

En ce qui concerne l'utilisateur, le traçage de connexion fonctionne de façon identique pour tout type de
connexion. Observez le schéma ci−dessous pour comprendre dans quel état se trouve le flux aux différentes
étapes de la connexion. Comme vous le voyez, le code du traçage de connexion ne suit pas vraiment les étapes
de la connexion TCP du point de vue de l'utilisateur. Dès qu'un paquet SYN arrive, il considère la connexion
comme nouvelle (NEW). Dès qu'un paquet de réponse SYN/ACK est observé, il considère la connexion
comme établie (ESTABLISHED). Si vous réfléchissez une seconde, vous comprendrez pourquoi. Avec cette
implémentation particulière, vous pouvez autoriser des paquets NEW et ESTABLISHED à quitter votre
réseau local, et autoriser seulement des connexions ESTABLISHED en retour, et ça fonctionnera sans
problème. A contrario, si la machine de traçage de connexion considérait l'établissement complet de la
connexion comme NEW, il serait impossible d'arrêter les connexions issues de l'extérieur vers le réseau local,
puisqu'il faudrait à nouveau autoriser le retour de paquets NEW. Pour rendre les choses encore plus
compliquées, il existe de nombreux autres états internes qui sont utilisés pour les connexions TCP à l'intérieur
du noyau, mais qui ne sont pas disponibles dans l'espace utilisateur. Brièvement, ils respectent les états
standards spécifiés dans le document RFC 793 − Transmission Control Protocol aux pages 21−23.

Didacticiel sur Iptables, version 1.2.0

7.3. États de l'espace utilisateur 43

Comme vous pouvez le voir, c'est tout à fait simple, du point de vue de l'utilisateur. Cependant, en regardant
la construction complète du point de vue du noyau, c'est un peu plus difficile. Voyons un exemple. Regardons
exactement comment les états de connexion changent dans la table /proc/net/ip_conntrack. Le
premier état est rapporté sur le reçu d'un premier paquet SYN dans la connexion.

tcp 6 117 SYN_SENT src='1'92.168.1.5 dst='1'92.168.1.35 sport='1'031 \
 dport='2'3 [UNREPLIED] src='1'92.168.1.35 dst='1'92.168.1.5 sport='2'3 \
 dport='1'031 use='1'

Comme nous l'indique l'entrée ci−dessus, nous avons un état précis dans lequel un paquet SYN a été envoyé,
(le drapeau SYN_SENT est placé), et pour lequel aucune réponse n'a été envoyée (en témoigne le drapeau
[UNREPLIED]). L'état interne suivant sera joint quand nous verrons un autre paquet dans l'autre direction.

tcp 6 57 SYN_RECV src='1'92.168.1.5 dst='1'92.168.1.35 sport='1'031 \
 dport='2'3 src='1'92.168.1.35 dst='1'92.168.1.5 sport='2'3 dport='1'031 \
 use='1'

Maintenant nous avons reçu un SYN/ACK correspondant en retour. Dès que ce paquet a été reçu, l'état change
encore une fois, cette fois vers SYN_RECV. SYN_RECV nous indique que le SYN d'origine a été délivré
correctement et que le SYN/ACK en retour passe aussi à travers le pare−feu proprement. D'ailleurs, cette
entrée de traçage de connexion a vu le trafic dans les deux directions et considère désormais qu'il y a été
répondu. Ceci n'est pas explicite, mais nous assumons, comme l'était le drapeau [UNREPLIED] au−dessus.
L'étape finale sera atteinte lorsque nous aurons vu le ACK dans l'établissement d'une liaison à trois voies.

tcp 6 431999 ESTABLISHED src='1'92.168.1.5 dst='1'92.168.1.35 \
 sport='1'031 dport='2'3 src='1'92.168.1.35 dst='1'92.168.1.5 \
 sport='2'3 dport='1'031 [ASSURED] use='1'

Dans le dernier exemple, nous avons obtenu le ACK final dans l'établissement d'une liaison à trois voies et la
connexion a pris l'état ESTABLISHED, pour autant que les mécanismes internes de Iptables soient avisés.
Normalement, le flux de données sera ASSURED maintenant.

Une connexion peut aussi être dans l'état ESTABLISHED, mais pas [ASSURED]. Ceci survient lorsque nous
avons une connexion captée ouverte (nécessite la patch tcp−window−tracking et le ip_conntrack_tcp_loose
placé à 1 ou plus haut). Par défaut, sans la patch tcp−window−tracking, c'est ce comportement qui s'applique,
et il n'est pas modifiable.

Quand une connexion TCP est close, elle est faite de cette façon et prend les états suivants.

Didacticiel sur Iptables, version 1.2.0

44 7.4. Connexions TCP

Comme vous pouvez le voir, la connexion n'est jamais réellement fermée jusqu'à ce que le ACK soit envoyé.
Notez que cette figure décrit simplement comment elle est fermée dans des circonstances normales. Une
connexion peut aussi, par exemple, être fermée par l'envoi d'un RST (reset), si celle−ci a été refusée. Dans ce
cas, la connexion sera fermée immédiatement.

Quand la connexion TCP a été fermée, elle entre dans l'état TIME_WAIT, qui est, par défaut, de 2 minutes.
Ceci est utilisé pour que tous les paquets sortis puissent encore passer à travers notre table de règles, même
après que la connexion soit fermée. Ceci est employé comme une sorte de tampon pour que les paquets qui
ont été immobilisés dans un ou d'autres routeurs engorgés puissent encore passer le pare−feu, ou vers une
autre fin de connexion.

Si la connexion est réinitialisée par un paquet RST, l'état est modifié en CLOSE. Ce qui indique que la
connexion a, par défaut, 10 secondes avant que la connexion complète soit fermée définitivement. Les paquets
RST ne sont pas reconnus dans aucun sens, et couperont la connexion directement. Il existe aussi d'autres états
que ceux dont nous avons parlé. Voici une liste complète des états qu'un flux TCP peut prendre, et leurs
valeurs de délai d'attente.

Tableau 7.2. États internes

État Délai

NONE 30 minutes

ESTABLISHED 5 jours

SYN_SENT 2 minutes

SYN_RECV 60 secondes

FIN_WAIT 2 minutes

TIME_WAIT 2 minutes

CLOSE 10 secondes

CLOSE_WAIT 12 heures

LAST_ACK 30 secondes

LISTEN> 2 minutes

Ces valeurs ne sont pas absolues. Elles peuvent changer en fonction des versions du noyau, et également par
le système de fichiers dans les variables /proc/sys/net/ipv4/netfilter/ip_ct_tcp_*. Les
valeurs par défaut seront, cependant, justes en pratique. Ces valeurs sont établies en secondes.

Note
Notez aussi que le domaine utilisateur de la machine d'état ne doit pas voir les drapeaux TCP (i.e., RST,
ACK et SYN sont des drapeaux) placés dans les paquets TCP. C'est généralement pas recommandé, car

Didacticiel sur Iptables, version 1.2.0

7.4. Connexions TCP 45

vous pourriez autoriser les paquets dans l'état NEW à traverser le pare−feu, mais quand vous spécifiez le
drapeau NEW, vous indiquez les paquets SYN.

Ce n'est pas ce qui se produit avec l'implémentation de l'état; ce qui veut dire, même un paquet avec
aucun bit de placé ou un drapeau ACK, sera compté comme NEW. Ceci peut être utilisé pour faire de la
redondance de pare−feu, mais c'est en général très déconseillé pour un réseau domestique, dans lequel
vous avez un seul pare−feu. Pour en savoir plus vous pouvez utiliser la commande expliquée dans la
section Paquets état NEW sans bit SYN placé de l'annexe Problèmes et questions courants. Un autre
moyen est d'installer l'extension tcp−window−tracking depuis patch−o−matic, et de placer
/proc/sys/net/ipv4/netfilter/ip_conntrack_tcp_loose à zéro, le pare−feu effacera
tous les paquets NEW en ayant le drapeau SYN placé.

7.5. Connexions UDP

Les connexions UDP ne sont pas des connexions à part entière, mais plutôt des connexions "apatrides". Il y a
plusieurs raisons pour cela, la principale parce qu'elles ne contiennent aucun établissement ou fermeture de
connexion; la plupart n'ont pas de liaison. En recevant deux datagrammes UDP dans un ordre spécifique, on
ne peut savoir dans quel ordre ils ont été envoyés. Cependant, il est toujours possible de placer des états sur
les connexions dans le noyau. Voyons comment une connexion peut être tracée et à quoi elle ressemblerait
dans le conntrack.

Comme on peut le voir, la connexion circule presque exactement de la même façon qu'une connexion TCP.
Ceci, du point de vue de l'utilisateur. En interne, l'information conntrack est un peu différente, mais
intrinsèquement les détails sont les mêmes. Premièrement, regardons les entrées après que le paquet UDP
initial ait été envoyé.

udp 17 20 src='1'92.168.1.2 dst='1'92.168.1.5 sport='1'37 dport='1'025 \
 [UNREPLIED] src='1'92.168.1.5 dst='1'92.168.1.2 sport='1'025 \
 dport='1'37 use='1'

Comme vous pouvez le voir entre la première et deuxième valeur, c'est un paquet UDP. Le premier est le nom
du protocole, le second le numéro du protocole. C'est identique pour une connexion TCP. La troisième valeur
indique combien de secondes cet état s'est maintenu. Après cela, nous avons les valeurs du paquet que nous
avons vu et les probabilités que les paquets sur cette connexion nous joignent depuis l'expéditeur. Ce sont la
source, la destination, le port source et le port destination. À ce point le drapeau [UNREPLIED] nous indique
qu'il n'y a pas eu de réponse au paquet. Enfin, nous avons une courte liste de probabilités de retour de paquets.
Notez que les dernières entrées sont en ordre inverse des premières valeurs. Le délai d'attente est de 30
secondes dans ce cas, par défaut.

udp 17 170 src='1'92.168.1.2 dst='1'92.168.1.5 sport='1'37 \
 dport='1'025 src='1'92.168.1.5 dst='1'92.168.1.2 sport='1'025 \
 dport='1'37 [ASSURED] use='1'

À ce point le serveur a vu une réponse au premier paquet envoyé et la connexion est maintenant considérée
comme ESTABLISHED. Ce n'est pas indiqué dans le traçage de connexion comme vous pouvez le voir. La
principale différence est que le drapeau [UNREPLIED] est maintenant fourni. D'ailleurs, le temps d'attente
par défaut a changé pour passer à 180 secondes − mais dans cet exemple il a été décrémenté pour passer à 170

Didacticiel sur Iptables, version 1.2.0

46 7.5. Connexions UDP

secondes − avec un délai de 10 secondes, il sera de 160 secondes. Une chose qui a été oubliée et qui peut
changer légèrement est le drapeau [ASSURED] décrit ci−dessus. Pour placer le fanion [ASSURED] sur un
traçage de connexion, il doit y avoir un paquet en réponse au paquet NEW.

udp 17 175 src='1'92.168.1.5 dst='1'95.22.79.2 sport='1'025 \
 dport=53 src='1'95.22.79.2 dst='1'92.168.1.5 sport=53 \
 dport='1'025 [ASSURED] use='1'

Ici, la connexion est assurée. La connexion a exactement le même aspect que dans l'exemple précédent. Si
cette connexion n'est pas utilisée dans les 180 secondes, elle est hors délai. 180 secondes est comparativement
une valeur basse, mais qui devrait être suffisante dans la plupart des cas. Cette valeur est réinitialisée
complètement pour chaque paquet qui correspond à la même entrée et passe à travers la pare−feu, comme
pour tous les états internes.

7.6. Connexions ICMP

Les paquets ICMP sont loin d'être un flux véritable, car ils sont seulement utilisés pour le contrôle et
n'établissent jamais aucun type de connexion. Il existe quatre types ICMP qui généreront cependant des
paquets en retour, et qui possèdent deux états différents. Ces messages ICMP peuvent prendre les états NEW
et ESTABLISHED. Les types ICMP dont nous parlons sont les requêtes et réponse Echo, les requêtes et
réponses Timestamp, les requêtes et réponses Information, et enfin les requêtes et réponses de masque
d'Adresse. En dehors de ça, les requêtes d'horodatage et d'information sont obsolètes et seront probablement
effacées. Cependant, les messages Echo sont utilisés dans plusieurs cas comme le ping sur des hôtes. Les
requêtes de masque d'adresse ne sont pas utilisées souvent, mais peuvent être utiles quelques fois. Pour en
avoir une idée, voyons l'image suivante.

Comme vous pouvez le voir dans l'image ci−dessus, l'hôte envoie une requête écho vers la cible, laquelle est
considérée comme NEW par le pare−feu. La cible répond alors avec un écho que le pare−feu considère
comme état ESTABLISHED. Quand la première requête écho a été vue, les entrées état suivantes se dirigent
dans le ip_conntrack.

icmp 1 25 src='1'92.168.1.6 dst='1'92.168.1.10 type=8 code=0 \
 id=33029 [UNREPLIED] src='1'92.168.1.10 dst='1'92.168.1.6 \
 type=0 code=0 id=33029 use='1'

Ces entrées semblent un peu différentes des états standards pour TCP et UDP. Le protocole est présent, et la
temporisation, de même que les adresses source et destination. Le problème survient après. Nous avons
maintenant trois nouveaux champs appelés type, code et id. Il n'y a rien de spécial, le champ type
contient le type ICMP et le champ code contient le code ICMP. Toutes les variables sont présentées dans
l'annexe Types ICMP. Le dernier champ id, contient l'ID ICMP. Chaque paquet ICMP obtient un ID quand il
est envoyé, et lorsque le destinataire reçoit le message ICMP, il place le même ID dans le nouveau message
ICMP, que l'expéditeur reconnaîtra dans la réponse et pourra se connecter avec la requête ICMP correcte.

Dans le champ suivant, nous avons reconnu le drapeau [UNREPLIED]. Ce fanion nous indique que nous
observons une entrée de traçage de connexion, dont le trafic est dans une direction. Enfin, nous voyons la
probabilité de réponse à un paquet ICMP, qui est l'inversion des adresses IP source et destination. Comme

Didacticiel sur Iptables, version 1.2.0

7.6. Connexions ICMP 47

pour le type et le code, ils ont été modifiés en valeurs correctes pour le paquet de retour, ainsi une requête
écho est changée en réponse écho et ainsi de suite. L'ID ICMP est préservé depuis le paquet requête.

Le paquet réponse est considéré comme ESTABLISHED, ainsi que nous l'avons déjà expliqué. Cependant,
nous pouvons savoir avec certitude qu'après la réponse ICMP, il n'y aura plus de trafic régulier dans la même
connexion. Pour cette raison, l'entrée de traçage de connexion est détruite une fois que la réponse soit passée à
travers la structure de Netfilter.

Dans chacun des cas ci−dessus, la requête est considérée comme NEW, tandis que la réponse est considérée
comme ESTABLISHED. Voyons cela de plus près. Quand le pare−feu voit un paquet requête, il le considère
comme NEW. Quand l'hôte envoit un paquet en réponse à la requête il est considéré comme ESTABLISHED.

Note
Notez que cela indique que le paquet réponse doit apparier le critère donné par l'entrée de traçage de
connexion pour être considéré comme établi, de la même façon que tous les autres types de trafic.

Les requêtes ICMP ont un délai par défaut de 30 secondes, que vous pouvez modifier dans l'entrée
/proc/sys/net/ipv4/netfilter/ip_ct_icmp_timeout. C'est, en général, une bonne valeur de
temps d'attente, car elle permet de capturer la plupart des paquets en transit.

Une autre partie très importante de ICMP est le fait qu'il est utilisé pour indiquer aux hôtes les événements au
niveau des connexions spécifiques UDP et TCP ou des tentatives de connexions. Pour cette raison, les
réponses ICMP seront très souvent reconnues comme RELATED. Un exemple simple est le ICMP Host
unreachable ou ICMP Network unreachable. Ceci est toujours généré en retour vers notre hôte si
il tente une connexion vers quelque autre hôte, mais que le réseau ou l'hôte en question ne soit pas connecté,
ainsi le dernier routeur essayant de joindre le site répondra par un message ICMP nous l'indiquant. Dans ce
cas, la réponse ICMP est considérée comme un paquet RELATED. L'image suivante explique ceci.

Dans l'exemple ci−dessus, nous envoyons un paquet SYN vers une adresse spécifique. Ceci est considéré
comme une connexion NEW par le pare−feu. Cependant, le réseau que le paquet essaie de joindre est
injoignable, donc un routeur va nous renvoyer une erreur ICMP indiquant que le réseau est injoignable. Le
code de traçage de connexion peut reconnaître ce paquet comme RELATED, ainsi la réponse ICMP est
correctement envoyée au client. En attendant, le pare−feu a détruit l'entrée de traçage de connexion depuis
qu'il a eu connaissance du message d'erreur.

Le même comportement que ci−dessus est observé avec les connexions UDP avec des problèmes identiques
que précédemment. Tous les messages ICMP envoyés en réponse aux connexions UDP sont considérés
comme RELATED. Voyons l'image suivante.

Un paquet UDP est envoyé à un hôte. Cette connexion UDP est considérée comme NEW. Cependant, le

Didacticiel sur Iptables, version 1.2.0

48 7.6. Connexions ICMP

réseau est interdit administrativement par un pare−feu quelconque ou un routeur. Donc, notre pare−feu reçoit
un "ICMP Network Prohibited" en retour. Le pare−feu sait que ce message d'erreur ICMP est en relation avec
la connexion UDP déjà ouverte et envoit un paquet RELATED au client. À ce niveau, le pare−feu détruit les
entrées de traçage de connexion, et le client reçoit le message ICMP.

7.7. Connexions par défaut

Dans certains cas, la machine conntrack ne sait pas comment traiter un protocole spécifique. Ceci se produit
lorsqu'elle ne connait pas le protocole en particulier, ou ne sait pas comment il fonctionne. Dans ces cas là,
elle utilise un comportement par défaut. Ce comportement est utilisé sur, par exemple, NETBLT, MUX et
EGP. Ce comportement ressemble au traçage de connexion UDP. Le premier paquet est considéré comme
NEW, et le trafic en réponse comme ESTABLISHED.

Quand ce comportement par défaut est utilisé, tous les paquets ont la même valeur de délai par défaut. Ceci
peut être paramétré via la variable /proc/sys/net/ipv4/netfilter/ip_ct_generic_timeout.
La valeur par défaut est ici de 600 secondes, soit 10 minutes. En fonction du trafic, ceci peut avoir besoin
d'être modifié. Spécialement si vous renvoyez le trafic par satellite, ce qui peut prendre un long moment.

7.8. Protocoles complexes et traçage de connexion

Certains protocoles sont plus complexes que d'autres. Ce qui fait que, lorsqu'ils interfèrent avec du traçage de
connexion ils peuvent être plus difficiles à tracer correctement. De bons exemples en sont les protocoles ICQ,
IRC et FTP. Chacun des ces protocoles transporte l'information dans les données utiles des paquets, et donc
nécessitent un traçage de connexion spécial pour fonctionner correctement.

Voici une liste des protocoles complexes supportés par le noyau Linux, et la version du noyau dans laquelle il
a été implémenté.

Tableau 7.3. Support des protocoles complexes

Nom du protocole Version du noyau

FTP 2.3

IRC 2.3

TFTP 2.5

Amanda 2.5

FTP♦
IRC♦
TFTP♦

Prenons le protocole FTP comme premier exemple. Ce protocole ouvre en premier une seule connexion
appelée contrôle de session FTP. Quand nous lançons des commandes dans cette session, d'autres ports sont
ouverts pour transporter le reste des données relatives à ces commandes spécifiques. Ces connexions peuvent
être réalisées de deux manières, de façon active ou passive. Quand une connexion est en mode actif, le client
FTP envoie au serveur un port et une adresse IP pour se connecter. Après cela, le client FTP ouvre le port et le
serveur, le connecte depuis un domaine de ports non privilégiés (>1024) et envoie les données sur celui−ci.

Le problème est que le pare−feu ne connaît pas ces connexions, car elles ont été négociées dans les données
utiles du protocole. À cause de ça, le pare−feu sera incapable de savoir s'il doit laisser le serveur connecté au
client sur ces ports spécifiques.

Didacticiel sur Iptables, version 1.2.0

7.7. Connexions par défaut 49

La solution est d'ajouter une aide spéciale au module de traçage de connexion qui scannera les données dans
le contrôle de connexion à la recherche d'information et de syntaxes spécifiques. Quand il fonctionne avec
l'information correcte, il indique cette information spécifique comme RELATED et le serveur sera capable de
tracer la connexion. Voyons l'image suivante pour comprendre les états quand le serveur FTP a envoyé le
retour de connexion au client.

Le FTP passif fonctionne de la façon inverse. Le client FTP indique au serveur qu'il désire certaines données
spécifiques, le serveur lui répond avec l'adresse IP à connecter et le port. Le client pourra, au reçu de ces
données, se connecter à ce port depuis son propre port 20 (port FTP), et obtenir les données en question. Si
vous avez un serveur FTP derrière votre pare−feu, vous aurez besoin de ce module en supplément de vos
modules standards Iptables pour permettre aux clients sur l'Internet de se connecter au serveur FTP
correctement. C'est la même chose si vous êtes très restrictif pour vos utilisateurs, et les laissez se connecter
seulement aux serveurs HTTP et FTP sur l'Internet, et que vous bloquez tous les autres ports. Regardons
l'image suivante à propos du FTP passif.

Certains assistants conntrack sont déjà disponibles dans le noyau lui−même. Plus spécifiquement, les
protocoles FTP et IRC possèdent des assistants. Si vous ne trouvez pas les assistants conntrack dont vous avez
besoin dans le noyau, vous devriez regarder l'arborescence patch−o−matic dans le domaine utilisateur
Iptables. L'arborescence patch−o−matic peut contenir d'avantage d'assistants conntrack, comme ceux des
protocoles ntalk ou H.323. S'ils ne sont pas disponibles dans l'arborescence patch−o−matic, vous avez
plusieurs options. Soit vous cherchez dans le source CVS d'Iptables, si il a été récemment modifié, soit vous
contactez la liste de diffusion Netfilter−devel et demandez leurs disponibilités. Sinon, et s'il n'y a pas de projet
en vue, lisez le Rusty Russell's Unreliable Netfilter Hacking HOW−TO dont le lien est dans Autres ressources
et liens.

Les assistants conntrack peuvent être soit compilés statiquement dans le noyau, soit en modules. S'ils sont
compilés en modules, vous pouvez les charger avec les commandes suivantes :

modprobe ip_conntrack_ftp
modprobe ip_conntrack_irc
modprobe ip_conntrack_tftp
modprobe ip_conntrack_amanda

Notez que la traçage de connexion n'a rien à voir avec le NAT, et donc vous pouvez avoir besoin de
d'avantage de modules si vous NATez les connexions. Par exemple, si vous voulez NATer et tracer les
connexions FTP, vous aurez besoin du module NAT. Tous les assistants NAT débutent avec ip_nat_ et
suivant; exemple, l'assistant FTP NAT sera nommé ip_nat_ftp et le module IRC nommé ip_nat_irc. Les
assistants conntrack suivent la même convention, et donc l'assistant IRC conntrack s'appellera

Didacticiel sur Iptables, version 1.2.0

50 7.8. Protocoles complexes et traçage de connexion

ip_conntrack_irc, alors que l'assistant FTP conntrack sera nommé ip_conntrack_ftp. Comme dans la sortie
d'écran ci−dessus.

Chapitre 8. Sauvegarde et restauration des tables de règles
importantes

Le paquetage iptables est fourni avec deux outils très utiles, spécialement si vous utilisez des tables de règles
importantes. Ces deux outils sont appelés iptables−save et iptables−restore et sont utilisés pour la sauvegarde
et la restauration des tables de règles dans un format spécifique qui semble un peu différent du code shell
standard que nous avons vu dans ce didacticiel.

8.1. Considérations de vitesse

Une des plus importantes raisons d'utiliser iptables−save et iptables−restore est qu'elles améliorent la vitesse
de chargement et de restauration des tables de règles importantes. Le problème principal lors du lancement de
scripts shell contenant des règles iptables est que chaque invocation d'iptables dans le script extraira
l'ensemble des règles de l'espace Netfilter du noyau, et après cela, inserrera les règles, ou toute autre action en
réponse à la commande spécifique. Enfin, ajoutera les nouvelles règles issues de sa propre mémoire dans
l'espace noyau. L'utilisation d'un script shell, créé pour chacune des règles que vous voulez insérer, prend plus
de temps pour l'extraction et l'insertion de la table de règles.

Pour résoudre ce problème, il existe les commandes iptables−save et restore. La commande iptables−save est
utilisée pour sauvegarder la table de règles dans un fichier texte au format spécial, et la commande
iptables−restore est utilisée pour charger ce fichier à nouveau dans le noyau. Le plus intéressant de ces
commandes est qu'elles chargent et sauvegardent la table de règles en une seule action. iptables−save
récupérera la table de règles du noyau et la sauvegardera dans un fichier en une seule action. iptables−restore
enverra la table de règles au noyau en une seule action pour chaque table. En d'autres termes, au lieu d'effacer
la table de règles du noyau quelques 30 000 fois, ce qui arrive pour les tables de règles importantes, et ensuite
la renvoyer au noyau, nous pouvons maintenant sauvegarder cet ensemble dans un fichier en une ou deux
actions.

Comme vous pouvez le comprendre, ces outils sont définitivement faits pour vous si vous utilisez un vaste
ensemble de règles. Cependant, elles ont des inconvénients, comme nous le verrons dans la section suivante.

8.2. Inconvénients avec restore

Comme vous avez pû vous en étonner, iptables−restore fonctionne−t−il avec toutes sortes de scripts ? De
loin, non, il ne pourra probablement jamais le faire. C'est le principal défaut d' iptables−restore car il n'est pas
capable de faire beaucoup de choses avec ces fichiers. Par exemple, si vous avez une connexion qui utilise une
IP dynamique et que vous voulez récupérer cette IP à chaque démarrage de la machine et ensuite insérer cette
valeur dans vos scripts ? Avec iptables−restore, c'est plus ou moins impossible.

Une possibilté pour faire ceci est de créer un petit script qui récupère les valeurs que vous voulez utiliser,
ensuite faire un sed du fichier iptables−restore pour ces mots−clé spécifiques et les remplacer avec les valeurs
collectées via le petit script. À ce point, vous pouvez les sauvegarder dans un fichier temporaire, et ensuite
utiliser iptables−restore pour charger ces nouvelles valeurs. Ceci provoque cependant certains problèmes, et
vous serez incapables de vous servir de iptables−save correctement car il effacera probablement vos mots−clé
ajoutés à la main dans le script de restauration. C'est une solution maladroite.

Une autre solution est de charger les scripts iptables−restore en premier, et ensuite charger les scripts qui
insèrent les règles plus dynamiques à leur place. Bien sûr, comme vous pouvez le comprendre, c'est juste une
reprise maladroite de la première solution. iptables−restore n'est tout simplement pas très bien adapté pour les
configurations dans lesquelles les adresses IP sont assignées dynamiquement.

Didacticiel sur Iptables, version 1.2.0

Chapitre 8. Sauvegarde et restauration des tables de règles importantes 51

Un autre inconvénient avec iptables−restore et iptables−save est qu'il ne sont pas aussi complètement
fonctionnels que si vous faites un script. Le problème est simplement que pas beaucoup de personnes
l'utilisent et donc qu'il n'y a pas énormément de rapports de bugs. Même si ces problèmes existent, je vous
recommande fortement d'utiliser ces outils qui fonctionnent très bien pour la plupart des tables de règles tant
qu'elles ne contiennent pas certains nouveaux modules ou cibles qu'ils ne savent pas gérer correctement.

8.3. iptables−save

La commande iptables−save est, comme nous l'avons déjà expliqué, un outil pour sauvegarder dans la table
de règles un fichier que iptables−restore peut utiliser. Cette commande est tout à fait simple, et prend
seulement deux arguments. Regardons l'exemple suivant pour comprendre la syntaxe :

iptables−save [−c] [−t table]

L'argument −c indique à iptables−save de conserver les valeurs spécifiées dans les compteurs de bits et de
paquets. Ce qui pourrait être utile si vous voulez redémarrer votre pare−feu principal, mais sans perdre les
compteurs de bits et de paquets que nous pourrions utiliser dans un but de statistiques. Exécuter une
commande iptables−save avec l'argument −c nous permet de redémarrer sans briser les routines de statistique
et de comptage. La valeur par défaut est, bien sûr, de ne pas garder les compteurs intacts quand cette
commande est exécutée.

L'argument −t indique à la commande iptables−save quelle table sauvegarder. Sans cet argument toutes les
tables disponibles dans le fichier seront automatiquement sauvegardées. Ci−dessous, un exemple de ce que
donne une commande iptables−save sans avoir chargé de table de règles.

Generated by iptables−save v1.2.6a on Wed Apr 24 10:19:17 2002
*filter
:INPUT ACCEPT [404:19766]
:FORWARD ACCEPT [0:0]
:OUTPUT ACCEPT [530:43376]
COMMIT
Completed on Wed Apr 24 10:19:17 2002
Generated by iptables−save v1.2.6a on Wed Apr 24 10:19:17 2002
*mangle
:PREROUTING ACCEPT [451:22060]
:INPUT ACCEPT [451:22060]
:FORWARD ACCEPT [0:0]
:OUTPUT ACCEPT [594:47151]
:POSTROUTING ACCEPT [594:47151]
COMMIT
Completed on Wed Apr 24 10:19:17 2002
Generated by iptables−save v1.2.6a on Wed Apr 24 10:19:17 2002
*nat
:PREROUTING ACCEPT [0:0]
:POSTROUTING ACCEPT [3:450]
:OUTPUT ACCEPT [3:450]
COMMIT
Completed on Wed Apr 24 10:19:17 2002

Les commentaires débutent avec la signe #. Chaque table est marquée par *<table−name>, par exemple,
*mangle. Dans chaque table nous avons les spécifications de chaînes et les règles. Une spécification de
chaîne ressemble à : <chain−name> <chain−policy> [<packet−counter>:<byte−counter>]. Le chain−name
peut être, par exemple, PREROUTING, la règle d'action est décrite avant et peut être, par exemple, ACCEPT.
Enfin les compteurs d'octets et de paquets sont les mêmes que dans la sortie de la commande iptables −L −v.
Chaque déclaration de table se termine avec un mot−clé COMMIT. Le mot−clé COMMIT indique qu'à ce
niveau toutes les règles seront envoyées au noyau par l'opérateur de transfert de données.

Didacticiel sur Iptables, version 1.2.0

52 8.2. Inconvénients avec restore

L'exemple ci−dessus est tout à fait basique, et je crois qu'il est approprié de montrer un bref exemple qui
contient un petit Iptables−save. Si nous voulons lancer iptables−save sur celui−ci, la sortie de la commande
sera :

Generated by iptables−save v1.2.6a on Wed Apr 24 10:19:55 2002
*filter
:INPUT DROP [1:229]
:FORWARD DROP [0:0]
:OUTPUT DROP [0:0]
−A INPUT −m state −−state RELATED,ESTABLISHED −j ACCEPT
−A FORWARD −i eth0 −m state −−state RELATED,ESTABLISHED −j ACCEPT
−A FORWARD −i eth1 −m state −−state NEW,RELATED,ESTABLISHED −j ACCEPT
−A OUTPUT −m state −−state NEW,RELATED,ESTABLISHED −j ACCEPT
COMMIT
Completed on Wed Apr 24 10:19:55 2002
Generated by iptables−save v1.2.6a on Wed Apr 24 10:19:55 2002
*mangle
:PREROUTING ACCEPT [658:32445]
:INPUT ACCEPT [658:32445]
:FORWARD ACCEPT [0:0]
:OUTPUT ACCEPT [891:68234]
:POSTROUTING ACCEPT [891:68234]
COMMIT
Completed on Wed Apr 24 10:19:55 2002
Generated by iptables−save v1.2.6a on Wed Apr 24 10:19:55 2002
*nat
:PREROUTING ACCEPT [1:229]
:POSTROUTING ACCEPT [3:450]
:OUTPUT ACCEPT [3:450]
−A POSTROUTING −o eth0 −j SNAT −−to−source 195.233.192.1
COMMIT
Completed on Wed Apr 24 10:19:55 2002

Comme on peut le voir, chaque commande a été préfixée avec les compteurs d'octets et de paquets car nous
avons utilisé l'argument −c. Excepté pour ceci, la ligne de commande est tout à fait identique au script. Le
seul problème, est de savoir comment sauvegarder la sortie dans un fichier. Vraiment simple, et vous devriez
savoir le faire si vous avez utilisé Linux auparavant. Il suffit d'utiliser un "pipe" (canal de communication)
pour enregistrer la sortie de la commande dans le fichier. Ça ressemblera à cela :

iptables−save −c > /etc/iptables−save

La commande ci−dessus fera une sauvegarde de toute la table de règles appelée /etc/iptables−save
avec les compteurs d'octets et de paquets toujours intacts.

8.4. iptables−restore

La commande iptables−restore est exécutée pour restaurer la table de règles de iptables qui a été sauvegardée
par la commande iptables−save. Elle prend toutes les entrées standard mais ne peut faire de restauration
depuis un fichier de règles écrit à la main (script), malheureusement. La syntaxe de cette commande :

iptables−restore [−c] [−n]

L'argument −c restaure les compteurs d'octets et de paquets et doit être utilisé si vous voulez garder les
compteurs précédemment enregistrés avec iptables−save. Cet argument peut aussi s'écrire avec sa forme de
nom long −−counters.

L'argument −n indique à iptables−restore de ne pas écraser les règles précédemment écrites dans la table, ou
les tables. Le comportement par défaut de iptables−restore est d'effacer et supprimer toutes les règles inscrites
auparavant. L'argument court −n peut être remplacé par son format long −−noflush.

Didacticiel sur Iptables, version 1.2.0

8.3. iptables−save 53

Pour charger une table de règles avec la commande iptables−restore, il existe plusieurs solutions, mais nous
ne verrons que la plus simple et la plus commune :

cat /etc/iptables−save | iptables−restore −c

Ceci fonctionnera également :

iptables−restore −c < /etc/iptables−save

Ceci concaténera la table de règles située dans le fichier /etc/iptables−save et ensuite l'enverra vers
iptables−restore qui récupérera cette table de règles sur l'entrée standard et la restaurera, en incluant les
compteurs d'octets et de paquets. Cette commande peut varier à l'infini et nous pourrions montrer les diverses
possibilités de "piping", cependant, c'est un peu hors du sujet de ce chapitre, et nous laisserons ceci comme
exercice pour le lecteur.

La table de règles devrait maintenant être chargée correctement dans le noyau et fonctionnelle. Sinon, vous
avez peut être fait une erreur dans ces commandes.

Chapitre 9. Création d'une règle

Ce chapitre présentera en détail comment créer vos propres règles. Une règle peut être décrite comme une
directive au pare−feu et donc, son comportement au niveau du blocage ou de de l'autorisation des différentes
connexions et paquets dans une chaîne spécifique. Chaque ligne que vous écrivez est insérée dans une chaîne
qui sera considérée comme une règle. Nous verrons également les modules de base disponibles, comment les
utiliser, de même que les diverses cibles et la façon de créer de nouvelles cibles (i.e., nouvelles sous−chaînes).

Ce chapitre montrera les lignes de base, comment une règle est créée, comment vous devez l'écrire de façon à
ce qu'elle soit acceptée par le programme domaine utilisateur de iptables, les différentes tables, de même que
les commandes à exécuter. Après ça nous verrons dans le chapitre suivant tous les modules disponibles pour
iptables, et en détail chaque type de cible et de saut.

9.1. Bases de la commande iptables

Comme ceci a déjà été evoqué, chaque règle est une ligne lue par le noyau pour en déduire ce qu'il convient
de faire d'un paquet. Si tous les critères − ou les correspondances − sont remplis, on exécute l'instruction
donnée par la cible − ou le saut. Normalement, on écrit les règles dans une syntaxe qui ressemble à celle−ci :

iptables [−t table] commande [correspondance] [cible/saut]

Rien ne vous oblige à mettre l'instruction de cible en fin de la ligne. Toutefois, vous devriez préférer cette
syntaxe qui améliore la lisibilité. En tout cas, la plupart des règles que vous découvrirez sont écrites de cette
façon. Ainsi, si vous lisez le script de quelqu'un d'autre, vous reconnaitrez très probablement la syntaxe et
comprendrez plus facilement la règle.

Si vous voulez utiliser une autre table que la table standard, insérer la spécification de table à la place de la
mention [table]. Cependant, il n'est pas indispensable de déclarer explicitement la table à utiliser,
puisqu'iptables utilise par défaut la table filter sur laquelle sont implémentées toutes les commandes. Vous
n'êtes pas non plus obligé de spécifier la table à cet endroit dans la règle. Elle peut tout aussi bien être placée
ailleurs dans la ligne. Malgré tout, il est plus ou moins habituel de placer la spécification de table au début.

Il y a une chose à garder à l'esprit : la commande devrait toujours être en première position, ou à la rigueur
juste après la spécification de table. La "commande" indique au programme ce qu'il doit faire, par exemple

Didacticiel sur Iptables, version 1.2.0

54 8.4. iptables−restore

insérer une règle, ajouter une règle en fin de chaîne, ou encore supprimer une règle. Tout ceci est approfondi
ultérieurement.

La correspondance est la partie de la règle qui est envoyée au noyau pour identifier la caractéristique
particulière du paquet, c'est−à−dire ce qui le distingue de tous les autres paquets. On peut donc spécifier
l'adresse IP dont provient le paquet, de quelle interface réseau, l'adresse IP à atteindre, un port, un protocole
ou quoi que ce soit d'autre. Il existe un éventail de correspondances que l'on peut utiliser et qui sont
développées au cours de ce chapitre.

Enfin, on trouve la cible du paquet. Si toutes les correspondances sont satisfaites pour un paquet, on informe
le noyau de l'action à accomplir. Par exemple, vous pouvez stipuler au noyau d'envoyer le paquet à une autre
chaîne créée par vous−même, et qui appartient à cette table. Vous pouvez aussi notifier au noyau de détruire
le paquet et de ne faire aucun autre traitement, ou encore d'envoyer une réponse particulière à l'expéditeur.
Comme pour les autres aspects de cette section, la cible est analysée en profondeur plus loin dans ce chapitre.

9.2. Les tables

L'option −t précise la table à utiliser. Par défaut, il s'agit de la table filter. On peut spécifier une des tables
suivantes avec l'option −t. Remarquez que c'est une présentation extrêmement rapide de contenu du chapitre
Traversée des tables et des chaînes.

Tableau 9.1. Les tables

Table Explication

nat

La table nat sert principalement à faire de la traduction d'adresse réseau. Les paquets
soumis au NAT voient leur adresse modifiée, en accord avec les règles concernées. Les paquets
d'un flux ne traversent cette table qu'une seule fois. En effet, le sort du premier paquet d'un flux
conditionne celui des autres. Si le premier paquet est accepté, les autres paquets du flux sont soumis
automatiquement au NAT (ou au camouflage, etc.), donc subissent les mêmes actions que le
premier paquet. Par conséquent, ils ne passeront pas par cette table, mais seront néanmoins traités
de la même façon que le premier paquet du flux. C'est pour cette raison qu'on déconseille le filtrage
dans cette table. La chaîne PREROUTING permet de modifier les paquets dès qu'ils entrent dans le
pare−feu. La chaîne OUTPUT permet de modifier les paquets générés localement (c−à−d. dans le
pare−feu) avant qu'ils n'accèdent à la décision de routage. En dernier lieu, la chaîne
POSTROUTING offre la possibilité de modifier les paquets juste avant qu'ils ne quittent le
pare−feu.

mangle

Cette table sert à transformer les paquets. Entre autres, on peut modifier le contenu de differents
paquets et celui de leurs en−têtes. Par exemple, on peut changer les champs TTL, TOS ou MARK.
Notez que le champ MARK n'est pas à proprement parlé un changement sur le paquet, mais une
valeur de marquage définie dans l'espace du noyau. D'autres règles ou programmes peuvent
s'appuyer sur ce marquage à l'intérieur du pare−feu pour filtrer ou opérer un routage évolué, tc en
est un exemple. Cette table est constituée de cinq chaînes pré−définies, qui sont nommées
PREROUTING, POSTROUTING, OUTPUT, INPUT et FORWARD. La chaîne PREROUTING permet
de modifier les paquets juste quand ils entrent dans le pare−feu mais avant qu'ils n'atteignent la
décision de routage. La chaîne POSTROUTING permet de modifier les paquets juste après toutes
les décisions de routage. La chaîne OUTPUT s'utilise pour transformer les paquets générés
localement avant qu'ils ne sollicitent la décision de routage. La chaîne INPUT permet de modifier
les paquets une fois qu'ils ont été routés vers la machine locale, mais avant que l'application de
l'espace utilisateur n'ait réceptionné les données. La chaîne FORWARD permet de modifier les
paquets après la première décision de routage mais avant la dernière. Notez que la table mangle ne
peut en aucun cas servir à une forme de traduction d'adresse réseau ou de
camouflage, la table nat a été conçue pour ce genre d'opérations.

Didacticiel sur Iptables, version 1.2.0

9.1. Bases de la commande iptables 55

filter

La table filter devrait être exclusivement consacrée à filtrer les paquets. Par exemple, elle
permet de détruire (DROP), journaliser (LOG), accepter (ACCEPT) ou rejeter (REJECT) des
paquets sans aucun problème, de la même manière que dans les autres tables. Cette table est
constituée de trois chaînes pré−définies. La première se nomme FORWARD et s'applique à tous les
paquets qui ne sont ni générés localement, ni destinés à l'hôte local (c−à−d. le pare−feu). La chaîne
INPUT s'applique à tous les paquets destinés à l'hôte local (le pare−feu), et au final, OUTPUT
s'applique à tous les paquets générés localement.

Les explications précédentes devraient avoir fourni des notions fondamentales concernant les trois tables
disponibles. Celles−ci s'emploient dans des situations complètement différentes, et vous devez maîtriser
l'utilisation des différentes chaînes qui composent ces tables. Si vous ne comprenez pas leur utilisation, vous
pourriez créer une faille dans votre pare−feu, dans laquelle quelqu'un peut s'engouffrer et vous nuire s'il la
découvre. Les tables et chaînes indispensables ont déjà été présentées en détails dans le chapitre Traversée des
tables et des chaînes. Si vous ne l'avez pas parfaitement assimilé, je vous conseille de vous y replonger.

9.3. Commandes

Cette section expose les différentes commandes et ce qu'elles permettent de réaliser. La commande signifie à
iptables ce qu'il faut faire du reste de la règle qui est envoyée à l'interpréteur. Typiquement, il s'agit soit
d'ajouter, soit d'effacer quelque−chose dans une table quelconque. Les commandes suivantes sont disponibles
pour iptables :

Tableau 9.2. Commandes

Commande −A, −−append

Exemple iptables −A INPUT ...

Explication
Cette commande ajoute une règle à la fin d'une chaîne. La règle sera donc placée en dernière
position dans la table de règles, et par conséquent vérifiée en dernier, sauf si vous ajoutez par la
suite des règles supplémentaires.

Commande −D, −−delete

Exemple iptables −D INPUT −−dport 80 −j DROP, iptables −D INPUT 1

Explication

Cette commande supprime une règle dans une chaîne. Il existe deux moyens de le faire ; soit en
précisant la règle complète (comme dans le premier exemple), soit en indiquant le numéro de la
règle que vous visez. Si vous optez pour la première méthode, votre règle doit correspondre
exactement avec celle présente dans la chaîne. Avec la seconde méthode, vous devez pointer le
numéro de la règle à effacer. Les règles sont numérotées à partir de 1 en commençant au début
de chaque chaîne.

Commande −R, −−replace

Exemple iptables −R INPUT 1 −s 192.168.0.1 −j DROP

Explication

Cette commande remplace la règle présente à la ligne indiquée. Elle fonctionne comme la
commande −−delete, mais au lieu de supprimer complètement la règle, elle la remplace par une
nouvelle. Cette commande est particulièrement commode dans une phase d'expérimentation
d'iptables.

Commande −I, −−insert

Exemple iptables −I INPUT 1 −−dport 80 −j ACCEPT

Explication
Cette commande insère une règle quelque−part dans une chaîne. La règle est insérée à
l'emplacement donné par le numéro spécifié. En l'occurence, l'exemple précédent insère dans la
chaîne INPUT la règle numéro 1, qui devient ainsi la toute première règle de la chaîne.

Didacticiel sur Iptables, version 1.2.0

56 9.2. Les tables

Commande −L, −−list

Exemple iptables −L INPUT

Explication

Cette commande dresse la liste des entrées de la chaîne donnée. Dans l'exemple précédent, on
liste toutes les règles de la chaîne INPUT. Il est aussi possible de ne spécifier aucune chaîne.
Dans ce cas, la commande listera toutes les chaînes de la table spécifiée (pour spécifier la table,
voir la section Les tables). La sortie exacte dépend des autres options envoyées à l'interpréteur,
par exemple les options −n et −v, etc.

Commande −F, −−flush

Exemple iptables −F INPUT

Explication
Cette commande vide la chaîne donnée de toutes ses règles. Elle équivaut à effacer les règles
une à une, mais se révèle un peu plus rapide. Appelée sans option, cette commande revient à
supprimer toutes les règles de toutes les chaînes dans la table spécifiée.

Commande −Z, −−zero

Exemple iptables −Z INPUT

Explication

Cette commande permet de mettre à zéro tous les compteurs dans une chaîne spécifique ou
dans toutes les chaînes. Si vous utilisez l'option −v avec la commande −L, vous afficherez le
compteur de paquets au début de chaque champ. Pour mettre à zéro le compteur de paquets,
utilisez l'option −Z. Elle fonctionne de la même façon que −L, sauf que −Z ne liste pas les
règles. Si −L et −Z sont utilisées ensemble (ce qui est autorisé), les chaînes sont dans un
premier temps listées, puis les compteurs de paquets sont mis à zéro.

Commande −N, −−new−chain

Exemple iptables −N allowed

Explication
Cette commande stipule au noyau de créer une nouvelle chaîne avec le nom indiqué dans la
table spécifiée. Dans l'exemple ci−dessus, on crée une chaîne nommée allowed. Notez
qu'aucune chaîne ou cible de ce nom ne doit préalablement exister.

Commande −X, −−delete−chain

Exemple iptables −X allowed

Explication

Cette commande efface de la table la chaîne spécifiée. Pour que cette commande fonctionne, il
ne doit subsister aucune règle faisant référence à la chaîne à effacer. Autrement dit, vous devez
remplacer ou supprimer toutes les règles qui pourraient se référer à la chaîne concernée avant
de pouvoir l'effacer. Appelée sans option, cette commande efface toutes les chaînes de la table
spécifiée, exceptées les chaînes pré−définies.

Commande −P, −−policy

Exemple iptables −P INPUT DROP

Explication

Cette commande indique au noyau de configurer une cible par défaut − ou une stratégie − sur
une chaîne. Ceci conditionne le comportement par défaut de la chaîne. Les paquets qui
n'établissent de correspondance avec aucune règle sont contraintes de suivre la stratégie de la
chaîne. Les seules cibles autorisées sont DROP et ACCEPT (il pourrait y en avoir d'autres,
écrivez−moi si c'était le cas).

Commande −E, −−rename−chain

Exemple iptables −E allowed disallowed

Explication La commande −E stipule à iptables de modifier le nom d'une chaîne du premier nom vers le
second. Dans l'exemple fourni, on change le nom de la chaîne allowed en disallowed.

Didacticiel sur Iptables, version 1.2.0

9.3. Commandes 57

Remarquez que ceci n'affecte en rien le fonctionnement actuel de la table. C'est juste une
modification cosmétique du contenu de la table.

Chaque ligne de commande doit être saisie entièrement, sauf si vous souhaitez seulement bénéficier de l'aide
en ligne d'iptables ou obtenir la version de la commande. Utilisez l'option −v pour afficher la version, et −h
pour visualiser l'aide. Ci−dessous sont présentées quelques options utilisables avec des commandes diverses.
On décrit l'effet des options et les commandes qu'elles concernent. Notez que les options incluses ici
n'affectent ni les règles, ni les correspondances. Néanmoins, les correspondances et les cibles sont examinées
dans une section ultérieure de ce chapitre.

Tableau 9.3. Options

Option −v, −−verbose

Commandes
compatibles −−list, −−append, −−insert, −−delete, −−replace

Explication

Cette option correspond au mode verbeux qui délivre un affichage détaillé. Elle est surtout
utilisée avec la commande −−list ; dans ce cas, elle affiche l'adresse de l'interface, les
options des règles et les masques de TOS. Elle inclut également un compteur d'octets et de
paquets pour chaque règle. Ces compteurs intègrent les suffixes multiplicateurs K (x1000),
M (x1.000.000) et G (x1.000.000.000). Vous pouvez suspendre ce mode et obtenir les
valeurs exactes avec l'option −x, décrite plus loin. Quand l'option −−verbose est utilisée
avec une des commandes −−append, −−insert, −−delete ou −−replace, le programme
fournit des informations détaillées sur la façon dont la règle est interprétée, si elle est insérée
correctement, etc.

Option −x, −−exact

Commandes
compatibles −−list

Explication

Cette option affine les valeurs numériques. En d'autres termes, la commande −−list n'affiche
plus les suffixes multiplicateurs K, M ou G. A la place, elle délivre les valeurs exactes des
compteurs donnant le nombre de paquets et d'octets qui ont correspondu à chaque règle.
Notez que cette option ne fonctionnne qu'avec la commande −−list, et qu'elle n'est
applicable avec aucune autre commande.

Option −n, −−numeric

Commandes
compatibles −−list

Explication

Cette option indique à iptables de sortir les informations en format numérique. Les adresses
IP et numéros de port sont affichés sous forme de valeurs numériques au lieu des noms
d'hôtes, de réseaux ou d'applications. Cette option s'applique seulement à la commande
−−list. Elle se substitue au comportement par défaut qui tente de résoudre toutes les valeurs
numériques en noms d'hôtes ou de services dès que c'est possible.

Option −−line−numbers

Commandes
compatibles −−list

Explication

L'option −−line−numbers associée à la commande −−list permet d'afficher aussi les
numéros de ligne. Avec cette option, chaque règle est donc affichée avec son numéro, ce qui
s'avère pratique pour identifier les règles et leur numéro avant d'insérer d'autres règles. Cette
option ne fonctionne qu'avec la commande −−list.

Option −c, −−set−counters

Didacticiel sur Iptables, version 1.2.0

58 9.3. Commandes

Commandes
compatibles −−insert, −−append, −−replace

Explication

Cette option est utile lors d'une création de règle ou de certaines modifications. Cette option
permet d'initialiser les compteurs de paquets et d'octets pour une règle. La syntaxe ressemble
à −−set−counters 20 4000, ce qui stipule au noyau de mettre le compteur de paquets à 20 et
le compteur d'octets à 4000.

Option −−modprobe

Commandes
compatibles Toutes

Explication

L'option −−modprobe permet de préciser à iptables quel module utiliser lorsqu'il détecte les
modules ou qu'il cherche à en ajouter au noyau. Elle est aussi pratique si la commande
modprobe n'est pas accessible par défaut sur votre système. Dans certains cas, spécifier cette
option est nécessaire pour que le programme sache quoi faire lorsqu'un module utile n'est
pas chargé. Elle est utilisable avec toutes les commandes.

Chapitre 10. Correspondances

Cette section permet d'approfondir les correspondances. Elles sont intentionnellement classées en cinq
catégories distinctes. En premier, on trouve les correspondances génériques qui s'emploient avec toutes les
règles. Ensuite, il y a les correspondances TCP qui ne s'appliquent qu'aux paquets TCP. De même, il y a les
correspondances UDP qui ne s'appliquent qu'aux paquets UDP, et les correspondances ICMP qui ne
s'appliquent qu'aux paquets ICMP. Et à la fin, on décrit les correspondances spéciales, comme les
correspondances d'état, de propriétaire, de limite, etc... Ces dernières correspondances sont réparties en autant
de sous−catégories, même si elles ne se révèlent pas singulièrement si différentes. J'espère que cette
répartition est suffisamment cohérente pour être compréhensible.

Comme vous l'avez peut être déjà compris si vous avez lu les chapitres précédents, une correspondance est
quelque chose qui spécifie une condition spéciale dans le paquet et qui doit être vraie (ou fausse). Une seule
règle peut contenir plusieurs correspondances de cette sorte. Par exemple, nous voulons apparier des paquets
issus d'un hôte spécifique sur notre réseau local, et seulement des ports particuliers sur cet hôte. Nous utilisons
alors les correspondances qui indiquent la règle à appliquer à la cible − ou saut − sur les paquets qui ont une
adresse source spécifique, arrivant sur l'interface connectée au réseau local et ces paquets doivent être sur un
des ports spécifiés. Si une de ces correspondances est erronée (ex. l'adresse source est incorrecte, mais le reste
est correct), la règle complète échoue et la règle suivante est testée sur le paquet. Si toutes les correspondances
sont vraies, la cible spécifiée par la règle est appliquée.

10.1. Correspondances génériques

Les correspondances génériques désignent un type de correspondance toujours disponible, et ce quel que soit
le protocole concerné ou les extensions de correspondances chargées. Autrement dit, ces correspondances ne
requièrent aucun paramètre particulier. La correspondance −−protocol a été délibérément incluse ici, bien
qu'elle s'adresse spécifiquement aux protocoles. Par exemple, si vous désirez utiliser une correspondance
TCP, vous devez appeler la correspondance −−protocol et lui fournir TCP pour option. Pourtant, −−protocol
est également en elle−même une correspondance générique, puisqu'elle permet d'établir une correspondance
avec des protocoles différents. Les correspondances suivantes sont donc toujours disponibles.

Tableau 10.1. Correspondances génériques

Correspondance −p, −−protocol

Noyau 2.3, 2.4, 2.5 et 2.6

Didacticiel sur Iptables, version 1.2.0

Chapitre 10. Correspondances 59

Exemple iptables −A INPUT −p tcp

Explication

Cette correspondance permet de vérifier le type de protocole, par exemple
TCP, UDP ou ICMP. De plus, le protocole doit nécessairement soit faire
partie des protocoles définis en interne comme TCP, UDP ou ICMP, soit
prendre une valeur spécifiée dans le fichier /etc/protocols, ce qui, si
elle ne s'y trouve pas, retourne une erreur. Le protocole peut aussi être entré
sous forme d'un nombre entier. A titre d'exemple, le protocole ICMP est
identifié par la valeur entière 1, TCP par la valeur 6 et UDP par 17. Et
finalement, le protocole peut aussi prendre la valeur ALL. ALL signifie tous,
donc il établit une correspondance avec tous les protocoles TCP, UDP et
ICMP. La commande accepte aussi une liste de protocoles séparés par des
virgules, telle que udp,tcp qui permet d'établir une correspondance avec tous
les paquets UDP et TCP. Si on désigne le protocole par la valeur zéro (0),
ceci est équivalent à ALL, soit tous les protocoles, qui est aussi la valeur par
défaut si la correspondance −−protocol est omise. Cette correspondance peut
également être inversée à l'aide du symbole !. Dans ce cas, −−protocol ! tcp
identifie les protocoles différents de TCP, et établit donc une correspondance
avec UDP et ICMP.

Correspondance −s, −−src, −−source

Noyau 2.3, 2.4, 2.5 et 2.6

Exemple iptables −A INPUT −s 192.168.1.1

Explication

C'est la correspondance de source. Elle sert à sélectionner les paquets à partir
de leur adresse IP source. La forme principale permet d'établir une
correspondance avec des adresses IP uniques, telles que 192.168.1.1. Mais il
est possible d'employer un masque réseau sous une forme binaire de type
CIDR, en spécifiant le nombre de "1" dans la partie gauche du masque
réseau. Par exemple, ajouter /24 signifie utiliser le masque réseau
255.255.255.0. Ainsi, un intervalle complet d'adresses IP peut être détecté,
comme celui d'un réseau local ou d'un sous−réseau derrière un pare−feu. La
commande ressemble alors à 192.168.0.0/24, qui établit une correspondance
avec les paquets de l'intervalle 192.168.0.x. Une autre méthode consiste à
utiliser un masque réseau ordinaire de la forme 255.255.255.255, ce qui
donne au final 192.168.0.0/255.255.255.0. On peut également inverser la
sélection avec un ! comme précédemment. Ainsi, avec une correspondance
du type −−source ! 192.168.0.0/24, on établit une correspondance avec tous
les paquets dont l'adresse source n'appartient pas à l'intervalle 192.168.0.x.
Le comportement par défaut sélectionne toutes les adresses IP.

Correspondance −d, −−dst, −−destination

Noyau 2.3, 2.4, 2.5 et 2.6

Exemple iptables −A INPUT −d 192.168.1.1

Explication La correspondance −−destination est utilisée pour sélectionner les paquets à
partir de leur(s) adresse(s) destination. Ceci fonctionne sensiblement comme
la correspondance −−source et avec la même syntaxe, excepté qu'on
s'intéresse ici à la destination des paquets. Pour correspondre avec un
intervalle d'adresses IP, on peut ajouter un masque réseau soit sous sa forme
exacte, soit avec le nombre de 1 compris dans la partie gauche du masque
réseau sous forme binaire. voici des exemples : 192.168.0.0/255.255.255.0 et
192.168.0.0/24. Les deux sont parfaitement équivalents. Il est toujours
possible d'inverser la sélection à l'aide du signe ! comme précédemment.

Didacticiel sur Iptables, version 1.2.0

60 10.1. Correspondances génériques

−−destination ! 192.168.0.1 établit une correspondance avec tous les
paquets sauf ceux qui sont destinés à l'adresse IP 192.168.0.1.

Correspondance −i, −−in−interface

Noyau 2.3, 2.4, 2.5 et 2.6

Exemple iptables −A INPUT −i eth0

Explication

Cette correspondance est destinée à sélectionner les paquets issus d'une
certaine interface. Remarquez que cette option n'est autorisée que dans les
chaînes INPUT, FORWARD et PREROUTING, et qu'elle retourne une erreur
si elle est utilisée ailleurs. Si aucune interface n'est spécifiée, le
comportement par défaut présuppose que le caractère + a été omis. Ce
caractère permet d'établir une correspondance avec une chaîne de caractères
(composée de lettres et chiffres). Un simple + stipule au noyau de
reconnaître tous les paquets sans identifier leur interface d'origine. Le
caractère + peut également être juxtaposé au type d'interface, donc eth+
désigne tous les périphériques Ethernet. Le sens de cette option peut être
inversée à l'aide du symbole !. Une ligne dont la syntaxe est −i ! eth0
cherche à correspondre à toutes les interfaces d'entrée, sauf eth0.

Correspondance −o, −−out−interface

Noyau 2.3, 2.4, 2.5 et 2.6

Exemple iptables −A FORWARD −o eth0

Explication

La correspondance −−out−interface permet de sélectionner les paquets en
fonction de l'interface par laquelle ils sortent. Remarquez que cette
correspondance n'est disponible que pour les chaînes OUTPUT, FORWARD et
POSTROUTING, à l'opposé de la correspondance −−in−interface. A part ça,
elle fonctionne presque de la même façon. L'extension + traduit une
correspondance avec des périphériques similaires, ainsi eth+ établit une
correspondance avec tous les périphériques de type eth, et ainsi de suite.
Pour inverser le sens de la sélection, utilisez le signe ! exactement comme
pour la correspondance −−in−interface. Si aucune interface de sortie n'est
spécifiée avec −−out−interface, le comportement par défaut accepte tous les
périphériques, indépendemment de la direction prise par les paquets.

Correspondance −f, −−fragment

Noyau 2.3, 2.4, 2.5 et 2.6

Exemple iptables −A INPUT −f

Explication Cette correspondance est destinée à sélectionner le deuxième fragment et les
suivants d'un paquet fragmenté. En fait, dans le cas d'un paquet fragmenté, il
est impossible de connaître ni les ports source ou destination des fragments,
ni les types ICMP, ni d'autres choses encore. Ainsi, les paquets fragmentés
peuvent être utilisés dans des cas très particuliers pour organiser des attaques
contre des ordinateurs. De tels fragments ne correspondent à aucune autre
règle, ce qui a conduit à créer celle−ci. Cette option peut aussi être employée
avec le symbole ! ; mais exceptionnellement ici, le signe ! doit précéder la
correspondance, c'est−à−dire ! −f. Quand cette correspondance est inversée,
elle sélectionne tous les fragments d'en−tête et/ou tous les paquets non
fragmentés. Ceci signifie qu'on établit une correspondance avec tous les
premiers fragments des paquets fragmentés, et pas avec les deuxièmes,
troisièmes, et ainsi de suite. On établit aussi une correspondance avec les

Didacticiel sur Iptables, version 1.2.0

10.1. Correspondances génériques 61

paquets qui n'ont pas été fragmentés pendant le transfert. Notez qu'il y a
d'excellentes options de défragmentation dans le noyau, et qui peuvent se
substituer à cette correspondance. Notez également que si vous utilisez du
traçage de connexion, vous ne verrez aucun paquet fragmenté, puisqu'ils sont
pris en compte avant d'atteindre les chaînes ou les tables dans iptables.

10.2. Correspondances implicites

Cette section se charge de décrire les correspondances chargées implicitement. Les correspondances
implicites sont sous−jacentes, acquises et automatiques. Par exemple, lorsqu'on établit une correspondance
avec −−protocol tcp sans autre critère. Il y a actuellement trois types de correspondances implicites pour trois
différents protocoles : les correspondances TCP, les correspondances UDP et les correspondances ICMP.
Les correspondances basées sur TCP contiennent un ensemble de critères uniquement valables pour les
paquets TCP. De même pour les correspondances UDP et ICMP. D'un autre côté, il peut aussi y avoir des
correspondances explicites, c'est−à−dire chargées explicitement. Les correspondances explicites ne sont ni
sous−jacentes, ni automatiques, vous devez obligatoirement les spécifier. Pour celles−ci, utilisez l'option −m
ou −−match, qui est abordée dans la section suivante.

10.2.1. Correspondances TCP

Ces correspondances sont dédiées à un protocole, et en l'occurence elles sont seulement disponibles pour des
paquets ou des flux TCP. Pour utiliser ces correspondances, vous devez ajouter −−protocol tcp à la ligne de
commande avant de vous en servir. Notez bien que −−protocol tcp doit précéder (donc être situé à gauche) les
correspondances spécifiques au protocole. Celles−ci peuvent être chargées implicitement de la même façon
que peuvent l'être les correspondances UDP et ICMP. Les autres correspondances sont développées à la suite
de cette section.

Tableau 10.2. Correspondances TCP

Correspondance −−sport, −−source−port

Noyau 2.3, 2.4, 2.5 et 2.6

Exemple iptables −A INPUT −p tcp −−sport 22

Explication La correspondance −−source−port permet de sélectionner des paquets à partir de leur port
source. Sans cela, on sous−entend tous les ports source. La correspondance accepte
indifféremment un nom de service ou un numéro de port. Si vous spécifiez un nom de
service, celui−ci doit figurer dans le fichier /etc/services, parce qu'iptables s'appuie
sur ce fichier pour identifier le service. Si vous spécifiez le port par son numéro, la règle
sera chargée légèrement plus vite, puisqu' iptables n'a pas à valider le nom du service.
Cependant, la correspondance risque d'être un peu plus difficile à lire qu'avec un nom de
service. Si vous écrivez une table de règles constituée de plus de 200 règles, vous devriez
utiliser les numéros de port, car la différence devient sensible (sur une machine lente, ceci
peut conduire à un écart de 10 secondes, si vous avez défini une table de règles contenant
au moins 1000 règles). La correspondance −−source−port permet aussi de sélectionner
n'importe quel intervalle de ports. Par exemple, −−source−port 22:80 établit une
correspondance avec tous les ports source compris entre 22 et 80. Si vous omettez la
spécification du premier port, le port 0 est implicitement considéré. Ainsi, −−source−port
:80 permet d'établir une correspondance avec les ports de 0 à 80. Et si vous omettez la
spécification du dernier port, le port 65535 est considéré. Ainsi, −−source−port 22:
permet d'établir une correspondance avec tous les ports de 22 à 65535. Si vous
intervertissez les ports de l'intervalle, iptables corrige automatiquement en réordonnant les
numéros. Donc, écrire −−source−port 80:22 est naturellement interprété −−source−port
22:80. Une correspondance peut être inversée en ajoutant le symbole !. Par exemple,

Didacticiel sur Iptables, version 1.2.0

62 10.2. Correspondances implicites

−−source−port ! 22 signifie établir une correspondance avec tous les ports sauf le port 22.
L'inversion peut s'appliquer aussi à un intervalle de ports, comme par exemple
−−source−port ! 22:80 qui établit une correspondance avec tous les ports sauf ceux de
l'intervalle 22 à 80. Notez que cette correspondance n'accepte pas plusieurs ports ou
intervalles de ports distincts. Pour plus d'information sur cette possibilité, consultez
l'extension de correspondance multiport.

Correspondance −−dport, −−destination−port

Noyau 2.3, 2.4, 2.5 et 2.6

Exemple iptables −A INPUT −p tcp −−dport 22

Explication

Cette correspondance permet de sélectionner des paquets TCP en fonction de leur port
destination. Elle s'appuie sur la même syntaxe que la correspondance −−source−port. Elle
comprend les spécifications de ports et d'intervalle de ports, ainsi que l'option d'inversion.
De même, elle intervertit si nécessaire les premier et dernier ports dans la spécification
d'intervalle, comme ci−dessus. Cette correspondance considère également par défaut les
valeurs de ports de 0 et 65535 si les extrémités d'intervalle sont omises. En définitive, elle
fonctionne exactement selon la même syntaxe que −−source−port. Notez que cette
correspondance n'accepte pas plusieurs ports ou intervalles de ports distincts. Pour plus
d'information sur cette possibilité, consultez l'extension de correspondance multiport.

Correspondance −−tcp−flags

Noyau 2.3, 2.4, 2.5 et 2.6

Exemple iptables −p tcp −−tcp−flags SYN,FIN,ACK SYN

Explication

Cette correspondance permet de sélectionner les paquets à partir de leurs fanions TCP. En
premier, la correspondance requiert une liste de fanions à tester (un masque) suivie de la
liste des fanions qui doivent être positionnés à 1 (donc activés). Dans les deux listes, les
fanions sont séparés par des virgules. La correspondance reconnaît les fanions SYN, ACK,
FIN, RST, URG et PSH. Elle accepte aussi les mots ALL (tous) et NONE (aucun) dont le
sens est plutôt intuitif : ALL équivaut à tous les fanions et NONE à aucun. Typiquement,
−−tcp−flags ALL NONE vérifie tous les fanions TCP et établit une correspondance si
aucun n'est activé (donc positionné à 1). Cette option peut également être inversée à l'aide
du signe !. Par exemple, spécifier ! SYN,FIN,ACK SYN revient à faire correspondre les
paquets qui possèdent les bits ACK et FIN activés, mais pas le bit SYN. Notez que la
séparation des fanions par des virgules ne doit inclure aucune espace, comme vous pouvez
le voir dans l'exemple ci−dessus.

Correspondance −−syn

Noyau 2.3, 2.4, 2.5 et 2.6

Exemple iptables −p tcp −−syn

Explication La correspondance −−syn est plus ou moins une relique du règne d'ipchains. Elle perdure
pour garantir une certaine rétro−compatibilité et simplifier la transition vers iptables. Elle
permet d'établir une correspondance avec des paquets s'ils possèdent le bit SYN activé et
les bits ACK et RST désactivés. Cette commande se comporte rigoureusement comme la
correspondance −−tcp−flags SYN,RST,ACK SYN. Les paquets de ce type servent
principalement aux demandes de connexion en provenance de serveurs. Si vous bloquez
ces paquets, vous devriez effectivement empêcher toutes les tentatives de connexions
entrantes. Toutefois, vous ne bloquerez pas les connexions sortantes, qui sont mises à
profit aujourd'hui par de nombreux exploits (par exemple, détourner un service légitime
pour installer localement un programme ou créer une liaison à partir d'une connexion
existante sur votre hôte au lieu d'ouvrir un nouveau port). Cette correspondance peut

Didacticiel sur Iptables, version 1.2.0

10.2.1. Correspondances TCP 63

également être inversée à l'aide du signe !. Ainsi, ! −−syn correspond à tous les paquets
ayant les bits RST ou ACK activés, autrement dit les paquets appartenant à une connexion
déjà établie.

Correspondance −−tcp−option

Noyau 2.3, 2.4, 2.5 et 2.6

Exemple iptables −p tcp −−tcp−option 16

Explication

Cette correspondance permet d'établir une correspondance avec des paquets suivant leurs
options TCP. Une option TCP identifie une partie spécifique de l'en−tête des paquets.
Cette partie contient 3 champs différents. Le premier a une longueur de 8 bits et décrit les
options utilisées dans ce flux ; le deuxième s'étend aussi sur 8 bits et précise la longueur du
champ des options. L'information de longueur du champ doit son existence au caractère
optionnel des options TCP. Pour être conforme aux standards, il n'est pas utile
d'implémenter toutes les options, il suffit de les identifier. Si elles ne sont pas prises en
charge, on lit seulement l'information de longueur afin de sauter par−dessus ces données.
Cette correspondance permet de sélectionner plusieurs options TCP en fonction de leurs
valeurs numériques. Elle peut également être inversée avec le signe !, de telle sorte que la
correspondance s'établisse avec toutes les options TCP sauf celle passée en paramètre.
Pour obtenir la liste complète des options, consultez le site Internet Engineering Task
Force qui contient une liste de toutes les valeurs standardes employées sur Internet.

10.2.2. Correspondances UDP

Cette section décrit les correspondances qui fonctionnent seulement avec des paquets UDP. Elles sont
chargées implicitement lorsque la correspondance −−protocol UDP est spécifiée et elles ne sont effectivement
disponible qu'après cette spécification. Notez que les paquets UDP ne sont pas orientés connexion, et par
conséquent ils ne possèdent pas de fanions particuliers pour informer du rôle joué par le datagramme tel que
l'ouverture ou la fermeture d'une connexion, ou encore le simple envoi de données. Les paquets UDP ne
nécessitent aucun accusé de réception. S'ils s'égarent sur le réseau, ils n'engendrent aucune action (aucun
message d'erreur de type ICMP n'est expédié). Autrement dit, il existe nettement moins de correspondances
associées aux paquets UDP qu'aux paquets TCP. Notez que la machine d'état fonctionne sur tous les types de
paquets, même si les paquets UDP et ICMP appartiennent à des protocoles sans connexion. La machine d'état
fonctionne quasiment de la même façon pour les paquets UDP que pour les paquets TCP.

Tableau 10.3. Correspondances UDP

Correspondance −−sport, −−source−port

Noyau 2.3, 2.4, 2.5 et 2.6

Exemple iptables −A INPUT −p udp −−sport 53

Explication Cette correspondance fonctionne exactement comme son équivalent pour TCP. Elle
permet d'établir des correspondances avec des paquets à partir de leurs ports source UDP.
Elle prend en charge les intervalles de ports, les ports uniques et les inversions de ports
selon la même syntaxe. Pour spécifier un intervalle de ports UDP, vous pouvez utiliser
22:80 qui établit une correspondance avec les ports UDP de 22 à 80. Si le premier numéro
est omis, il est considéré par défaut comme étant le port 0. Si le dernier numéro est omis,
le port 65535 est pris par défaut. Si le port le plus grand est mis avant le plus petit, les
numéros sont intervertis automatiquement. Dans le cas d'un port UDP unique, la syntaxe se
calque sur l'exemple ci−dessus. Pour inverser la correspondance de port, il suffit d'insérer
le signe !. Dans −−source−port ! 53, la correspondance s'établit avec tous les ports sauf le
numéro 53. Cette correspondance comprend les noms de service, du moment qu'ils sont
disponibles dans le fichier /etc/services. Notez que cette correspondance n'accepte

Didacticiel sur Iptables, version 1.2.0

64 10.2.2. Correspondances UDP

pas les ports et les intervalles de ports distincts. Pour davantage d'information, consultez
l'extension de correspondance multiport.

Correspondance −−dport, −−destination−port

Noyau 2.3, 2.4, 2.5 et 2.6

Exemple iptables −A INPUT −p udp −−dport 53

Explication

Cette correspondance s'apparente fortement à −−source−port décrite ci−dessus. Elle est
aussi très proche de la correspondance TCP équivalente, sauf qu'elle s'applique aux
paquets UDP. Elle établit une correspondance à partir du port destination UDP. Elle accepte
les intervalles de ports, les ports uniques et les inversions. Pour sélectionner un port
unique, vous pouvez utiliser par exemple −−destination−port 53 ; pour l'inverser, ce sera
plutôt −−destination−port ! 53. La première commande sélectionnne tous les paquets UDP
en direction du port 53, alors que la seconde sélectionne tous les paquets sauf ceux
destinés au port 53. Pour spécifier un intervalle de ports, utilisez par exemple
−−destination−port 9:19 pour établir une correspondance avec tous les paquets destinés
aux ports UDP compris entre 9 et 19. Si le premier port est omis, on considère le port 0 par
défaut. Si le second est omis, on considère le port 65535 par défaut. Si le port le plus grand
est placé avant le plus petit, ils sont interchangés automatiquement pour que le plus petit
port précède le plus grand. Notez que cette correspondance n'accepte pas les ports et
intervalles de ports distincts. Pour plus d'information, consultez l'extension de
correspondance multiport.

10.2.3. Correspondances ICMP

Abordons maintenant les correspondances ICMP. Les paquets ICMP sont de nature éphémère, c'est−à−dire
qu'ils ont la vie courte, plus courte que les paquets UDP dans le sens où ils sont sans connexion. Le protocole
ICMP sert principalement aux messages d'erreur, aux contrôles de connexion, et d'autres choses du même
acabit. ICMP n'est pas un protocole subordonné au protocole IP, mais plutôt qui enrichit le protocole IP et
concourt à la gestion des erreurs. L'en−tête des paquets ICMP ressemble à celle des paquets IP, mais diffère
sur certains aspects. La caractéristique primordiale de ce protocole provient du type d'en−tête, qui traduit la
raison d'être du paquet. A titre d'exemple, si on tente d'accéder à une adresse IP inaccessible, on récupère
normalement en retour un ICMP host unreachable (machine inaccessible). Pour visualiser la liste
complète des types ICMP, consultez l'annexe Types ICMP. Une seule correspondance ICMP spécifique est
disponible pour les paquets ICMP, et heureusement, elle devrait suffire. Cette correspondance est chargée
implicitement quand on spécifie −−protocol ICMP, et on en dispose automatiquement. Notez que toutes les
correspondances génériques sont utilisables, et qu'elles permettent par exemple de sélectionner les adresses
source et destination.

Tableau 10.4. Correspondances ICMP

Correspondance −−icmp−type

Noyau 2.3, 2.4, 2.5 et 2.6

Exemple iptables −A INPUT −p icmp −−icmp−type 8

Explication

Cette correspondance permet de spécifier le type ICMP à sélectionner. Les types
ICMP peuvent être définis soit par leur valeur numérique, soit par leur nom. Les valeurs
numériques sont spécifiés dans le RFC 792. Pour afficher la liste complète des noms
ICMP, exécutez la commande iptables −−protocol icmp −−help ou consultez l'annexe
Types ICMP. Cette correspondance peut être inversée en insérant le signe ! de cette façon
: −−icmp−type ! 8 ou −−icmp−type 8/0. Pour une liste complète des noms, tapez iptables
−p icmp −−help.

Didacticiel sur Iptables, version 1.2.0

10.2.3. Correspondances ICMP 65

10.3. Correspondances explicites

Les correspondances explicites ont besoin d'être chargés spécifiquement à l'aide de l'option −m ou −−match.
Par exemple, les correspondances d'état requiert la directive −m state avant d'entrer la véritable
correspondance à prendre en compte. Certaines de ces correspondances sont spécifiques à un protocole.
Certaines peuvent aussi être détachées de tout protocole spécifique − par exemple les états de connexion. Ils
sont identifiés par NEW (pour le premier paquet d'une connexion non encore établie), ESTABLISHED (pour
une connexion déjà enregistrée dans le noyau), RELATED (pour une nouvelle connexion créée par une
connexion plus ancienne et déjà établie), etc. Parmi ces correspondances explicites, quelques−une peuvent
avoir évolué pour des questions de test ou d'expérimentation, ou simplement pour mettre en évidence les
capacités d'iptables. Par conséquent, ceci signifie que l'intégralité de ces correspondances n'est pas à première
vue indispensable. Néanmoins, il y a de grandes chances que vous trouviez certaines des ces correspondances
explicites particulièrement utiles. Et de nouvelles apparaissent en permanence, lors de chaque nouvelle
version d'iptables. Que vous leur découvriez ou non une utilisation dépend de votre imagination et de vos
besoins. Pour comprendre la différence entre une correspondance chargée implicitement et une chargée
explicitement, il faut savoir que la première est chargée automatiquement quand par exemple vous établissez
une correspondance avec une propriété des paquets TCP, alors que la seconde n'est jamais chargée
automatiquement − c'est à vous de révéler et d'activer une correspondance explicite.

10.3.1. Correspondance AH/ESP

Ces correspondances sont utilisées pour les protocoles IPSEC AH et ESP. IPSEC sert à créer des tunnels
sécurisés par dessus une connexion Internet non sécurisée. Les protocoles AH et ESP sont utilisés par IPSEC
pour créer ces connexions sécurisées. Les correspondances AH et ESP sont deux correspondances séparées,
mais elles sont toutes les deux décrites ici car elles se ressemblent beaucoup, et toutes les deux ont le même
usage.

Je ne rentrerai pas dans les détails d'IPSEC ici, regardez les pages suivantes pour plus d'information :

RFC 2401 − Security Architecture for the Internet Protocol♦
FreeS/WAN♦
IPSEC Howto♦
Linux Advanced Routing and Traffic Control HOW−TO♦

Il existe aussi des tonnes de documentation sur l'Internet à ce sujet.

Pour utiliser les correspondances AH/ESP, vous devrez vous servir de −m ah pour charger les
correspondances AH, et −m esp pour charger les correspondances ESP.

Note
Dans les noyaux 2.2 et 2.4, Linux utilise une chose appelée FreeS/WAN pour l'implémentation de
IPSEC, mais à partir des noyaux 2.5.47 et supérieurs, ceux−ci ont une implémentation directe de IPSEC
et donc ne nécessitent pas de patcher le noyau. C'est une réécriture complète de l'implémentation de
IPSEC dans Linux.

Tableau 10.5. Options des correspondances AH

Correspondance −−ahspi

Noyau 2.5 et 2.6

Exemple iptables −A INPUT −p 51 −m ah −−ahspi 500

Explication Ceci vérifie le numéro de l'Index du Paramètre de Sécurité (SPI) des paquets AH. Notez
que vous devez spécifier le protocole, car AH s'exécute sur un protocole différent des

Didacticiel sur Iptables, version 1.2.0

66 10.3. Correspondances explicites

standards TCP, UDP et ICMP. Le numéro SPI est utilisé en conjonction avec les adresses
source et destination et les clés secrètes pour créer une association de sécurité (SA). SA
identifie chacun des tunnels IPSEC pour tous les hôtes. SPI est utilisé uniquement pour
distinguer chaque tunnel IPSEC connecté entre deux identiques. Utiliser la correspondance
−−ahspi, nous permet de vérifier un paquet basé sur le SPI des paquets. Cette
correspondance peut vérifier une chaîne complète de valeur SPI en utilisant un signe :,
comme 500:520, qui vérifiera toute la chaîne des SPI.

Tableau 10.6. Options des correspondances ESP

Correspondance −−espspi

Noyau 2.5 et 2.6

Exemple iptables −A INPUT −p 50 −m esp −−espspi 500

Explication

La contrepartie de l'Index des Paramètres de Sécurité (SPI) est utilisée de la même façon
que la variante AH. La correspondance semble exactement la même, avec seulement la
différence esp/ah. Bien sûr, cette correspondance peut apparier un ensemble complet de
numéros SPI de la même façon que la variante AH de la correspondance SPI, comme
−−espi 200:250 qui apparie la totalité de la chaîne des SPI.

10.3.2. Correspondance conntrack

La correspondance conntrack est une version étendue de la correspondance état, qui rend possible
l'appariement des paquets de façon un peu plus grossière. Ce qui vous permet d'avoir l'information
directement disponible dans un système de traçage de connexion, sans applications frontales, comme dans la
correspondance état. Pour plus de détails sur le système de traçage de connexion, regardez le chapitre La
machine d'état.

Il existe nombre de différents appariements dans la correspondance conntrack, pour différents champs dans le
système de traçage de connexion. Ils sont indiqués ensemble dans la liste ci−dessous. Pour charger ces
correspondances, vous devez spécifier −m conntrack.

Tableau 10.7. Options de correspondance conntrack

Correspondance −−ctstate

Noyau 2.5 et 2.6

Exemple iptables −A INPUT −p tcp −m conntrack −−ctstate RELATED

Explication Cette correspondance est utilisée pour apparier l'état d'un paquet, selon l'état conntrack.
Elle est utilisée pour apparier plus finement les mêmes états que dans la correspondance
state d'origine. Les entrées valides pour cette correspondance sont :

INVALID♦
ESTABLISED♦
NEW♦
RELATED♦
SNAT♦
DNAT♦

Les entrées peuvent être utilisées l'une avec l'autre en les séparant par une virgule. Par
exemple, −m conntrack −−ctstate ESTABLISHED,RELATED. Elles peuvent aussi être
interverties en mettant un ! avant −−ctstate. Exemple : −m conntrack ! −−ctstate
ESTABLISHED,RELATED, qui apparie tout sauf les états ESTABLISHED et

Didacticiel sur Iptables, version 1.2.0

10.3.1. Correspondance AH/ESP 67

RELATED.

Correspondance −−ctproto

Noyau 2.5 et 2.6

Exemple iptables −A INPUT −p tcp −m conntrack −−ctproto TCP

Explication
Ceci apparie le protocole, de la même façon que le fait −−protocol. Il peut prendre les
mêmes types de valeurs, et on peut l'intervertir en utilisant le signe !. Exemple, −m
conntrack ! −−ctproto TCP apparie tous les protocoles sauf TCP.

Correspondance −−ctorigsrc

Noyau 2.5 et 2.6

Exemple iptables −A INPUT −p tcp −m conntrack −−ctorigsrc 192.168.0.0/24

Explication

−−ctorigsrc est une correspondance basée sur la spécification de la source IP d'origine de
l'entrée conntrack en rapport avec le paquet. La correspondance peut être inversée en
utilisant le ! entre le −−ctorigsrc et la spécification IP, comme −−ctorigsrc ! 192.168.0.1.
Elle peut aussi prendre un masque de réseau de forme CIDR, comme −−ctorigsrc
192.168.0.0/24.

Correspondance −−ctorigdst

Noyau 2.5 et 2.6

Exemple iptables −A INPUT −p tcp −m conntrack −−ctorigdst 192.168.0.0/24

Explication Cette correspondance est utilisée de la même façon que −−ctorigsrc, sauf qu'elle apparie
sur le champ destination de l'entrée conntrack. Elle possède la même syntaxe.

Correspondance −−ctreplsrc

Noyau 2.5 et 2.6

Exemple iptables −A INPUT −p tcp −m conntrack −−ctreplysrc 192.168.0.0/24

Explication

La correspondance −−ctreplysrc est utilisée pour l'appariement basé sur la réponse source
du conntrack d'origine du paquet. C'est à peu près la même chose que le −−ctorigsrc, mais
nous apparions la réponse source attendue des paquets envoyés. Cette cible peut, bien sûr,
être inversée et adresser une chaîne complète d'adresses, de la même façon que la cible
précédente dans cette classe.

Correspondance −−ctrepldst

Noyau 2.5 et 2.6

Exemple iptables −A INPUT −p tcp −m conntrack −−ctreplydst 192.168.0.0/24

Explication
La correspondance −−ctreplydst est la même que −−ctreplysrc, avec la différence qu'elle
apparie la réponse de destination de l'entrée conntrack qui a apparié la paquet. Elle peut
être inversée, et accepte les chaînes, comme la correspondance −−ctreplysrc.

Correspondance −−ctstatus

Noyau 2.5 et 2.6

Exemple iptables −A INPUT −p tcp −m conntrack −−ctstatus RELATED

Explication Ceci apparie les statuts de la connexion, comme décrit dans la chapitre La machine d'état.
Ces statuts sont les suivants :

NONE − La connexion ne possède aucun statut.♦

Didacticiel sur Iptables, version 1.2.0

68 10.3.2. Correspondance conntrack

EXPECTED − Cette connexion est en attente et a été ajoutée par les gestionnaires
d'attente.

♦

SEEN_REPLY − La connexion a vu une réponse mais n'en est cependant pas
assurée.

♦

ASSURED − La connexion est certaine et ne sera pas supprimée tant que le délai
d'attente ne sera pas atteint ou qu'elle sera interrompue d'une autre façon.

♦

Elle peut aussi être inversée par le signe !. Exemple, −m conntrack ! −−ctstatus
ASSURED qui apparie tout sauf le statut ASSURED.

Correspondance −−ctexpire

Noyau 2.5 et 2.6

Exemple iptables −A INPUT −p tcp −m conntrack −−ctexpire 100:150

Explication

Cette correspondance sert à apparier les paquets basés sur la longueur du temps
d'expiration de l'entrée conntrack, mesuré en secondes. Elle peut soit prendre une seule
valeur, ou une chaîne comme dans l'exemple au−dessus. Elle peut aussi être inversée avec
le signe !, comme −m conntrack ! −−ctexpire 100. Ceci apparie chaque temps
d'expiration, qui n'est pas exactement de 100 secondes.

10.3.3. Correspondance DSCP

Cette correspondance est utilisée pour apparier les paquets basés sur leur champ DSCP (Differentiated
Services Code Point). C'est documenté dans la RFC RFC 2638 − A Two−bit Differentiated Services
Architecture for the Internet. La correspondance est chargée en spécifiant −m dscp. Elle peut prendre deux
options mutuellement incompatibles, décrites ci−dessous.

Tableau 10.8. Options de correspondance DSCP

Correspondance −−dscp

Noyau 2.5 et 2.6

Exemple iptables −A INPUT −p tcp −m dscp −−dscp 32

Explication

Cette option prend une valeur DSCP soit en décimal soit en hexadécimal. Si la valeur de
l'option est en décimal, elle sera écrite comme 32 ou 16, etc. Si elle est écrite en
hexadécimal, elle pourrait être préfixée avec des 0x, comme ça : 0x20. Elle peut aussi être
inversée par le signe !, comme : −m dscp ! −−dscp 32.

Correspondance −−dscp−class

Noyau 2.5 et 2.6

Exemple iptables −A INPUT −p tcp −m dscp −−dscp−class BE

Explication
La correspondance −−dscp−class sert à l'appariement d'une classe Diffserv d'un paquet.
Les valeurs peuvent être l'une des classes BE, EF, AFxx ou CSxx comme spécifié dans les
diverses RFC. Elle peut être inversée de la même façon qu'avec l'option −−dscp.

Note
Notez que les options de classes −−dscp et dscp−class sont mutuellement exclusives et ne
peuvent pas être utilisées conjointement l'une avec l'autre.

10.3.4. Correspondance ECN

ECN est utilisé pour l'appariement sur les différents champs ECN dans les en−têtes TCP et IPv4. ECN est
décrit en détail dans la RFC RFC 3168 − The Addition of Explicit Congestion Notification (ECN) to IP. La
correspondance est chargée par −m ecn dans la ligne de commande. Elle prend trois options différentes,

Didacticiel sur Iptables, version 1.2.0

10.3.3. Correspondance DSCP 69

comme décrit ci−dessous.

Tableau 10.9. Options de la correspondance ECN

Correspondance −−ecn

Noyau 2.4, 2.5 et 2.6

Exemple iptables −A INPUT −p tcp −m ecn −−ecn−tcp−cwr

Explication

Cette correspondance est utilisée pour apparier le bit CWR (Congestion Window
Received), s'il a été placé. Le fanion CWR est placé pour notifier l'autre point limite de la
connexion reçu (ECE), et qui a été réactivé. Par défaut elle vérifie si le bit CWR est placé,
mais la correspondance peut aussi être inversée par le signe !.

Correspondance −−ecn−tcp−ece

Noyau 2.4, 2.5 et 2.6

Exemple iptables −A INPUT −p tcp −m ecn −−ecn−tcp−ece

Explication

Cette correspondance peut être utilisée pour apparier le bit ECE (ECN−Echo). Le ECE est
placé une fois que les points limite aient reçu un paquet avec un bit CE placé par un
routeur. Le point limite place alors le ECE en renvoyant la paquet ACK, pour le notifier à
l'autre point limite. Cet autre point limite envoie alors un paquet CWR comme décrit dans
l'explication de −−ecn−tcp−cwr. C'est le comportement par défaut si le bit ECE est placé,
mais peut être interverti par le signe !.

Correspondance −−ecn−ip−ect

Noyau 2.4, 2.5 et 2.6

Exemple iptables −A INPUT −p tcp −m ecn −−ecn−ip−ect 1

Explication

−−ecn−ip−ect est utilisée pour apparier les codes caractères ECT (ECN Capable
Transport). Les codes caractères ECT possèdent plusieurs types. Principalement, ils sont
utilisés pour savoir si la connexion a les possibilités ECN en plaçant un des deux bits à 1.
ECT est aussi utilisé par les routeurs pour indiquer qu'ils sont en processus d'engorgement,
en plaçant les deux points limite ECT à 1. les valeurs ECT sont toutes disponibles dans la
table Champ ECN dans IP ci−dessous.

La correspondance peut être inversée par un !, exemple ! −−ecn−ip−ect 2 qui va apparier
toutes les valeurs ECN sauf le point limite ECT(0). la chaîne de valeur correcte dans
Iptables est de 0 à 3. Voir ci−dessous pour les valeurs :

Tableau 10.10. Champ ECN dans IP

Valeur
Iptables ECT CE [Obsolète] Noms RFC 2481 pour les bits ECN

0 0 0 Not−ECT, ie. pas de possibilité de connexion non−ECN

1 0 1 ECT(1), nouvelle convention de nommage des points limite ECT dans la RFC
3168

2 1 0 ECT(0), nouvelle convention de nommage des points limite ECT dans la RFC
3168

3 1 1 CE (Congestion Experienced), utilisé pour notifier les points limite pour
l'engorgement.

Didacticiel sur Iptables, version 1.2.0

70 10.3.4. Correspondance ECN

10.3.5. Correspondance Helper

C'est plutôt une correspondance pas très orthodoxe en comparaison des autres, dans ce sens qu'elle utilise une
syntaxe spécifique de bit. Elle est utilisée pour apparier les paquets, basés sur l'assistant conntrack en relation
avec le paquet. Par exemple, regardons une session FTP. La session Contrôle est ouverte, et les
ports/connexion sont négociés pour la session Données dans la session Contrôle. Le module assistant
ip_conntrack_ftp va trouver cette information, et créer une entrée dans la table conntrack. Maintenant, quand
un paquet entre, nous pouvons voir quel protocole est en relation, et pouvons apparier le paquet dans nos
propres tables de règles basées sur l'assistant qui a été utilisé.

Tableau 10.11. Options de correspondance Helper

Correspondance −−helper

Noyau 2.4, 2.5 et 2.6

Exemple iptables −A INPUT −p tcp −m helper −−helper ftp−21

Explication

L'option −−helper est utilisée pour spécifier une valeur de chaîne, indiquant à la
correspondance quelle assistant conntrack apparier. Dans sa forme basique, elle peut
ressembler à −−helper irc. C'est l'endroit où la syntaxe démarre en variant par rapport à la
syntaxe normale. Nous pouvons aussi choisir d'apparier seulement les paquets basés sur tel
port que l'original a pris. Exemple, la session Contrôle FTP est normalement transférée sur
le port 21, mais il peut aussi bien être sur le port 954 ou un autre. Nous pouvons alors
spécifier quel port sera utilisé, comme −−helper ftp−954.

10.3.6. Correspondance de plage IP

La correspondance de plage IP est utilisée pour apparier les plages IP, comme les correspondances −−source
et −−destination peuvent le faire. Cependant, cette correspondance ajoute une sorte d'appariement différent
dans le sens qu'elle peut apparier dans la forme IP à IP, ce que les correspondances −−source et
−−destination sont incapables de faire. Ceci peut être nécessaire dans certains réglages de réseaux
spécifiques, et elle est légèrement plus souple.

Tableau 10.12. Options de correspondance de plage IP

Correspondance −−src−range

Noyau 2.4, 2.5 et 2.6

Exemple iptables −A INPUT −p tcp −m iprange −−src−range 192.168.1.13−192.168.2.19

Explication

Ceci apparie une plage d'adresses source IP. La plage inclut chaque adresse depuis la
première jusqu'à la dernière, ainsi l'exemple ci−dessus inclut toutes les adresses depuis
192.168.1.13 jusqu'à 192.168.2.19. Elle peut aussi être inversée avec le !. L'exemple du
dessus ressemblera alors à −m iprange ! −−src−range 192.168.1.13−192.168.2.19, qui va
apparier chaque adresse, sauf celles spécifiées.

Correspondance −−dst−range

Noyau 2.4, 2.5 et 2.6

Exemple iptables −A INPUT −p tcp −m iprange −−dst−range 192.168.1.13−192.168.2.19

Explication −−dst−range fonctionne exactement de la même façon que la correspondance
−−src−range, sauf qu'elle apparie la destination IP au lieu de la source IP.

Didacticiel sur Iptables, version 1.2.0

10.3.5. Correspondance Helper 71

10.3.7. Correspondance Length

La correspondance Length est utilisée pour apparier les paquets basés sur leur longueur. C'est très simple. Si
vous voulez limiter la longueur des paquets pour quelque étrange raison, ou bloquer ce qui ressemble à un
ping−of−death, utilisez cette correspondance.

Tableau 10.13. Options de correspondance Length

Correspondance −−length

Noyau 2.4, 2.5 et 2.6

Exemple iptables −A INPUT −p tcp −m length −−length 1400:1500

Explication

L'exemple −−length va apparier tous les paquets de longueur comprise entre 1400 et 1500
octets. Elle peut être inversée en utilisant le signe !, comme ça : −m length ! −−length
1400:1500. Elle peut aussi être utilisée pour apparier certaines tailles seulement,
supprimant le signe :, comme ceci : −m length −−length 1400. La plage est, bien sûr,
inclusive, ce qui inclut tous les paquets dont la longueur est comprise dans les valeurs que
vous avez spécifiées.

10.3.8. Correspondance Limit

L'extension de correspondance limit doit être chargée explicitement avec l'option −m limit. Cette
correspondance peut être employée avantageusement pour limiter la journalisation de certaines règles, etc. Par
exemple, vous pouvez établir une correspondance avec tous les paquets qui n'excèdent pas une quantité
donnée, et au−delà de ce seuil, limiter la journalisation de l'évènement en question. Considérez ce seuil
comme une limite temporelle : vous pouvez limiter le nombre de correspondances d'une certaine règle dans un
certain laps de temps, par exemple pour atténuer l'impact des attaques de type déni de service (DoS). C'est
d'ailleurs la principale application qu'on en fait, mais naturellement, il en existe d'autres. La correspondance
limit peut également être inversée en ajoutant le symbole ! juste après le mot limit. Elle s'exprime alors sous
la forme −m limit ! −−limit 5/s, autrement dit tous les paquets sont sélectionnés quand la limite est dépassée.

Pour décrire plus précisément la correspondance limit, c'est essentiellement un filtre à seau de jetons ("token
bucket filter"). Considérez un seau percé qui laisse fuir N paquets par unité de temps. N est défini en fonction
du nombre de paquets que nous voulons sélectionner, ainsi si nous voulons 3 paquets, le seau laisse fuir 3
paquets par unité de temps. L'option −−limit détermine le nombre de paquets qui peuvent remplir le seau par
unité de temps, alors que l'option −−limit−burst définit la contenance initiale du seau. Par conséquent, en
définissant −−limit 3/minute −−limit−burst 5, puis en recevant 5 correspondances, le seau sera vidé. Après
une attente de 20 secondes, le seau est rempli d'un nouveau jeton, et ainsi de suite jusqu'à ce que le paramètre
−−limit−burst soit atteint ou jusqu'à ce que les jetons soient tous utilisés.

Considérez l'exemple ci−dessous pour approfondir sur ce fonctionnement.

On définit une règle avec les paramètres −m limit −−limit 5/second −−limit−burst 10/second. Le
paramètre limit−burst du seau à jetons est fixé initialement à 10. Chaque paquet qui établit une
correspondance avec la règle consomme un jeton.

1.

On reçoit alors des paquets qui correspondent à la règle, 1−2−3−4−5−6−7−8−9−10, tous arrivent dans
un intervalle de 1/1000ème de seconde.

2.

Le seau de jetons se retrouve complètement vide. Et puisque le seau est vide, les paquets qui
rencontrent la règle ne peuvent plus correspondre et poursuivent leur route vers la règle suivante, ou
subissent le comportement par défaut de la chaîne.

3.

Pour chaque tranche de 1/5ème de seconde sans qu'un paquet ne corresponde, le compteur de jetons
augmente de 1, jusqu'à un maximum de 10. Et 1 seconde après avoir reçu 10 paquets, on aura de
nouveau 5 jetons de moins.

4.

Et naturellement, le seau sera vidé d'1 jeton par paquet reçu.5.

Didacticiel sur Iptables, version 1.2.0

72 10.3.7. Correspondance Length

Tableau 10.14. Options de la correspondance limit

Correspondance −−limit

Noyau 2.3, 2.4, 2.5 et 2.6

Exemple iptables −A INPUT −m limit −−limit 3/hour

Explication

Ceci définit le taux de correspondance moyen maximum pour la correspondance limit. Il
est spécifié par un nombre suivi éventuellement d'une unité de temps. Les unités suivantes
sont actuellement reconnues : /second, /minute, /hour et /day. La valeur par défaut est
fixée à 3 correspondances par heure, soit 3/hour. Ceci indique à la correspondance limit
combien de fois la correspondance avec un paquet est autorisé par unité de temps (par
exemple par minute).

Correspondance −−limit−burst

Noyau 2.3, 2.4, 2.5 et 2.6

Exemple iptables −A INPUT −m limit −−limit−burst 5

Explication

Ceci définit la réserve maximale (ou la salve) de la correspondance limit. Il indique à
iptables le nombre maximum de paquets pouvant correspondre pendant l'unité de temps
donnée. Ce nombre est décrémenté de 1 après chaque unité de temps (spécifiée par l'option
−−limit) pendant laquelle l'évènement ne s'est pas produit, jusqu'à atteindre la plus faible
valeur, 1. Si l'évènement se produit de façon répétée, le compteur est alors incrémenté
jusqu'à atteindre la valeur de réserve maximale, et ainsi de suite. La valeur par défaut de
−−limit−burst est 5. Pour comprendre simplement comment ceci fonctionne, utilisez le
script d'exemple Limit−match.txt composé d'une règle. Grâce à ce script, vous pouvez voir
vous−mêmes comment fonctionne le règle limit, en envoyant des paquets d'écho (de type
ping) à des intervalles différents et en différentes rafales. Toutes les réponses d'écho
seront bloquées jusqu'à ce que le seuil de réserve maximale soit de nouveau atteint.

10.3.9. Correspondance MAC

La correspondance MAC (Ethernet Media Access Control) permet de sélectionner des paquets à
partir de leur adresse MAC source . Lors de l'écriture de ce document, cette correspondance s'avère
quelque−peu limitée, cependant elle pourrait être plus évoluée à l'avenir, donc plus utile.

Note
Remarquez que l'utilisation de ce module impose de le charger explicitement avec l'option −m
mac. Il est nécessaire de le rappeler ici vu le nombre de personne croyant pouvoir l'invoquer
seulement par −m mac−source, ce qui n'est pas possible.

Tableau 10.15. Options de la correspondance MAC

Correspondance −−mac−source

Noyau 2.3, 2.4, 2.5 et 2.6

Exemple iptables −A INPUT −m mac −−mac−source 00:00:00:00:00:01

Explication Cette correspondance permet de sélectionner des paquets à partir de leur adresse MAC
source. L'adresse MAC doit être spécifiée de la forme XX:XX:XX:XX:XX:XX,
autrement elle n'est pas valide. La correspondance peut être inversée avec le signe ! et
ressemble alors à −−mac−source ! 00:00:00:00:00:01. Autrement dit, ceci inverse le sens
de la corrrespondance, en sélectionnant tous les paquets sauf ceux possédant l'adresse
MAC spécifiée. Notez que comme les adresses MAC ne sont utilisées que dans les
réseaux de type Ethernet, cette correspondance ne s'applique qu'aux interfaces Ethernet. La

Didacticiel sur Iptables, version 1.2.0

10.3.8. Correspondance Limit 73

correspondance MAC est valide seulement dans les chaînes PREROUTING, FORWARD et
INPUT, et nulle−part ailleurs.

10.3.10. Correspondance mark

L'extension de correspondance mark permet de sélectionner des paquets à partir de leur marquage. Le
marquage désigne un champ particulier, pris en charge uniquement au sein du noyau, et lié aux paquets
circulant à travers la machine. Le marquage peut être employé par différentes routines du noyau pour des
tâches comme de la régulation de trafic ou du filtrage. Aujourd'hui, il n'existe qu'un seul moyen de définir un
marquage sous Linux, c'est la cible MARK dans iptables. Auparavant, il s'agissait de la cible FWMARK dans
ipchains, et c'est pourquoi nombre de gens se réfère encore à FWMARK dans les documentations avancées
sur le routage. Le champ de marquage est actuellement défini comme un entier non signé, soit 4294967296
valeurs possibles sur un système 32 bits. En d'autres termes, vous ne risquez pas de sitôt de dépasser cette
limite.

Tableau 10.16. Options de la correspondance mark

Correspondance −−mark

Noyau 2.3, 2.4, 2.5 et 2.6

Exemple iptables −t mangle −A INPUT −m mark −−mark 1

Explication

Cette correspondance permet de sélectionner des paquets qui ont été préalablement
marqués. Les marquages peuvent être positionnés avec la cible MARK développée dans la
section suivante. Tous les paquets transitant par Netfilter se voient affectés d'un
champ de marquage spécial. Notez que ce champ de marquage n'est propagé en
aucune manière, que ce soit à l'intérieur ou à l'extérieur du paquet. Il reste exclusivement à
l'intérieur de la machine qui l'a créé. Si le champ de marquage est égal à la valeur de
l'option −−mark, il y a correspondance. Le champ de marquage est un entier non
signé, par conséquent 4294967296 différents marquages peuvent exister. Vous pouvez
également utiliser un masque avec le marquage. Dans ce cas, la spécification de marquage
ressemble, par exemple, à −−mark 1/1. Quand un masque est spécifié, on effectue un ET
logique avec le marquage spécifié avant de réaliser la comparaison réelle.

10.3.11. Correspondance multiport

L'extension de correspondance multiport permet de spécifier plusieurs ports et intervalles et ports destination.
Sans cette possibilité, vous devriez utiliser différentes règles du même genre, juste pour établir une
correspondance avec différents ports.

Note
Vous ne pouvez pas utiliser simultanément la correspondance de port standard et la
correspondance multiport. Par exemple, il est inutile d'écrire : −−sport 1024:63353 −m
multiport −−dport 21,23,80, car ça ne marchera pas. Si vous le faites quand même, iptables
considèrera le premier élément de la règle et ignorera l'instruction multiport.

Tableau 10.17. Options de la correspondance multiport

Correspondance −−source−port

Noyau 2.3, 2.4, 2.5 et 2.6

Exemple iptables −A INPUT −p tcp −m multiport −−source−port 22,53,80,110

Explication Cette correspondance coïncide avec plusieurs ports source. Au maximum, 15 ports
peuvent être spécifiés. Les ports doivent être séparés par des virgules, comme dans
l'exemple ci−dessus. Cette correspondance ne peut être employée qu'avec les

Didacticiel sur Iptables, version 1.2.0

74 10.3.9. Correspondance MAC

correspondances −p tcp ou −p udp. C'est principalement une version améliorée de la
correspondance classique −−source−port.

Correspondance −−destination−port

Noyau 2.3, 2.4, 2.5 et 2.6

Exemple iptables −A INPUT −p tcp −m multiport −−destination−port 22,53,80,110

Explication

Cette correspondance coïncide avec plusieurs ports destination. Elle fonctionne
exactement de la même façon que la correspondance de port source mentionnée
précédemment, excepté qu'elle s'applique aux ports destination. Elle dispose aussi d'une
limite de 15 ports, et ne peut être employée qu'avec −p tcp et −p udp.

Correspondance −−port

Noyau 2.3, 2.4, 2.5 et 2.6

Exemple iptables −A INPUT −p tcp −m multiport −−port 22,53,80,110

Explication

Cette extension de correspondance permet de sélectionner les paquets à partir à la fois de
leur port destination et de leur port source. Elle fonctionne de la même façon que les
correspondances −−source−port et −−destination−port présentées ci−dessus. Elle accepte
15 ports au maximum, et ne peut être employée qu'avec −p tcp et −p udp. Notez que la
correspondance −−port ne peut sélectionner que les paquets qui viennent et vont vers le
même port, par exemple, du port 80 au port 80, du port 110 au port 110, etc.

10.3.12. Correspondance owner

L'extension de correspondance owner permet de sélectionner des paquets à partir de l'identité du processus qui
les a créés. Le propriétaire ("owner") peut être spécifié comme étant l'identifiant de l'utilisateur qui a lancé la
commande en question, de son groupe, du processus, de la session, ou bien de la commande elle−même. A
l'origine, cette extension a été écrite pour donner un exemple des utilisations possibles d'iptables. La
correspondance owner fonctionne seulement dans la chaîne OUTPUT pour des raisons évidentes : il est
presque impossible d'extraire des éléments d'information sur l'identité de l'instance ayant envoyé un paquet à
partir de l'autre extrémité, et où a lieu le saut intermédiaire avant la destination finale. Et même dans la chaîne
OUTPUT, ce n'est pas vraiment fiable puisque certains paquets peuvent ne pas avoir de propriétaire. Les
célèbres paquets de ce genre sont, entre−autres, les réponses ICMP. Donc les réponses ICMP ne
correspondront jamais.

Tableau 10.18. Options de la correspondance owner

Correspondance −−uid−owner

Noyau 2.3, 2.4, 2.5 et 2.6

Exemple iptables −A OUTPUT −m owner −−uid−owner 500

Explication

Avec cette correspondance, le paquet est sélectionné s'il a été créé par l'identifiant
d'utilisateur (UID) donné. Ceci permet d'établir une correspondance avec les
paquets sortants basée sur celui qui les a créés. Une utilisation possible serait d'empêcher
tout utilisateur autre que root d'ouvrir de nouvelles connexions extérieures au pare−feu.
Une autre possibilité pourrait être d'empêcher tout le monde sauf l'utilisateur http
d'envoyer des paquets à partir du port HTTP.

Correspondance −−gid−owner

Noyau 2.3, 2.4, 2.5 et 2.6

Exemple iptables −A OUTPUT −m owner −−gid−owner 0

Didacticiel sur Iptables, version 1.2.0

10.3.11. Correspondance multiport 75

Explication

Cette correspondance permet de sélectionner des paquets à partir de leur identifiant
de groupe (GID). Ainsi on établit une correspondance avec tous les paquets associés au
groupe auquel appartient l'utilisateur ayant créé le paquet. Par exemple, ceci permet
d'empêcher tous les utilisateurs sauf ceux appartenant au groupe network de naviguer
sur Internet, ou comme précédemment, d'autoriser seulement les membres du groupe
http à créer des paquets sortants par le port HTTP.

Correspondance −−pid−owner

Noyau 2.3, 2.4, 2.5 et 2.6

Exemple iptables −A OUTPUT −m owner −−pid−owner 78

Explication

Cette correspondance permet de sélectionner des paquets à partir de l'identifiant de
processus (PID) qui est responsable d'eux. Cette correspondance est un peu plus
difficile à utiliser, mais il est possible, par exemple, d'autoriser seulement le PID 94 à
envoyer des paquets par le port HTTP (si le processus HTTP n'est pas un fil d'exécution,
bien sûr). Une autre alternative serait d'écrire un petit script qui récupère le PID à partir de
la sortie d'une commande ps pour un "daemon" spécifique, et qui ajoute ensuite une règle
pour le numéro récupéré. Pour donner un exemple, vous pouvez élaborer une règle comme
celle présente dans l'exemple .

Correspondance −−sid−owner

Noyau 2.3, 2.4, 2.5 et 2.6

Exemple iptables −A OUTPUT −m owner −−sid−owner 100

Explication

Cette correspondance permet de sélectionner des paquets à partir de l'identifiant de
session (SID) utilisé par le programme en question. La valeur du SID d'un processus
est celle du processus lui−même et de tous les processus découlant du processus d'origine.
Ces derniers peuvent être un fil d'exécution ("thread"), ou un processus fils du processus
d'origine. Donc par exemple, tous les processus HTTPD devraient posséder le même SID
que leur processus parent (le processus HTTPD d'origine), si le HTTPD appartient à un fil
d'exécution (comme la plupart des processus HTTPD, Apache et Roxen par exemple). Ceci
est illustré par un petit script qui s'appelle Sid−owner.txt. Celui−ci pourrait éventuellement
être lancé toutes les heures et enrichi de code supplémentaire pour vérifier que l'exécution
du processus HTTPD est toujours en cours et le redémarrer sinon, avant de vider et
redéfinir la chaîne OUTPUT si nécessaire.

10.3.13. Correspondance type de paquet

Cette correspondance sert à apparier les paquets basés sur leur type. C'est à dire, ceux destinés à une personne
précise, à tout le monde ou à un groupe de machines spécifique ou encore des utilisateurs. Ces trois groupes
sont généralement appelés unicast, broadcast et multicast, comme nous l'avons vu dans le chapitre Rappel
TCP/IP. La correspondance est chargée par la commande : −m pkttype.

Tableau 10.19. Options de correspondance type de paquet

Correspondance −−pkttype

Noyau 2.3, 2.4, 2.5 et 2.6

Exemple iptables −A OUTPUT −m owner −−pkttype unicast

Explication

La correspondance −−pkttype sert à indiquer quel type de paquet apparier. Elle peut
prendre soit unicast, broadcast ou multicast comme argument, voir l'exemple.
Elle peut aussi être inversée par ! comme ceci : −m pkttype −−pkttype ! broadcast, qui va
apparier tous les autres types de paquets.

Didacticiel sur Iptables, version 1.2.0

76 10.3.12. Correspondance owner

10.3.14. Correspondance Recent

La correspondance Recent est une système plutôt important et complexe, qui nous permet d'apparier des
paquets basés sur les événements récents. Exemple, si nous voulons voir une sortie de connexion IRC, nous
pouvons placer l'adresse IP dans une liste d'hôtes, et avoir une autre règle qui permet des requêtes
d'identification en retour d'un serveur IRC dans les 15 secondes de veille du paquet d'origine.

Avant nous pouvons avoir une vue plus précise de cette correspondance, et voyons comment elle fonctionne.
En premier, nous utilisons différentes règles pour utiliser l'appariement récent. Celui−ci se sert de plusieurs
listes d'événements récents. Par défaut la liste utilisée est DEFAULT. Nous créons une nouvelle entrée dans la
liste avec cette option, ainsi une fois qu'une règle est complètement appariée (l'option placée est toujours une
correspondance), nous pouvons ajouter une entrée dans la liste récente spécifiée. L'entrée de la liste contient
un horodatage, et l'adresse source IP utilisée dans le paquet qui déclenche l'option. Une fois ceci fait, nous
pouvons utiliser une série d'options différentes pour apparier cette information, comme la mise à jour des
entrées d'horodatage, etc.

Enfin, si nous voulons pour quelque raison supprimer une entrée de la liste, nous pouvons le faire en
supprimant la correspondance du module récent. Toutes les règles utilisant la correspondance Recent, doivent
charger ce module (−m recent). Voyons en les options.

Tableau 10.20. Options de la correspondance Recent

Correspondance −−name

Noyau 2.4, 2.5 et 2.6

Exemple iptables −A OUTPUT −m recent −−name examplelist

Explication
L'option "name" donne le nom de la liste à utiliser. Par défaut la liste DEFAULT est
utilisée, ce qui n'est probablement pas ce que nous voulons si nous nous servons de plus
d'une liste.

Correspondance −−set

Noyau 2.4, 2.5 et 2.6

Exemple iptables −A OUTPUT −m recent −−set

Explication Ceci crée une nouvelle entrée dans la liste récente, qui contient un horodatage et l'adresse
source IP de l'hôte qui a déclenché la règle.

Correspondance −−rcheck

Noyau 2.4, 2.5 et 2.6

Exemple iptables −A OUTPUT −m recent −−name examplelist −−rcheck

Explication

L'option −−rcheck vérifie si l'adresse IP source du paquet est dans la liste nommée. Si
c'est le cas, la correspondance renvoit un "vrai", dans le cas contraire elle renverra un
"faux". Cette option peut être inversée avec le signe !. Dans ce dernier cas, elle renverra
vrai si l'adresse IP source n'est pas dans la liste, et faux si elle est dans la liste.

Correspondance −−update

Noyau 2.4, 2.5 et 2.6

Exemple iptables −A OUTPUT −m recent −−name examplelist −−update

Explication
Cette correspondance est vraie si la source est disponible dans la liste spécifiée et met à
jour le dernier horodatage dans la liste. Elle peut aussi être inversée par le ! devant le
module. Exemple, ! −−update.

Didacticiel sur Iptables, version 1.2.0

10.3.14. Correspondance Recent 77

Correspondance −−remove

Noyau 2.4, 2.5 et 2.6

Exemple iptables −A INPUT −m recent −−name example −−remove

Explication
Cette correspondance essaie de trouver l'adresse source du paquet dans la liste, et renvoit
un vrai si le paquet est présent. Elle supprimera aussi l'entrée de liste correspondante de la
liste. Cette commande peut être inversée avec le signe !.

Correspondance −−seconds

Noyau 2.4, 2.5 et 2.6

Exemple iptables −A INPUT −m recent −−name example −−check −−seconds 60

Explication

Cette correspondance n'est valide seulement qu'avec les commandes −−check et
−−update. Le module −−seconds est utilisé pour spécifier le délai de mise à jour de la
colonne "dernier apperçu" dans la liste récente. Si la colonne dernier apperçu est plus
ancienne qu'un certain nombre de secondes, la correspondance renvoit faux. Si la
correspondance récent fonctionne anormalement, l'adresse source doit toujours être dans la
liste pour un retour vrai de la correspondance.

Correspondance −−hitcount

Noyau 2.4, 2.5 et 2.6

Exemple iptables −A INPUT −m recent −−name example −−check −−hitcount 20

Explication

La correspondance −−hitcount doit être utilisée avec les commandes −−check ou
−−update, elle limitera la vérification aux seuls paquets vus par le compteur. Si cette
correspondance est utilisée avec la commande −−seconds, cela nécessite que le compteur
de paquets spécifié soit vu dans le bloc de temps. Elle peut être inversée par le signe !
devant la commande. Avec la commande −−seconds, elle indique le maximum de paquets
qui peuvent avoir été vus durant le bloc de temps spécifié. Si les deux correspondances
sont inversées, alors un maximum de paquets peuvent avoir été vus durant le dernier
minimum de secondes.

Correspondance −−rttl

Noyau 2.4, 2.5 et 2.6

Exemple iptables −A INPUT −m recent −−name example −−check −−rttl

Explication

La correspondance −−rttl vérifie que la valeur TTL du paquet est la même que celle du
paquet original utilisé pour placer l'entrée dans la liste récente. Ceci peut être utilisé pour
vérifier que les adresses sources de personnes n'ont pas été mystifiées (spoofing) pour
interdire aux autres l'accès à leur serveurs en faisant usage de la correspondance recent.

Correspondance −−rsource

Noyau 2.4, 2.5 et 2.6

Exemple iptables −A INPUT −m recent −−name example −−rsource

Explication La correspondance −−rsource indique au module recent de sauvegarder l'adresse source et
les ports dans la liste recent. C'est le comportement par défaut.

Correspondance −−rdest

Noyau 2.4, 2.5 et 2.6

Exemple iptables −A INPUT −m recent −−name example −−rdest

Didacticiel sur Iptables, version 1.2.0

78 10.3.14. Correspondance Recent

Explication −−rdest est l'opposé de −−rsource en ce qu'elle indique à la correspondance recent
d'enregistrer l'adresse et le port de destination dans la liste recent.

j'ai créé un petit exemple de script sur la façon d'utiliser la correspondance recent, vous pouvez le trouver dans
la section Recent−match.txt.

En bref, c'est une pauvre variation de la machine d'état disponible dans netfilter. Cette version fut créé avec à
l'esprit un serveur http, mais qui fonctionnera avec n'importe quelle connexion TCP. En premier, nous avons
créé deux chaînes nommées http−recent et http−final. La chaîne http−recent est utilisée aux étapes du
démarrage de la connexion, et pour la transmission des données, tandis que la chaîne http−final est utilisée
pour les derniers FIN, FIN/ACK dans l'établissement de la liaison.

Avertissement
C'est une très mauvaise alternative pour la machine d'état et elle ne dispose pas de toutes les possibilités
de la machine d'état. Cependant, c'est un bon exemple de ce qui peut être fait avec la correspondance
Recent sans être trop spécifique. N'utilisez pas cet exemple en production. Il est lent, gère mal les cas
spéciaux, et ne doit être jamais utilisé que comme un exemple.

Par exemple, il ne gère pas les ports fermés dans une connexion, les établissements de liaison FIN
asynchrones (où une des parties connectée se ferme, tandis que l'autre continue d'envoyer des données),
etc.

Suivons un paquet à travers l'exemple de la table de règles. D'abord le paquet entre dans la chaîne INPUT, et
nous l'envoyons à la chaîne http−recent.

Le premier paquet sera un paquet SYN, et n'aura pas de bit ACK, FIN ou RST placé. Il est apparié en
utilisant la ligne −−tcp−flags SYN,ACK,FIN,RST SYN. À ce niveau nous ajoutons la connexion à
httplist avec la ligne −m recent −−name httplist −−set. Enfin nous acceptons le paquet.

1.

Après le premier paquet nous recevons un paquet SYN/ACK indiquant que le paquet SYN a été reçu.
Ceci peut être apparié en utilisant la ligne −−tcp−flags SYN,ACK,FIN,RST SYN,ACK. FIN et RST
sont illégaux à ce niveau. Nous mettons à jour l'entrée dans httplist par −m recent −−name httplist
−−update et finalement nous avons l'ACCEPT du paquet.

2.

Maintenant nous obtenons un paquet final ACK, venant du créateur de la connexion, nous permettant
de savoir que le SYN/ACK a été envoyé par le serveur. SYN, FIN et RST sont illégaux à ce point de
la connexion, et la ligne ressemblera à −−tcp−flags SYN,ACK,FIN,RST ACK. Nous mettons à jour la
liste de la même façon que dans l'étape précédente, et nous avons l'ACCEPT.

3.

À ce niveau, la transmission de données peut démarrer. La connexion ne contiendra jamais aucun
paquet SYN maintenant, mais contiendra des paquets ACK pour permettre de savoir que les données
sont envoyées. Chaque fois que nous voyons un paquet comme celui−là, nous mettons à jour la liste et
ACCEPT les paquets.

4.

La transmission peut être terminée de deux façons, la plus simple est le paquet RST. RST
réinitialisera la connexion et la coupera. Avec FIN, la connexion sera coupée sans plus envoyer de
données. Le destinataire du FIN, pourra toujours envoyer des données, et nous arrivons à l'étape finale
de la connexion.

5.

Dans les chaînes http−recent−final nous vérifions si le paquet est toujours dans la httplist, et si c'est le
cas, nous l'envoyons à la chaîne http−recent−final1. Dans cette chaîne nous supprimons la connexion
de la httplist l'ajoutons à la liste http−recent−final. Si la connexion a déjà été supprimée et déplacée
vers la liste http−recent−final, nous envoyons le paquet vers la chaîne http−recent−final2.

6.

Dans la chaîne http−recent−final2, nous attendons que la partie non fermée finisse d'envoyer ses
données, et fermons ensuite la connexion. Une fois ceci fait, la connexion est tout simplement
supprimée.

7.

Comme nous l'avons vu la liste recent peut devenir tout à fait complexe, mais elle nous donne un vaste
éventail de possibilités si nécessaire. Encore une fois, nous ne réinventons pas la roue. Si la fonctionnalité que
vous désirez est déjà implémentée, utilisez la au lieu d'essayer de créer votre propre solution.

Didacticiel sur Iptables, version 1.2.0

10.3.14. Correspondance Recent 79

10.3.15. Correspondance state

L'extension de correspondance state est associée au code de traçage de connexion dans le noyau. La
correspondance d'état accède à l'état du traçage de connexion des paquets grâce à la machine de
"conntracking". Elle permet de savoir dans quel état se trouve la connexion, et fonctionne pour quasiment tous
les protocoles y−compris les protocoles sans état tels que ICMP et UDP. Dans tous les cas, la connexion est
sujette à un dépassement de temps établi par défaut ("default timeout") et sera, le cas échéant, supprimée de la
base de données du traçage de connexion. Cette correspondance exige d'être chargée explicitement en ajoutant
la directive −m state à la règle. Vous disposerez alors d'une nouvelle correspondance appelée state. Le
concept de correspondance d'état est couvert plus en détail dans le chapitre La machine d'état, étant donné que
le sujet est assez vaste.

Tableau 10.21. Correspondances de state

Correspondance −−state

Noyau 2.3, 2.4, 2.5 et 2.6

Exemple iptables −A INPUT −m state −−state RELATED,ESTABLISHED

Explication

Cette option indique à la correspondance state dans quels états doivent être les paquets
pour être sélectionnés. Actuellement, 4 états sont disponibles : INVALID,
ESTABLISHED, NEW et RELATED. INVALID signifie que le paquet n'est associé à
aucun flux, ni à aucune connexion connus, et qu'il peut contenir des données ou des
en−têtes erronés. ESTABLISHED signifie que le paquet est lié à une connexion déjà
établie, qui a vu passer des paquets dans les deux directions et qui est considérée valide.
NEW signifie que le paquet a démarré ou démarrera une nouvelle connexion, ou bien qu'il
est associé à une connexion qui n'a pas vu passer des paquets dans les deux directions.
Enfin, RELATED signifie que le paquet démarre une nouvelle connexion et qu'il est
associé à une connexion déjà établie. Ceci peut évoquer par exemple un transfert de
données par FTP, ou une erreur ICMP associée à une connexion TCP ou UDP.
Notez que l'état NEW n'examine pas les bits SYN des paquets TCP qui tentent de démarrer
une nouvelle connexion. Par conséquent, cet état ne devrait pas être utilisé tel quel dans les
situations où il n'existe qu'un seul pare−feu, ou quand il n'y a pas d'équilibrage de charge
entre les différents pare−feux. Cependant, cet état se révèle utile dans certains cas. Pour en
savoir plus, consultez le chapitre La machine d'état.

10.3.16. Correspondance TCPMSS

La correspondance tcpmss est utilisée pour apparier un paquet basé sur la Maximum Segment Size
(Tailles maximum de segment) dans TCP. Ceci vérifie seulement la validité des paquets SYN et SYN/ACK.
Pour une explication plus détaillée de la valeur MSS, voir l'appendice, Options TCP la RFC 793 −
Transmission Control Protocol et la RFC 1122 − Requirements for Internet Hosts − Communication Layers.
Cette correspondance est chargée en utilisant −m tcpmss et prend uniquement cette option.

Tableau 10.22. Options de correspondance TCPMSS

Correspondance −−mss

Noyau 2.3, 2.4, 2.5 et 2.6

Exemple iptables −A INPUT −p tcp −−tcp−flags SYN,ACK,RST SYN −m tcpmss −−mss
2000:2500

Explication L'option −−mss indique à la correspondance tcpmss quel Maximum Segment Sizes
apparier. Ceci peut être soit une simple valeur MSS, soit une plage de valeurs MSS
séparées par :. La valeur peut être inversée par le signe !, comme dans l'exemple suivant :

Didacticiel sur Iptables, version 1.2.0

80 10.3.15. Correspondance state

−m tcpmss ! −−mss 2000:2500

Cet exemple vérifiera toutes les valeurs MSS, sauf les valeurs comprises dans la plage de
2000 à 2500.

10.3.17. Correspondance TOS

La correspondance TOS peut servir à sélectionner les paquets à partir de leur champ de TOS. TOS signifie
type de service ; il est constitué de 8 bits et se situe dans l'en−tête IP. Cette correspondance est chargée
explicitement en ajoutant −m tos à la règle. Elle est normalement utilisée afin d'informer les hôtes
intermédiaires de l'ordre de priorité du flux et de son contenu (ce n'est pas vraiment le cas, mais il informe des
besoins spécifiques au flux, comme une réexpédition aussi rapide que possible, ou un impératif de débit). Les
différents routeurs et administrateurs gèrent ces valeurs de façon variable. La plupart ne s'en préoccupent pas
du tout, alors que d'autres font de leur mieux pour servir les paquets en question et les données qu'ils
contiennent.

Tableau 10.23. Correspondance TOS

Correspondance −−tos

Noyau 2.3, 2.4, 2.5 et 2.6

Exemple iptables −A INPUT −p tcp −m tos −−tos 0x16

Explication

Cette correspondance s'utilise tel que décrit ci−dessus. Elle sélectionne les paquets à partir
de leur champ de TOS et de sa valeur. Ceci peut être employé avec le programme
iproute2 et les fonctions avancées de routage de Linux pour effectuer un marquage des
paquets pour une usage ultérieur. La correspondance prend en option une valeur
hexadécimale ou numérique, ou éventuellement un des noms fournis par la commande
'iptables −m tos −h'. Actuellement, elle donne les noms suivants : Minimize−Delay
16 (0x10), Maximize−Throughput 8 (0x08), Maximize−Reliability 4
(0x04), Minimize−Cost 2 (0x02), et Normal−Service 0 (0x00).
Minimize−Delay signale de minimiser le retard pour les paquets qui traversent − les
services classiques qui requièrent ceci peuvent être, par exemple, telnet, SSH et
FTP−control. Maximize−Throughput précise de trouver un chemin qui offre le
plus haut débit possible − un protocole typique est FTP−data.
Maximize−Reliability indique de maximiser la fiabilité de la connexion, donc
d'utiliser des lignes aussi fiables que possible − deux exemples typiques sont BOOTP et
TFTP. Minimize−Cost signale de minimiser le coût des paquets qui traversent tous les
liens vers le client ou le serveur ; par exemple, déterminer la route qui offre le voyage le
moins cher de bout en bout. Des exemples de protocoles classiques qui peuvent l'utiliser
sont RTSP ("Real Time Stream Control Protocol" ou protocole de contrôle de flux
temps−réel) et d'autres protocoles de flux vidéo/radio. Enfin, Normal−Service désigne
tout protocole classique n'ayant aucun besoin particulier.

10.3.18. Correspondance TTL

La correspondance TTL permet de sélectionner les paquets à partir de leur champ TTL ("Time To Live" ou
durée de vie) localisé dans l'en−tête IP. Le champ TTL contient 8 bits de données, et il est décrémenté de 1 à
chaque fois qu'il est traité par un hôte intermédiaire entre le client et l'hôte destinataire. Si le TTL atteint 0, un
message ICMP type 11 code 0 (TTL égal à 0 pendant le transit) ou code 1 (TTL égal à 0 pendant le
réassemblage) est transmis à l'expéditeur du paquet pour l'informer du problème. Cette correspondance est
utilisée seulement pour sélectionner les paquets à partir de leur TTL, et non pour effectuer un changement
quel qu'il soit. Celui−ci, soit dit en passant, s'applique à tout type de correspondance. Pour charger cette
correspondance, vous devez ajouter −m ttl à la règle.

Didacticiel sur Iptables, version 1.2.0

10.3.16. Correspondance TCPMSS 81

Tableau 10.24. Correspondances TTL

Correspondance −−ttl

Noyau 2.3, 2.4, 2.5 et 2.6

Exemple iptables −A OUTPUT −m ttl −−ttl 60

Explication

Cette option de correspondance permet de spécifier la valeur TTL à sélectionner.
Cette option requiert une valeur numérique et établit une correspondance avec
cette valeur dans le paquet. Aucune inversion n'est disponible et il n'y a rien
d'autre, en particulier, à sélectionner. Mais ceci peut être utile, par exemple, pour
déboguer votre réseau local − c'est−à−dire les hôtes de votre LAN qui semblent
présenter des problèmes de connexion avec un hôte sur Internet − ou pour trouver
d'éventuelles entrées de chevaux de Troie, etc. Les possibilités de cette option sont
relativement limitées, cependant son intérêt dépend essentiellement de votre
imagination. Un exemple pourrait être de trouver des hôtes avec de mauvaises
valeurs par défaut de TTL (pouvant être la conséquence d'un pile TCP/IP mal
implémentée, ou simplement d'un défaut de configuration).

10.3.19. Correspondance unclean

La correspondance unclean ne prend aucune option et ne nécessite rien de plus qu'un chargement explicite si
vous souhaitez l'utiliser. Notez que cette option est considérée comme expérimentale, qu'elle peut ne pas
fonctionner en toutes circonstances et qu'elle ne prendra pas en charge tous les paquetages ou problèmes
relatifs à unclean. La correspondance unclean tente de sélectionner les paquets qui paraissent malformés ou
inhabituels, comme des paquets avec des en−têtes ou des sommes de contrôle ("checksums") erronés. Elle
peut être utilisée pour rejeter des connexions (avec la cible DROP) et pour rechercher les flux douteux, par
exemple. Cela dit, vous devez être conscient qu'il existe un risque d'interruption de connexions saines.

Chapitre 11. Iptables cibles et sauts

Target/jump indique à la règle que faire avec un paquet qui est parfaitement apparié avec la section
correspondance de la règle. Il existe deux cibles de base, les cibles ACCEPT et DROP, que nous verrons en
premier. Cependant, avant, jetons un bref regard sur la façon dont un saut est construit.

La spécification saut est faite exactement de la même façon que la définition cible, sauf qu'elle nécessite une
chaîne dans la même table. Pour faire un saut vers une chaîne spécifique, il faut bien sûr que la chaîne existe.
Comme nous l'avons déjà expliqué, une chaîne définie par l'utilisateur est créée avec la commande −N. Par
exemple, nous créons une chaîne dans la table filtre appelée tcp_packets, comme ceci :

iptables −N tcp_packets

Nous pouvons alors lui ajouter une cible saut comme :

iptables −A INPUT −p tcp −j tcp_packets

Nous pourrons alors faire un saut depuis la chaîne INPUT vers la chaîne tcp_packets et commencer à
traverser la chaîne. Quand nous atteignons la fin de cette chaîne, nous retournons vers la chaîne INPUT et le
paquet démarre sa traversée de la règle une étape après qu'il ait fait le saut vers l'autre chaîne (tcp_packets
dans ce cas). Si le paquet est ACCEPT dans une des sous−chaînes, elle sera ACCEPT dans la chaîne de
sur−ensemble également et ne traversera plus aucune des chaînes de sur−ensemble. Cependant, notez que le
paquet traversera toutes les autres chaînes des autres tables. Pour plus d'information sur la traversée des tables
et des chaînes, voir le chapitre Traversée des tables et des chaînes.

Didacticiel sur Iptables, version 1.2.0

82 10.3.18. Correspondance TTL

D'un autre côté, les cibles spécifient une action a effectuer sur le paquet en question. Nous pouvons, par
exemple, DROP ou ACCEPT selon ce que nous voulons faire. Il existe aussi plusieurs autres actions que nous
pouvons effectuer, que nous décrirons plus tard dans cette section. Certaines cibles stopperont le paquet dans
sa traversée des chaînes, comme décrit au−dessus. De bons exemples de ces règles sont DROP et ACCEPT.
les règles qui sont stoppées, ne passeront plus à travers aucune règle suivante sur la chaîne ou sur une chaîne
supérieure. D'autres cibles, peuvent avoir une action sur le paquet, lequel ensuite continuera à traverser les
règles suivantes. Un bon exemple de ceci peuvent être les cibles LOG, ULOG et TOS. Ces cibles peuvent
journaliser les paquets, les analyser et les passer à d'autres règles dans le même ensemble de chaînes. Nous
pouvons, par exemple, de plus vouloir analyser les valeurs TTL et TOS d'un paquet/flux spécifique. Certaines
cibles accepterons des options supplémentaires (quelle valeur TOS utiliser, etc.), tandis que d'autres n'en ont
pas nécessairement besoin − mais peuvent en inclure si nous le souhaitons (journaliser les préfixes, masquer
les ports, etc.). Nous essaierons de couvrir tous ces sujets quand nous verrons la description des cibles.
Regardons de quelles sortes de cible il s'agit.

11.1. Cible ACCEPT

Cette cible ne nécessite pas d'autre option. Aussitôt que la spécification de correspondance pour un paquet a
été pleinement satisfaite, et que nous spécifions ACCEPT comme cible, la règle est acceptée et ne traversera
pas la chaîne ou aucune autre chaîne dans la même table. Notez cependant, qu'un paquet qui a été accepté
dans une chaîne peut toujours circuler à travers les chaînes dans d'autres tables, et peut toujours être supprimé
à cet endroit là. Il n'y a rien de spécial concernant cette cible, et il n'est pas nécessaire d'y ajouter des options.
Pour utiliser cette cible, spécifiez simplement −j ACCEPT.

Note
Fonctionne avec les noyaux Linux 2.3, 2.4, 2.5 et 2.6.

11.2. Cible CLASSIFY

la cible CLASSIFY peut servir à classer les paquets de façon à ce qu'ils puissent être utilisés par deux ou
plusieurs qdiscs (Queue Disciplines). Par exemple, atm, cbq, dsmark, pfifo_fast, htb. Pour plus d'information
sur qdiscs et le contrôle de trafic, voir la page Linux Advanced Routing and Traffic Control HOW−TO.

La cible CLASSIFY est valide uniquement dans la chaîne POSTROUTING de la table mangle.

Tableau 11.1. Options de la cible CLASSIFY

Option −−set−class

Exemple iptables −t mangle −A POSTROUTING −p tcp −−dport 80 −j CLASSIFY
−−set−class 20:10

Explication

La cible CLASSIFY prend seulement un argument, le −−set−class. Il indique à la
cible comment classer le paquet. Ce classement prend deux valeurs séparées par le
signe deux points (:), comme ceci MAJOR:MINOR. Encore une fois, si vous voulez
plus d'information, regardez la page Linux Advanced Routing and Traffic Control
HOW−TO.

Note
Fonctionne avec les noyaux Linux 2.5 et 2.6.

11.3. Cible DNAT

La cible DNAT est utilisée pour la Traduction d'Adresse Réseau de Destination, ce qui veut dire qu'elle sert à
réécrire l'adresse IP de Destination du paquet. Si un paquet est apparié, et qu'il est la cible de la règle,
ce paquet et tous les paquets suivants du même flux seront traduits, et ensuite routés vers le matériel, l'hôte ou
le réseau appropriés. Cette cible peut être extrêmement utile, par exemple, quand vous avez un hôte avec un

Didacticiel sur Iptables, version 1.2.0

Chapitre 11. Iptables cibles et sauts 83

serveur web dans un LAN, mais pas d'IP réelle routable sur l'Internet. Vous pouvez alors indiquer au pare−feu
de transférer tous les paquets allant vers son propre port HTTP, vers le serveur web réel dans le LAN. Vous
pouvez aussi spécifier une plage d'adresses IP de destination, et le mécanisme DNAT choisira l'adresse IP de
destination au hasard pour chaque flux. Nous pourrons donc réaliser une sorte d'équilibrage de charge en
faisant ça.

Notez que la cible DNAT est disponible uniquement dans les chaînes PREROUTING et OUTPUT de la table
nat. Les chaînes contenant des cibles DNAT ne peuvent pas être utilisées depuis d'autres chaînes, comme la
chaîne POSTROUTING.

Tableau 11.2. Cible DNAT

Option −−to−destination

Exemple iptables −t nat −A PREROUTING −p tcp −d 15.45.23.67 −−dport 80 −j DNAT
−−to−destination 192.168.1.1−192.168.1.10

Explication

L'option −−to−destination indique au mécanisme DNAT quelle Destination IP placer
dans l'en−tête IP, et où sont envoyés les paquets qui sont appariés. L'exemple ci−dessus enverra
sur tous les paquets destinés à l'adresse IP 15.45.23.67 dans une plage IP de réseau local
comprise entre 192.168.1.1 jusqu'à 192.168.1.10. Notez que, comme décrit précédemment, un
simple flux utilisera toujours le même hôte, et chaque flux aura une adresse IP attribuée au
hasard, et qui sera toujours en direction de quelque part, dans ce flux. Nous pouvons aussi avoir
à spécifier une seule adresse IP, dans ce cas nous serons toujours connectés au même hôte.
Notez aussi que nous pouvons ajouter un port ou une plage de ports vers lequel le trafic sera
redirigé. Ceci se fait en ajoutant, par exemple, un :80 à l'adresse IP pour laquelle nous voulons
traduire les paquets. Une règle peut alors ressembler à −−to−destination 192.168.1.1:80 par
exemple, ou −−to−destination 192.168.1.1:80−100 si nous voulons spécifier une plage de
ports. Comme vous pouvez le voir, la syntaxe est à peu près la même que la cible SNAT, même
si elles font deux choses totalement différentes. Les spécifications de port sont valides
uniquement pour les règles qui précisent les protocoles TCP ou UDP avec l'option −−protocol.

Comme DNAT nécessite pas mal de travail pour fonctionner correctement, j'ai décidé d'ajouter une
explication plus complète sur ce sujet. Prenons un bref exemple pour comprendre comment les choses se
passent normalement. Nous voulons publier notre site web via notre connexion Internet. Nous ne possédons
qu'une seule adresse IP, et le serveur HTTP est situé dans notre réseau interne. Notre pare−feu possède
l'adresse IP externe $INET_IP, et notre serveur HTTP a l'adresse IP interne $HTTP_IP et enfin le pare−feu a
l'adresse IP interne $LAN_IP. La première chose à faire est d'ajouter la simple règle suivante à la chaîne
PREROUTING dans la table nat :

iptables −t nat −A PREROUTING −−dst $INET_IP −p tcp −−dport 80 −j DNAT \
−−to−destination $HTTP_IP

Maintenant, tous les paquets provenant de l'Internet et allant vers le port 80 sur notre pare−feu, sont redirigés
(ou DNATés) vers notre serveur HTTP interne. Si vous testez ceci depuis L'Internet, tout devrait fonctionner
parfaitement. mais, que se passe−t−il si vous essayez de vous connecter depuis un hôte sur le même réseau
local que le serveur HTTP ? Il ne fonctionnera tout simplement pas. C'est un réel problème avec le routage.
Commençons par voir ce qui se passe dans un cas normal. La machine externe possède une adresse IP
$EXT_BOX, pour conserver la lisibilité.

Le paquet quitte l'hôte connecté allant vers $INET_IP et la source $EXT_BOX.1.
Le paquet atteint le pare−feu.2.
Le pare−feu DNAT le paquet et envoit celui−ci à travers les différentes chaînes, etc.3.
Le paquet quitte la pare−feu pour aller vers le $HTTP_IP.4.

Didacticiel sur Iptables, version 1.2.0

84 11.3. Cible DNAT

Le paquet atteint le serveur HTTP, et la machine HTTP répond en retour à travers le pare−feu, si c'est
cette machine que la base de routage a entré comme passerelle pour $EXT_BOX. Normalement, ça
devrait être la passerelle par défaut du serveur HTTP.

5.

Le pare−feu Un−DNAT le paquet de nouveau, ainsi le paquet semble provenir du pare−feu lui−même.6.
Le paquet en réponse transite vers le client $EXT_BOX.7.

Maintenant, voyons ce qui se passe si le paquet est généré par un client sur le même réseau que le serveur
HTTP lui−même. Le client possède l'adresse IP $LAN_BOX, tandis que les autres machines ont les mêmes
réglages.

Le paquet quitte la $LAN_BOX vers $INET_IP.1.
Le paquet atteint le pare−feu.2.
Le paquet est DNATé, et toutes les autres actions requises sont prises, cependant, le paquet n'est pas
SNATé, ainsi la même adresse source IP est utilisée pour le paquet.

3.

le paquet quitte le pare−feu et atteint le serveur HTTP.4.
Le serveur HTTP essaie de répondre au paquet, et voit dans les tables de routage que le paquet
provient d'une machine locale sur le même réseau, et donc tente d'envoyer le paquet directement à
l'adresse source IP d'origine (qui devient alors l'adresse IP de destination).

5.

Le paquet atteint le client, et le client est dans la confusion car le paquet en retour ne provient pas de
l'hôte qui a envoyé la requête d'origine. Donc, le client supprime le paquet, et attend une réponse
"réelle".

6.

La solution la plus simple à ce problème est de SNATer tous les paquets entrant dans le pare−feu sortant vers
un hôte ou une IP sur lequel nous faisons du DNAT. Exemple, regardons la règle ci−dessus. Nous SNATons
les paquets entrants dans notre pare−feu qui sont destinés à $HTTP_IP port 80 et ainsi il est vu que des
paquets proviennent d'une $LAN_IP. Ceci force le serveur HTTP à envoyer ces paquets vers notre pare−feu,
lequel Un−DNAT ceux−ci et les envoit au client. La règle ressemble à ceci :

iptables −t nat −A POSTROUTING −p tcp −−dst $HTTP_IP −−dport 80 −j SNAT \
−−to−source $LAN_IP

Souvenez vous que la chaîne POSTROUTING est exécutée en dernier, et donc le paquet sera déjà DNATé une
fois qu'il joint cette chaîne spécifique. C'est la raison pour laquelle nous apparions les paquets basés sur une
adresse interne.

Avertissement
Cette dernière règle nuira sérieusement à votre journalisation, ainsi il n'est pas recommandé d'utiliser
cette méthode, mais l'ensemble de l'exemple est valide. Que se passe−t−il alors, le paquet provient de
l'Internet, est SNATé et DNATé et finalement atteint le serveur HTTP (par exemple). Le serveur HTTP
voit maintenant les requêtes comme si elles provenaient du pare−feu, et donc les journalisera toutes
comme telles.

Ceci peut avoir également d'autres implications plus graves. Prenons un serveur SMTP sur un LAN, qui
autorise les requêtes depuis le réseau interne, et vous avez un pare−feu paramétré pour transférer le trafic
SMTP vers ce serveur. Vous avez donc créé un serveur SMTP en relais ouvert, avec une journalisation
horrible !

Une solution à ce problème est de tout simplement rendre la règle ci−dessus plus précise dans sa partie
appariement, et de travailler seulement sur les paquets qui proviennent du LAN. En d'autres termes,
ajoutez un −i $LAN_IFACE à l'ensemble de la commande. Ceci fera que la règle ne fonctionnera que
sur les flux provenant du LAN, et donc n'affectera pas la source IP, ainsi les journaux seront corrects,
sauf pour les flux venant du LAN.

Didacticiel sur Iptables, version 1.2.0

11.3. Cible DNAT 85

Vous auriez mieux fait, en d'autres termes, de résoudre ces problèmes soit en paramétrant un serveur
DNS (serveur de nom) séparé pour votre LAN, soit en paramétrant une DMZ séparée, la dernière étant
préférable si vous avez les moyens.

Vous pouvez penser que c'est suffisant, et c'est vrai, sauf à considérer un dernier aspect du scénario. Que se
passe−t−il si le pare−feu lui−même essaie d'accéder au serveur HTTP, où va−t−il ? Il tentera
malheureusement d'accéder à son propre serveur HTTP, et pas au serveur situé sur $HTTP_IP. Pour parer à
ça, nous devons rajouter une règle DNAT à la chaîne OUTPUT. Suivant l'exemple ci−dessus, ça ressemblerait
à quelque chose comme :

iptables −t nat −A OUTPUT −−dst $INET_IP −p tcp −−dport 80 −j DNAT \
−−to−destination $HTTP_IP

Tous les réseaux séparés qui ne sont pas situés sur le même réseau que le serveur HTTP fonctionneront sans
soucis, tous les hôtes sur le même réseau que le serveur HTTP pourront s'y connecter et enfin, le pare−feu
pourra exécuter ses connexions correctement. Maintenant, tout fonctionne et aucun problème ne devrait
arriver.

Note
Tout le monde devrait réaliser que ces règles affectent seulement la façon dont le paquet est DNATé et
SNATé. En plus de ces règles, nous avons aussi besoin de règles supplémentaires dans la table filtre
(chaîne FORWARD) pour permettre aux paquets de traverser ces chaînes. N'oubliez pas que tous les
paquets sont déjà passés par la chaîne PREROUTING, et donc ont vu leur adresse de destination réécrite
par DNAT.
Note
Fonctionne avec les noyaux Linux 2.3, 2.4, 2.5 et 2.6.

11.4. Cible DROP

La cible DROP fait exactement ce qu'elle veut dire, elle efface des paquets et n'effectue aucun autre processus
supplémentaire. Un paquet qui apparie parfaitement un règle et est ensuite effacé sera bloqué. Notez que cette
action peut avoir, dans certains cas, des effets inattendus, car elle peut laisser des interfaces de connexions
mortes sur quelque hôte. Une meilleure solution dans ces cas là serait d'utiliser la cible REJECT,
spécialement quand vous voulez bloquer le balayage (scan) de ports pour ne pas donner trop d'informations,
ou le filtrage de ports, etc. Notez également que si le paquet subit l'action DROP dans une sous−chaîne, ce
paquet ne sera traité dans aucune des chaînes principales, soit dans la table présente ou dans une quelconque
autre table. Le paquet est, en d'autres termes, totalement mort. Comme nous l'avons vu précédemment, la cible
n'enverra aucune autre sorte d'information dans aucune direction, ni par des intermédiaires comme les
routeurs.

Note
Fonctionne avec les noyaux Linux 2.3, 2.4, 2.5 et 2.6.

11.5. Cible DSCP

C'est une cible qui modifie les repères DSCP (Differentiated Services Field) dans un paquet. La cible DSCP
peut placer n'importe quelle valeur DSCP dans un paquet TCP, ce qui est un moyen d'indiquer aux routeurs la
priorité du paquet en question. Pour plus d'information sur DSCP, voyez la RFC RFC 2474 − Definition of the
Differentiated Services Field (DS Field) in the IPv4 and IPv6 Headers.

De façon basique, DSCP est un moyen de différencier divers services de catégories séparées, et leur donner
différentes priorités à travers les routeurs. De cette façon, vous pouvez donner à des sessions TCP interactives
(comme telnet, SSH, POP3) une très grande vitesse de connexion, ceux−ci pouvant ne pas être très appropriés

Didacticiel sur Iptables, version 1.2.0

86 11.4. Cible DROP

pour des tranferts importants. Si la connexion est de plus faible importance (SMTP, ou ce que vous voulez
classer en basse priorité), vous pouvez employer un temps de latence plus important, ce qui est meilleur
marché que d'utiliser des connexions en haute ou basse latence.

Tableau 11.3. Options de la cible DSCP

Option −−set−dscp

Exemple iptables −t mangle −A FORWARD −p tcp −−dport 80 −j DSCP −−set−dscp 1

Explication
Ceci place la valeur DSCP à la valeur spécifiée. Les valeurs peuvent être placées soit par class,
voir ci−dessous, soit avec le −−set−dscp, qui prend une valeur entière ou une valeur
hexadécimale.

Option −−set−dscp−class

Exemple iptables −t mangle −A FORWARD −p tcp −−dport 80 −j DSCP −−set−dscp−class EF

Explication

Place le champ DSCP selon une classe Diffserv prédéfinie. Certaines des valeurs possibles sont
EF, BE et les valeurs CSxx et AFxx disponibles. Vous pouvez trouver plus d'information sur le
site Implementing Quality of Service Policies with DSCP. Notez que les commandes
−−set−dscp−class et −−set−dscp sont mutuellement exclusives, ce qui veut dire que vous ne
pouvez pas les utiliser ensemble dans la même commande !

Note
Fonctionne avec les noyaux Linux 2.3, 2.4, 2.5 et 2.6.

11.6. Cible ECN

Cette cible peut être extraordinaire, utilisée correctement. Simplement placée, la cible ECN peut être utilisée
pour réinitialiser les bits ECN depuis l'en−tête IPv4, ou les réinitialiser à 0 au moins. ECN est une chose
relativement nouvelle sur le net, et il y a quelques problèmes avec elle. Par exemple, elle utilise 2 bits définis
dans la RFC originale du protocole TCP comme devant être à 0. Certains routeurs et autres serveurs Internet
ne transfèrent pas les paquets dont les bits sont placés à 1. Si vous voulez faire usage d'une partie au moins
des fonctionnalités de ECN depuis vos hôtes, vous pourrez par exemple réinitialiser les bits ECN à 0 pour les
réseaux spécifiques dont nous savons qu'il y a des problèmes de connexion à cause de ECN.

Note
Notez qu'il n'est pas possible d'activer ECN au milieu d'un flux. Ce n'est pas autorisé selon la
RFC, et ne sera possible en aucune façon. Les deux points limite d'un flux doivent négocier
l'ECN. Si nous l'activons, un des hôtes n'est pas informé de cela, et ne peux répondre proprement
aux notifications ECN.

Tableau 11.4. Options de la cible ECN

Option −−ecn−tcp−remove

Exemple iptables −t mangle −A FORWARD −p tcp −−dport 80 −j ECN −−ecn−tcp−remove

Explication La cible ECN prend un seul argument, −−ecn−tcp−remove. Ceci indique à la cible de
supprimer les bits ECN des en−têtes TCP. Voir au−dessus pour plus d'information.

Note
Fonctionne avec les noyaux Linux 2.5 et 2.6.

11.7. Options de la cible LOG

La cible LOG est spécialement destinée à journaliser des informations détaillées sur les paquets. Ceci peut,
par exemple, être considéré comme illégal. Ou la journalisation peut servir à la recherche de bogues et

Didacticiel sur Iptables, version 1.2.0

11.5. Cible DSCP 87

d'erreurs. La cible LOG renverra une information spécifique sur les paquets, comme les en−têtes IP et autre
détails considérés comme intéressants. Ceci se réalise par les fonctionnalités de journalisation du noyau,
normalement syslogd. Cette information peut alors être lue directement avec la commande dmesg, ou depuis
les journaux syslogd, ou avec d'autres programmes ou applications. C'est une excellente cible utilisée comme
débogage des tables de règles, ainsi vous pouvez voir où vont les paquets et comment les règles sont
appliquées et sur quels paquets. Notez que ce peut être une très bonne idée d'utiliser la cible LOG au lieu de la
cible DROP lorsque vous testez une règle dont vous n'êtes pas sûrs à 100% de son efficacité dans un pare−feu
en production, car une erreur de syntaxe dans la table de règles pourrait causer de sévères problèmes de
connectivité entre vos utilisateurs. Notez aussi que la cible ULOG peut être intéressante si vous utilisez
réellement une journalisation extensive, car ULOG supporte directement la journalisation dans les bases de
données MySQL et d'autres.

Note
Notez que si vous obtenez une sortie de journalisation directement vers les consoles, ce n'est pas un
problème de iptables ou Netfilter, mais plutôt un problème causé par votre configuration de syslogd −
probablement /etc/syslog.conf. Pour en savoir plus man syslog.conf.

Vous pourriez aussi désirer revoir les paramétrages de dmesg. dmesg est la commande qui permet de
voir sur une console les erreurs envoyées par le noyau. dmesg −n 1 enverra tous les messages sur la
console, sauf les messages de panique. Les niveaux de message de dmesg apparient exactement les
niveaux de syslogd, et fonctionnent seulement sur les messages de journalisation depuis les
fonctionnalités du noyau. Pour plus d'information voir man dmesg.

La cible LOG prend actuellement cinq options qui peuvent être intéressantes si vous recherchez une
information précise, ou désirez placer différentes options pour certaines valeurs. Elles sont présentées
ci−dessous.

Tableau 11.5. Options de la cible LOG

Option −−log−level

Exemple iptables −A FORWARD −p tcp −j LOG −−log−level debug

Explication

C'est l'option qui indique à iptables et syslog quel niveau de journalisation utiliser.
Pour une liste complète des niveaux de journalisation lisez le manuel
syslog.conf. Normalement il y a les niveaux de journalisation suivants, ou les
priorités qui s'y réfèrent : debug, info, notice, warning, warn, err,
error, crit, alert, emerg et panic. le mot−clé error est le même que
err, warn est le même que warning et panic le même que emerg. Notez
que tous les trois sont obsolètes, en d'autres termes n'utilisez pas error, warn et
panic. La priorité définit le niveau de rigueur des messages journalisés. Tous les
messages sont journalisés par les fonctionnalités du noyau. En d'autres termes,
placer kern.=info /var/log/iptables dans votre fichier syslog.conf et ensuite
laisser tous vos messages de LOG dans iptables utilise le niveau info, ce qui fera
que tous vos messages apparaîtront dans le fichier /var/log/iptables.
Notez qu'il peut y avoir d'autres messages provenant d'autres parties du noyau qui
utilisent la priorité info. Pour plus d'information sur la journalisation, je vous
recommande de lire les pages de manuel de syslog et syslog.conf comme les
autres HOWTO, etc.

Option −−log−prefix

Exemple iptables −A INPUT −p tcp −j LOG −−log−prefix "INPUT packets"

Explication Cette option indique à iptables de préfixer tous les messages de journalisation avec
un préfixe spécifique, qui peut être facilement combiné avec grep ou d'autres
outils qui permettent de tracer ces problèmes et les sorties des différentes règles.

Didacticiel sur Iptables, version 1.2.0

88 11.7. Options de la cible LOG

Le préfixe peut avoir jusqu'à 29 lettres de long, incluant les espaces et autres
symboles spéciaux.

Option −−log−tcp−sequence

Exemple iptables −A INPUT −p tcp −j LOG −−log−tcp−sequence

Explication

Cette option journalisera les numéros des Séquences TCP, avec le message de
journalisation. Les numéros de Séquences TCP sont des nombres spéciaux qui
identifient chaque paquet et qu'ils ajustent dans une séquence TCP, et permettent
de savoir comment le flux sera réassemblé. Notez que cette option constitue un
risque de sécurité si les journaux sont lisibles par des utilisateurs non autorisés, ou
par tout le monde.

Option −−log−tcp−options

Exemple iptables −A FORWARD −p tcp −j LOG −−log−tcp−options

Explication
L'option −−log−tcp−options journalise les différentes options des en−têtes des
paquets TCP et peuvent être utiles lors du débogage. Cette option ne prend aucun
champ de variable, comme beaucoup d'options LOG.

Option −−log−ip−options

Exemple iptables −A FORWARD −p tcp −j LOG −−log−ip−options

Explication

L'option −−log−ip−options journalisera la plupart des options des en−têtes de
paquets IP. Elle fonctionne exactement comme l'option −−log−tcp−options, mais
sur les options IP. Ces messages de journalisation peuvent être utiles pour le
débogage ou le traçage, comme dans l'option précédente.

Note
Fonctionne avec les noyaux Linux 2.3, 2.4, 2.5 et 2.6.

11.8. Cible MARK

La cible MARK sert à placer les valeurs de marquage Netfilter qui sont associées à des paquets spécifiques.
Cette cible n'est valide que dans la table mangle, et ne fonctionne pas en dehors de celle−ci. Les valeurs
MARK peuvent être utilisées conjointement avec les possibilités de routage avancé de Linux pour envoyer
différents paquets à travers différentes routes et indiquer d'utiliser différentes disciplines de files d'attente
(qdisc), etc. Pour plus d'information sur le routage avancé, voyez le Linux Advanced Routing and Traffic
Control HOW−TO. Notez que la valeur de marquage n'est pas incluse dans le paquetage actuel, mais est
associée au paquet dans le noyau. En d'autres termes, vous ne pouvez pas placer une MARK pour un paquet et
ensuite espérer que la MARK sera toujours présente sur un autre hôte. Si c'est ce que vous voulez, vous feriez
mieux d'utiliser la cible TOS qui analysera la valeur TOS dans l'en−tête IP.

Tableau 11.6. Options de la cible MARK

Option −−set−mark

Exemple iptables −t mangle −A PREROUTING −p tcp −−dport 22 −j MARK −−set−mark 2

Explication

L'option −−set−mark est nécessaire pour placer une marque. −−set−mark prend une valeur
entière. Par exemple, nous pouvons placer la marque à 2 sur un flux spécifique de paquets, ou
sur tous les paquets provenant d'un hôte précis et ensuite faire du routage avancé sur cet hôte,
pour augmenter ou diminuer la bande passante du réseau, etc.

Note
Fonctionne avec les noyaux Linux 2.3, 2.4, 2.5 et 2.6.

Didacticiel sur Iptables, version 1.2.0

11.8. Cible MARK 89

11.9. Cible MASQUERADE

La cible MASQUERADE est utilisée (de façon basique) comme la cible SNAT, mais ne nécessite aucune
option −−to−source. La raison de ceci est que la cible MASQUERADE a été créée pour fonctionner avec, par
exemple, des connexions en dial−up (accès par ligne commutée), ou en DHCP, qui récupèrent des adresses IP
dynamiques lors de la connexion au réseau. Ceci veut dire que vous n'utiliserez la cible MASQUERADE
qu'avec des connexions fournissant des adresses IP dynamiques. Si vous avez une adresse IP statique, vous
utiliserez dans ce cas la cible SNAT.

Quand vous masquez une connexion, ça indique que vous placez l'adresse IP utilisée sur une interface réseau
spécifique au lieu de l'option −−to−source, et l'adresse IP est automatiquement récupérée depuis cette
interface spécifique. La cible MASQUERADE a également pour effet que les connexions sont abandonnées
quand une interface est coupée, ce qui est extrêmement intéressant si nous coupons une interface spécifique.
Ceci est, en général, le comportement correct avec les lignes en dial−up qui ont sans doute des IP assignées à
chaque connexion. Lorsque une IP différente est attribuée, la connexion est perdue, et il est idiot d'en
conserver les entrées.

Il est toujours possible d'utiliser la cible MASQUERADE au lieu de SNAT même si vous avez une IP
statique, cependant, ce n'est pas très intéressant car ça ajoute un surdébit, et peut aller à l'encontre de vos
scripts et les rendre "inutilisables".

Notez que la cible MASQUERADE n'est valide que dans la chaîne POSTROUTING de la table nat, comme la
cible SNAT. MASQUERADE ne prend qu'une option spécifiée ci−dessous, et qui est optionnelle.

Tableau 11.7. Cible MASQUERADE

Option −−to−ports

Exemple iptables −t nat −A POSTROUTING −p TCP −j MASQUERADE −−to−ports 1024−31000

Explication

L'option −−to−ports est utilisée pour placer le port source ou des ports sur des paquets sortants.
Soit vous pouvez spécifier un seul port comme −−to−ports 1025 soit une plage de ports comme
−−to−ports 1024−3000. En d'autres termes, les délimitations des plages de ports la plus basse
et la plus haute séparées par un tiret. Ceci modifie la sélection de port par défaut de SNAT
comme décrit dans la section Cible SNAT. L'option −−to−ports n'est valide que si la section de
correspondance de la règle spécifie les protocoles TCP ou UDP avec la correspondance
−−protocol.

Note
Fonctionne avec les noyaux Linux 2.3, 2.4, 2.5 et 2.6.

11.10. Cible MIRROR

Avertissement
Attention, MIRROR est dangereux et n'a été développé que comme exemple de code pour le
nouveau conntrack et NAT. Elle peut provoquer des failles dangereuses, et de très sérieux
DDoS/DoS sont possibles si elle est utilisée improprement. Évitez de l'utiliser dans tous les cas !
Elle a été supprimée dans les noyaux 2.5 et 2.6 à cause de ses implications dans la sécurité.

La cible MIRROR est expérimentale, et vous êtes prévenus qu'il peut en résulter de sérieux problèmes de
Denial of Service. MIRROR est utilisée pour inverser les champs source et destination dans l'en−tête IP, avant
de retransmettre le paquet. Ceci peut causer quelques effets comiques, un cracker a cracké sa propre machine
en l'utilisant. Plaçons une cible MIRROR sur le port 80 d'un ordinateur A. Si l'hôte B vient de yahoo.com, et
essaie d'accéder au serveur HTTP de A, le cible MIRROR renverra l'hôte yahoo à sa propre page web (car
c'est de là que vient la requête).

Didacticiel sur Iptables, version 1.2.0

90 11.9. Cible MASQUERADE

Notez que la cible MIRROR n'est valide que dans les chaînes INPUT, FORWARD et PREROUTING, et les
chaînes définies par l'utilisateur. Notez aussi que les paquets sortants sont le résultat de la cible MIRROR et
ne sont vus par aucune des chaînes normales du filtre, les tables nat ou mangle, qui peuvent provoquer des
boucles et autres problèmes. Ceci peut faire que la cible soit la cause de maux de têtes inattendus. Par
exemple, un hôte peut envoyer un paquet de mystification vers un autre hôte qui utilise la commande
MIRROR avec un TTL de 255, en même temps il mystifie son propre paquet, comme s'il semblait qu'il venait
d'un troisième hôte utilisant cette commande MIRROR. Le paquet sera alors renvoyé sans arrêt, pour le
nombre de sauts nécessaires pour qu'il soit complété. S'il n'y a qu'un seul saut, le paquet reviendra 240−255
fois. C'est intéressant pour un cracker, en d'autres termes, envoyer 1500 octets de données consomme 380 ko
de votre connexion. Notez que ceci est le meilleur scenario pour un cracker.

Note
Fonctionne avec les noyaux Linux 2.3 et 2.4. A été supprimé dans les noyaux 2.5 et 2.6 à cause de
problèmes de sécurité. N'utilisez pas cette cible !

11.11. Cible NETMAP

NETMAP est une implémentation nouvelle des cibles SNAT et DNAT où la partie hôte de l'adresse IP n'est
pas changée. Elle procure une fonction NAT 1:1 pour l'ensemble des réseaux qui n'ont pas de fonctions SNAT
et DNAT standards. Par exemple, nous avons un réseau de 254 hôtes utilisant des adresses IP privées (un
réseau /24), et nous avons un nouveau réseau /24 d'adresses IP publiques. Au lieu de changer les IP de chacun
des hôtes, il sera plus simple d'utiliser la cible NETMAP comme −j NETMAP −to 10.5.6.0/24, tous les hôtes
seront vus comme 10.5.6.x quand ils quitteront le pare−feu. Exemple, 192.168.0.26 deviendra 10.5.6.26.

Tableau 11.8. Options de la cible NETMAP

Option −−to

Exemple iptables −t mangle −A PREROUTING −s 192.168.1.0/24 −j NETMAP −−to 10.5.6.0/24

Explication C'est la seule option de la cible NETMAP. Dans l'exemple précédent, les hôtes 192.168.1.x
seront directement traduits en 10.5.6.x

Note
Fonctionne avec les noyaux Linux 2.5 et 2.6.

11.12. Cible QUEUE

La cible QUEUE sert à mettre les paquets en attente pour les programmes et applications du domaine
utilisateur. Elle est utilisée conjointement avec des programmes ou des utilitaires étrangers à Iptables et qui
peuvent être utilisés, par exemple, pour des réseaux comptables, ou pour des applications avancées et
spécifiques qui filtrent ou mettent en cache les paquets. Nous ne parlerons pas de cette cible en détail, car le
codage de certaines applications est hors de sujet de ce didacticiel. En premier, ça nous prendrait trop de
temps, ensuite cette documentation n'a pas grand chose à faire avec l'aspect programmation de Netfilter et
Iptables. Voir le Netfilter Hacking HOW−TO.

Note
Fonctionne avec les noyaux Linux 2.3, 2.4, 2.5 et 2.6.

11.13. Cible REDIRECT

La cible REDIRECT est utilisée pour rediriger les paquets et les flux vers la machine elle−même. Ceci veut
dire que nous pouvons, par exemple REDIRECT tous les paquets destinés aux ports HTTP vers un proxy
HTTP comme Squid, sur notre propre machine. Les paquets générés localement sont mappés vers les adresses
127.0.0.1. En d'autres termes, elle réécrit les adresses de destination vers votre propre machine pour les
paquets qui sont transmis, ou quelque chose comme ça. La cible REDIRECT est très utile quand vous voulez,

Didacticiel sur Iptables, version 1.2.0

11.10. Cible MIRROR 91

par exemple, faire du proxy transparent, où l'hôte du LAN n'a pas connaissance du proxy.

Notez que la cible REDIRECT est uniquement valide dans les chaînes PREROUTING et OUTPUT de la table
nat. Elle est aussi valide dans les chaînes définies par l'utilisateur. REDIRECT ne prend qu'une option,
comme décrit ci−dessous.

Tableau 11.9. Cible REDIRECT

Option −−to−ports

Exemple iptables −t nat −A PREROUTING −p tcp −−dport 80 −j REDIRECT −−to−ports 8080

Explication

L'option −−to−ports spécifie le port de destination, ou la plage de ports, à utiliser. Sans
−−to−ports, le port de destination n'est jamais modifié. Ceci est spécifié, comme au−dessus
−−to−ports 8080 dans les cas où nous voulons seulement préciser un seul port. Si nous voulons
spécifier une plage de ports, nous écrirons −−to−ports 8080−8090, qui indique à la cible
REDIRECT de rediriger les paquets vers les ports 8080 jusqu'à 8090. Cette option n'est
disponible que dans les règles spécifiant le protocole TCP ou UDP avec le module −−protocol.

Note
Fonctionne avec les noyaux Linux 2.3, 2.4, 2.5 et 2.6.

11.14. Cible REJECT

La cible REJECT fonctionne à la base comme la cible DROP, mais elle renvoit un message d'erreur à l'hôte
qui a envoyé le paquet. REJECT n'est valide que dans les chaînes INPUT, FORWARD et OUTPUT ou leurs
sous−chaînes. Après tout, ce sont les seules chaînes dans lesquelles il soit sensé de placer cette cible. Notez
que toutes les chaînes qui utilisent REJECT ne peuvent être invoquées que par INPUT, FORWARD, et
OUTPUT, sinon elles ne fonctionnent pas. Il n'y a qu'une option qui contrôle le fonctionnement de cette cible.

Tableau 11.10. Cible REJECT

Option −−reject−with

Exemple iptables −A FORWARD −p TCP −−dport 22 −j REJECT −−reject−with tcp−reset

Explication

Cette option indique à la cible REJECT quelle réponse envoyer à l'hôte qui a expédié le paquet
qui a été rejeté. Quand nous sommes en présence d'un paquet qui apparie une règle dans
laquelle nous avons spécifié cette cible, notre hôte envoie la réponse associée, et le paquet est
ensuite supprimé, comme pour la cible DROP. Les types suivants de rejet sont valides :
icmp−net−unreachable, icmp−host−unreachable,
icmp−port−unreachable, icmp−proto−unreachable, icmp−net−prohibited
et icmp−host−prohibited. Le message d'erreur par défaut expédie un port−unreachable
à l'hôte. Tous sont des messages d'erreur ICMP et peuvent être paramétrés comme vous le
voulez. Vous trouverez plus d'information dans l'annexe Types ICMP. Enfin, il existe une
option supplémentaire appelée tcp−reset, qui peut être utilisée seulement avec le protocole
TCP. L'option tcp−reset qui indique le REJECT envoie un paquet TCP RST en réponse à
l'hôte expéditeur. Les paquets TCP RST sont utilisés pour clore les connexions TCP. Pour plus
d'information sur TCP RST voir la RFC 793 − Transmission Control Protocol. Comme indiqué
dans le manuel d'iptables, elle est principalement utilisée pour bloquer les sondeurs d'identité.

Note
Fonctionne avec les noyaux Linux 2.3, 2.4, 2.5 et 2.6.

Didacticiel sur Iptables, version 1.2.0

92 11.13. Cible REDIRECT

11.15. Cible RETURN

La cible RETURN stoppe un paquet traversant la chaîne dans laquelle la règle est placée. Si c'est une
sous−chaîne d'une autre chaîne, le paquet continuera sa route vers les chaînes supérieures comme si rien ne
s'était passé. Si cette chaîne est la chaîne principale, par exemple la chaîne INPUT, le paquet aura le
comportement par défaut. Ce comportement par défaut est normalement ACCEPT, DROP ou similaire.

Exemple, un paquet entre dans la chaîne INPUT et rencontre une règle qui l'apparie et indique −−jump
EXAMPLE_CHAIN. Ce paquet traversera alors EXAMPLE_CHAIN, et soudain il rencontre une règle qui a
la cible −−jump RETURN. Il retournera alors vers la chaîne INPUT. Un autre exemple, si le paquet
rencontrera une règle −−jump RETURN dans la chaîne INPUT. Il sera alors droppé selon le comportement
par défaut décrit plus haut, et plus aucune action sera faite dans cette chaîne.

Note
Fonctionne avec les noyaux Linux 2.3, 2.4, 2.5 et 2.6.

11.16. Cible SAME

La cible SAME fonctionne à peu près comme SNAT, mais diffère légèrement. À la base, SAME tentera
d'utiliser la même adresse IP en sortie pour toutes les connexions initiées par un hôte sur le réseau. Par
exemple, vous avez un réseau en /24 (192.168.1.0) et 3 adresses IP (10.5.6.7−9). Maintenant, si 192.168.1.20
sort de l'adresse .7 une première fois, le pare−feu tentera de conserver à cette machine toujours la même
adresse IP.

Tableau 11.11. Optiond de la cible SAME

Option −−to

Exemple iptables −t mangle −A PREROUTING −s 192.168.1.0/24 −j SAME −−to
10.5.6.7−10.5.6.9

Explication
Comme vous pouvez le voir, l'argument −−to prend deux adresses IP liées ensemble
par un −. Ces adresses IP, et toutes les autres entre, sont des adresses que nous
NATons pour utiliser l'algorithme SAME.

Option −−nodst

Exemple iptables −t mangle −A PREROUTING −s 192.168.1.0/24 −j SAME −−to
10.5.6.7−10.5.6.9 −−nodst

Explication

Au cours d'une action normale, la cible SAME calcule le suivi de connexions basé sur
les adresses IP source et destination. L'option −−nodst, permet de n'utiliser que
l'adresse IP source pour savoir de quelle IP la fonction NAT se sert pour la connexion
spécifique. Sans cet argument, elle utilise une combinaison de l'adresse IP source et
destination.

Note
Fonctionne avec les noyaux Linux 2.5 et 2.6.

11.17. Cible SNAT

La cible SNAT est utilisée pour la Traduction d'Adresse Réseau Source, ce qui veut dire que cette cible
réécrira l'adresse IP source dans l'en−tête IP du paquet. Exemple, quand plusieurs hôtes doivent partager une
connexion Internet. Nous pouvons alors activer le transfert d'IP (IP Forwarding) dans le noyau, et écrire une
règle SNAT qui traduira tous les paquets sortants du réseau local vers l'IP source de notre connexion Internet.
Sans cela, le monde extérieur ne saurait pas où envoyer les paquets en réponse, car les réseaux locaux utilisent
la plupart du temps des adresses IP spécifiées par le IANA et qui sont allouées aux LAN. Si nous transférons

Didacticiel sur Iptables, version 1.2.0

11.15. Cible RETURN 93

les paquets tels quels, personne sur l'Internet ne saura qu'ils proviennent de nous. La cible SNAT fait toutes les
traductions nécessaires pour réaliser ce genre de chose, permettant à tous les paquets quittant notre LAN d'être
vus comme provenant d'un hôte unique, qui pourrait être notre pare−feu.

SNAT n'est valide que dans la table nat, à l'intérieur de la chaîne POSTROUTING. C'est, en d'autres termes,
la seule chaîne dans laquelle vous pouvez utiliser SNAT. Seul le premier paquet d'une connexion est analysé
par SNAT, et ensuite tous les paquets utilisant la même connexion seront également SNATés. De plus, les
règles initiales de la chaîne POSTROUTING seront appliquées à tous les paquets du même flux.

Tableau 11.12. Options de la cible SNAT

Option −−to−source

Exemple iptables −t nat −A POSTROUTING −p tcp −o eth0 −j SNAT −−to−source
194.236.50.155−194.236.50.160:1024−32000

Explication

L'option −−to−source est utilisée pour spécifier quelle source le paquet doit utiliser. Cette
option, la plus simple, prend l'adresse IP que nous voulons utiliser pour adresse IP source dans
l'en−tête IP. Si nous voulons faire ceci entre plusieurs adresses IP, nous pouvons utiliser une
plage d'adresses, séparées par un tiret. Les numéros IP −−to−−source peuvent alors ressembler
à notre exemple ci−dessus : 194.236.50.155−194.236.50.160. L'IP source pour chaque flux que
nous ouvrons sera allouée aléatoirement, et un flux utilisera toujours la même adresse IP pour
tous les paquets transitants dans ce flux. Nous pouvons aussi spécifier une plage de ports à
utiliser par SNAT. Tous les ports source seront alors confinés aux ports spécifiés. Le bit de port
de la règle ressemblera alors à notre exemple, :1024−32000. Ce n'est valide que si −p tcp ou −p
udp sont spécifiés quelque part dans la correspondance de la règle en question. Iptables essaiera
toujours d'éviter de modifier les ports si possible, mais si deux hôtes tentent d'utiliser les
mêmes ports, Iptables redirigera un de ceux−là vers un autre port. Si aucune plage de ports n'est
précisée, et si elles sont requises, tous les ports source au dessous de 512 seront redirigés vers
d'autres ports en dessous de 512. Ceux entre les ports source 512 et 1023 seront redirigés en
dessous de 1023. Tous les autres ports seront redirigés vers 1024 et au dessus. Comme établi
précédemment, Iptables tentera toujours de conserver les ports source utilisés par la machine
établissant la connexion. Notez que ceci n'a rien à voir avec les ports destination, si un client
essaie de prendre contact avec un serveur HTTP en dehors du pare−feu, il ne sera pas redirigé
vers le port FTP control.

Note
Fonctionne avec les noyaux Linux 2.3, 2.4, 2.5 et 2.6.

11.18. Cible TCPMSS

La cible TCPMSS peut être utilisée pour modifier la valeur MSS (Maximum Segment Size) des paquets TCP
SYN que le pare−feu examine. La valeur MSS sert à contrôler la taille maximum des paquets d'une connexion
spécifique. Dans des circonstances normales, ceci indique la taille de la valeur MTU (Maximum Transfert
Unit), moins 40 octets. Elle est utilisée pour éviter que certains fournisseurs d'accès ou serveurs bloquent la
fragmentation ICMP des paquets, ce qui peut provoquer des problèmes mystérieux, qui peuvent être décrits
principalement par le fait que tout fonctionne parfaitement au niveau de notre routeur/pare−feu, mais que nos
hôtes locaux derrière le pare−feu ne peuvent échanger des paquets importants. Ceci peut se traduire par
certaines choses comme des serveurs de courrier capables d'envoyer des petits mails, mais pas des gros, des
navigateurs web qui se connectent mais ensuite se figent en ne recevant aucune donnée, une connexion ssh
propre, mais dont le scp est suspendu après l'établissement de la liaison. Autrement dit, tout ce qui utilise des
paquets importants sera incapable de fonctionner.

La cible TCPMSS est capable de résoudre ces problèmes, en changeant la taille des paquets sortants d'une
connexion. Notez que nous avons uniquement besoin de placer le MSS sur le paquet SYN, les hôtes
s'occupant du MSS après ça. La cible prend deux arguments.

Didacticiel sur Iptables, version 1.2.0

94 11.17. Cible SNAT

Tableau 11.13. Options de la cible TCPMSS

Option −−set−mss

Exemple iptables −t mangle −A POSTROUTING −p tcp −−tcp−flags SYN,RST SYN −o eth0 −j
TCPMSS −−set−mss 1460

Explication

L'argument −−set−mss place une valeur MSS spécifique pour tous les paquets sortants. Dans
l'exemple ci−dessus, nous plaçons le MSS de tous les paquets SYN sortants sur l'interface eth0
à 1460 octets −− le MTU normal pour l'ethernet est de 1500 octets, moins 40 octets soit 1460
octets. MSS doit seulement être placé correctement dans le paquet SYN, ensuite les hôtes pairs
s'occupent du MSS automatiquement.

Option −−clamp−mss−to−pmtu

Exemple iptables −t mangle −A POSTROUTING −p tcp −−tcp−flags SYN,RST SYN −o eth0 −j
TCPMSS −−clamp−mss−to−pmtu

Explication

−−clamp−mss−to−pmtu place automatiquement le MSS à la bonne valeur, et désormais vous
n'aurez plus besoin de le disposer explicitement. Il est mis de façon automatique en PMTU
(Path Maximum Transfer Unit) moins 40 octets, ce qui est une valeur raisonnable pour la
plupart des applications.

Note
Fonctionne avec les noyaux Linux 2.5 et 2.6.

11.19. Cible TOS

La cible TOS sert à disposer le champ Type de Service dans une en−tête IP. Le champ TOS consiste en 8 bits
utilisés pour aider au routage de paquets. C'est un des champs qui peut être utilisé directement dans iproute2
et son sous−système pour les stratégies de routage. Notez de plus, que si vous maintenez plusieurs pare−feux
et routeurs séparés, c'est le seul moyen pour propager les informations de routage dans les paquets entre ces
routeurs et pare−feux. Comme noté précédemment, la cible MARK − laquelle dispose un MARK associé à un
paquet spécifique − est disponible seulement dans le noyau, et ne peut pas être propagée avec le paquet. Si
vous avez besoin de propager des informations de routage pour un paquet spécifique ou un flux, vous devrez
donc placer le champ TOS, qui a été créé pour ça.

Il existe un grand nombre de routeurs sur Internet qui font du mauvais travail à ce sujet, ce qui fait qu'il peut
être moins utile maintenant d'essayer de faire de l'analyse TOS avant d'envoyer les paquets sur Internet. Dans
le meilleur des cas les routeurs ne font pas attention au champ TOS. Dans le pire, ils examineront le champ
TOS et feront de mauvaises choses. Cependant, le champ TOS peut être placé avec une grande utilité si vous
avez un grand WAN ou LAN avec de multiples routeurs. Vous avez la possibilité de donner aux paquets
différentes routes et préférences, basées sur leur valeur TOS.

Attention
La cible TOS ne place que des valeurs spécifiques, ou valeurs nommées sur des paquets. Ces valeurs
prédéfinies peuvent être trouvées dans les fichiers include du noyau, ou plus précisément le fichier
Linux/ip.h. Les raisons sont multiples, et vous n'aurez actuellement besoin de placer aucune autre
valeur; cependant, il existe d'autres moyens par rapport à cette limitation. Pour contourner cette
limitation de ne pouvoir placer que des valeurs nommées sur les paquets, vous pouvez utiliser le patch
FTOS disponible sur le site Paksecured Linux Kernel patches maintenu par Matthew G. Marsh.
Attention, soyez prudents avec ce patch ! Vous ne devriez pas avoir besoin d'autre chose que les valeurs
par défaut, sauf dans des cas extrêmes.
Note
Cette cible n'est valide que dans la table mangle et ne peut être utilisée hors de celle−ci.
Note

Didacticiel sur Iptables, version 1.2.0

11.18. Cible TCPMSS 95

Notez aussi que certaines anciennes versions (1.2.2 ou avant) d'Iptables fournissaient une
implémentation de cette cible qui ne fixait pas la somme de contrôle dans l'analyse, ce qui corrompait les
paquets et provoquait des connexions qui n'aboutissaient pas.

TOS ne prend qu'une option décrite ci−dessous.

Tableau 11.14. Cible TOS

Option −−set−tos

Exemple iptables −t mangle −A PREROUTING −p TCP −−dport 22 −j TOS −−set−tos
0x10

Explication

L'option −−set−tos indique à l'analyseur TOS quelle valeur placer sur les
paquets qui sont appariés. L'option prend une valeur numérique, soit en
hexadécimal soit en décimal. Comme la valeur TOS consiste en 8 bits, la valeur
peut être 0−255, ou en hexadécimal 0x00−0xFF. Notez que dans la cible TOS
standard vous êtes limités à l'utilisation des valeurs nommées disponibles (qui
sont plus ou moins standards), comme mentionné précédemment. Ces valeurs
sont Minimize−Delay (valeur décimale 16, valeur hexadécimale 0x10),
Maximize−Throughput (valeur décimale 8, valeur hexadécimale 0x08),
Maximize−Reliability (valeur décimale 4, valeur hexadécimale 0x04),
Minimize−Cost (valeur décimale 2, valeur hexadécimale 0x02), ou
Normal−Service (valeur décimale 0, valeur hexadécimale 0x00). La valeur
par défaut pour la plupart des paquets est Normal−Service, ou 0. Notez que
vous pouvez, bien sûr, utiliser les noms au lieu des valeurs hexadécimales pour
placer la valeur TOS; en fait, c'est généralement recommandé, car les valeurs
associées avec les noms peuvent être changées par la suite. Pour une liste
complète des "valeurs descriptives", tapez la commande : iptables −j TOS −h.

Note
Fonctionne avec les noyaux 2.3, 2.4, 2.5 et 2.6.

11.20. Cible TTL

Attention
Ce patch nécessite le TTL du patch−o−matic disponible dans le répertoire de http://www.netfilter.org/.

La cible TTL modifie le champ Durée de Vie (Time To Live) dans l'en−tête IP. Une application très utile de
ceci est de pouvoir changer toutes les valeurs de durée de vie en une valeur identique pour tous les paquets
sortants. Une raison de faire ça peut être que, vous avez un fournisseur d'accès un peu rigide qui ne vous
permet pas d'avoir plus d'une machine connectée à la même connexion Internet. En mettant toutes les valeurs
TTL à la même valeur, il sera plus difficile pour lui de voir ce que vous faites. Nous pouvons alors réinitialiser
la valeur TTL de tous les paquets sortants à une valeur standard, comme 64 ainsi que spécifié dans le noyau
Linux.

Pour plus d'information pour savoir comment placer la valeur par défaut utilisée dans Linux, lisez le
ip−sysctl.txt, que vous pouvez trouver dans l'annexe Autres ressources et liens.

La cible TTL n'est valide que dans la table mangle, et nulle part ailleurs. Elle prend trois options, décrites
ci−dessous.

Tableau 11.15. Cible TTL

Option −−ttl−set

Exemple iptables −t mangle −A PREROUTING −i eth0 −j TTL −−ttl−set 64

Didacticiel sur Iptables, version 1.2.0

96 11.19. Cible TOS

Explication

L'option −−ttl−set indique à la cible TTL quelle valeur placer sur le paquet en question. Une
bonne valeur serait aux alentours de 64. Ce n'est ni trop long ni trop court. Ne placez pas cette
valeur trop haut, car elle peut affecter votre réseau. Cette cible peut être utilisée pour limiter la
distance de vos clients. Un bon exemple de ceci peuvent être les serveurs DNS, où nous ne
voulons pas que les clients soient trop éloignés.

Option −−ttl−dec

Exemple iptables −t mangle −A PREROUTING −i eth0 −j TTL −−ttl−dec 1

Explication

L'option −−ttl−dec indique à la cible TTL de décrémenter la valeur TTL d'un montant précis
après le −−ttl−dec. En d'autres termes, si le TTL d'un paquet entrant était de 53 et que nous
avons ajouté −−ttl−dec 4, le paquet quittera l'hôte avec une valeur de 49. La raison en est que
le code réseau décrémentera automatiquement la valeur TTL par 1, donc le paquet sera
décrémenté en 4 étapes, de 53 à 49. Ceci peut être utilisé quand nous voulons limiter
l'éloignement de clients utilisant nos services. Exemple, les hôtes utilisent toujours un DNS
proche, et donc nous pouvons apparier tous les paquets quittant notre serveur DNS et réduire la
distance en plusieurs étapes. Bien sûr, le −−set−ttl peut être une meilleure idée pour cet usage.

Option −−ttl−inc

Exemple iptables −t mangle −A PREROUTING −i eth0 −j TTL −−ttl−inc 1

Explication

L'option −−ttl−inc indique à la cible TTL d'incrémenter la valeur Time To Live d'une
valeur spécifiée avec −−ttl−inc. Ceci indique que nous voulons augmenter le TTL avec une
valeur spécifiée dans l'option −−ttl−inc, et que si nous spécifions −−ttl−inc 4, un paquet
entrant avec un TTL de 52 quittera l'hôte avec un TTL de 56. Notez que la même chose dans
l'exemple −−ttl−dec s'applique ici, dans lequel le code réseau décrémentait automatiquement la
valeur TTL par 1, ce qui est toujours le cas. Ceci peut être utilisé pour rendre notre pare−feu un
peu plus furtif pour les traceroutes parmi d'autres choses. En mettant le TTL à une valeur plus
haute pour tous les paquets entrants, nous rendons effectivement le pare−feu plus dissimulé
pour les traceroutes. Les traceroutes sont des choses adorables et détestables, car elles
fournissent d'excellentes informations sur les problèmes de connexion et indiquent à quel
endroit ils se produisent, mais en même temps ils fournissent au hacker/cracker des
informations dans le sens montant s'il nous a pris pour cible. Pour un bon exemple de son
utilisation, voir le script Ttl−inc.txt.

Note
Fonctionne avec les noyaux Linux 2.3, 2.4, 2.5 et 2.6.

11.21. Cible ULOG

La cible ULOG sert à la journalisation des paquets appariés de l'espace utilisateur. Si un paquet est apparié et
la cible ULOG placée, l'information du paquet est multidiffusée avec le paquet complet à travers une interface
de connexion réseau. Un ou plusieurs processus espace utilisateur peuvent souscrire aux divers groupes de
multidiffusion et recevoir le paquet. C'est une possibilité de journalisation plus complète et plus sophistiquée
qui est utilisée par Iptables et Netfilter. Cette cible nous permet de journaliser l'information dans des bases de
données MySQL, ou autres bases, rendant plus simple la recherche de paquets spécifiques, et groupant les
entrées de journal. Vous pouvez trouver les applications domaine utilisateur ULOGD à ULOGD project page.

Tableau 11.16. Cible ULOG

Option −−ulog−nlgroup

Exemple iptables −A INPUT −p TCP −−dport 22 −j ULOG −−ulog−nlgroup 2

Explication L'option −−ulog−nlgroup indique à la cible ULOG à quel groupe netlink envoyer les paquets.
Il existe 32 groupes netlink, qui sont simplement spécifiés 1−32. Si nous voulons joindre le

Didacticiel sur Iptables, version 1.2.0

11.20. Cible TTL 97

groupe netlink 5, nous écrirons simplement −−ulog−nlgroup 5. Le groupe netlink par défaut
est 1.

Option −−ulog−prefix

Exemple iptables −A INPUT −p TCP −−dport 22 −j ULOG −−ulog−prefix "SSH connection attempt:
"

Explication

L'option −−ulog−prefix fonctionne comme la valeur de préfixe de la cible LOG. Cette option
préfixe toutes les entrées du journal avec un préfixe utilisateur. Il peut être de 32 caractères de
longueur, et est le plus utilisé pour distinguer différents messages de journal et d'où ils
proviennent.

Option −−ulog−cprange

Exemple iptables −A INPUT −p TCP −−dport 22 −j ULOG −−ulog−cprange 100

Explication

L'option −−ulog−cprange indique à la cible ULOG combien d'octets du paquet envoyer au
démon de l'espace utilisateur de ULOG. Si nous spécifions 100 ou plus, nous copierons 100
octets du paquet vers l'espace utilisateur, ce qui inclura l'en−tête complet en l'espérant, plus
certaines données. Si nous spécifions 0, le paquet complet sera copié vers l'espace utilisateur,
sans faire attention à la taille des paquets. La valeur par défaut est 0, ainsi l'ensemble du paquet
sera copié vers l'espace utilisateur.

Option −−ulog−qthreshold

Exemple iptables −A INPUT −p TCP −−dport 22 −j ULOG −−ulog−qthreshold 10

Explication

Cette option −−ulog−qthreshold indique à la cible ULOG combien de paquets seront en attente
dans le noyau avant d'envoyer les données vers l'espace utilisateur. Par exemple, si nous
indiquons un seuil de 10 ou plus, le noyau accumulera 10 paquets, et les transmettra ensuite à
l'espace utilisateur comme un simple message netlink multiparties. La valeur par défaut ici est à
1 à cause de la compatibilité de l'affichage précédent, le démon de l'espace utilisateur ne
connaissant pas le nombre de messages multiparties précédents.

Note
Fonctionne avec les noyaux Linux 2.3, 2.4, 2.5 et 2.6.

Chapitre 12. Débogage des scripts

Un des aspects les plus importants et sous−estimés dans l'écriture de vos propres tables de règles est de savoir
comment les déboguer, et retrouver les erreurs. Ce chapitre vous montrera quelques étapes de base dans le
débogage de vos scripts, ainsi que certaines choses un peu plus élaborées pour éviter les problèmes de
connexion à votre pare−feu lorsque vous avez accidentellement exécuté une règle incorrecte.

Tous ce que nous écrivons ici est fondé sur la supposition que les tables de règles de vos scripts sont écrites en
shell Bash, mais elles peuvent facilement s'appliquer à d'autres environnements. Les tables de règles qui ont
été sauvegardées avec iptables−save sont une autre partie du code. Les fichiers iptables−save sont simples et
ne contiennent pas de code écrit à la main qui créent des règles spécifiques, ils sont aussi plus simples à
déboguer.

12.1. Déboguer, une nécessité

Déboguer est plus ou moins une nécessité avec Iptables et Netfilter et les pare−feux en général. Le problème
avec 99% des pare−feux est qu'à la fin c'est un comportement humain qui décide des stratégies et de la façon
dont les tables de règles sont créées, et je peux vous promettre, qu'il est facile de faire une erreur dans
l'écriture de vos tables. Parfois, ces erreurs sont très difficiles à voir à l'oeil nu, ou découvrir les trous laissés
par le pare−feu. Les trous que nous ne connaissont pas ou qui ne sont pas intentionnels peuvent causer des
dégâts dans nos réseaux, et créer de faciles entrées pour les attaquants. La plupart de ces trous peuvent être

Didacticiel sur Iptables, version 1.2.0

98 11.21. Cible ULOG

découverts aisément avec quelques bons outils.

En dehors de ça, nous pouvons écrire des bogues dans nos scripts, qui peuvent nous interdire d'ouvrir une
session sur le pare−feu. Ceci peut également être résolu avec un peu de dextérité avant d'exécuter les scripts.
Utiliser la pleine puissance du langage de script et de l'environnement système peut se révéler incroyablement
utile, avec toutes les expériences que les administrateurs Unix ont déjà consignées, et c'est tout ce que nous
faisons lors du débogage de nos scripts.

12.2. Débogage en Bash

Il y a certaines choses qui peuvent être faites avec Bash pour nous aider à déboguer nos scripts contenant les
tables de règles. Un des premiers problèmes quand on trouve un bogue est de savoir dans quelle ligne il se
trouve. Ceci peut être résolu de deux façons différentes, soit en utilisant le fanion −x du Bash, soit en tapant
simplement echo pour trouver l'endroit où le problème apparaît. Idéalement, vous pouvez avec echo, ajouter
quelque chose comme les états suivants à intervalles réguliers dans le code :

 ...
 echo "Debugging message 1."
 ...
 echo "Debugging message 2."
 ...

Dans mon cas, j'utilise des messages insignifiants, tant qu'ils ont quelque chose d'unique je peux retrouver le
message d'erreur par un simple grep ou une recherche dans le script. Maintenant, si le message d'erreur
apparaît après le "Debugging message 1", mais avant le "Debugging message 2", nous savons alors que la
ligne de code erronée est quelque part entre les deux messages. Comme vous pouvez le comprendre, Bash
n'est pas réellement mauvais, et a au moins l'idée de continuer à exécuter les commandes même si il y a une
erreur dans une commande précédente. Dans Netfilter, ceci peut provoquer certains problèmes très
intéressants. L'idée d'utiliser les états echo pour trouver les erreurs est très simple, mais vous pouvez en même
temps cerner l'ensemble du problème à une seule ligne de code.

La seconde possibilité pour trouver le problème est d'utiliser la variable Bash −x, comme dit précédemment.
Ceci peut bien sûr être gênant particulièrement si votre script est important, et que le tampon de votre console
n'est pas assez grand. Ce que la variable −x indique est très simple, elle précise au script d'envoyer un écho
pour chaque ligne de code de votre script vers la sortie standard du shell (généralement la console). Pour cela
changer la ligne de début du script qui doit se présenter comme :

#!/bin/bash

En la ligne suivante :

#!/bin/bash −x

Comme vous pouvez le voir, ceci ne modifie peut être que deux lignes, dans le total important de données en
sortie. Le code vous indique chaque ligne de commande qui est exécutée, et avec quelles valeurs de variables,
etc. Chaque ligne exécutée est affichée sur votre écran. Une chose intéressante, est que les lignes de sortie
Bash sont préfixées par un signe +. Ceci rend plus facile de discerner les messages d'erreur et d'avertissement
provenant du script.

L'option −x est aussi très intéressante pour déboguer les problèmes communs qu'on rencontre dans les tables
de règles plus complexes. Le premier est de trouver ce qui se passe avec ce que vous pensiez être une simple
boucle. Voyons l'exemple ci−dessous.

Didacticiel sur Iptables, version 1.2.0

12.1. Déboguer, une nécessité 99

 #!/bin/bash
 iptables="/sbin/iptables"
 $iptables −N output_int_iface
 cat /etc/configs/machines | while read host; do
 $iptables −N output−$host
 $iptables −A output_int_iface −p tcp −d $host −j output−$host

 cat /etc/configs/${host}/ports | while read row2; do
 $iptables −A output−$host −p tcp −−dport $row2 −d $host −j ACCEPT
 done
 done

Ces règles peuvent sembler simples, mais le problème existe toujours. Nous obtenons les messages d'erreur
suivants que nous savons provenir du code ci−dessus en utilisant un simple écho comme méthode de
débogage.

work3:~# ./test.sh
Bad argument `output−'
Try `iptables −h' or 'iptables −−help' for more information.
cat: /etc/configs//ports: No such file or directory

Activons l'option −x du Bash et regardons la sortie. Celle−ci est indiquée ci−dessous, comme vous pouvez le
voir il y a quelque chose de très mystérieux. Il y a un couple de commandes où les variables $host et $row2 ne
sont remplacées par rien. En regardant de plus près, nous voyons que c'est seulement la dernière itération du
code qui cause problème. Soit nous avons fait une erreur de programmation, soit il y a quelque chose
d'étrange avec la donnée. Dans ce cas c'est une simple erreur avec la donnée, qui contient un saut de ligne en
trop à la fin du fichier. Ceci crée une boucle d'itération. En supprimant simplement ce saut de ligne du fichier,
le problème est résolu. Ceci peut ne pas être une solution très élégante, mais pour un usage privé c'est
suffisant. D'un autre côté nous avons ajouté du code qui indique qu'il y a certaines données dans les variables
$host et $row2.

work3:~# ./test.sh
+ iptables=/sbin/iptables
+ /sbin/iptables −N output_int_iface
+ cat /etc/configs/machines
+ read host
+ /sbin/iptables −N output−sto−as−101
+ /sbin/iptables −A output_int_iface −p tcp −d sto−as−101 −j output−sto−as−101
+ cat /etc/configs/sto−as−101/ports
+ read row2
+ /sbin/iptables −A output−sto−as−101 −p tcp −−dport 21 −d sto−as−101 −j ACCEPT
+ read row2
+ /sbin/iptables −A output−sto−as−101 −p tcp −−dport 22 −d sto−as−101 −j ACCEPT
+ read row2
+ /sbin/iptables −A output−sto−as−101 −p tcp −−dport 23 −d sto−as−101 −j ACCEPT
+ read row2
+ read host
+ /sbin/iptables −N output−sto−as−102
+ /sbin/iptables −A output_int_iface −p tcp −d sto−as−102 −j output−sto−as−102
+ cat /etc/configs/sto−as−102/ports
+ read row2
+ /sbin/iptables −A output−sto−as−102 −p tcp −−dport 21 −d sto−as−102 −j ACCEPT
+ read row2
+ /sbin/iptables −A output−sto−as−102 −p tcp −−dport 22 −d sto−as−102 −j ACCEPT
+ read row2
+ /sbin/iptables −A output−sto−as−102 −p tcp −−dport 23 −d sto−as−102 −j ACCEPT
+ read row2
+ read host
+ /sbin/iptables −N output−sto−as−103
+ /sbin/iptables −A output_int_iface −p tcp −d sto−as−103 −j output−sto−as−103

Didacticiel sur Iptables, version 1.2.0

100 12.2. Débogage en Bash

+ cat /etc/configs/sto−as−103/ports
+ read row2
+ /sbin/iptables −A output−sto−as−103 −p tcp −−dport 21 −d sto−as−103 −j ACCEPT
+ read row2
+ /sbin/iptables −A output−sto−as−103 −p tcp −−dport 22 −d sto−as−103 −j ACCEPT
+ read row2
+ /sbin/iptables −A output−sto−as−103 −p tcp −−dport 23 −d sto−as−103 −j ACCEPT
+ read row2
+ read host
+ /sbin/iptables −N output−
+ /sbin/iptables −A output_int_iface −p tcp −d −j output−
Bad argument `output−'
Try `iptables −h' or 'iptables −−help' for more information.
+ cat /etc/configs//ports
cat: /etc/configs//ports: No such file or directory
+ read row2
+ read host

Le troisième et dernier problème peut être partiellement résolu avec l'aide de l'option −x si vous exécutez le
script du pare−feu par SSH, la console se suspend au milieu de l'exécution du script, elle ne vous rend pas la
main, ni vous ne pouvez vous connecter par SSH à nouveau. Dans 99% des cas, ceci indique qu'il y a certains
problèmes dans le script avec un couple de règles. En activant l'option −x, vous verrez exactement à quelle
ligne ça bloque. Il y a une ou deux circonstances où ce n'est pas vrai, malheureusement. Par exemple, si le
script initialise une règle qui bloque le trafic entrant, mais que le serveur ssh/telnet envoit un écho en premier
comme trafic sortant, netfilter enregistrera la connexion, et donc permettra le trafic entrant de toutes
destinations si vous avez une règle qui maintient les états de connexion.

Comme vous pouvez le voir, il peut être tout à fait complexe de déboguer vos tables de règles. Cependant, ce
n'est pas impossible. Vous pouvez aussi avoir noté, si vous travaillez à distance sur votre pare−feu via SSH
par exemple, que le pare−feu peut se figer quand vous charger des règles incorrectes. Une des choses
supplémentaires que vous pouvez faire dans ces circonstances, est de faire une sauvegarde par jour. Cron est
un excellent moyen pour faire ça. Exemple, vous travaillez sur un pare−feu en étant à 50 km de distance, vous
ajoutez et supprimez des règles. Le pare−feu se bloque, et vous ne pouvez plus rien faire. le seul moyen est de
vous déplacer à l'endroit où se trouve physiquement le pare−feu et régler le problème, à moins que vous
n'ayez pris des précautions de ce genre !

12.3. Outils système pour le débogage

Une des meilleures précautions que vous pouvez prendre contre un pare−feu qui se bloque, est de tout
simplement utiliser le programme cron pour ajouter un script qui se lance toutes les 5 minutes ou qui relance
le pare−feu, et ensuite supprimer la ligne du cron une fois que vous êtes sûrs que l'installation fonctionne bien.
La ligne du cron peut ressembler à l'exemple ci−dessous et elle sera installée par la commande crontab −e.

*/5 * * * * /etc/init.d/rc.flush−iptables.sh stop

Soyez absolument sûrs, que la ligne fonctionne et fait exactement ce que vous en attendez sinon ça peut
bloquer le serveur.

Un autre outil qui est constamment utilisé pour déboguer les scripts est la fonction syslog. C'est ce qui
journalise tous les messages générés par beaucoup de programmes différents. En fait, la plupart des gros
programmes supportent la journalisation par syslog, y compris le noyau. Tous les messages envoyés à syslog
ont deux variables de base dont il est très important de se souvenir, la fonction et le niveau/priorité de la
journalisation.

La fonction indique au serveur syslog de quel endroit provient l'entrée du journal, et quoi journaliser. Il existe

Didacticiel sur Iptables, version 1.2.0

12.3. Outils système pour le débogage 101

plusieurs fonctions spécifiques, mais celle qui nous intéresse est la fonction Kern, ou fonction kern. Tous les
messages générés par netfilter sont envoyés par cette fonction.

Le niveau de journalisation indique à syslog quelle priorité ont les messages. Il y a plusieurs priorités, voir
ci−dessous.

debug1.
info2.
notice3.
warning4.
err5.
crit6.
alert7.
emerg8.

En fonction de ces priorités, nous pouvons les envoyer vers différents fichiers journaux en utilisant le
syslog.conf. Par exemple, pour envoyer tous les messages provenants de la fonction kern avec une priorité
warning vers un fichier appelé /var/log/kernwarnings, nous ferons comme ci−dessous. La ligne sera placée
dans /etc/syslog.conf.

kern.warning /var/log/kernwarnings

Comme vous pouvez le voir, c'est tout à fait simple. Maintenant, vous trouverez vos journaux de netfilter dans
le fichier /var/log/kernwarnings (après redémarrage, ou en faisant un HUP sur le serveur syslog). Bien sûr,
ceci dépend du niveau de journalisation que vous avez mis dans vos règles de netfilter. Le niveau de
journalisation peut être placé avec l'option −−log−level.

Ces journaux vous fourniront l'information que vous désirez via les règles de journalisation spécifiques dans
la table de règles. Avec elles, vous pouvez voir si il existe un problème quelque part. Par exemple, vous
pouvez placer vos règles de journalisation à la fin des chaînes pour voir s'il y a des paquets qui ont transité
jusqu'à la frontière de vos chaînes. Une entrée de journal peut ressembler à l'exemple ci−dessous, et inclure
les informations suivantes.

 Oct 23 17:09:34 localhost kernel: IPT INPUT packet died: IN=eth1 OUT=
MAC=08:00:09:cd:f2:27:00:20:1a:11:3d:73:08:00 SRC=200.81.8.14 DST=217.215.68.146
LEN=78 TOS=0x00 PREC=0x00 TTL=110 ID=12818 PROTO=UDP SPT=1027 DPT=137 LEN=58

Comme vous pouvez le comprendre, syslog peut réellement vous aider à déboguer vos tables de règles.
Regarder ces journaux peut vous aider à comprendre pourquoi les ports que vous voulez ouvrir ne
fonctionnent pas.

12.4. Débogage d'Iptables

Iptables peut être parfois difficile à déboguer, car les messages d'erreur provenant d'iptables lui−même ne sont
pas toujours conviviaux. Pour cette raison, ce peut être une bonne idée de regarder les messages d'erreur les
plus fréquents venant d'iptables, et pourquoi vous les obtenez.

Un des premiers messages d'erreur à regarder est le "Unknown arg". Il peut apparaître pour différentes
raisons. Exemple ci−dessous.

work3:~# iptables −A INPUT −−dport 67 −j ACCEPT
iptables v1.2.9: Unknown arg `−−dport'
Try `iptables −h' or 'iptables −−help' for more information.

Didacticiel sur Iptables, version 1.2.0

102 12.4. Débogage d'Iptables

Cette erreur est simple à corriger, car nous n'avons utilisé qu'un seul argument. Normalement, nous pouvons
avoir utilisé une très longue commande et obtenir ce message. Le problème dans le scenario ci−dessus est que
nous avons oublié d'utiliser la correspondance −−protocol, et à cause de ça, le module −−dport n'est pas
disponible. En ajoutant la correspondance −−protocol nous résoudrons le problème. Soyez absolument
certains que vous n'oubliez aucune pré−condition spéciale nécessaire pour utiliser une correspondance
spécifique.

Une autre erreur très commune est que vous oubliez un tiret (−) quelque part dans la ligne de commande,
comme en−dessous. La solution est de rajouter simplement ce tiret, et la commande fonctionnera.

work3:~# iptables −A INPUT −−protocol tcp −dport 67 −j ACCEPT
Bad argument `67'
Try `iptables −h' or 'iptables −−help' for more information.

Et enfin, le simple oubli, ce qui est le plus courant. Voir ci−dessous. Le message d'erreur, est exactement le
même que lorsque vous oubliez d'ajouter une correspondance pré−requise à votre règle, aussi il est nécessaire
de les regarder de près.

work3:~# iptables −A INPUT −−protocol tcp −−destination−ports 67 −j ACCEPT
iptables v1.2.9: Unknown arg `−−destination−ports'
Try `iptables −h' or 'iptables −−help' for more information.

Il existe aussi une cause plus probable quand vous obtenez l'erreur "Unknown arg". Si l'argument est écrit
correctement, et qu'il n'y a pas d'erreur dans les pré−requis, il est possible que la cible/correspondance/table ne
soit pas compilée dans le noyau. Par exemple, nous oublions de compiler la table filter dans le noyau, ce qui
ressemblera à ça.

work3:~# iptables −A INPUT −j ACCEPT
iptables v1.2.9: can't initialize iptables table `filter': Table does not exist
(do you need to insmod?)
Perhaps iptables or your kernel needs to be upgraded.

Normalement, iptables est capable de charger automatiquement un module spécifique qui n'est pas déjà dans
le noyau, c'est généralement le signe que soit vous n'avez pas fait un depmod correct après avoir redémarré
avec le nouveau noyau, soit vous avez simplement oublié le(s) module(s). Si le module problématique est une
correspondance, le message d'erreur sera plus crypté et difficile à interpréter. Par exemple, regardons ce
message d'erreur.

work3:~# iptables −A INPUT −m state
−−state ESTABLISHED −j ACCEPT
iptables: No chain/target/match by that name

Dans ce cas, nous avons oublié de compiler le module, et comme vous avez vu, le message d'erreur n'est pas
très facile à interpréter. Mais il fait allusion à ce qui est faux. Finalement, nous avons la même erreur de
nouveau, mais cette fois, la cible est omise. Comme vous l'avez compris en regardant le message, il est plus
compliqué car c'est exactement le même pour les deux erreurs (correspondance et/ou cible oubliée).

work3:~# iptables −A INPUT −m state
−−state ESTABLISHED −j REJECT
iptables: No chain/target/match by that name

Le moyen le plus simple de savoir si vous avez oublié de faire un depmod, ou si le module est manquant, est
de regarder dans le répertoire où se trouvent les modules. C'est le répertoire

Didacticiel sur Iptables, version 1.2.0

12.4. Débogage d'Iptables 103

/lib/modules/2.6.4/kernel/net/ipv4/netfilter. Tous les fichiers ipt_* écrits en majuscules
sont des cibles, et tous les autres en minuscules sont des correspondances. Par exemple, ipt_REJECT.ko est
une cible, tandis que ipt_state.ko est une correspondance.

Note
Dans les noyaux 2.4 et plus anciens, l'extension de fichier pour tous les modules du noyau étaient .o, qui
a été changée pour les fichiers des noyaux 2.6 en .ko.

Une autre façon d'obtenir de l'aide d'iptables lui−même est de commenter une chaîne entière dans votre script
pour savoir si ça résoud le problème. En supprimant la chaîne et mettant à la place une stratégie par défaut
(ACCEPT), et ensuite en testant, si ça marche mieux, c'est que c'était cette chaîne qui causait les problèmes.
Si rien ne s'améliore, alors c'est une autre chaîne, et vous devez chercher le problème ailleurs.

12.5. Autres outils de débogage

Il existe bien sûr d'autres outils qui peuvent être extrêmement utiles pour déboguer vos scripts. Cette section
présente brièvement les plus communs qui sont utilisés pour savoir comment apparaît votre pare−feu dans les
deux sens (interne et externe). Les outils que j'ai choisi sont ici Nmap et Nessus.

12.5.1. Nmap

Nmap est un excellent outil vu dans une perspective de pare−feu, pour trouver quels ports sont ouverts et un
niveau d'information de plus bas niveau. Il possède un support d'empreinte système, plusieurs méthodes
différentes de balayage de port, le support de IPv6 et IPv4 et le balayage de réseau.

La forme de base du balayage est exécutée avec une syntaxe de ligne de commande très simple. N'oubliez pas
de spécifier les ports à scanner avec l'option −p, par exemple −p 1−1024. Voir ci−dessous.

blueflux@work3:~$ nmap −p 1−1024 192.168.0.1

Starting nmap 3.50 (http://www.insecure.org/nmap/) at 2004−03−18 17:19 CET
Interesting ports on firewall (192.168.0.1):
(The 1021 ports scanned but not shown below are in state: closed)
PORT STATE SERVICE
22/tcp open ssh
25/tcp open smtp
587/tcp open submission

Nmap run completed −− 1 IP address (1 host up) scanned in 3.877 seconds

Il est aussi capable de deviner le système d'exploitation de l'hôte scanné par l'empreinte système
(fingerprinting). Le fingerprinting nécessite les privilèges administrateur (root), mais il peut aussi être très
intéressant à utiliser pour savoir ce que la plupart des gens voient sur l'hôte. Fingerprinting peut ressembler à
ça :

work3:/home/blueflux# nmap −O −p 1−1024 192.168.0.1

Starting nmap 3.50 (http://www.insecure.org/nmap/) at 2004−03−18 17:38 CET
Interesting ports on firewall (192.168.0.1):
(The 1021 ports scanned but not shown below are in state: closed)
PORT STATE SERVICE
22/tcp open ssh
25/tcp open smtp
587/tcp open submission
Device type: general purpose
Running: Linux 2.4.X|2.5.X
OS details: Linux Kernel 2.4.0 − 2.5.20
Uptime 6.201 days (since Fri Mar 12 12:49:18 2004)

Didacticiel sur Iptables, version 1.2.0

104 12.5. Autres outils de débogage

Nmap run completed −− 1 IP address (1 host up) scanned in 14.303 seconds

Le fingerprinting n'est pas parfait, comme vous pouvez le voir, mais il est très utile, pour vous et pour un
attaquant. Il faut le savoir. La meilleure chose à faire, est de montrer le moins de choses possibles, donc avec
cet outil vous saurez ce qu'un attaquant peut voir de votre machine.

Nmap possède également une interface graphique, appelée nmapfe (Nmap Front End). C'est une excellente
interface, et si vous avez besoin de faire des recherches un peu plus complexes, vous pourrez l'utiliser avec
bonheur. Un exemple de capture d'écran :

Bien sûr, Nmap a d'autres fonctions que vous pouvez découvrir sur le site. Pour plus d'information, regardez
Nmap.

Comme vous l'avez compris, c'est un excellent outil pour tester votre hôte, et trouver les ports ouverts et ceux
qui sont fermés. Par exemple, après avoir terminé vos réglages, utilisez nmap pour savoir si ce que vous avez
fait correspond à votre attente. Obtenez vous les réponses correctes des bons ports, et ainsi de suite.

12.5.2. Nessus

Alors que Nmap est plus un scanner de bas niveau, indiquant les ports ouverts, etc., le programme Nessus est
un scanner de sécurité. Il tente de se connecter à différents ports, et de trouver en plus, les versions des

Didacticiel sur Iptables, version 1.2.0

12.5.1. Nmap 105

serveurs en activité. Nessus effectue cela une étape plus loin, en trouvant les ports ouverts, ce qui est actif et
sur quels ports, quel programme et quelle version, et ensuite teste les diverses menaces pour la sécurité dans
les programmes, et finalement crée un rapport complet de toutes les menaces concernant la sécurité.

Comme vous pouvez le comprendre, c'est un outil extrêmement utile. Le programme fonctionne sur le modèle
client/serveur, ainsi il est plus facile d'en connaître d'avantage sur votre pare−feu depuis l'extérieur en utilisant
le démon Nessus, ou en interne de cette manière. Le client est une interface graphique dans laquelle vous vous
connectez au démon, réglez vos paramètres, et spécifiez quel hôte scanner. Le rapport généré peut ressembler
à l'exemple ci−dessous.

Attention
Nessus devrait être utilisé avec certaines précautions, car il peut faire "planter" une machine ou un
service spécifié par une attaque. Ces attaques sur les machines sont désactivées par défaut,
heureusement.

12.6. Le chapitre suivant

Dans ce chapitre nous avons vu diverses techniques que vous pouvez utiliser pour déboguer vos scripts de
pare−feu. Le débogage de scripts peut devenir fatiguant à la longue, mais c'est une nécessité. Si vous utilisez
les exemples ça peut être très facile. Nous avons vu les techniques suivantes en particulier :

Débogage par le Bash♦
Outils système pour le débogage♦
Débogage d'Iptables♦
Autres outils pour le débogage♦

Didacticiel sur Iptables, version 1.2.0

106 12.5.2. Nessus

Chapitre 13. Fichier rc.firewall

Ce chapitre présente un exemple de configuration de pare−feu et un fichier script. Nous avons utilisé une des
configurations de base et regardé comment ça fonctionne et ce que nous pouvons faire avec. Ceci vous
donnera une idée de comment résoudre les différents problèmes. Il peut être utilisé tel quel en changeant les
variables, mais je ne le vous conseille pas car il peut ne pas fonctionner avec la configuration de votre réseau.

Note
Notez qu'il y a des moyens plus efficaces de configurer des tables de règles, cependant, le script a
été écrit pour plus de lisibilité sans devoir connaître en détail la syntaxe du Bash.

13.1. Exemple de rc.firewall

Cet exemple rc.firewall.txt (également inclu dans Example scripts code−base) est assez important mais n'a pas
beaucoup de commentaires. Au lieu de regarder les commentaires, je suggère que vous lisiez le script pour
voir à quoi il ressemble, et ensuite revenir ici pour le détailler.

13.2. Explication du rc.firewall

13.2.1. Options de configuration

La première section de l'exemple rc.firewall.txt est la section de configuration. Elle devra toujours être
modifiée car elle contient des informations vitales pour votre configuration. Par exemple, votre adresse IP
changera. Le $INET_IP devra toujours être une adresse IP totalement valide, si vous en avez une (sinon
regardez de plus près le rc.DHCP.firewall.txt). Également, la variable $INET_IFACE devra pointer vers le
matériel utilisé pour votre connexion Internet. Ce peut être eth0, eth1, ppp0, tr0, etc., pour citer quelques noms
d'interfaces.

Ce script ne contient aucune option de configuration spéciale pour DHCP ou PPPoE, c'est pourquoi ces
sections sont vides. Même chose pour toutes les sections vides, elles sont cependant indiquées, ainsi vous
pouvez voir la différence entre les scripts de façon plus efficace. Si vous avez besoin de ces parties, vous
pouvez toujours créer un mélange des différents scripts, ou créer le votre entièrement.

La section concernant votre réseau local contient la plupart des options de configuration nécessaires. Par
exemple, vous avez besoin de spécifier l'adresse IP d'une interface physique connectée au LAN de même que
la plage IP que le LAN utilise et l'interface par laquelle la machine est connectée au réseau.

Ainsi, vous pouvez voir qu'il y a une section pour la configuration de l'hôte local. Nous vous la fournissons,
cependant vous n'effecturez à 99% aucun changement dans ces valeurs car on utilise presque toujours
l'adresse IP 127.0.0.1 et l'interface nommée lo. Juste après la configuration de l'hôte local, vous trouverez une
brève section qui appartient à iptables. Cette section concerne les variables $IPTABLES, qui pointent le script
vers l'endroit exact où se trouve l'application iptables. Ceci peut varier un peu, et l'endroit par défaut lors de la
compilation à la main est /usr/local/sbin/iptables. Cependant, plusieurs distributions placent
l'application à un autre endroit comme /usr/sbin/iptables ou /sbin/iptables.

13.2.2. Chargement initial des modules supplémentaires

Premièrement, regardons si les fichiers des dépendances des modules sont à jour en exécutant la commande
/sbin/depmod −a. Après ça chargeons les modules nécessaires au script. Évitez toujours de charger des
modules dont vous n'avez pas besoin. C'est pour des raisons de sécurité, car il sera plus difficile d'établir des
règles supplémentaires de cette façon. Maintenant, par exemple, si vous voulez avoir le support des cibles
LOG, REJECT et MASQUERADE et ne les avez pas compilées statiquement dans le noyau, vous devrez
charger ces modules comme suit :

Didacticiel sur Iptables, version 1.2.0

Chapitre 13. Fichier rc.firewall 107

/sbin/insmod ipt_LOG
/sbin/insmod ipt_REJECT
/sbin/insmod ipt_MASQUERADE

Attention
Dans ces scripts, nous chargeons les modules de force, ce qui peut conduire à des problèmes. Si
un module ne se charge pas, ce qui peut dépendre de plusieurs facteurs, il enverra un message
d'erreur. Si certains modules les plus basiques ne se chargent pas, l'erreur la plus probable est que
le module, ou la fonctionnalité, est compilée statiquement dans le noyau. Pour plus d'information
sur ce sujet, lisez la section Problèmes de chargement des modules dans l'annexe Problèmes et
questions courants.

Ensuite c'est le module ipt_owner à charger, qui peut, par exemple, être utilisé pour permettre à certains
utilisateurs de réaliser certaines connexions, etc. Je n'utilise pas ce module dans l'exemple, mais vous pouvez
autoriser seulement root à se connecter en FTP et HTTP à redhat.com et DROP tous les autres. Vous pouvez
aussi interdire tous les utilisateurs sauf vous et root de se connecter depuis votre machine à l'Internet. Ça peut
être ennuyeux pour les autres, mais vous aurez plus de sécurité par rapport aux attaques où le hacker utilise
seulement votre machine comme hôte intermédiaire. Pour plus d'information sur ipt_owner regardez la
section Correspondance owner dans le chapitre Création d'une règle.

Vous pouvez aussi charger des modules supplémentaires pour le code de correspondance d'état ici. Tous les
modules additionnels au code de correspondance d'état et au code de traçage de connexion sont appelés
ip_conntrack_* et ip_nat_*. Les assistants de traçage de connexion sont des modules spéciaux qui indiquent
au noyau comment tracer correctement les connexions spécifiques. Sans ces assistants, le noyau ne sait pas
quoi chercher quand il essaie de tracer des connexions. Les assistants NAT d'un autre côté, sont des
extensions des assistants de traçage de connexion qui indiquent au noyau que rechercher dans des paquets
spécifiques et comment traduire ceux−ci dans les connexions en cours. Par exemple, FTP est un protocole
complexe par définition, il envoit des informations de connexion dans les données utiles du paquet. Donc, si
une de vos machines NATées se connecte à un serveur FTP sur l'Internet, elle enverra sa propre adresse IP du
réseau local dans les données utiles du paquet, et indiquera au serveur FTP de se connecter à cette adresse.
Étant donné que adresse du réseau locale n'est pas valide en dehors de votre propre réseau, le serveur FTP ne
saura pas que faire avec elle et la connexion sera coupée. Les assistants FTP NAT font les traductions qui
permettent au serveur FTP de savoir où se connecter. La même chose s'applique pour les transferts de fichiers
en DCC dans les chats irc. Créer ce genre de connexions nécessite une adresse IP et des ports à envoyer au
protocole IRC, lequel en retour demande que certaines traductions soient faites. Sans ces assistants, FTP et
IRC fonctionneront sans doute, cependant, certaines autres choses ne marcheront pas. Par exemple, vous
pouvez recevoir des fichiers par DCC, mais pas en envoyer. Ceci est dû à la façon dont DCC démarre une
connexion. En premier, vous indiquez au destinataire que vous voulez envoyer un fichier et où il devra se
connecter. Sans les assistants, la connexion DCC ressemblera à une tentative du receveur de connecter
certains hôtes au propre réseau local de ce receveur. La connexion sera brisée. Cependant, ça peut fonctionner
sans défaut, car l'expéditeur vous enverra (probablement) la bonne adresse pour vous connecter.

Note
Si vous rencontrez des problèmes avec le DCC de mIRC et que tout fonctionne correctement avec
d'autres clients IRC, lisez la section Problèmes avec le DCC de mIRC dans l'appendice Problèmes et
questions courants.

Comme nous l'avons écrit, c'est seulement l'option de chargement des modules qui ajoute le support pour les
protocoles FTP et IRC. Pour une explication plus détaillée des modules conntrack et nat, lisez l'annexe
Problèmes et questions courants. Il existe aussi les assistants conntrack H.323 dans le patch−o−matic, comme
d'autres assistants conntrack et NAT. Pour pouvoir vous en servir, vous devez utiliser le patch−o−matic et
compiler votre propre noyau. Pour une explication plus complète, voir le chapitre Préparatifs.

Didacticiel sur Iptables, version 1.2.0

108 13.2.2. Chargement initial des modules supplémentaires

Note
Notez que vous devrez charger ip_nat_irc et ip_nat_ftp si vous voulez que la traduction d'adresse réseau
fonctionne correctement avec les protocoles FTP et IRC. Vous aurez également besoin de charger les
modules ip_conntrack_irc et ip_conntrack_ftp avant de charger les modules NAT. Ils sont utilisés de la
même façon que les modules conntrack, mais ils vous permettront de faire du NAT sur ces deux
protocoles.

13.2.3. Réglage du proc

Ici nous démarrons le IP forwarding par un écho à 1 sur /proc/sys/net/ipv4/ip_forward de
cette façon :

echo "1" > /proc/sys/net/ipv4/ip_forward

Avertissement
Il peut être intéressant de réfléchir où et quand nous devons placer l'IP forwarding (transfert IP).
Dans ce script, et dans tous les autres de ce didacticiel, nous le plaçons avant de créer les autres
filtres IP (i.e., les règles de iptables). Ceci conduit à une brève période de temps pendant laquelle
le pare−feu accepte le transfert de tout le trafic, entre une milliseconde et une minute selon le
script. Ceci peut permettre à des personnes malicieuses d'essayer de passer le pare−feu. En
d'autres termes, cette option doit être activée après la création de toutes les règles, cependant, j'ai
choisi de l'activer avant de charger d'autres règles pour des raisons de concordance avec le script.

Dans le cas où vous avez besoin du support d'adresse IP dynamique, par exemple vous utilisez SLIP, PPP ou
DHCP, vous devez acitver l'option ip_dynaddr en faisant :

echo "1" > /proc/sys/net/ipv4/ip_dynaddr

S'il y a d'autres options que vous voulez activer vous suivez cette procédure. Il existe d'autres documentations
sur ces sujets mais c'est hors du sujet de ce didacticiel. Il existe un bon mais bref document sur le système
proc disponible dans le noyau, également disponible dans l'annexe Autres ressources et liens. L'annexe Autres
ressources et liens est généralement un bon endroit pour rechercher l'information que vous ne trouvez pas ici.

Note
Le script rc.firewall.txt, et tous les autres scripts de ce didacticiel, contient une petite
section sur la mise en place des proc qui ne sont pas requises. Ce peut être là qu'il faut
regarder quand quelque chose ne fonctionne pas comme vous le voulez, cependant, ne
changez pas les valeurs avant de savoir ce qu'elles représentent.

13.2.4. Déplacement des règles vers différentes chaînes

Cette section décrit brièvement mes choix en fonction des scripts spécifiques du rc.firewall.txt.
Certains des chemins d'accès indiqués ici peuvent être faux selon un ou un autre aspect. Aussi, cette section
jette en bref regard en arrière sur le chapitre Traversée des tables et des chaînes. Nous nous souviendrons de la
façon dont les tables et les chaînes sont traversées dans un exemple réel.

J'ai modifié toutes les différentes chaînes utilisateur de façon à économiser le plus possible de CPU, mais en
même temps en mettant l'accent principal sur la sécurité et la fiabilité. Au lieu de laisser un paquet TCP
traverser les règles ICMP, UDP et TCP, j'ai simplement apparié tous les paquets TCP et laissé ces paquets
TCP traverser les chaînes spécifiées par l'utilisateur. De cette façon nous ne consommons pas trop de temps
système. L'image ci−dessous tente d'expliquer comment un paquet entrant traverse Netfilter. Avec ces images
et explications, j'essaie de clarifier les buts de ce script. Nous ne verrons cependant aucun détail spécifique,
ceci sera fait plus loin dans le chapitre. C'est un image plutôt triviale en comparaison de celle du chapitre
Traversée des tables et des chaînes où nous parlons de la traversée complète des tables et des chaînes en
profondeur.

Didacticiel sur Iptables, version 1.2.0

13.2.3. Réglage du proc 109

Nous fondant sur cette image, clarifions nos buts. C'est un exemple complet de script basé sur la supposition
que notre scenario contient un réseau local, un pare−feu et une connexion Internet connectée à ce pare−feu.
Cet exemple est aussi basé sur la supposition que nous avons une adresse IP statique vers l'Internet (à l'opposé
de DHCP, PPP, SLIP et autres). Dans ce cas, nous voulons autoriser le pare−feu à agir comme serveur pour
certains services sur l'Internet, et nous faisons pleinement confiance à notre réseau local et donc ne bloquons
pas le trafic provenant de celui−ci. Pour faire ceci, nous plaçons les stratégies des chaînes par défaut à DROP.
Ce qui effectivement bloquera toutes les connexions et tous les paquets que nous n'avons pas explicitement
autorisés dans notre réseau ou notre pare−feu.

Dans le cas de ce scenario, nous laisserons notre réseau local se connecter à l'Internet. Comme nous avons
pleine confiance dans notre réseau, nous permettons toute sorte de trafic depuis ce réseau local vers l'Internet.
Cependant, l'Internet n'est pas un réseau de confiance et donc nous voulons bloquer les connexions venant de
celui−ci et allant vers notre réseau. En fonction de ces suppositions, regardons ce que nous devons faire et ne
pas faire.

En priorité, nous voulons que notre réseau local puisse se connecter à l'Internet, bien sûr. Pour cela, nous
devons NATer tous les paquets car aucune de nos machines locales n'a d'adresse IP routable. Tout ceci est
effectué dans la chaîne POSTROUTING, créée en dernier dans le script. Nous devons aussi faire du filtrage
dans la chaîne FORWARD car nous devons permettre un accès complet à notre réseau local. Nous avons
confiance dans notre réseau local, et pour ça nous autorisons tout le trafic provenant de celui−ci et allant vers
l'Internet. Comme personne sur l'Internet ne sera autorisé à se connecter aux ordinateurs de notre réseau local,
nous bloquerons tout le trafic provenant de l'Internet vers le réseau local sauf les connexions déjà établies, qui
autorisent le trafic en réponse.

Comme pour notre pare−feu, nous n'avons peut−être pas trop de moyens, et ne voulons offrir que quelques
services sur l'Internet. Nous avons décidé de permettre les accès HTTP, FTP, SSH et IDENTD à notre
pare−feu. Tous ces protocoles sont disponibles dans le pare−feu, et seront donc autorisés par la chaîne
INPUT, ainsi que nous autoriserons le trafic en retour à travers la chaîne OUTPUT. Cependant, nous avons
pleinement confiance dans notre réseau local, et le matériel local et l'adresse IP sont également sûrs. Donc,
nous pouvons ajouter des règles spéciales pour permettre le trafic depuis le réseau local comme depuis la
boucle locale. De même, nous n'autoriserons pas certains paquets spécifiques, ni certaines plages d'adresses IP
à joindre le pare−feu depuis l'Internet. Par exemple, la plage d'adresses IP 10.0.0.0/8 est réservée à notre
réseau local et donc nous ne voulons pas autoriser les paquets provenant d'une de ces adresses car ils
risqueraient à 99% une usurpation d'adresse. Cependant, avant d'implémenter ceci, nous devons noter que

Didacticiel sur Iptables, version 1.2.0

110 13.2.4. Déplacement des règles vers différentes chaînes

certains fournisseurs d'accès Internet (FAI) utilisent ces plages d'adresses IP dans leur propre réseau. Pour
plus de détails, voir le chapitre Problèmes et questions courants.

Comme nous avons un serveur FTP actif, et que nous voulons traverser certaines règles, nous ajoutons une
règle qui permet le trafic établi et relié au début de la chaîne INPUT. Pour la même raison, nous divisons les
règles en sous−chaînes. En faisant ça, nos paquets n'auront besoin de traverser que quelques chaînes. En
traversant moins de chaînes, nous consommons moins de temps pour chaque paquet, et réduisons la latence
dans le réseau.

Dans ce script, nous choisissons de diviser les différents paquets par leur famille de protocole, par exemple
TCP, UDP ou ICMP. Tous les paquets TCP traversent une chaîne spécifique nommée tcp_packets, qui
contient les règles pour tous les ports et protocoles TCP que nous voulons autoriser. Ainsi, si nous voulons
faire certaines vérifications supplémentaires sur les paquets TCP, nous devrons créer une sous−chaîne pour
tous les paquets acceptés qui utilisent des numéros de port valides vers le pare−feu. Cette chaîne que nous
choisissons d'appeler chaîne autorisée, contiendra certaines vérifications supplémentaires avant d'accepter le
paquet. Pour les paquets ICMP, ils traversent la chaîne icmp_packets. Quand nous avons décidé de créer cette
chaîne, nous n'avons pas vu le besoin de vérifications supplémentaires avant d'accepter les paquets s'ils sont
conformes au code ICMP, et donc les acceptons directement. Enfin, nous avons les paquets UDP qui doivent
être distribués avec. Nous envoyons ces paquets vers la chaîne udp_packets qui traite tous les paquets UDP
entrants. Tous les paquets UDP entrants doivent être envoyés à cette chaîne, et s'ils sont d'un type autorisé
nous les acceptons immédiatement sans vérification supplémentaire.

Comme nous sommes sur un réseau relativement petit, cette machine étant également utilisée comme station
de travail secondaire, nous voulons autoriser certains protocoles spécifiques à joindre le pare−feu, comme
speak freely et ICQ.

Enfin, nous avons la chaîne OUTPUT. Comme nous faisons confiance à notre pare−feu, nous autorisons tout
le trafic quittant celui−ci. Nous ne bloquons aucun utilisateur, ni aucun protocole spécifique. Cependant, nous
ne voulons pas que des personnes utilisent cette machine pour usurper les paquets quittant le pare−feu, et donc
autorisons uniquement le trafic depuis les adresses assignées au pare−feu. Nous implémenterons ceci en
ajoutant des règles qui ACCEPT tous les paquets quittant le pare−feu lorsque ceux−ci proviennent des
adresses assignées, s'ils ne sont pas supprimés par défaut dans la chaîne OUTPUT.

13.2.5. Mise en place des actions par défaut

Très tôt dans le processus de création de nos règles, nous avons placé nos stratégies par défaut. Nous
implémentons nos stratégies par défaut dans les différentes chaînes avec une commande très simple, comme
décrite ci−dessous :

iptables [−P {chain} {policy}]

La stratégie par défaut est utilisée chaque fois que les paquets n'apparient pas une règle dans une chaîne. Par
exemple, nous avons un paquet qui n'apparie aucune règle dans notre table de règles. Si ça se produit, nous
devons décider quoi faire du paquet en question, et c'est là qu'intervient la stratégie par défaut. Elle est utilisée

Didacticiel sur Iptables, version 1.2.0

13.2.5. Mise en place des actions par défaut 111

sur tous les paquets qui ne s'apparient avec aucune règle dans notre table de règles.

Attention
Faîtes attention avec la stratégie par défaut que vous placez sur des chaînes dans d'autres tables, car elle
n'est pas conçue pour le filtrage, et peut provoquer des comportements étranges.

13.2.6. Implémentation des chaînes utilisateur dans la table filtre

Maintenant que nous avons une bonne image de ce que nous voulons faire avec ce pare−feu, voyons
l'implémentation de la table de règles. C'est le moment de faire attention à l'implémentation des règles et des
chaînes que nous voulons créer, de même que les tables de règles dans les chaînes.

Après cela, nous créons les différentes chaînes spéciales que nous voulons utiliser avec la commande −N. Les
nouvelles chaînes sont créées et implémentées sans aucune règle à l'intérieur. Les chaînes que nous utilisons
sont, comme précédemment décrit, icmp_packets, tcp_packets, udp_packets et les chaînes autorisées, qui sont
utilisées par la chaîne tcp_packets. Les paquets entrants sur $INET_IFACE, de type ICMP, seront redirigés
vers la chaîne icmp_packets. Les paquets de type TCP, seront redirigés vers la chaîne tcp_packets et les
paquets entrants de type UDP venant de $INET_IFACE iront vers la chaîne udp_packets. Tout ceci sera
expliqué en détail dans la section Chaîne INPUT ci−dessous. Créer une chaîne est tout à fait simple et consiste
seulement en une déclaration de chaîne comme ceci :

iptables [−N chain]

Dans les sections suivantes nous verrons les chaînes définies par l'utilisateur que nous avons créées.
Regardons à quoi elles ressemblent, quelles règles elles contiennent et ce que nous pouvons faire avec.

13.2.6.1. La chaîne bad_tcp_packets

La chaîne bad_tcp_packets est destinée à contenir les règles qui vérifient les paquets entrants avec des
en−têtes mal formés ou d'autres problèmes. Nous avons choisi d'inclure seulement un filtre de paquet qui
bloque tous les paquets TCP entrants qui sont considérés comme NEW mais n'ont pas le bit SYN placé, et une
règle qui bloque les paquets SYN/ACK considérés comme NEW. Cette chaîne peut être utilisée pour vérifier
toutes les contradictions possibles, comme ci−dessus ou les balayages de port XMAS, etc. Nous pourrions de
même ajouter des règles pour l'état INVALID.

Si vous voulez pleinement comprendre le NEW non SYN, regardez la section Paquets état NEW sans bit SYN
placé dans l'annexe Problèmes et questions courants en relation avec NEW et les paquets non−SYN. Ces
paquets seront autorisés dans certaines circonstances mais dans 99% des cas nous n'en aurons pas besoin.
Nous pouvons les journaliser et ensuite les supprimer.

La raison pour laquelle nous rejetons les paquets SYN/ACK qui sont considérés comme NEW est très simple.
C'est décrit en détail dans la section SYN/ACK et les paquets NEW de l'annexe Problèmes et questions
courants.

13.2.6.2. La chaîne autorisée

Si un paquet de type TCP arrive sur l'interface $INET_IFACE, il traverse la chaîne tcp_packets et si la
connexion est sur un port sur lequel nous voulons autoriser le trafic, nous ferons certaines vérifications finales
sur ce port pour savoir s'il est actuellement autorisé ou non. Toutes ces vérifications finales sont faites dans la
chaîne autorisée.

En premier, nous vérifions si le paquet est un paquet SYN. Si c'est le cas, il y a de fortes chances pour que ce
soit le premier paquet d'une nouvelle connexion, nous l'autorisons. Ensuite nous vérifions si le paquet provient
d'une connexion ESTABLISHED ou RELATED, et si c'est encore le cas nous l'autorisons. Une connexion
ESTABLISHED est une connexion qui a observé le trafic dans les deux sens, et donc nous avons un paquet

Didacticiel sur Iptables, version 1.2.0

112 13.2.6. Implémentation des chaînes utilisateur dans la table filtre

SYN, cette connexion doit être dans l'état ESTABLISHED, selon la machine d'état. La dernière règle dans
cette chaîne DROP tout le reste. Dans ce cas ceci indique que tout le trafic n'a pas été forcément observé dans
les deux directions, i.e., nous n'avons pas répondu au paquet SYN, ou qu'il y a eu une tentative de connexion
sans paquet SYN. Il n'y a pas, dans la pratique, de démarrage de connexion sans paquet SYN, sauf dans le cas
où des personnes font du balayage de port. Actuellement, il n'y a pas d'implémentation TCP/IP qui supporte
l'ouverture d'une connexion TCP avec autre chose qu'un paquet SYN à ma connaissance, donc nous faisons un
DROP car nous sommes à 99% sûrs qu'il s'agit alors d'un balayage de port.

13.2.6.3. La chaîne TCP

La chaîne tcp_packets spécifie quels ports provenant de l'Internet sont autorisés dans le pare−feu. Il y a
cependant, quelques vérifications supplémentaires à faire, ainsi nous envoyons chaque paquet vers la chaîne
autorisée, comme décrit précédemment.

−A tcp_packets indique à iptables dans quelle chaîne ajouter la nouvelle règle, celle−ci étant ajoutée à la fin
de la chaîne. −p TCP indique d'apparier les paquets TCP et −s 0/0 apparie toutes les adresses source
provenant de 0.0.0.0 avec un masque de réseau de 0.0.0.0, en d'autres termes toutes les adresses source. C'est
le comportement par défaut mais je l'utilise ici pour rendre les choses le plus clair possible. −−dport 21
indique le port de destination 21, si le paquet est destiné au port 21 il est aussi vérifié. Si tous les critères sont
appariés, le paquet sera dirigé vers la chaîne autorisée. S'il n'apparie aucune des règles, elles seront renvoyées
à la chaîne qui a expédié le paquet vers la chaîne tcp_packets.

Comme cela maintenant, il autorise le port TCP 21, ou le port de contrôle FTP, qui sert à contrôler les
connexions FTP et plus tard les connexions RELATED, ainsi nous autorisons les connexions PASSIVE et
ACTIVE car le module ip_conntrack_ftp est chargé. Si nous ne voulons pas du tout autoriser le FTP, nous
pouvons décharger le module ip_conntrack_ftp et supprimer la ligne $IPTABLES −A tcp_packets −p TCP −s
0/0 −−dport 21 −j allowed du fichier rc.firewall.txt.

Le port 22 est le port SSH, qu'il est beaucoup mieux d'utiliser que de permettre le telnet sur le port 23 si vous
voulez autoriser quelqu'un de l'extérieur à utiliser un shell sur votre machine. Notez que c'est toujours une
mauvaise idée de permettre à quelqu'un d'autre que vous même d'avoir accès à une machine pare−feu.

Le port 80 est le port HTTP, en d'autres termes votre serveur web, supprimez le si vous ne voulez pas exécuter
un serveur web directement sur votre pare−feu.

Enfin, nous autorisons le port 113, qui est le IDENTD et peut être nécessaire pour certains protocoles comme
IRC, etc. Notez qu'il peut être intéressant d'utiliser le paquetage oidentd si vous faites du NAT sur plusieurs
hôtes de votre réseau local. oidentd possède un support pour faire du relaying des requêtes IDENTD vers les
bonnes machines de votre réseau local.

Si vous voulez ajouter d'autres ports dans ce script, c'est le moment. Simplement, copiez et coller une des
autres lignes de la chaîne tcp_packets et modifiez la en fonction des ports que vous voulez ouvrir.

13.2.6.4. La chaîne UDP

Si nous obtenons un paquet UDP dans la chaîne INPUT, nous l'envoyons alors vers udp_packets où il sera de
nouveau apparié pour le protocole UDP avec −p UDP et ensuite vérifié avec l'adresse source 0.0.0.0 et le
masque de réseau 0.0.0.0. Sauf que cette fois, nous n'acceptons que les ports UDP spécifiques que nous
voulons ouvrir pour les hôtes de l'Internet. Notez que nous ne créons pas de trous sur le port source des hôtes
expéditeurs, car il en sera pris soin par la machine d'état. Nous n'avons besoin d'ouvrir des ports sur notre hôte
que si nous devons faire tourner un serveur sur un port UDP, comme le DNS, etc. Les paquets entrants dans le
pare−feu et qui font partie d'une connexion déjà établie (par notre réseau local) seront automatiquement
acceptés par les règles −−state ESTABLISHED,RELATED au début de la chaîne INPUT.

Didacticiel sur Iptables, version 1.2.0

13.2.6. Implémentation des chaînes utilisateur dans la table filtre 113

Ainsi, nous ne plaçons pas le ACCEPT sur les paquets UDP entrants provenant du port 53, celui qui est utilisé
pour le DNS. La règle existe mais elle est commentée par défaut. Si vous voulez que votre pare−feu agisse
comme serveur DNS, décommentez la.

j'ai personnellement autorisé le port 123, port NTP ou network Time Protocol. Ce protocole est utilisé pour
synchroniser l'horloge de votre machine avec des serveurs de temps qui sont très précis. La plupart d'entre
vous n'utilise sans doute pas ce protocole et je ne l'ai donc pas autorisé par défaut. Il suffit aussi de
décommenter la règle pour l'activer.

Nous n'autorisons pas le port 2074, utilisé par certains programmes multimedia comme speak freely qui
servent à parler avec d'autres personnes en temps réel en utilisant des haut−parleurs et des microphones, ou
même un casque d'écoute. Si vous voulez vous en servir décommentez simplement la ligne.

Le port 4000 est celui du protocole ICQ. C'est un protocole très bien connu qui est utilisé par le programme
Mirabilis nommé ICQ. Il existe au moins 2 ou 3 clones de ICQ pour Linux et c'est un des programmes de chat
les plus utilisés dans le monde. Je doute qu'il soit besoin d'en expliquer d'avantage.

À ce point, deux règles supplémentaires sont disponibles si vous avez fait l'expérience de certaines entrées de
journaux dans certaines circonstances. La première règle bloque la diffusion des paquets vers les ports de
destination 135 à 139. Ils sont utilisés par NETBIOS, ou SMB pour les utilisateurs de Microsoft. Ceci bloque
toutes les entrées de journaux provenant de iptables qui journalise l'activité de réseaux Microsoft à l'extérieur
de notre pare−feu. La seconde règle a été créée pour prévenir les problèmes de journalisation excessive, et
prend soin des requêtes DHCP provenant de l'extérieur. Ceci est particulièrement vrai si votre réseau extérieur
est de type Ethernet non−commuté, dans lequel les clients obtiennent leur adresses IP par DHCP. Dans ces
circonstances vous pouvez avoir beaucoup d'entrées de journal juste pour ça.

Note
Notez que ces deux dernières règles sont désactivées car certaines personnes peuvent être intéressées par
ce genre de logs. Si vous rencontrez des problèmes avec une journalisation excessive, essayez de
supprimer ce type de paquetages à ce niveau. Il y a aussi beaucoup de règles de ce type juste avant les
règles de log dans la chaîne INPUT.

13.2.6.5. La chaîne ICMP

C'est là que nous décidons quels types ICMP autoriser. Si un paquet de type ICMP arrive sur eth0 dans la
chaîne INPUT, nous le redirigeons vers la chaîne icmp_packets comme expliqué plus haut. Ici nous
consignons quels types ICMP autoriser. Pour le moment, j'autorise seulement les requêtes écho ICMP
entrantes, TTL égale 0 pendant le transit et TTL égale 0 pendant le réassemblage. La raison pour laquelle nous
n'autorisons aucun autre type ICMP par défaut, est que la plupart des autres types ICMP seront pris en charge
par les règles d'état RELATED.

Note
Si un paquet ICMP est envoyé en réponse à un paquet déjà existant il est considéré comme
RELATED par rapport au flux d'origine. Pour plus d'information sur les états, voir le chapitre La
machine d'état.

La raison pour laquelle j'autorise ces paquets ICMP est la suivante, les Requêtes Écho servent aux réponses
écho, utilisées principalement pour "pinguer" d'autres hôtes, pour voir s'ils sont disponibles sur les réseaux.
Sans cette règle, d'autres hôtes ne pourraient pas nous "pinguer" pour vérifier que nous sommes présent dans
une connexion réseau. Notez que certaines personnes ont tendance à supprimer cette règle, car ils ne veulent
pas être vus sur Internet. Supprimer cette règle rend effectivement inefficace tous les pings vers notre
pare−feu depuis l'Internet car le pare−feu ne répondra tout simplement pas.

Time Exceeded (i.e., TTL égale 0 pendant le transit et TTL égale 0 pendant le réassemblage), est autorisé dans
le cas où nous voulons faire du traçage de route sur certains hôtes ou si un paquet a un TTL pacé à 0, nous
obtiendrons une réponse en retour. Par exemple, quand vous faites un traceroute sur quelqu'un, vous

Didacticiel sur Iptables, version 1.2.0

114 13.2.6. Implémentation des chaînes utilisateur dans la table filtre

commencez avec un TTL = 1, et il obtient en retour un 0 au premier saut de son chemin, et un Time Exceeded
est envoyé depuis la première passerelle de la route vers l'hôte que vous voulez tracer, ensuite le TTL = 2 et la
seconde passerelle envoie un Time Exceeded, et ainsi de suite jusqu'à ce que vous obteniez une réponse de
l'hôte que vous vouliez joindre. De cette façon nous obtenons une réponse de chaque hôte sur notre chemin, et
pouvons voir quel hôte ne répond pas.

Pour une liste complète de tous les types ICMP, voir l'appendice Types ICMP. Pour plus d'information sur
ICMP lisez les documents et rapports :

RFC 792 − Internet Control Message Protocol par J. Postel.•

Note
Une erreur peut apparaître chez vous quand vous bloquez certains types ICMP, mais dans mon cas tout
fonctionne parfaitement quand je bloque tous les types ICMP non autorisés.

13.2.7. Chaîne INPUT

La chaîne INPUT, utilise la plupart du temps les autres chaînes pour faire le plus gros du travail. De cette
façon nous n'avons pas trop de charge provenant d'iptables, et il fonctionnera mieux sur les machines lentes.
Ceci est fait en vérifiant les détails spécifiques qui peuvent être identiques pour beaucoup de paquets
différents, en ensuite en envoyant ces paquets dans les chaînes spécifiées par l'utilisateur. En faisant ça, nous
réduisons notre table de règles qui ne contient que le nécessaire pour le transit des paquets, et donc le
pare−feu aura moins de charge pour filtrer les paquets.

En premier nous vérifions les mauvais paquets. C'est réalisé en envoyant tous les paquets TCP vers la chaîne
bad_packets. Cette chaîne contient des règles qui vérifient les paquets mal formés ou d'autres anomalies. Pour
une explication complète sur la chaîne bad_tcp_packets, regardez dans la section La chaîne bad_tcp_packets
de ce chapitre.

À ce niveau nous recherchons le trafic généré par les réseaux de confiance. Ce qui inclut l'adaptateur réseau et
tout le trafic prevenant de celui−ci, ainsi que le trafic entrant et sortant de la boucle locale (loopback), avec
toutes les adresses IP assignées (toutes les adresses y compris notre adresse IP Internet). Ainsi, nous avons
choisi de placer la règle qui autorise l'activité du LAN vers le pare−feu en premier, car notre réseau local
génère plus de trafic de la connexion Internet. Ceci permet d'avoir moins de charge système pour apparier
chaque paquet avec chaque règle, et c'est toujours une bonne idée de regarder quel type de trafic traverse
principalement le pare−feu. En faisant cela nous rendons les règles plus efficaces, avec moins de charge sur le
pare−feu et moins de congestion sur notre réseau.

Avant de nous attaquer aux règles "réelles" dans lesquelles nous déciderons quoi autoriser depuis l'Internet,
nous avons placé une règle pour réduire la charge système. C'est une règle d'état qui autorise tous les paquets
d'un flux ESTABLISHED ou RELATED vers l'adresse IP Internet. Cette règle a une équivalence dans la
chaîne autorisée, qui est redondante à celle−ci. Cependant, la règle −−state ESTABLISHED,RELATED dans
la chaîne autorisée a été conservée pour plusieurs raisons, vous pouvez donc copier−coller cette fonction.

Après ça, nous apparions tous les paquets TCP de la chaîne INPUT qui arrivent dans l'interface
$INET_IFACE, et les envoyons vers tcp_packets, comme précédemment décrit. Nous faisons
maintenant la même chose pour les paquets UDP sur l'interface $INET_IFACE et les envoyons vers la chaîne
udp_packets, ensuite tous les paquets ICMP sont envoyés vers la chaîne icmp_packets. Normalement, un
pare−feu devrait être plus difficile à attaquer par des paquets TCP, que par des paquets UDP et ICMP. C'est le
cas normal, mais souvenez vous, ce peut être différent pour vous. La même chose peut être observée ici,
comme avec les règles réseau spécifiques. Lesquelles génèrent le plus de trafic ? Sur les réseaux générant un
important volume de données, c'est une absolue nécessité de vérifier cela, car une machine de type Pentium III
peut être saturée par une simple table de règles contenant 100 règles avec une carte réseau ethernet 100 Mbit
fonctionnant à sa pleine capacité, si la table de règles est mal écrite. Il est important de regarder ça de près.

Didacticiel sur Iptables, version 1.2.0

13.2.7. Chaîne INPUT 115

Ici nous avons une règle supplémentaire, qui est par défaut désactivée, et qui peut être utilisée pour évitez une
journalisation excessive dans le cas où nous avons un réseau Microsoft à l'extérieur de notre pare−feu Linux.
Les clients Microsoft ont la mauvaise habitude d'envoyer des tonnes de packets multicast vers la plage
224.0.0.0/8, donc nous avons la possibilité de bloquer ces paquets ici. Il existe deux autres règles faisant à peu
près la même chose sur la chaîne udp_packets décrite dans La chaîne UDP.

Avant de tester la stratégie par défaut de la chaîne INPUT, nous la journalisons pour savoir s'il existe des
problèmes/bugs. Ce peut être soit un paquet que nous ne voulons pas autoriser, soit une chose qui peut se
révéler néfaste pour nous, ou finalement un problème dans notre pare−feu qui n'autorise pas le trafic qui
devrait être autorisé. Nous ne journalisons pas plus de 3 paquets par minute car nous ne voulons pas
surcharger nos journaux, ainsi nous plaçons un préfixe pour toutes les entrées de journalisation et savons donc
d'où ils proviennent.

Tout ce qui n'a pas été capturé sera DROPé par la stratégie par défaut de la chaîne INPUT. Voir la section
Mise en place des actions par défaut dans ce chapitre.

13.2.8. Chaîne FORWARD

La chaîne FORWARD contient quelques règles dans notre scenario. Nous avons une seule règle qui envoie
tous les paquets vers la chaîne bad_tcp_packets, laquelle est également utilisée dans la chaîne INPUT comme
décrit précédemment. La chaîne bad_tcp_packets est construite de façon qu'elle puisse être utilisée dans
plusieurs chaînes, sans regarder quel paquet la traverse.

Après cette vérification des mauvais paquets TCP, nous avons les règles principales dans la chaîne
FORWARD. La première règle autorise tout le trafic depuis notre $LAN_IFACE vers n'importe quelle autre
interface librement, sans restrictions. En d'autres termes, cette règle autorise tout le trafic depuis le LAN vers
l'Internet. La seconde règle autorise le trafic en retour ESTABLISHED et RELATED à travers le pare−feu.
Ce qui veut dire qu'elle autorise les connexions initiées par notre réseau local à circuler librement dans le
LAN. Ces règles sont nécessaires pour que notre réseau local puisse accéder à l'Internet, car la stratégie par
défaut de la chaîne FORWARD est placée à DROP. C'est adroit, car elle autorise les hôtes de notre réseau
local à se connecter à des hôtes sur Internet, mais en même temps elle bloque les hôtes depuis Internet leur
interdisant de se connecter aux hôtes de notre réseau interne.

Enfin, nous avons également une chaîne de journalisation pour tous les paquets qui ne sont pas autorisés dans
un sens ou dans l'autre à traverser la chaîne FORWARD. Ceci concerne principalement les paquets mal
formés ou autre problème. Une cause peut être une attaque de hacker, et une autre des paquets mal formés.
C'est exactement la même règle que celle utilisée dans la chaîne INPUT sauf pour le préfixe de journalisation,
"IPT FORWARD packet died: ". Le préfixe de journalisation est principalement utilisé pour séparer les
entrées de journaux, et peut être utilisé pour savoir d'où les paquets ont été journalisés et connaître certaines
options d'en−tête.

13.2.9. Chaîne OUTPUT

Comme nous utilisons notre machine en partie comme pare−feu et en partie comme station de travail, nous
autorisons tout ce qui sort de cette machine qui a une adresse source $LOCALHOST_IP, $LAN_IP ou
$STATIC_IP. Enfin nous journalisons tout ce qui est DROPé. S'il y a des paquets DROPés, nous voulons
savoir quelle action entreprendre contre ce problème. Soit c'est une erreur, soit c'est un paquet mystérieux qui
peut être usurpé. Enfin nous DROPons le paquet dans la stratégie par défaut.

13.2.10. Chaîne PREROUTING de la table nat

La chaîne PREROUTING fait à peu près ce qu'elle indique, elle traduit les adresses réseau sur les paquets
avant la décision de routage qui les envoie vers les chaînes INPUT ou FORWARD dans la table de filtrage.
La seule raison que nous avons de parler de cette chaîne ici est que nous ne faisons aucun filtrage dans

Didacticiel sur Iptables, version 1.2.0

116 13.2.8. Chaîne FORWARD

celle−ci. La chaîne PREROUTING est traversée seulement par le premier paquet d'un flux, ce qui veut dire
que tous les autres paquets ne seront pas vérifiés dans cette chaîne. Dans ce script, nous n'utilisons pas du tout
la chaîne PREROUTING, cependant, c'est le bon endroit si nous voulons faire du DNAT sur des paquets
spécifiques, par exemple si nous voulons héberger notre serveur web dans notre réseau local. Pour plus
d'information sur la chaîne PREROUTING, lire le chapitre Traversée des tables et des chaînes.

Attention
La chaîne PREROUTING ne doit pas être utilisée pour quelque filtrage que ce soit, car parmi d'autres
choses, elle n'est traversée que par le premier paquet d'un flux. Elle devrait être utilisée uniquement pour
la traduction d'adresse réseau, à moins que vous ne sachiez réellement ce que vous faites.

13.2.11. Démarrage de SNAT et la chaîne POSTROUTING

Notre dernière mission est d'activer la traduction d'adresse réseau. En premier nous ajoutons une règle à la
table nat, dans la chaîne POSTROUTING qui NAT tous les paquets provenant de notre interface et allant vers
Internet. Pour moi c'est eth0. Cependant, il existe des variables spécifiques ajoutées aux scripts d'exemples qui
peuvent être utilisées automatiquement pour configurer cela. L'option −t indique à iptables dans quelle table
insérer la règle, dans notre cas c'est la table nat. La commande −A indique que nous voulons lier une nouvelle
règle à une chaîne existante nommée POSTROUTING et −o $INET_IFACE nous dit d'apparier tous les
paquets sortants sur l'interface INET_IFACE (ou eth0, par défaut dans ce script) et enfin nous plaçons la
cible pour faire du SNAT sur les paquets. Ainsi tous les paquets qui apparient cette règle seront SNATés pour
vérifier qu'ils viennent de l'interface Internet. Notez que vous devez indiquer l'adresse IP à donner aux paquets
sortants avec l'option −−to−source envoyée à la cible SNAT.

Dans ce script nous avons choisi d'utiliser la cible SNAT au lieu de MASQUERADE pour deux raisons. La
première est que ce script est supposé s'exécuter sur un pare−feu qui possède une adresse IP statique. La
raison suivante est qu'il est plus rapide et plus efficace d'utiliser la cible SNAT si possible. Bien sûr, nous
l'utilisons aussi pour montrer comment elle fonctionne dans un exemple réel. Si nous n'avons pas d'adresse IP
statique, nous utiliserons la cible MASQUERADE car elle offre des fonctions simples et faciles pour faire du
NAT, mais elle récupère automatiquement l'adresse IP qui sera utilisée. Ceci consomme un peu plus de temps
système, mais c'est très avantageux si vous utilisez DHCP. Si vous voulez avoir une vue plus détaillée de la
cible MASQUERADE, regardez le script rc.DHCP.firewall.txt.

Chapitre 14. Exemples de scripts

L'objectif de ce chapitre est de vous fournir une brève explication de chaque script disponible avec ce
didacticiel, et quels services ils fournissent. Ces scripts ne sont en aucun cas parfaits, et peuvent ne pas
correspondre tout à fait à ce que vous en attendez. C'est une aide pour vous assister dans la création de scripts
selon vos besoins. La première section indique la structure que j'ai établie dans chaque script, ansi nous
pourrons retrouver notre chemin plus facilement.

14.1. Structure du script rc.firewall.txt

Tous les scripts de ce didacticiel ont été écrits pour une structure spécifique. La raison pour ça est qu'ils sont
assez similaires entre eux ce qui permet de façon aisée de voir les différences. Cette structure est à peu près
bien documentée dans ce bref chapitre. Il vous donnera un idée de pourquoi ces scripts ont été écrits, et
pourquoi j'ai choisi cette structure.

Note
Même si c'est la structure que j'ai choisi, notez qu'elle peut ne pas être la meilleure pour vos
scripts. Elle vise une lecture et une compréhension faciles pour nos besoins.

Didacticiel sur Iptables, version 1.2.0

13.2.10. Chaîne PREROUTING de la table nat 117

14.1.1. La structure

C'est la structure de tous les scripts de ce didacticiel. S'ils diffèrent quelque part c'est probablement une erreur
de ma part, sauf si spécifié explicitement.

Configuration − En premier lieu nous avons les options de configuration que le reste du script
utilisera. Les options de configuration seront toujours les premières dans chaque script.

Internet − C'est la section de configuration qui concerne la connexion Internet. Vous pouvez
la passer si vous n'avez pas de connexion Internet. Notez qu'il pourrait y avoir d'avantage de
sous−sections ici, mais nous n'indiquons que celles concernant l'Internet.

DHCP − Si nécessaire nous ajouterons les options de configuration spécifique à
DHCP ici.

1.

PPPoE − Si l'utilisateur désire ce script spécifique, et qu'il utilise une connexion
PPPoE, nous ajouterons les options ici.

2.

1.

LAN − S'il y a un réseau local derrière le pare−feu, nous ajouterons les options le concernant
ici. C'est le cas la plupart du temps, donc cette section sera toujours disponible.

2.

DMZ − Si nécessaire, nous ajouterons la configuration de la DMZ ici. Beaucoup de scripts
n'ont pas cette section, principalement parce que dans un réseau domestique, ou pour une
petite entreprise il n'y en a pas.

3.

Localhost − Cette section concerne l'hôte local. Ces options ne changent pratiquement jamais.4.
iptables − Section qui concerne la configuration spécifique d'iptables. Dans la plupart des cas
elle ne nécessite qu'une variable qui nous indique où iptables est situé.

5.

Other − S'il y a d'autres options et variables spécifiques, elles devront être placées dans la
sous−section concernée (si elles appartiennent à la connexion Internet, elles seront placées
dans la sous−section Internet, etc.). Si elles ne vont nulle part elles seront placées dans les
sous−sections des options de configuration.

6.

1.

Module loading − Cette section contient une liste de modules. La première partie concerne les
modules nécessaires, la seconde les modules non nécessaires.

Note
Notez que certains modules peuvent accroître la sécurité, ou ajouter certaines possibilités, et
donc peuvent être ajoutés même s'ils ne sont pas obligatoires. Ils seront indiqués dans certains
cas dans les scripts.

Required modules − Cette section contient les modules obligatoires et, peut être, des modules
spéciaux qui ajoutent à la sécurité ou des services supplémentaires pour l'administrateur ou
les clients.

1.

Non−required modules − Section qui contient les modules non obligatoires pour les
opérations normales. Tous ces modules peuvent être commentés par défaut, si vous voulez
ajouter le service en question décommentez le.

2.

2.

proc configuration − Cette section concerne toute configuration particulière nécessaire pour le
système de fichiers proc. Si certaines de ces options sont obligatoires, elles seront listées ici, elles sont
commentées par défaut, et indiquées comme configurations proc non obligatoires. Beaucoup de
configurations proc utiles seront indiquées, mais pas toutes et de loin.

Required proc configuration − Section qui contient les configurations proc obligatoires pour
que le script fonctionne. Elle peut aussi contenir des configurations qui accroissent la sécurité,
ou ajoutent des services supplémentaires pour l'administrateur ou les clients.

1.

Non−required proc configuration − Cette section pourrait contenir les configurations proc
non obligatoires mais qui peuvent être utiles. Elles sont toutes commentées, car elles ne sont
pas nécessaires pour l'instant pour que le script fonctionne. Cette liste n'est de loin pas
complète.

2.

3.

Didacticiel sur Iptables, version 1.2.0

118 14.1.1. La structure

rules set up − Maintenant le script est prêt pour y insérer la table de règles. J'ai choisi de diviser toutes
les règles en noms de table et de chaîne dans la table de règles, pour rendre plus facile à lire ce qui
suit. Toutes les chaînes utilisateur spécifiées sont créées avant de faire quoi que ce soit d'autre. J'ai
aussi choisi de placer les chaînes et leur spécifications de règles dans le même ordre que la sortie de la
commande iptables −L.

Filter table − En premier nous voyons la table filter et son contenu. En priorité nous
configurons toutes les stratégies de la table.

Set policies − Configuration des stratégies par défaut pour les chaînes système.
Normalement je met les stratégies à DROP pour les chaînes de la table filtre, et
spécifie ACCEPT les services et les flux que je veux autoriser. De cette façon nous
nous débarrassons de tous les ports que nous ne voulons pas autoriser.

1.

Create user specified chains − Ici nous créons toutes les chaînes utilisateur que nous
voulons utiliser dans cette table. Nous ne pourrons pas utiliser ces chaînes dans les
chaînes système si elles ne sont pas déjà créées, le mieux est de le faire le plus tôt
possible.

2.

Create content in user specified chains − Après avoir créé les chaînes utilisateur nous
pouvons rentrer toutes les règles dans ces chaînes. Vous pouvez aussi les rentrer plus
tard dans le script, c'est comme vous voulez.

3.

INPUT chain − Ici nous ajouterons toutes les règles de la chaîne INPUT.

Note
Nous utiliserons le modèle de sortie de la commande iptables −L comme vous
pourrez le voir. Il n'y a pas de raison pour que vous conserviez cette structure,
cependant, essayez d'éviter de mélanger les données provenant de différentes
tables et chaînes car elles deviendraient plus difficiles à lire et à résoudre les
problèmes.

4.

FORWARD chain − Ici nous ajoutons les règles de la chaîne FORWARD.5.
OUTPUT chain − En dernier, nous ajoutons les règles de la chaîne OUTPUT.6.

1.

nat table − Après la table filtre occupons nous de la table nat. Nous le faisons après la table
filtre pour plusieurs raisons. La première c'est que nous ne voulons pas activer l'ensemble du
mécanisme de forwarding et les fonctions NAT trop tôt, ce qui pourrait conduire les paquets à
traverser le pare−feu au mauvais moment (i.e., quand le NAT est activé, mais que les règles
de filtre ne le sont pas). Ainsi, je vois la table nat comme une sorte de couche qui se lie à la
table filter et en quelque sorte l'entoure. La table filter sera donc le noyau, tandis que la table
nat agira comme une couche autour de la table filter, et enfin la table mangle entourera la
table nat comme une seconde couche. Ceci peut être faux dans certaines perspectives mais
pas trop loin de la réalité.

Set policies − En premier nous plaçons les stratégies par défaut dans la table nat.
Normalement, avec la stratégie ACCEPT placée au début ce sera suffisant. Cette
table n'est pas utilisée pour le filtrage, et les paquets ne seront pas DROP ici, car
certaines choses dangereuses peuvent survenir dans certains cas. Je laisse ces chaînes
à ACCEPT car il y a aucune raison de ne pas le faire.

1.

Create user specified chains − Ici nous créons les chaînes utilisateur que nous
voulons insérer dans la table nat. Normalement je n'en ai pas, mais j'ai ajouté cette
section juste au cas où. Notez que les chaînes utilisateur doivent être créées avant
qu'elles soient utilisées dans les chaînes système.

2.

Create content in user specified chains − Maintenant il est temps d'ajouter toutes les
règles des chaînes utilisateur dans la table nat. C'est la même chose que pour les
chaînes utilisateur dans la table filter. Nous les ajoutons ici car il n'y a aucune raison
de ne pas le faire.

3.

2.

Didacticiel sur Iptables, version 1.2.0

14.1.1. La structure 119

PREROUTING chain − La chaîne PREROUTING est utilisée pour faire du DNAT
sur les paquets quand nous en avons besoin. Dans beaucoup de scripts cette
fonctionnalité n'est pas utilisée, ou alors elle est désactivée. La raison en étant que
nous ne voulons pas créer de gros trous dans notre réseau local sans savoir ce que
nous faisons. Dans certains scripts nous l'avons activé par défaut car le seul but de ces
scripts et de procurer certains services.

4.

POSTROUTING chain − La chaîne POSTROUTING sera utilisée par les scripts que
j'ai écrit car la plupart d'entre eux dépendent du fait que nous avons un ou plusieurs
réseaux locaux que nous voulons protéger de l'Internet. Principalement nous
essaierons d'utiliser la cible SNAT, mais dans certains cas nous devrons utiliser la
cible MASQUERADE.

5.

OUTPUT chain − Cette chaîne est à peine utilisée dans les scripts. Je n'ai trouvé
aucune bonne raison de m'en servir.

6.

mangle table − La dernière table est la table mangle. Normalement je n'utilise pas cette table,
sauf pour des besoins spécifiques, comme masquer toutes les machines pour utiliser le même
TTL ou pour changer les champs TOS, etc. J'ai choisi de laisser ces parties du script plus ou
moins vides, avec quelques exceptions dans lesquelles j'ai ajouté des exemples.

Set policies − Place les stratégies par défaut dans la chaîne. C'est la même chose que
pour la table nat, à peu près. Cette table n'est pas faite pour le filtrage. Je n'ai placé
aucune stratégie dans aucun des scripts de la table mangle, et vous êtes encouragés à
en faire autant.

1.

Create user specified chains − Crée toutes les chaînes utilisateur. Comme j'ai laissé
vide la table mangle, je n'ai créé aucune chaîne ici. Cependant, cette section a été
ajoutée juste au cas où vous en auriez besoin dans le futur.

2.

Create content in user specified chains − Ici plus aucun script de ce didacticiel ne
contiendra des règles.

3.

PREROUTING − Ici plus aucun script de ce didacticiel ne contiendra des règles.4.
INPUT chain − Ici plus aucun script de ce didacticiel ne contiendra des règles.5.
FORWARD chain − Ici plus aucun script de ce didacticiel ne contiendra des règles.6.
OUTPUT chain − Ici plus aucun script de ce didacticiel ne contiendra des règles.7.
POSTROUTING chain − Ici plus aucun script de ce didacticiel ne contiendra des
règles.

8.

3.

4.

Nous expliquerons en détail comment chaque script est structuré et pourquoi.

Attention
Notez que ces descriptions sont assez brèves, et doivent être vues comme une rapide explication.

14.2. rc.firewall.txt

Didacticiel sur Iptables, version 1.2.0

120 14.2. rc.firewall.txt

Le rc.firewall.txt est le noyau sur lequel le reste des scripts est basé. Le chapitre Fichier rc.firewall expliquera
chaque détail du script. Il a été écrit principalement pour un réseau domestique dual. Par exemple, vous avez
un LAN et une connexion Internet. Ce script suppose également que vous avez une IP fixe vers l'Internet, et
donc que vous n'utilisez pas DHCP, PPP ou SLIP ou un autre protocole qui assigne les IP automatiquement.
Si vous cherchez un script pour cela, regardez de plus près rc.DHCP.firewall.txt.

Le script rc.firewall.txt nécessite que les options suivantes soient compilées statiquement dans le
noyau, ou comme modules. Sans cela des parties du script seront inutilisables. Vous pourrez avoir besoin de
d'avantage d'options, tout dépend de ce que vous voulez utiliser.

CONFIG_NETFILTER♦
CONFIG_IP_NF_CONNTRACK♦
CONFIG_IP_NF_IPTABLES♦
CONFIG_IP_NF_MATCH_LIMIT♦
CONFIG_IP_NF_MATCH_STATE♦
CONFIG_IP_NF_FILTER♦
CONFIG_IP_NF_NAT♦
CONFIG_IP_NF_TARGET_LOG♦

14.3. rc.DMZ.firewall.txt

Didacticiel sur Iptables, version 1.2.0

14.3. rc.DMZ.firewall.txt 121

http://iptables-tutorial.frozentux.net/scripts/rc.firewall.txt

Le script rc.DMZ.firewall.txt a été écrit pour les personnes qui ont un réseau de confiance, une DMZ et une
connexion Internet. La DMZ est dans ce cas NATée pair−à−pair et nécessite de faire de l'alias d'IP dans le
pare−feu, i.e., la machine doit reconnaître les paquets de plus d'une IP. Il existe plusieurs moyens de faire
cela, un de ceux−ci est de placer le NAT pair−à−pair, un autre est de créer un sous−réseau, donnant au
pare−feu une IP interne et une externe. Vous pouvez alors placer ces IP sur la machine DMZ comme vous le
voulez. Notez que ça vous "occupera" deux adresses, une pour l'adresse de diffusion et l'autre pour l'adresse
réseau. C'est à vous de décider de l'implémenter ou non. Ce didacticiel vous donne les outils pour créer un
pare−feu et faire du NAT, mais ne vous dira pas exactement tout en fonction de vos besoins spécifiques.

Le script rc.DMZ.firewall.txt nécessite que ces options soient compilées dans votre noyau, soit de façon
statique soit comme modules. Sans ces options vous ne pourrez pas utiliser les fonctionnalités de ce script.
Vous obtiendriez des erreurs sur les modules et les cibles/sauts ou les correspondances. Si vous envisagez de
faire du contrôle de trafic ou quelque chose comme ça, vous devez vérifier que toutes les options obligatoires
sont compilées dans votre noyau.

CONFIG_NETFILTER♦
CONFIG_IP_NF_CONNTRACK♦
CONFIG_IP_NF_IPTABLES♦
CONFIG_IP_NF_MATCH_LIMIT♦
CONFIG_IP_NF_MATCH_STATE♦
CONFIG_IP_NF_FILTER♦
CONFIG_IP_NF_NAT♦
CONFIG_IP_NF_TARGET_LOG♦

Vous devez avoir deux réseaux internes pour ce script comme vous pouvez le voir sur l'image. L'un utilise la
plage IP 192.168.0.0/24 et correspond au réseau de confiance. L'autre utilise la plage IP 192.168.1.0/24 et est
la DMZ dans laquelle nous faisons du NAT pair−à−pair. Par exemple, si quelqu'un sur l'Internet envoit un
paquet vers notre DNS_IP, nous utilisons DNAT pour expédier ce paquet vers notre DNS sur le réseau DMZ.
Quand le DNS voit le paquet, il sera destiné à l'adresse IP du réseau interne DNS, et pas vers l'IP DNS
externe. Si le paquet n'était pas traduit, le DNS ne répondrait pas à ce paquet. Voyons à quoi ressemble le
code DNAT :

$IPTABLES −t nat −A PREROUTING −p TCP −i $INET_IFACE −d $DNS_IP \
−−dport 53 −j DNAT −−to−destination $DMZ_DNS_IP

Didacticiel sur Iptables, version 1.2.0

122 14.3. rc.DMZ.firewall.txt

http://iptables-tutorial.frozentux.net/scripts/rc.DMZ.firewall.txt

En premier, DNAT ne peut être exécuté que dans la chaîne PREROUTING de la table nat. Le protocole TCP
sur $INET_IFACE avec une destination IP qui apparie $DNS_IP, est dirigé vers le port 53, qui est le port
TCP pour la zone de transferts entre serveurs de noms. Ensuite nous spécifions où nous voulons envoyer le
paquet avec l'option −−to−destination et lui donnons la valeur de la $DMZ_DNS_IP, en d'autres termes l'IP
de notre réseau DNS ou DMZ. C'est du DNAT de base. Après ça la réponse au paquet DNATé est envoyée au
pare−feu, qui le "déNATe" automatiquement.

Nous devrions en avoir suffisamment compris pour pouvoir saisir l'ensemble de ces scripts. S'il y a quelque
chose que vous ne comprenez pas dans ce didacticiel, faites moi un mail c'est sans doute une erreur de ma
part.

14.4. rc.DHCP.firewall.txt

Le script rc.DHCP.firewall.txt est à peu près identique au rc.firewall.txt. Cependant, il n'utilise pas la variable
STATIC_IP, ce qui est la principale différence avec le script rc.firewall.txt. La raison est qu'il ne fonctionne
pas avec une connexion IP dynamique. Les modifications à effectuer sur le script d'origine sont minimes,
cependant, certaines personnes m'ont demandé si ce script est une bonne solution. Il permet d'utiliser des
connexions DHCP, PPP et SLIP pour l'Internet.

Le script rc.DHCP.firewall.txt nécessite que les options suivantes soient compilées statiquement dans
le noyau, ou comme modules, pour fonctionner correctement.

CONFIG_NETFILTER♦
CONFIG_IP_NF_CONNTRACK♦
CONFIG_IP_NF_IPTABLES♦
CONFIG_IP_NF_MATCH_LIMIT♦
CONFIG_IP_NF_MATCH_STATE♦
CONFIG_IP_NF_FILTER♦
CONFIG_IP_NF_NAT♦
CONFIG_IP_NF_TARGET_MASQUERADE♦
CONFIG_IP_NF_TARGET_LOG♦

Didacticiel sur Iptables, version 1.2.0

14.4. rc.DHCP.firewall.txt 123

http://iptables-tutorial.frozentux.net/scripts/rc.DHCP.firewall.txt

le principal changement dans ce script consiste en la suppression de la variable STATIC_IP et à supprimer
toute référence à cette variable. Le script filtrera maintenant sur la variable INET_IFACE. En d'autres termes
−d $STATIC_IP a été changé en −i$INET_IFACE. C'est la seule modification qu'il est réellement nécessaire
de faire.

Il y a plusieurs choses à penser. Nous ne pouvons pas faire de filtrage sur ce qui dépend de la chaîne INPUT,
par exemple, −−in−interface $LAN_IFACE −−dst $INET_IP. Ceci nous force à faire du filtrage uniquement
sur les interfaces dans le cas où les machines internes doivent accéder à une IP Internet adressable. Un bon
exemple est si nous faisont tourner un serveur HTTP sur notre pare−feu. Si nous allons sur la page principale
(i.e., http://192.168.0.1/), qui contient des liens statiques vers le même hôte (i.e.,
http://foobar.dyndns.net/fuubar.html), qui pourrait être une solution dyndns, nous rencontrons un problème.
La machine NATée cherchera le DNS pour l'IP du serveur HTTP, et ensuite tentera d'accéder à cette IP. Dans
le cas où nous filtrons sur l'interface et l'IP, la machine NATée sera incapable d'accéder au HTTP car la chaîne
INPUT DROP les paquets. Ceci s'applique aussi dans le cas où nous avons une IP statique, mais dans ces cas
nous pouvons contourner le problème en ajoutant des règles qui apparient les paquets de l'interface LAN pour
notre INET_IP, et les plaçons à ACCEPT.

Comme vous l'avez vu plus haut, ce peut être une bonne idée de faire un script qui traite les IP dynamiques
d'une meilleure façon. Nous pouvons par exemple faire un script qui récupère l'IP depuis ifconfig et l'ajoute à
une variable, dans l'initialisation de la connexion Internet. Un bon moyen pour faire ça, serait d'utiliser, par
exemple, les scripts ip−up fournis par pppd ou tout autre programme. Voir sur le site linuxguruz.org qui
possède une quantité de scripts disponibles en téléchargement. Le lien est dans l'annexe Autres ressources et
liens.

Note
Ce script peut être un peu moins sûr que le rc.firewall.txt. Je vous préviens qu'il est d'avantage
ouvert aux attaques depuis l'extérieur.

Il est également possible d'ajouter certaines choses comme cela dans votre script :

INET_IP=`ifconfig $INET_IFACE | grep inet | cut −d : −f 2 | \
cut −d ' ' −f 1`

La commande ci−dessus récupère automatiquement l'adresse IP de la variable $INET_IFACE, affiche la
ligne qui contient l'adresse IP et la transforme en une adresse IP gérable. Pour une façon plus élaborée de faire
ceci, vous pouvez appliquer des bouts de code disponibles dans le script retreiveip.txt, qui récupère
automatiquement votre adresse IP Internet quand vous lancez le script. Notez que cette façon de faire peut
conduire à un comportement un peu aléatoire, comme le blocage des connexions depuis votre pare−feu en
interne. Les comportements étranges les plus courants sont décrits dans la liste suivante.

Si le script est lancé depuis un script exécuté par, par exemple, le démon PPP, il suspendra toutes les
connexions actives à cause des règles NEW non−SYN (voir la section Paquets état NEW sans bit
SYN placé).

1.

Si vous avez des règles statiques, il est plus difficile d'ajouter et d'enlever ces règles tout le temps,
sans modifier celles déjà existantes. Par exemple, si vous voulez bloquer l'accès des hôtes de votre
LAN au pare−feu, mais en même temps exécuter un script depuis le démon PPP, comment ferez vous
sans effacer vos règles actives qui bloquent le LAN ?

2.

Ce n'est pas nécessairement compliqué, mais peut conduire à des compromis sur la sécurité. Si le
script est très simple, il est facile de corriger les problèmes.

3.

Didacticiel sur Iptables, version 1.2.0

124 14.4. rc.DHCP.firewall.txt

14.5. rc.UTIN.firewall.txt

Le script rc.UTIN.firewall.txt bloque le LAN qui est situé derrière nous. En d'autres termes, nous ne faisons
pas confiance aux réseaux auxquels nous sommes connectés. Nous n'autorisons personne de notre LAN à se
connecter à l'Internet, sauf pour des tâches spécifiques. Les seules choses autorisées sont les accès POP3,
HTTP et FTP. Nous ne faisons également pas confiance aux utilisateurs internes pour accéder au pare−feu
comme pour les utilisateurs sur l'Internet.

Le script rc.UTIN.firewall.txt nécessite que les options suivantes soient compilées en statique dans
le noyau, ou en modules. Sans une ou plusieurs des ces options, le script ne fonctionnera pas correctement ou
sera même inutilisable. Si vous modifiez ce script vous aurez peut être besoin d'options supplémentaires qui
devront aussi être compilées dans le noyau.

CONFIG_NETFILTER♦
CONFIG_IP_NF_CONNTRACK♦
CONFIG_IP_NF_IPTABLES♦
CONFIG_IP_NF_MATCH_LIMIT♦
CONFIG_IP_NF_MATCH_STATE♦
CONFIG_IP_NF_FILTER♦
CONFIG_IP_NF_NAT♦
CONFIG_IP_NF_TARGET_LOG♦

Le script suit la règle d'or de ne faire confiance en personne, pas même en vos propres employés. C'est
malheureux à dire, mais une grande partie du hacking/cracking dans une entreprise provient du personnel
interne. Ce script vous donne quelques clés pour remédier à ça. Il n'est pas très différent du script
rc.firewall.txt.

14.6. rc.test−iptables.txt

Le script rc.test−iptables.txt peut être utilisé pour tester toutes les différentes chaînes, mais il peut nécessiter
quelques adaptations en fonction de votre configuration, comme l'activation de ip_forwarding, ou le
masquerading, etc. Il fonctionnera dans la plupart des cas, si vous avez une configuration des tables de base
chargées dans le noyau. Certaines cibles LOG sont activées ce qui permet de journaliser les requêtes et les

Didacticiel sur Iptables, version 1.2.0

14.5. rc.UTIN.firewall.txt 125

http://iptables-tutorial.frozentux.net/scripts/rc.UTIN.firewall.txt
http://iptables-tutorial.frozentux.net/scripts/rc.test-iptables.txt

réponses aux pings. De cette façon vous aurez des informations sur les chaînes traversées et dans quel ordre.
Par exemple, lancez ce script et faites :

ping −c 1 host.on.the.internet

Et tail −n 0 −f /var/log/messages pendant que vous exécutez la première commande. Ceci vous indiquera les
diverses chaînes utilisées, et dans quel ordre, jusqu'à ce que les entrées du journal s'arrêtent pour quelque
raison.

Note
Ce script a été écrit dans un but de test uniquement. En d'autres termes, ce n'est pas une bonne idée
d'avoir des règles comme celles−là qui journalisent tout car vos fichiers de log se rempliront très vite et il
pourrait être confronté à une attaque de type DoS.

14.7. rc.flush−iptables.txt

Le script rc.flush−iptables.txt ne devrait pas être appelé script à proprement parler. Ce script
rc.flush−iptables.txt réinitialise toutes les tables et les règles. Il commence en activant par défaut les stratégies
en mode ACCEPT sur les chaînes INPUT, OUTPUT et FORWARD de la table filter. Après ça nous
réinitialisons les stratégies des chaînes PREROUTING, POSTROUTING et OUTPUT de la table nat. Nous
faisons ça en premier ainsi nous ne sommes pas gênés par les fermetures de connexion. Ce script a pour but la
mise en place de votre pare−feu et de le tester.

Après cela nous réinitialisons toutes les chaînes, en premier la table filter et ensuite la table NAT. De cette
façon nous savons qu'il n'y a pas de règles redondantes. Quand tout ceci est fait, nous passons à la section
suivante dans laquelle nous supprimons toutes les chaînes utilisateur dans les tables NAT et filter. Quand cette
étape est terminée, nous considérons que le script est achevé. Vous pouvez ajouter des règles pour réinitialiser
votre table mangle si vous l'utilisez.

Note
Un dernier mot. Certaines personnes m'ont demandé de mettre ce script dans la syntaxe du rc.firewall
original utilisé par Red Hat Linux où vous tapez quelque chose comme rc.firewall start et le script
démarre. Cependant, je ne l'ai pas fait car il s'agit d'un didacticiel destiné à vous donner des idées, et il ne
devra pas grossir démesurément avec des syntaxes particulières. Ajouter des syntaxes et autres scripts
shell peut aussi le rendre plus difficile à lire.

14.8. Limit−match.txt

Le script limit−match.txt est un mirroir du script test qui vous permet de tester la correspondance limit et de
voir comment elle fonctionne. Chargez ce script, et ensuite envoyez des paquets à différents intervalles.
Toutes les réponses seront bloquées jusqu'à ce que le seuil limite soit atteint.

14.9. Pid−owner.txt

Le script pid−owner.txt est un petit exemple qui indique comment vous pouvez utiliser la correspondance
PID. Il ne fait rien de réel, mais vous permet une fois exécuté la commande iptables −L −v de savoir quelle
règle est actuellement appariée.

14.10. Recent−match.txt

Ce script recent−match.txt indique comment la correspondance recent est utilisée. Pour une explication
complète regardez la section Correspondance Recent du chapitre Correspondances.

Didacticiel sur Iptables, version 1.2.0

126 14.6. rc.test−iptables.txt

http://iptables-tutorial.frozentux.net/scripts/rc.flush-iptables.txt
http://iptables-tutorial.frozentux.net/scripts/rc.flush-iptables.txt
http://iptables-tutorial.frozentux.net/scripts/limit-match.txt
http://iptables-tutorial.frozentux.net/scripts/pid-owner.txt
http://iptables-tutorial.frozentux.net/scripts/recent-match.txt

14.11. Sid−owner.txt

Le sid−owner.txt est un petit exemple montrant comment utiliser la correspondance SID. Il n'a rien de réel, en
lançant la commande iptables −L −v vous verrez les règles appariées actuellement.

14.12. Ttl−inc.txt

Un petit exemple ttl−inc.txt. Il indique comment rendre invisible le pare−feu/routeur aux traceroutes, lesquels
révèlent beaucoup d'informations utiles aux attaquants possibles.

14.13. Iptables−save

Un petit example script utilisé dans le chapitre Sauvegarde et restauration des tables de règles importantes
pour illustrer comment iptables−save peut être utilisé. Ce script ne doit être utilisé que comme une référence,
il ne fonctionne pas.

Chapitre 15. Interfaces utilisateur graphiques pour
Iptables/netfilter

Un aspect de iptables et netfilter que nous n'avons pas encore vu, est l'interface utilisateur graphique. Un des
principaux problèmes avec ces interfaces est que netfilter est très complexe, ce qui peut produire des effets
étranges. Pour cette raison, ce peut être un tâche décourageante de créer ce type d'interfaces.

Plusieurs personnes et organismes ont essayé de créer des interfaces graphiques pour netfilter et iptables,
certaines avec succès, d'autres ont abandonné après un certain temps. Ce chapitre est une petite compilation de
certaines interfaces graphiques qu'il peut être intéressant de regarder.

15.1. fwbuilder

Firewall Builder, ou simplement fwbuilder, est un outil extrêmement souple et puissant qui peut être utilisé
pour créer vos propres pare−feux, ou pour maintenir plusieurs pare−feux. Il peut être utilisé pour créer
plusieurs stratégies de pare−feux différentes, incluant iptables (Linux 2.4 et 2.6), ipfilter (FreeBSD, NetBSD,
etc.), OpenBSD pf et, avec un module qui doit être acheté, Cisco PIX.

Fwbuilder a beaucoup de succès et continue d'être développé. Il fonctionne sur un système hôte séparé, sur
lequel vous créez vos fichiers de stratégies, il les copie ensuite et les exécute sur le système cible. Il peut
maintenir depuis une simple table de règles jusqu'à de plus importantes et compliquées. Il a également des
possibilités d'extensions selon les différentes versions d'iptables, en fonction des cibles/correspondances
disponibles sur chaque système, etc. Le résultat peut être sauvegardé dans un fichier xml, ou un fichier de
configuration (ex. les scripts pare−feux).

Didacticiel sur Iptables, version 1.2.0

14.11. Sid−owner.txt 127

http://iptables-tutorial.frozentux.net/scripts/sid-owner.txt
http://iptables-tutorial.frozentux.net/scripts/ttl-inc.txt
http://iptables-tutorial.frozentux.net/scripts/iptsave-ruleset.txt

Vous pouvez voir la "configuration" du pare−feu dans l'exemple suivant, et les principaux menus de
fwbuilder. Fwbuilder peut être trouvé sur http://www.fwbuilder.org.

15.2. Projet Turtle Firewall

Turtle Firewall est une excellente, mais simple, interface pour iptables. Il est intégré dans Webmin (une
interface d'administration web). Il est assez basique, et n'est ni complexe ni ne peut supporter des
modifications complexes comme fwbuilder, mais il est très capable de maintenir des plus simples pare−feux à
certains plus avancés.

Un gros avantage avec Turtle Firewall est qu'il est basé sur une interface web, et donc peut être contrôlé à
distance d'une manière complètement différente de fwbuilder et de la plupart des autres outils. Bien sûr, il
présente plus de risques en termes de sécurité car Webmin est un service supplémentaire séparé fonctionnant
sur le pare−feu lui−même.

Didacticiel sur Iptables, version 1.2.0

128 15.1. fwbuilder

http://www.fwbuilder.org

La capture d'écran ci−dessus montre les rubriques de Turtle Firewall, dans lesquelles vous pouvez configurer
les interfaces réseau, et d'autres choses.

Didacticiel sur Iptables, version 1.2.0

15.2. Projet Turtle Firewall 129

La dernière capture d'écran montre l'écran principal de Turtle Firewall, avec les règles en bas de page.
L'ensemble des règles n'est pas affiché, comme vous pouvez le voir, mais vous avez une idée générale de son
fonctionnement.

Vous trouverez Turtle Firewall sur http://www.turtlefirewall.com/.

15.3. Integrated Secure Communications System

Integrated Secure Communications System, ou en plus court ISCS, est encore en phase de développement, et
aucune version publique n'est disponible. Cependant, il semblerait être un outil très utile une fois finalisé. Le
développeur a des exigences très élevées, et c'est la principale raison pour laquelle il n'est pas encore terminé.
ISCS intègre diverses fonctionnalités dans une seule interface d'administration. De façon basique, ceci indique
qu'une fois le projet réalisé, pour pourrez configurer tous vos pare−feux depuis un point centralisé en utilisant
une seule interface graphique, incluant les VPN, VLAN, tunnel, syscontrol, etc.

Le but principal du développeur de ISCS est de simplifier l'administration est de supprimer les tâches
fastidieuses pour les administrateurs, et ainsi économiser des heures de travail. Ceci est réalisé en joignant les
stratégies, ensuite le programme crée les tables de règles et les "envoie" vers des "points d'exécution" (ex.
pare−feux, proxies, etc.). L'administrateur n'a pas à écrire les tables de règles, mais simplement définir les
stratégies qui seront exécutées par ISCS.

Cet outil n'est pas encore achevé, comme je l'ai écrit. Cependant, j'ai été en contact avec le principal
développeur du projet, et c'est réellement un travail très important. Quand il sera fini, je crois qu'il sera un des
meilleurs outils du marché. Vous pouvez trouver le projet ISCS sur http://iscs.sourceforge.net/.

Didacticiel sur Iptables, version 1.2.0

130 15.3. Integrated Secure Communications System

http://www.turtlefirewall.com/
http://iscs.sourceforge.net/

Note
Le principal développeur, John Sullivan, m'a dit de demander aux personnes intéressées de l'aider dans le
développement. Le projet est très lourd, et il a vraiment besoin d'aide. Si vous êtes capables de le faire,
votre aide sera la bienvenue.

15.4. IPMenu

IPMenu est un programme très utile, il est cependant simple à utiliser et ne demande pas trop de ressources ou
de bande passante. C'est un programme en mode console, ainsi il fonctionne parfaitement avec une connexion
SSH par exemple. Il s'exécute très bien sur des machines possédant un vieux modem.

Comme vous pouvez le voir sur l'image, il contient toutes les fonctionnalités d'iptables, incluant le filtrage,
mangle et nat. Il peut aussi maintenir les tables de routage et la bande passante et sauvegarder et restaurer les
tables de règles.

Comme vous l'avez vu dans l'image précédente, le programme est plutôt basique, mais il convient dans la
plupart des cas. En premier, il est très simple, et peut être utilisé pour l'administration à distance, et fonctionne
avec SSH via une console standard, il est également sécurisé. Vous pouvez trouver le programme sur
http://users.pandora.be/stes/ipmenu.html.

15.5. Easy Firewall Generator

Easy Firewall Generator est un autre développement intéressant. De façon basique, c'est une page web PHP
dans laquelle vous spécifiez les options de votre pare−feu, ensuite la configuration se fait en cliquant sur un
bouton, ce qui génère une table de règles iptables que vous pouvez utliser.

Le script contient toutes les règles de base, avec en plus certaines autres destinées à contenir des modèles
insolites dans les paquets. Il contient aussi les modifications sysctl IP spécifiques qui peuvent être nécessaires,
le chargement des modules, etc. La table de règles est écrite dans le format init.d de red Hat.

Didacticiel sur Iptables, version 1.2.0

15.4. IPMenu 131

http://users.pandora.be/stes/ipmenu.html

Cette capture d'écran montre une des étapes finales de la configuration du script du pare−feu créé par le
programme. Vous pouvez trouver plus d'information sur http://easyfwgen.morizot.net/.

15.6. Partie suivante

Dans ce chapitre nous avons vu ce que nous pouvons faire avec certaines interfaces graphiques. Notez qu'il
existe beaucoup plus d'interfaces sur le marché. La plupart d'entre elles sont open source et libres d'utilisation,
tandis que certaines sont des applications commerciales qui nécessitent d'être achetées pour obtenir un support
ou une fonctionnalité complets.

Annexe A. Explication détaillée des commandes spéciales

A.1. Affichage de votre table de règles

Pour lister votre table de règles vous devez passer une option spéciale à la commande iptables, dont nous
avons brièvement parlé dans le chapitre Création d'une règle. Ceci pourrait ressembler à ça :

iptables −L

Didacticiel sur Iptables, version 1.2.0

132 15.5. Easy Firewall Generator

http://easyfwgen.morizot.net/

Cette commande affichera votre table de règles active, et la traduira dans une forme lisible. Par exemple, elle
traduira tous les différents ports selon le fichier /etc/services aussi bien que le DNS de toutes les
adresses IP pour en obtenir des enregistrements. Cette dernière peut poser un léger problème. Par exemple,
elle tentera de résoudre les adresses IP LAN, i.e., 192.168.1.1, en quelque chose de plus fonctionnel.
192.168.0.0/16 est une plage d'adresses privées et la commande semblera se figer. Pour résoudre ce
problème nous ferons comme suit :

iptables −L −n

Une autre chose qui peut être intéressante est de voir quelques statistiques concernant chaque stratégie, règle
et chaîne.

iptables −L −n −v

N'oubliez pas qu'il est également possible d'afficher les tables nat et mangle. Ceci est fait avec l'option −t,
comme ça :

iptables −L −t nat

Il y a aussi quelques fichiers qu'il serait intéressant de regarder dans le système de fichiers /proc. Par
exemple, savoir quelles connexions sont en cours dans la table conntrack. Cette table contient toutes les
connexions tracées et sert de table de base, ainsi nous pouvons toujours connaître l'état de nos connexions.
Cette table ne peut être éditée, et même si c'était le cas, ce ne serait pas une bonne idée. Pour voir la table
exécutez la commande :

cat /proc/net/ip_conntrack | less

La commande ci−dessus indique toutes les connexions traçées même si ça peut être un peu difficile à tout
comprendre.

A.2. Mise à jour et vidange des tables

Si à un certain moment vous sabotez votre iptables, il existe des commandes pour les vidanger, ainsi vous
n'aurez pas à rebooter. J'ai abordé cette question plusieurs fois, ainsi je crois que la réponse ici sera correcte.
Si vous faites une erreur dans une règle, vous n'avez juste qu'à changer les paramètres de −A en −D dans la
ligne qui contient l'erreur. iptables trouvera la ligne erronée et l'effacera pour vous, dans le cas où vous avez
de multiples lignes avec des erreurs identiques dans la chaîne, il supprimera la première instance et fera
l'appariement de votre règle. Si ce n'est pas le comportement voulu vous pouvez essayer d'utiliser l'option −D
comme dans iptables −D INPUT 10 laquelle effacera la dixième règle de la chaîne INPUT.

Il y a aussi certains cas où vous voudrez vider une chaîne complète, dans ces cas vous exécuterez l'option −F.
Par exemple, iptables −F INPUT supprimera la chaîne INPUT en totalité, mais ne modifiera pas la stratégie
par défaut, ainsi si elle est placée à DROP vous bloquerez la chaîne INPUT. Pour réinitialiser la stratégie de la
chaîne, qui était placée à DROP, faites par exemple, iptables −P INPUT ACCEPT.

J'ai écrit un rc.flush−iptables.txt (disponible dans l'annexe) qui vide et réinitialise votre iptables que vous
pouvez utiliser lors de l'écriture de votre fichier rc.firewall.txt. Une chose encore; si vous démarrez
avec une table mangle qui contient des erreurs, le script ne les supprimera pas, il est plus simple d'ajouter
quelques lignes pour les supprimer. je ne l'ai pas fait car la table mangle n'est pas utilisée dans mon script
rc.firewall.txt.

Didacticiel sur Iptables, version 1.2.0

A.1. Affichage de votre table de règles 133

Annexe B. Problèmes et questions courants

B.1. Problèmes de chargement des modules

Vous pouvez rencontrer quelques problèmes lors du chargement des modules. Par exemple, obtenir des
messages indiquant qu'il n'existe pas de module de ce nom, etc. Ils peuvent ressembler à ça :

insmod: iptable_filter: no module by that name found

Ces modules peuvent avoir été compilés statiquement dans le noyau. C'est la première des choses à regarder
pour résoudre ce problème. Le moyen le plus simple pour vérifier si ces modules sont déjà chargés ou sont
compilés en statique dans le noyau, est d'essayer une commande qui utilise ces fonctionnalités. Dans le cas
ci−dessus, nous ne pouvons pas charger la table filter. Si cette fonctionnalité n'est pas présente, nous ne
pourrons pas utiliser la table filter. Pour vérifier ceci, faites :

iptables −t filter −L

Ce qui afficherait soit la liste de toutes les chaînes de la table filtre, soit un échec. Si tout est correct, regarder
si vous avez des règles insérées ou non.

Chain INPUT (policy ACCEPT)
target prot opt source destination

Chain FORWARD (policy ACCEPT)
target prot opt source destination

Chain OUTPUT (policy ACCEPT)
target prot opt source destination

Si la table filtre n'est pas chargée, vous pouvez obtenir une erreur de ce genre :

iptables v1.2.5: can't initialize iptables table `filter': Table \
 does not exist (do you need to insmod?)
Perhaps iptables or your kernel needs to be upgraded.

Ceci est un peu plus sérieux car, en premier lieu, la fonctionnalité n'est pas compilée dans le noyau, en second
lieu, le module n'est pas trouvé dans le chemin normal. Ce qui peut indiquer que soit vous avez oublié
d'installer les modules, ou vous avez oublié d'exécuter un depmod −a pour mettre à jour la base de données de
vos modules, soit vous n'avez pas compilé cette fonctionnalité en module ou statiquement dans le noyau. Il
peut y avoir d'autres raisons pour que le module ne soit pas chargé, mais c'est une des principales. La plupart
de ces problèmes sont aisément solvables. Le premier peut être réglé en faisant un simple make
modules_install dans le répertoire source du noyau (si le source a déjà été compilé et que les modules sont
présents). Le second problème est résolu en exécutant depmod −a et en regardant si ça fonctionne ensuite. Le
troisième cas est un peu hors sujet ici. Vous trouverez plus d'information sur Linux Documentation Project.

Une autre erreur qui peut survenir est celle−ci :

iptables: No chain/target/match by that name

Cette erreur nous indique qu'il n'y a pas de chaîne, cible ou correspondance. Ceci peut dépendre de beaucoup
de facteurs, le plus courant étant que vous avez mal nommé la chaîne, cible ou correspondance en question.

Didacticiel sur Iptables, version 1.2.0

134 Annexe B. Problèmes et questions courants

Également, ça peut arriver si vous essayez d'utiliser une correspondance non disponible, soit parce que le bon
module n'est pas chargé, ou non compilé dans le noyau, soit iptables n'arrive pas à charger automatiquement le
module. En général, il faut vérifier avec les solutions ci−dessus, mais aussi regarder si les cibles sont bien
nommées dans vos règles.

B.2. Paquets état NEW sans bit SYN placé

Il y a certaines fonctionnalités d'iptables qui ne sont pas très bien documentées et qui peuvent être laissées de
côté par certaines personnes (y compris moi). Si vous utilisez l'état NEW, les paquets avec le bit SYN non
placé traverseront votre pare−feu. Cette fonctionnalité existe car dans certains cas nous pouvons considérer
qu'un paquet peut faire partie d'une connexion déjà ESTABLISHED sur, par exemple, un autre pare−feu.
Cette fonctionnalité offre la possibilité d'avoir deux ou plusieurs pare−feux, et un des pare−feux peut être
désactivé sans perte de données. Le pare−feu du sous−réseau peut alors être remplacé par un pare−feu
secondaire. Ceci peut conduire cependant au fait que l'état NEW autorisera toute sorte de connexion TCP,
sans se soucier si c'est un établissement de liaison à trois voies ou non. Pour surveiller ce problème nous
ajoutons les règles suivantes à nos pare−feux dans les chaînes INPUT, OUTPUT et FORWARD.

$IPTABLES −A INPUT −p tcp ! −−syn −m state −−state NEW −j LOG \
 −−log−prefix "New not syn:"
$IPTABLES −A INPUT −p tcp ! −−syn −m state −−state NEW −j DROP

Attention
Les règles ci−dessus surveillent ce problème. C'est un comportement mal documenté du projet
Netfilter/iptables qui devrait être mis en avant.

Notez qu'il existe certains problèmes avec les règles ci−dessus et les mauvaises implémentations TCP/IP de
Microsoft. Ces règles peuvent provoquer dans certaines conditions que des paquets générés par des produits
Microsoft soient labellisés avec l'état NEW et soient journalisés et supprimés. À ma connaissance, ça ne
produit cependant pas de coupure de connexion. Le problème survient lorsque la connexion est fermée, le
FIN/ACK final est envoyé, la machine d'état de Netfilter ferme la connexion et n'apparaît plus dans la table
conntrack. À ce moment l'implémentation Microsoft envoie un autre paquet considéré comme NEW mais il
manque le bit SYN, il est donc apparié par les règles. En d'autres termes, ne vous inquiétez pas trop à propos
de cette règle, ou alors placez l'option −−log−headers dans la règle et journalisez les en−têtes, ainsi vous
aurez une meilleure vision de ce à quoi ressemble le paquet.

Il y a un problème plus connu avec ces règles. Si quelqu'un est connecté au pare−feu, depuis le LAN, et que
vos scripts sont prévus pour s'activer lors du lancement d'une connexion PPP. Dans ce cas, quand vous
démarrez une connexion PPP, la personne connectée depuis le LAN sera plus ou moins supprimée. Ceci
s'applique seulement quand vous travaillez avec les codes nat et conntrack en modules, et que les modules
sont chargés et déchargés chaque fois que vous lancez le script. Une autre façon de rencontrer ce problème est
de lancer le script rc.firewall.txt par une connexion en telnet depuis un hôte non présent sur ce
pare−feu. Pour l'ajouter simplement, connectez vous en telnet ou autre type de connexion. Démarrez la
connexion en traçant les modules, ensuite chargez les règles de paquet NEW non−SYN. Enfin, le client telnet
ou le démon tentera d'envoyer quelque chose. Le code du traçage de connexion ne reconnaîtra pas cette
connexion comme légale car il n'a pas vu les paquets dans aucune direction auparavant, ainsi il n'y aura aucun
bit SYN de placé car ce n'est pas le premier paquet de la connexion. Ce paquet sera apparié avec les règles,
journalisé et ensuite supprimé.

B.3. SYN/ACK et les paquets NEW

Certaines attaques par mystification TCP utilisent une technique appelée Sequence Number Prediction. Dans
ce type d'attaque, l'attaquant mystifie certaines adresses IP d'hôtes, et essaie de prédire la suite de chiffres

Didacticiel sur Iptables, version 1.2.0

B.1. Problèmes de chargement des modules 135

utilisée par l'hôte.

Regardons un cas typique de mystification TCP (TCP spoofing) par prédiction de suite de chiffres. Les
joueurs : "l'attaquant" [A], tente d'envoyer des paquets à la "victime" [V], prétendant être un "autre hôte" [O].

[A] envoie un SYN vers [V] avec l'adresse IP source de [O].1.
[V] répond à [O] par un SYN/ACK.2.
donc [O] répondra à un SYN/ACK inconnu par RST et l'attaque sera réussie, mais nous supposons
que [O] est déconnecté.

3.

[A] peut maintenant parler à [V] en prétendant être [O] tant qu'il peut prédire correctement la
séquence de chiffres.

4.

Tant que nous n'envoyons pas le paquet RST au SYN/ACK inconnu à l'étape 3, nous permettons à [V] d'être
attaqué, et nous mêmes seront incriminés. La courtoisie serait désormais, d'envoyer le RST à [V] de façon
correcte. Si nous utilisons les règles NEW non−SYN spécifiées dans la table de règles, les paquets SYN/ACK
seront supprimés. Nous aurons donc les règles suivantes dans la chaîne bad_tcp_packets, juste au−dessus des
règles NEW non−SYN :

iptables −A bad_tcp_packets −p tcp −−tcp−flags SYN,ACK SYN,ACK \
−m state −−state NEW −j REJECT −−reject−with tcp−reset

Une chance serait que [O] dans ce scenario soit relativement petit, mais ces règles seront sûres dans la plupart
des cas. Sauf quand vous utilisez plusieurs pare−feux redondants qui prennent la suite des paquets ou des flux
de chacun des autres. Dans ces cas là, certaines connexions peuvent être bloquées, même si elles sont légales.
Cette règle peut aussi autoriser certains balayages de port, pour voir ce qui apparaît au niveau de notre
pare−feu, mais elle ne pourra pas en dévoiler d'avantage.

B.4. Fournisseurs d'accès Internet qui utilisent des adresses IP
assignées

J'ai ajouté ceci, car un ami m'a dit quelque chose que j'avais complètement oublié. Certains fournisseurs
d'accès Internet stupides utilisent des adresses IP assignées par l'IANA pour leurs réseaux locaux sur lesquels
vous vous connectez. Par exemple, le suédois Telia utilise ce processus sur ses serveurs DNS, lesquels se
servent de la plage d'adresses IP 10.x.x.x. Un problème courant que vous pouvez rencontrer lors de l'écriture
de vos scripts, est que vous n'autorisez pas les connexions depuis la plage d'adresses IP 10.x.x.x vers
vous−même, à cause des possibilités de spoofing. C'est malheureusement un de ces exemples avec lesquels
vous pouvez avoir des problèmes avec ces règles. Vous pouvez juste insérer une règle ACCEPT au−dessus de
la section concernant le spoofing pour autoriser le trafic depuis ces serveurs DNS, ou désactiver cette partie du
script. Ça ressemble à ceci :

/usr/local/sbin/iptables −t nat −I PREROUTING −i eth1 −s \
 10.0.0.1/32 −j ACCEPT

Je voudrai prendre un moment pour parler de ces fournisseurs d'accès Internet (FAI). Ces plages d'adresses IP
ne sont pas destinées pour votre usage à discrétion, du moins à ma connaissance. Pour de gros sites
d'entreprises c'est plus que d'accord, ou pour votre réseau local, mais vous n'êtes pas supposés nous forcer à
les utiliser juste par caprice de votre part. Vous êtes de gros FAIs, et si vous ne pouvez pas vous payer 3−4
adresses IP pour vos serveurs DNS, je n'ai pas beaucoup confiance en vous.

Didacticiel sur Iptables, version 1.2.0

136 B.3. SYN/ACK et les paquets NEW

B.5. Laissez les requêtes DHCP traverser iptables

C'est réellement une tâche facile, une fois que vous savez comment DHCP fonctionne, cependant, vous devez
prendre des précautions sur ce que vous laissez passer ou non. En premier lieu, nous devons savoir que DHCP
fonctionne sur le protocole UDP. Donc, c'est la première chose à voir. En second lieu, nous devons vérifier
depuis quelle interface les requêtes sont envoyées et reçues. Par exemple, si notre interface eth0 est activée
par DHCP, nous n'autoriserons pas les requêtes DHCP sur eth1. Pour rendre la règle un peu plus précise, nous
n'autorisons que les ports UDP utilisés par DHCP, qui sont les ports 67 et 68. Ce sont les critères que nous
choisissons pour apparier les paquets, et que nous autorisons.

$IPTABLES −I INPUT −i $LAN_IFACE −p udp −−dport 67:68 −−sport \
 67:68 −j ACCEPT

Notez que nous autorisons tout le trafic depuis et vers les ports 67 et 68, cependant, ce n'est pas un gros
problème car nous n'acceptons que les requêtes des hôtes établissant la connexion depuis les ports 67 et 68.
Cette règle peut, bien sûr, être encore plus restrictive, mais elle semble suffisante pour accepter les requêtes
DHCP sans ouvrir de larges failles.

B.6. Problèmes avec le DCC de mIRC

mIRC utilise un réglage spécial qui permet de se connecter à travers un pare−feu pour établir une connexion
DCC sans que le pare−feu en ait connaissance. Si cette option est utilisée avec iptables et en particulier avec
les modules ip_conntrack_irc et ip_nat_irc, il ne fonctionnera pas. Le problème est que mIRC NATe
automatiquement les paquets pour vous, et quand ces paquets atteignent le pare−feu, celui−ci ne sait pas quoi
en faire. mIRC ne s'attend pas à ce que le pare−feu soit suffisamment sensible pour analyser ceci en expédiant
une requête au serveur IRC au sujet de cette adresse IP et en envoyant les requêtes DCC avec cette adresse.

Activer l'option de configuration "je suis derrière un pare−feu" et utiliser les modules ip_conntrack_irc et
ip_nat_irc permettra à Netfilter de créer des entrées de logs avec le contenu suivant "Forged DCC send
packet".

La solution la plus simple est de désactiver cette option de mIRC et de laisser iptables faire le travail. Ce qui
veut dire, que vous indiquerez à mIRC qu'il n'est pas derrière un pare−feu.

Annexe C. Types ICMP

Voici un liste complète des types ICMP. Notez la référence qui pointe vers la RFC ou la personne qui a
introduit le type et le code. Pour une liste complètement à jour des types et des codes ICMP, voir le document
icmp−parameters sur Internet Assigned Numbers Authority.

Tableau C.1. Types ICMP

TYPE CODE Description requête Erreur Référence

0 0 Echo Reply x RFC792

3 0 Network Unreachable x RFC792

3 1 Host Unreachable x RFC792

3 2 Protocol Unreachable x RFC792

3 3 Port Unreachable x RFC792

Didacticiel sur Iptables, version 1.2.0

B.5. Laissez les requêtes DHCP traverser iptables 137

http://www.iana.org/assignments/icmp-parameters

3 4 Fragmentation needed but no frag. bit set x RFC792

3 5 Source routing failed x RFC792

3 6 Destination network unknown x RFC792

3 7 Destination host unknown x RFC792

3 8 Source host isolated (obsolete) x RFC792

3 9 Destination network administratively prohibited x RFC792

3 10 Destination host administratively prohibited x RFC792

3 11 Network unreachable for TOS x RFC792

3 12 Host unreachable for TOS x RFC792

3 13 Communication administratively prohibited by filtering x RFC1812

3 14 Host precedence violation x RFC1812

3 15 Precedence cutoff in effect x RFC1812

4 0 Source quench RFC792

5 0 Redirect for network RFC792

5 1 Redirect for host

5 2 Redirect for TOS and network RFC792

5 3 Redirect for TOS and host RFC792

8 0 Echo request x RFC792

9 0 Router advertisement − Normal router advertisement RFC1256

9 16 Router advertisement − Does not route common traffic RFC2002

10 0 Route selection RFC1256

11 0 TTL equals 0 during transit x RFC792

11 1 TTL equals 0 during reassembly x RFC792

12 0 IP header bad (catchall error) x RFC792

12 1 Required options missing x RFC1108

12 2 IP Header bad length x RFC792

13 0 Timestamp request (obsolete) x RFC792

14 Timestamp reply (obsolete) x RFC792

15 0 Information request (obsolete) x RFC792

16 0 Information reply (obsolete) x RFC792

17 0 Address mask request x RFC950

18 0 Address mask reply x RFC950

20−29 Reserved for robustness experiment Zaw−Sing Su

30 0 Traceroute x RFC1393

31 0 Datagram Conversion Error x RFC1475

Didacticiel sur Iptables, version 1.2.0

138 Annexe C. Types ICMP

32 0 Mobile Host Redirect David Johnson

33 0 IPv6 Where−Are−You x Bill Simpson

34 0 IPv6 I−Am−Here x Bill Simpson

35 0 Mobile Registration Request x Bill Simpson

36 0 Mobile Registration Reply x Bill Simpson

39 0 SKIP Tom Markson

40 0 Photuris RFC2521

Annexe D. Options TCP

Cette annexe est une simple et brève liste des options TCP officiellement reconnues. Ces références et chiffres
sont tirés du site Internet Assigned Numbers Authority. Le fichier principal peut être trouvé sur
http://www.iana.org/assignments/tcp−parameters. Les détails pour le contact avec les personnes référencées
dans ce document ont été supprimés, pour leur permettre d'avoir moins de charge de travail, heureusement.

Tableau D.1. Options TCP

Copie Classe Nombre Valeur Nom Référence

0 0 0 0 EOOL − End of Options List [RFC791,JBP]

0 0 1 1 NOP − No Operation [RFC791,JBP]

1 0 2 130 SEC − Security [RFC1108]

1 0 3 131 LSR − Loose Source Route [RFC791,JBP]

0 2 4 68 TS − Time Stamp [RFC791,JBP]

1 0 5 133 E−SEC − Extended Security [RFC1108]

1 0 6 134 CIPSO − Commercial Security [???]

0 0 7 7 RR − Record Route [RFC791,JBP]

1 0 8 136 SID − Stream ID [RFC791,JBP]

1 0 9 137 SSR − Strict Source Route [RFC791,JBP]

0 0 10 10 ZSU − Experimental Measurement [ZSu]

0 0 11 11 MTUP − MTU Probe [RFC1191]*

0 0 12 12 MTUR − MTU Reply [RFC1191]*

1 2 13 205 FINN − Experimental Flow Control [Finn]

1 0 14 142 VISA − Experimental Access Control [Estrin]

0 0 15 15 ENCODE − ??? [VerSteeg]

1 0 16 144 IMITD − IMI Traffic Descriptor [Lee]

1 0 17 145 EIP − Extended Internet Protocol [RFC1385]

0 2 18 82 TR − Traceroute [RFC1393]

1 0 19 147 ADDEXT − Address Extension [Ullmann IPv7]

1 0 20 148 RTRALT − Router Alert [RFC2113]

Didacticiel sur Iptables, version 1.2.0

Annexe D. Options TCP 139

http://www.iana.org/assignments/tcp-parameters

1 0 21 149 SDB − Selective Directed Broadcast [Graff]

1 0 22 150 NSAPA − NSAP Addresses [Carpenter]

1 0 23 151 DPS − Dynamic Packet State [Malis]

1 0 24 152 UMP − Upstream Multicast Pkt. [Farinacci]

Annexe E. Autres ressources et liens

Ici vous avez une liste de ressources et de liens avec lesquels vous pouvez obtenir une information spécifique :

ip−sysctl.txt − depuis le noyau 2.4.14. Un peu court mais une bonne référence pour le contrôle de
réseau IP et ce qu'il fait avec le noyau.

•

RFC 768 − User Datagram Protocol − RFC officielle décrivant comment le protocole UDP doit être
utilisé, en détail, avec tous ses en−têtes.

•

RFC 791 − Internet Protocol − La spécification IP toujours utilisée sur l'Internet, avec les ajouts et
mises à jour. La base est toujours la même pour ipv4.

•

RFC 792 − Internet Control Message Protocol − Ressource définitive pour toute information sur les
paquets ICMP. Toute information technique dont vous avez besoin sur le protocole ICMP. Écrite par
J.Postel.

•

RFC 793 − Transmission Control Protocol − C'est la ressource pour savoir comment se comporte
TCP sur tous les hôtes. Ce document a été le standard de TCP depuis 1981 et après. Extrêmement
technique, mais incontournable pour quiconque veut connaître TCP dans le détail. C'est à l'origine un
rapport écrit par J.Postel pour le Department of Defense.

•

RFC 1122 − Requirements for Internet Hosts − Communication Layers − Cette RFC définit les
pré−requis pour les logiciels s'exécutant sur un hôte Internet, spécifiquement pour les couches
communication.

•

RFC 1349 − Type of Service in the Internet Protocol Suite − RFC décrivant certains changements et
clarifications du champ TOS dans l'en−tête IP.

•

RFC 2401 − Security Architecture for the Internet Protocol − RFC sur l'implémentation et la
standardisation de IPSEC. À lire si vous travaillez avec IPSEC.

•

RFC 2474 − Definition of the Differentiated Services Field (DS Field) in the IPv4 and IPv6 Headers −
Dans ce document vous trouverez comment DiffServ fonctionne, et également l'information
nécessaire sur les additions/modifications du protocole TCP/IP requises pour faire fonctionner le
protocole DiffServ.

•

RFC 2638 − A Two−bit Differentiated Services Architecture for the Internet − RFC qui décrit un
méthode d'implémentation de deux architectures DiffServ en une seule. Décrites à l'origine par
D.Clark et van Jacobsen au meeting IETH de Munich en 1997.

•

RFC 3168 − The Addition of Explicit Congestion Notification (ECN) to IP − RFC qui décrit
comment ECN est utilisé au niveau technique et comment il est implémenté dans les protocoles TCP
et IP. Écrit par K.Ramakrishnan, S.Floyd et D.Black.

•

RFC 3260 − New Terminology and Clarifications for Diffserv − Ce mémo présente les actes du
groupe de travail DiffServ concernant la nouvelle terminologie, et indique certaines clarifications
techniques.

•

ip_dynaddr.txt − Depuis le noyau 2.4.14. Une courte référence aux réglages de ip_dynaddr
disponibles via sysctl et le système de fichiers proc.

•

iptables.8 − Page de manuel de iptables 1.3.1. Version HTML de la page de manuel qui est une
excellente référence pour la lecture/écriture de tables de règles iptables. À avoir toujours sous la main.

•

Ipsysctl tutorial − Un autre didacticiel que j'ai écrit sur le contrôle du système IP dans Linux. Une
tentative pour faire une liste complète de toutes les variables IP qui peuvent être insérées au vol dans
Linux.

•

Policy Routing Using Linux − Excellent livre qui a maintenant été publié sur l'internet en rapport à la
politique de routage dans Linux. Écrit par Matthew G. Marsh.

•

Firewall rules table − Un petit document en PDF gracieusement fourni pour ce projet par Stuart Clark,
qui présente en formulaire toute l'information nécessaire pour votre pare−feu, de manière simple.

•

Didacticiel sur Iptables, version 1.2.0

140 Annexe E. Autres ressources et liens

http://iptables-tutorial.frozentux.net/other/ip-sysctl.txt
http://iptables-tutorial.frozentux.net/other/rfc768.txt
http://iptables-tutorial.frozentux.net/other/rfc791.txt
http://iptables-tutorial.frozentux.net/other/rfc792.txt
http://iptables-tutorial.frozentux.net/other/rfc793.txt
http://iptables-tutorial.frozentux.net/other/rfc1122.txt
http://iptables-tutorial.frozentux.net/other/rfc1349.txt
http://iptables-tutorial.frozentux.net/other/rfc2401.txt
http://iptables-tutorial.frozentux.net/other/rfc2474.txt
http://iptables-tutorial.frozentux.net/other/rfc2638.txt
http://iptables-tutorial.frozentux.net/other/rfc3168.txt
http://iptables-tutorial.frozentux.net/other/rfc3260.txt
http://iptables-tutorial.frozentux.net/other/ip_dynaddr.txt
http://iptables-tutorial.frozentux.net/other/iptables.html
http://ipsysctl-tutorial.frozentux.net
http://www.policyrouting.org/PolicyRoutingBook/
http://iptables-tutorial.frozentux.net/other/firewall_rules_table_final.pdf

http://www.netfilter.org/ − Le site officiel de Netfilter et iptables. C'est un must pour quiconque
implémente iptables et Netfilter dans Linux.

•

http://www.insecure.org/nmap/ − Nmap est un des meilleurs, et plus connus, scanneur de ports
disponible. Très utile lors du débogage de vos scripts de pare−feux.

•

http://www.netfilter.org/documentation/index.html#FAQ − La Frequently Asked Questions (FAQ)
officielle de Netfilter. Un bon endroit pour démarrer avec iptables et Netfilter.

•

http://www.netfilter.org/unreliable−guides/packet−filtering−HOWTO/index.html − Le Unreliable
Guide de Rusty Russells sur le filtrage de paquet. Excellente documentation sur le fitrage de paquet
avec iptables écrite par un des développeurs de iptables et Netfilter.

•

http://www.netfilter.org/unreliable−guides/NAT−HOWTO/index.html − Unreliable Guide de
R.Russells sur la traduction d'adresse réseau. Excellente documentation sur la NAT dans iptables et
Netfilter.

•

http://www.netfilter.org/unreliable−guides/netfilter−hacking−HOWTO/index.html − Unreliable
Netfilter Hacking HOW−TO de R.Russells. Une des rares documentations sur la façon d'écrire du
code dans Netfilter du code−base dans l'espace utilisateur iptables et l'espace noyau.

•

http://www.linuxguruz.org/iptables/ − Excellente page avec des liens vers beaucoup de pages sur
l'Internet à propos de iptables et Netfilter. Contient aussi une liste de scripts iptables pour différents
projets.

•

Implementing Quality of Service Policies with DSCP − Un lien sur l'implémentation par Cisco de
DSCP. Indique certaines classes utilisées en DSCP.

•

IPSEC Howto − Howto IPSEC officiel pour les noyaux 2.6 Linux. Décrit comment IPSEC fonctionne
avec les noyaux 2.6, cependant, ce n'est pas l'endroit où vous trouverez comment fonctionne IPSEC
avec les noyaux 2.2 et 2.4 Linux. Voir le site FreeS/WAN pour cela.

•

FreeS/WAN − Site officiel de FreeS/WAN, une implémentation IPSEC pour les noyaux 2.2 et 2.4
Linux. Ce site contient la documentation et tout le nécessaire à télécharger pour l'implémentation de
IPSEC. Cet travail a été discontinu pour plusieurs raisons expliquées sur la page, mais les efforts ont
toujours été portés sur la correction de bogues, la documentation et les forums. Pour une
implémentation de IPSEC dans les noyaux 2.6 Linux, voir le IPSEC Howto.

•

http://www.islandsoft.net/veerapen .html − Excellente discussion sur l'amélioration de iptables et
comment faire des modifications qui vous permettent automatiquement d'ajouter les sites hostiles
dans une liste de banissement spéciale dans iptables.

•

/etc/protocols − Un exemple de fichier de protocoles pris sur une distribution Slackware. Peut
être utilisé pour retrouver les numéros de protocole, comme IP, ICMP ou TCP.

•

/etc/services − Exemple de fichier service pris dans une distribution Slackware. C'est très utile
de le lire au moins une fois, en particulier si vous voulez savoir quel protocole tourne sur quel port.

•

Internet Assigned Numbers Authority − La IANA est l'organisation responsable de l'attribution de
tous les numéros des différents protocoles. Si quelqu'un a un ajout spécifique à faire pour un protocole
(par exemple, ajouter une nouvelle option TCP), il doit prendre contact avec IANA, qui assignera les
numéros demandés. En d'autres termes, ce site est très important.

•

RFC−editor.org − Excellent site pour trouver les documents RFC de façon rapide et ordonnée.
Fonctions de recherche de RFC, et information générale sur la communauté RFC (errata,
nouvelles,...).

•

Internet Engineering Task Force − C'est un des groupes les plus importants pour l'implémentation et
la maintenance des standards Internet. Ils sont les seuls à maintenir le dépôt des RFC, et consiste en
un ensemble d'entreprises et de particuliers qui travaillent conjointement pour assurer l'interopérabilité
de l'Internet.

•

Linux Advanced Routing and Traffic Control HOW−TO − Ce site accueille le Linux Advanced
Routing and Traffic Control HOWTO. C'est un des plus importants et meilleurs documents
concernant le routage avancé sous Linux. maintenu par B.Hubert.

•

Paksecured Linux Kernel patches − Site contenant tous les patches du noyau écrits par M.G. Marsh.
Parmi d'autres, le patch FTOS est disponible ici.

•

ULOGD project page − Page d'accueil du site ULOGD.•
Le Linux Documentation Project est un super site pour la documentation. La plupart des documents
les plus importants pour Linux sont disponibles ici.

•

Didacticiel sur Iptables, version 1.2.0

Annexe E. Autres ressources et liens 141

http://www.netfilter.org/
http://www.insecure.org/nmap/
http://www.netfilter.org/documentation/index.html#FAQ
http://www.netfilter.org/unreliable-guides/packet-filtering-HOWTO/index.html
http://www.netfilter.org/unreliable-guides/NAT-HOWTO/index.html
http://www.netfilter.org/unreliable-guides/netfilter-hacking-HOWTO/index.html
http://www.linuxguruz.org/iptables/
http://www.cisco.com/warp/public/105/dscpvalues.html
http://www.ipsec-howto.org
http://www.freeswan.org
http://www.islandsoft.net/veerapen.html
http://iptables-tutorial.frozentux.net/other/protocols.txt
http://iptables-tutorial.frozentux.net/other/services.txt
http://www.iana.org
http://www.rfc-editor.org
http://www.ietf.org
http://www.lartc.org
http://www.paksecured.com/patches/
http://www.gnumonks.org/gnumonks/projects/project_details?p_id=1
http://www.linuxdoc.org

Snort − C'est un excellent "système de détection d'intrusion réseau" (NIDS) qui cherche les signatures
dans les paquets, et si il voit une signature ressemblant à celle d'une attaque il peut faire diverses
actions prédéfinies.

•

Tripwire − Tripwire est un excellent outil de sécurité qui peut être utilisé pour les intrusions. Il
effectue des sommes de contrôle de tous les fichiers spécifiés, et ensuite prévient l'administrateur.

•

Squid − Un des proxies web les plus connus disponibles sur le marché. Il est Open Source, et gratuit.
Il peut faire plusieurs tâches de filtrage en amont de votre serveur web, de même que du cache
standard pour vos réseaux.

•

http://kalamazoolinux.org/presentations/20010417/conntrack.html − Cette présentation contient une
excellente explication des modules conntrack et de leur fonction dans Netfilter.

•

http://www.docum.org − Excellente information sur CBQ, et les commandes tc et ip dans Linux. Un
des rares sites ayant de l'information sur ces programmes. Maintenu par S. Coene.

•

http://lists.samba.org/mailman/listinfo/netfilter − La liste de discussion officielle de Netfilter.
Extrêmement utile si vous avez des questions sur des aspects non couverts par ce document.

•

Et bien sûr le source iptables, la documentation et les personnes qui m'ont aidé.

Annexe F. Remerciements

je voudrais remercier les personnes suivantes pour leur aide à propos de ce document :

Fabrice Marie, pour d'importantes corrections sur mon horrible grammaire et syntaxe. De même que
pour la mise à jour de ce didacticiel au format DocBook.

•

Marc Boucher, pour son aide sur certains aspects de l'utilisation du code.•
Frode E. Nyboe, pour les grandes améliorations des règles du rc.firewall lors de la réécriture
des tables de règles.

•

Chapman Brad, Alexander W. Janssen, tous les deux m'ont permis de me rendre compte de mes
erreurs sur le transit des paquets dans les tables NAT et filter.

•

Michiel Brandenburg, Myles Uyema, pour leur aide sur le code de correspondance état.•
Kent `Artech' Stahre, pour leur aide sur les graphiques, ainsi que pour la vérification des erreurs dans
ce didacticiel.

•

Anders 'DeZENT' Johansson, pour m'avoir averti du comportement étrange de certains FAIs et de leur
usage des réseaux privés sur l'Internet.

•

Jeremy `Spliffy' Smith, pour son aide à propos des erreurs dans ce document.•

Et bien sûr toute personne à qui j'ai demandé des avis sur ce document, je m'excuse de ne pas citer tout le
monde.

Annexe G. History

Version 1.2.0 (20 July 2005)
http://iptables−tutorial.frozentux.net
By: Oskar Andreasson
Contributors: Corey Becker, Neil Perrins, Watz and Spanish translation team.

Version 1.1.19 (21 May 2003)
http://iptables−tutorial.frozentux.net
By: Oskar Andreasson
Contributors: Peter van Kampen, Xavier Bartol, Jon Anderson, Thorsten Bremer
and Spanish Translation Team.

Version 1.1.18 (24 Apr 2003)
http://iptables−tutorial.frozentux.net

Didacticiel sur Iptables, version 1.2.0

142 Annexe F. Remerciements

http://www.snort.org
http://www.tripwire.org
http://www.squid.org
http://kalamazoolinux.org/presentations/20010417/conntrack.html
http://www.docum.org
http://lists.samba.org/mailman/listinfo/netfilter
mailto:fabriceATcelestixDOTcom
mailto:marc+nfATmbsiDOTca
mailto:fenATimprobusDOTcom
mailto:kakadu_crocATyahooDOTcom
mailto:yallaATynfonaticDOTde
mailto:michielbATstackDOTnl
mailto:mylesATpuckDOTnetherDOTnet
mailto:artechATboingworldDOTcom
mailto:di99smjeATchlDOTchalmersDOTse

By: Oskar Andreasson
Contributors: Stuart Clark, Robert P. J. Day, Mark Orenstein and Edmond Shwayri.

Version 1.1.17 (6 Apr 2003)
http://iptables−tutorial.frozentux.net
By: Oskar Andreasson
Contributors: Geraldo Amaral Filho, Ondrej Suchy, Dino Conti, Robert P. J. Day,
Velev Dimo, Spencer Rouser, Daveonos, Amanda Hickman, Olle Jonsson and
Bengt Aspvall.

Version 1.1.16 (16 Dec 2002)
http://iptables−tutorial.frozentux.net
By: Oskar Andreasson
Contributors: Clemens Schwaighower, Uwe Dippel and Dave Wreski.

Version 1.1.15 (13 Nov 2002)
http://iptables−tutorial.frozentux.net
By: Oskar Andreasson
Contributors: Mark Sonarte, A. Lester Buck, Robert P. J. Day, Togan Muftuoglu,
Antony Stone, Matthew F. Barnes and Otto Matejka.

Version 1.1.14 (14 Oct 2002)
http://iptables−tutorial.frozentux.net
By: Oskar Andreasson
Contributors: Carol Anne, Manuel Minzoni, Yves Soun, Miernik, Uwe Dippel,
Dave Klipec and Eddy L O Jansson.

Version 1.1.13 (22 Aug 2002)
http://iptables−tutorial.haringstad.com
By: Oskar Andreasson
Contributors: Tons of people reporting bad HTML version.

Version 1.1.12 (19 Aug 2002)
http://www.netfilter.org/tutorial/
By: Oskar Andreasson
Contributors: Peter Schubnell, Stephen J. Lawrence, Uwe Dippel, Bradley
Dilger, Vegard Engen, Clifford Kite, Alessandro Oliveira, Tony Earnshaw,
Harald Welte, Nick Andrew and Stepan Kasal.

Version 1.1.11 (27 May 2002)
http://www.netfilter.org/tutorial/
By: Oskar Andreasson
Contributors: Steve Hnizdur, Lonni Friedman, Jelle Kalf, Harald Welte,
Valentina Barrios and Tony Earnshaw.

Version 1.1.10 (12 April 2002)
http://www.boingworld.com/workshops/linux/iptables−tutorial/
By: Oskar Andreasson
Contributors: Jelle Kalf, Theodore Alexandrov, Paul Corbett, Rodrigo
Rubira Branco, Alistair Tonner, Matthew G. Marsh, Uwe Dippel, Evan
Nemerson and Marcel J.E. Mol.

Version 1.1.9 (21 March 2002)
http://www.boingworld.com/workshops/linux/iptables−tutorial/

Didacticiel sur Iptables, version 1.2.0

Annexe G. History 143

By: Oskar Andreasson
Contributors: Vince Herried, Togan Muftuoglu, Galen Johnson, Kelly Ashe, Janne
Johansson, Thomas Smets, Peter Horst, Mitch Landers, Neil Jolly, Jelle Kalf,
Jason Lam and Evan Nemerson.

Version 1.1.8 (5 March 2002)
http://www.boingworld.com/workshops/linux/iptables−tutorial/
By: Oskar Andreasson

Version 1.1.7 (4 February 2002)
http://www.boingworld.com/workshops/linux/iptables−tutorial/
By: Oskar Andreasson
Contributors: Parimi Ravi, Phil Schultz, Steven McClintoc, Bill Dossett,
Dave Wreski, Erik Sjölund, Adam Mansbridge, Vasoo Veerapen, Aladdin and
Rusty Russell.

Version 1.1.6 (7 December 2001)
http://people.unix−fu.org/andreasson/
By: Oskar Andreasson
Contributors: Jim Ramsey, Phil Schultz, Göran Båge, Doug Monroe, Jasper
Aikema, Kurt Lieber, Chris Tallon, Chris Martin, Jonas Pasche, Jan
Labanowski, Rodrigo R. Branco, Jacco van Koll and Dave Wreski.

Version 1.1.5 (14 November 2001)
http://people.unix−fu.org/andreasson/
By: Oskar Andreasson
Contributors: Fabrice Marie, Merijn Schering and Kurt Lieber.

Version 1.1.4 (6 November 2001)
http://people.unix−fu.org/andreasson
By: Oskar Andreasson
Contributors: Stig W. Jensen, Steve Hnizdur, Chris Pluta and Kurt Lieber.

Version 1.1.3 (9 October 2001)
http://people.unix−fu.org/andreasson
By: Oskar Andreasson
Contributors: Joni Chu, N.Emile Akabi−Davis and Jelle Kalf.

Version 1.1.2 (29 September 2001)
http://people.unix−fu.org/andreasson
By: Oskar Andreasson

Version 1.1.1 (26 September 2001)
http://people.unix−fu.org/andreasson
By: Oskar Andreasson
Contributors: Dave Richardson.

Version 1.1.0 (15 September 2001)
http://people.unix−fu.org/andreasson
By: Oskar Andreasson

Version 1.0.9 (9 September 2001)
http://people.unix−fu.org/andreasson
By: Oskar Andreasson

Didacticiel sur Iptables, version 1.2.0

144 Annexe G. History

Version 1.0.8 (7 September 2001)
http://people.unix−fu.org/andreasson
By: Oskar Andreasson

Version 1.0.7 (23 August 2001)
http://people.unix−fu.org/andreasson
By: Oskar Andreasson
Contributors: Fabrice Marie.

Version 1.0.6
http://people.unix−fu.org/andreasson
By: Oskar Andreasson

Version 1.0.5
http://people.unix−fu.org/andreasson
By: Oskar Andreasson
Contributors: Fabrice Marie.

Annexe H. GNU Free Documentation License

Version 1.1, March 2000

Copyright (C) 2000 Free Software Foundation, Inc. 59 Temple Place, Suite 330, Boston, MA
02111−1307 USA Everyone is permitted to copy and distribute verbatim copies of this
license document, but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other written document "free" in the sense of
freedom: to assure everyone the effective freedom to copy and redistribute it, with or without modifying it,
either commercially or noncommercially. Secondarily, this License preserves for the author and publisher a
way to get credit for their work, while not being considered responsible for modifications made by others.

This License is a kind of "copyleft", which means that derivative works of the document must themselves be
free in the same sense. It complements the GNU General Public License, which is a copyleft license designed
for free software.

We have designed this License in order to use it for manuals for free software, because free software needs
free documentation: a free program should come with manuals providing the same freedoms that the software
does. But this License is not limited to software manuals; it can be used for any textual work, regardless of
subject matter or whether it is published as a printed book. We recommend this License principally for works
whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work that contains a notice placed by the copyright holder saying
it can be distributed under the terms of this License. The "Document", below, refers to any such manual or
work. Any member of the public is a licensee, and is addressed as "you".

A "Modified Version" of the Document means any work containing the Document or a portion of it, either
copied verbatim, or with modifications and/or translated into another language.

Didacticiel sur Iptables, version 1.2.0

Annexe H. GNU Free Documentation License 145

A "Secondary Section" is a named appendix or a front−matter section of the Document that deals exclusively
with the relationship of the publishers or authors of the Document to the Document's overall subject (or to
related matters) and contains nothing that could fall directly within that overall subject. (For example, if the
Document is in part a textbook of mathematics, a Secondary Section may not explain any mathematics.) The
relationship could be a matter of historical connection with the subject or with related matters, or of legal,
commercial, philosophical, ethical or political position regarding them.

The "Invariant Sections" are certain Secondary Sections whose titles are designated, as being those of
Invariant Sections, in the notice that says that the Document is released under this License.

The "Cover Texts" are certain short passages of text that are listed, as Front−Cover Texts or Back−Cover
Texts, in the notice that says that the Document is released under this License.

A "Transparent" copy of the Document means a machine−readable copy, represented in a format whose
specification is available to the general public, whose contents can be viewed and edited directly and
straightforwardly with generic text editors or (for images composed of pixels) generic paint programs or (for
drawings) some widely available drawing editor, and that is suitable for input to text formatters or for
automatic translation to a variety of formats suitable for input to text formatters. A copy made in an otherwise
Transparent file format whose markup has been designed to thwart or discourage subsequent modification by
readers is not Transparent. A copy that is not "Transparent" is called "Opaque".

Examples of suitable formats for Transparent copies include plain ASCII without markup, Texinfo input
format, LaTeX input format, SGML or XML using a publicly available DTD, and standard−conforming
simple HTML designed for human modification. Opaque formats include PostScript, PDF, proprietary
formats that can be read and edited only by proprietary word processors, SGML or XML for which the DTD
and/or processing tools are not generally available, and the machine−generated HTML produced by some
word processors for output purposes only.

The "Title Page" means, for a printed book, the title page itself, plus such following pages as are needed to
hold, legibly, the material this License requires to appear in the title page. For works in formats which do not
have any title page as such, "Title Page" means the text near the most prominent appearance of the work's
title, preceding the beginning of the body of the text.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or noncommercially,
provided that this License, the copyright notices, and the license notice saying this License applies to the
Document are reproduced in all copies, and that you add no other conditions whatsoever to those of this
License. You may not use technical measures to obstruct or control the reading or further copying of the
copies you make or distribute. However, you may accept compensation in exchange for copies. If you
distribute a large enough number of copies you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly display copies.

3. COPYING IN QUANTITY

If you publish printed copies of the Document numbering more than 100, and the Document's license notice
requires Cover Texts, you must enclose the copies in covers that carry, clearly and legibly, all these Cover
Texts: Front−Cover Texts on the front cover, and Back−Cover Texts on the back cover. Both covers must also
clearly and legibly identify you as the publisher of these copies. The front cover must present the full title with
all words of the title equally prominent and visible. You may add other material on the covers in addition.
Copying with changes limited to the covers, as long as they preserve the title of the Document and satisfy
these conditions, can be treated as verbatim copying in other respects.

Didacticiel sur Iptables, version 1.2.0

146 1. APPLICABILITY AND DEFINITIONS

If the required texts for either cover are too voluminous to fit legibly, you should put the first ones listed (as
many as fit reasonably) on the actual cover, and continue the rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100, you must either
include a machine−readable Transparent copy along with each Opaque copy, or state in or with each Opaque
copy a publicly−accessible computer−network location containing a complete Transparent copy of the
Document, free of added material, which the general network−using public has access to download
anonymously at no charge using public−standard network protocols. If you use the latter option, you must
take reasonably prudent steps, when you begin distribution of Opaque copies in quantity, to ensure that this
Transparent copy will remain thus accessible at the stated location until at least one year after the last time
you distribute an Opaque copy (directly or through your agents or retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document well before redistributing any
large number of copies, to give them a chance to provide you with an updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions of sections 2 and 3
above, provided that you release the Modified Version under precisely this License, with the Modified
Version filling the role of the Document, thus licensing distribution and modification of the Modified Version
to whoever possesses a copy of it. In addition, you must do these things in the Modified Version:

Use in the Title Page (and on the covers, if any) a title distinct from that of the Document, and from
those of previous versions (which should, if there were any, be listed in the History section of the
Document). You may use the same title as a previous version if the original publisher of that version
gives permission.

A.

List on the Title Page, as authors, one or more persons or entities responsible for authorship of the
modifications in the Modified Version, together with at least five of the principal authors of the
Document (all of its principal authors, if it has less than five).

B.

State on the Title page the name of the publisher of the Modified Version, as the publisher.C.
Preserve all the copyright notices of the Document.D.
Add an appropriate copyright notice for your modifications adjacent to the other copyright notices.E.
Include, immediately after the copyright notices, a license notice giving the public permission to use
the Modified Version under the terms of this License, in the form shown in the Addendum below.

F.

Preserve in that license notice the full lists of Invariant Sections and required Cover Texts given in the
Document's license notice.

G.

Include an unaltered copy of this License.H.
Preserve the section entitled "History", and its title, and add to it an item stating at least the title, year,
new authors, and publisher of the Modified Version as given on the Title Page. If there is no section
entitled "History" in the Document, create one stating the title, year, authors, and publisher of the
Document as given on its Title Page, then add an item describing the Modified Version as stated in
the previous sentence.

I.

Preserve the network location, if any, given in the Document for public access to a Transparent copy
of the Document, and likewise the network locations given in the Document for previous versions it
was based on. These may be placed in the "History" section. You may omit a network location for a
work that was published at least four years before the Document itself, or if the original publisher of
the version it refers to gives permission.

J.

In any section entitled "Acknowledgements" or "Dedications", preserve the section's title, and
preserve in the section all the substance and tone of each of the contributor acknowledgements and/or
dedications given therein.

K.

Preserve all the Invariant Sections of the Document, unaltered in their text and in their titles. Section
numbers or the equivalent are not considered part of the section titles.

L.

Delete any section entitled "Endorsements". Such a section may not be included in the Modified
Version.

M.

Didacticiel sur Iptables, version 1.2.0

3. COPYING IN QUANTITY 147

Do not retitle any existing section as "Endorsements" or to conflict in title with any Invariant Section.N.

If the Modified Version includes new front−matter sections or appendices that qualify as Secondary Sections
and contain no material copied from the Document, you may at your option designate some or all of these
sections as invariant. To do this, add their titles to the list of Invariant Sections in the Modified Version's
license notice. These titles must be distinct from any other section titles.

You may add a section entitled "Endorsements", provided it contains nothing but endorsements of your
Modified Version by various parties−−for example, statements of peer review or that the text has been
approved by an organization as the authoritative definition of a standard.

You may add a passage of up to five words as a Front−Cover Text, and a passage of up to 25 words as a
Back−Cover Text, to the end of the list of Cover Texts in the Modified Version. Only one passage of
Front−Cover Text and one of Back−Cover Text may be added by (or through arrangements made by) any one
entity. If the Document already includes a cover text for the same cover, previously added by you or by
arrangement made by the same entity you are acting on behalf of, you may not add another; but you may
replace the old one, on explicit permission from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission to use their names for
publicity for or to assert or imply endorsement of any Modified Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License, under the terms defined
in section 4 above for modified versions, provided that you include in the combination all of the Invariant
Sections of all of the original documents, unmodified, and list them all as Invariant Sections of your combined
work in its license notice.

The combined work need only contain one copy of this License, and multiple identical Invariant Sections may
be replaced with a single copy. If there are multiple Invariant Sections with the same name but different
contents, make the title of each such section unique by adding at the end of it, in parentheses, the name of the
original author or publisher of that section if known, or else a unique number. Make the same adjustment to
the section titles in the list of Invariant Sections in the license notice of the combined work.

In the combination, you must combine any sections entitled "History" in the various original documents,
forming one section entitled "History"; likewise combine any sections entitled "Acknowledgements", and any
sections entitled "Dedications". You must delete all sections entitled "Endorsements."

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released under this License, and
replace the individual copies of this License in the various documents with a single copy that is included in
the collection, provided that you follow the rules of this License for verbatim copying of each of the
documents in all other respects.

You may extract a single document from such a collection, and distribute it individually under this License,
provided you insert a copy of this License into the extracted document, and follow this License in all other
respects regarding verbatim copying of that document.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent documents or works, in
or on a volume of a storage or distribution medium, does not as a whole count as a Modified Version of the

Didacticiel sur Iptables, version 1.2.0

148 4. MODIFICATIONS

Document, provided no compilation copyright is claimed for the compilation. Such a compilation is called an
"aggregate", and this License does not apply to the other self−contained works thus compiled with the
Document, on account of their being thus compiled, if they are not themselves derivative works of the
Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document, then if the Document
is less than one quarter of the entire aggregate, the Document's Cover Texts may be placed on covers that
surround only the Document within the aggregate. Otherwise they must appear on covers around the whole
aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations of the Document under the
terms of section 4. Replacing Invariant Sections with translations requires special permission from their
copyright holders, but you may include translations of some or all Invariant Sections in addition to the
original versions of these Invariant Sections. You may include a translation of this License provided that you
also include the original English version of this License. In case of a disagreement between the translation and
the original English version of this License, the original English version will prevail.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly provided for under this
License. Any other attempt to copy, modify, sublicense or distribute the Document is void, and will
automatically terminate your rights under this License. However, parties who have received copies, or rights,
from you under this License will not have their licenses terminated so long as such parties remain in full
compliance.

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free Documentation License
from time to time. Such new versions will be similar in spirit to the present version, but may differ in detail to
address new problems or concerns. See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document specifies that a
particular numbered version of this License "or any later version" applies to it, you have the option of
following the terms and conditions either of that specified version or of any later version that has been
published (not as a draft) by the Free Software Foundation. If the Document does not specify a version
number of this License, you may choose any version ever published (not as a draft) by the Free Software
Foundation.

. How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the document and put the
following copyright and license notices just after the title page:

Copyright (c) YEAR YOUR NAME. Permission is granted to copy, distribute and/or modify
this document under the terms of the GNU Free Documentation License, Version 1.1 or any
later version published by the Free Software Foundation; with the Invariant Sections being
LIST THEIR TITLES, with the Front−Cover Texts being LIST, and with the Back−Cover
Texts being LIST. A copy of the license is included in the section entitled "GNU Free
Documentation License".

Didacticiel sur Iptables, version 1.2.0

7. AGGREGATION WITH INDEPENDENT WORKS 149

http://www.gnu.org/copyleft/

If you have no Invariant Sections, write "with no Invariant Sections" instead of saying which ones are
invariant. If you have no Front−Cover Texts, write "no Front−Cover Texts" instead of "Front−Cover Texts
being LIST"; likewise for Back−Cover Texts.

If your document contains nontrivial examples of program code, we recommend releasing these examples in
parallel under your choice of free software license, such as the GNU General Public License, to permit their
use in free software.

Annexe I. GNU General Public License

Version 2, June 1991

Copyright (C) 1989, 1991 Free Software Foundation, Inc. 59 Temple Place, Suite 330,
Boston, MA 02111−1307 USA Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

0. Preamble

The licenses for most software are designed to take away your freedom to share and change it. By contrast,
the GNU General Public License is intended to guarantee your freedom to share and change free software−−to
make sure the software is free for all its users. This General Public License applies to most of the Free
Software Foundation's software and to any other program whose authors commit to using it. (Some other Free
Software Foundation software is covered by the GNU Library General Public License instead.) You can apply
it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General Public Licenses are
designed to make sure that you have the freedom to distribute copies of free software (and charge for this
service if you wish), that you receive source code or can get it if you want it, that you can change the software
or use pieces of it in new free programs; and that you know you can do these things.

To protect your rights, we need to make restrictions that forbid anyone to deny you these rights or to ask you
to surrender the rights. These restrictions translate to certain responsibilities for you if you distribute copies of
the software, or if you modify it.

For example, if you distribute copies of such a program, whether gratis or for a fee, you must give the
recipients all the rights that you have. You must make sure that they, too, receive or can get the source code.
And you must show them these terms so they know their rights.

We protect your rights with two steps: (1) copyright the software, and (2) offer you this license which gives
you legal permission to copy, distribute and/or modify the software.

Also, for each author's protection and ours, we want to make certain that everyone understands that there is no
warranty for this free software. If the software is modified by someone else and passed on, we want its
recipients to know that what they have is not the original, so that any problems introduced by others will not
reflect on the original authors' reputations.

Finally, any free program is threatened constantly by software patents. We wish to avoid the danger that
redistributors of a free program will individually obtain patent licenses, in effect making the program
proprietary. To prevent this, we have made it clear that any patent must be licensed for everyone's free use or
not licensed at all.

The precise terms and conditions for copying, distribution and modification follow.

Didacticiel sur Iptables, version 1.2.0

150 . How to use this License for your documents

1. TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION
AND MODIFICATION

This License applies to any program or other work which contains a notice placed by the copyright
holder saying it may be distributed under the terms of this General Public License. The "Program",
below, refers to any such program or work, and a "work based on the Program" means either the
Program or any derivative work under copyright law: that is to say, a work containing the Program or
a portion of it, either verbatim or with modifications and/or translated into another language.
(Hereinafter, translation is included without limitation in the term "modification".) Each licensee is
addressed as "you".

Activities other than copying, distribution and modification are not covered by this License; they are
outside its scope. The act of running the Program is not restricted, and the output from the Program is
covered only if its contents constitute a work based on the Program (independent of having been made
by running the Program). Whether that is true depends on what the Program does.

1.

You may copy and distribute verbatim copies of the Program's source code as you receive it, in any
medium, provided that you conspicuously and appropriately publish on each copy an appropriate
copyright notice and disclaimer of warranty; keep intact all the notices that refer to this License and to
the absence of any warranty; and give any other recipients of the Program a copy of this License
along with the Program.

You may charge a fee for the physical act of transferring a copy, and you may at your option offer
warranty protection in exchange for a fee.

2.

You may modify your copy or copies of the Program or any portion of it, thus forming a work based
on the Program, and copy and distribute such modifications or work under the terms of Section 1
above, provided that you also meet all of these conditions:

You must cause the modified files to carry prominent notices stating that you changed the
files and the date of any change.

1.

You must cause any work that you distribute or publish, that in whole or in part contains or is
derived from the Program or any part thereof, to be licensed as a whole at no charge to all
third parties under the terms of this License.

2.

If the modified program normally reads commands interactively when run, you must cause it,
when started running for such interactive use in the most ordinary way, to print or display an
announcement including an appropriate copyright notice and a notice that there is no warranty
(or else, saying that you provide a warranty) and that users may redistribute the program
under these conditions, and telling the user how to view a copy of this License. (Exception: if
the Program itself is interactive but does not normally print such an announcement, your work
based on the Program is not required to print an announcement.)

3.

These requirements apply to the modified work as a whole. If identifiable sections of that work are
not derived from the Program, and can be reasonably considered independent and separate works in
themselves, then this License, and its terms, do not apply to those sections when you distribute them
as separate works. But when you distribute the same sections as part of a whole which is a work based
on the Program, the distribution of the whole must be on the terms of this License, whose permissions
for other licensees extend to the entire whole, and thus to each and every part regardless of who wrote
it.

Thus, it is not the intent of this section to claim rights or contest your rights to work written entirely
by you; rather, the intent is to exercise the right to control the distribution of derivative or collective
works based on the Program.

In addition, mere aggregation of another work not based on the Program with the Program (or with a
work based on the Program) on a volume of a storage or distribution medium does not bring the other
work under the scope of this License.

3.

Didacticiel sur Iptables, version 1.2.0

1. TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION 151

You may copy and distribute the Program (or a work based on it, under Section 2) in object code or
executable form under the terms of Sections 1 and 2 above provided that you also do one of the
following:

Accompany it with the complete corresponding machine−readable source code, which must
be distributed under the terms of Sections 1 and 2 above on a medium customarily used for
software interchange; or,

A.

Accompany it with a written offer, valid for at least three years, to give any third party, for a
charge no more than your cost of physically performing source distribution, a complete
machine−readable copy of the corresponding source code, to be distributed under the terms of
Sections 1 and 2 above on a medium customarily used for software interchange; or,

B.

Accompany it with the information you received as to the offer to distribute corresponding
source code. (This alternative is allowed only for noncommercial distribution and only if you
received the program in object code or executable form with such an offer, in accord with
Subsection b above.)

C.

The source code for a work means the preferred form of the work for making modifications to it. For
an executable work, complete source code means all the source code for all modules it contains, plus
any associated interface definition files, plus the scripts used to control compilation and installation of
the executable. However, as a special exception, the source code distributed need not include anything
that is normally distributed (in either source or binary form) with the major components (compiler,
kernel, and so on) of the operating system on which the executable runs, unless that component itself
accompanies the executable.

If distribution of executable or object code is made by offering access to copy from a designated
place, then offering equivalent access to copy the source code from the same place counts as
distribution of the source code, even though third parties are not compelled to copy the source along
with the object code.

4.

You may not copy, modify, sublicense, or distribute the Program except as expressly provided under
this License. Any attempt otherwise to copy, modify, sublicense or distribute the Program is void, and
will automatically terminate your rights under this License. However, parties who have received
copies, or rights, from you under this License will not have their licenses terminated so long as such
parties remain in full compliance.

5.

You are not required to accept this License, since you have not signed it. However, nothing else
grants you permission to modify or distribute the Program or its derivative works. These actions are
prohibited by law if you do not accept this License. Therefore, by modifying or distributing the
Program (or any work based on the Program), you indicate your acceptance of this License to do so,
and all its terms and conditions for copying, distributing or modifying the Program or works based on
it.

6.

Each time you redistribute the Program (or any work based on the Program), the recipient
automatically receives a license from the original licensor to copy, distribute or modify the Program
subject to these terms and conditions. You may not impose any further restrictions on the recipients'
exercise of the rights granted herein. You are not responsible for enforcing compliance by third
parties to this License.

7.

If, as a consequence of a court judgment or allegation of patent infringement or for any other reason
(not limited to patent issues), conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not excuse you from the conditions
of this License. If you cannot distribute so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you may not distribute the
Program at all. For example, if a patent license would not permit royalty−free redistribution of the
Program by all those who receive copies directly or indirectly through you, then the only way you
could satisfy both it and this License would be to refrain entirely from distribution of the Program.

If any portion of this section is held invalid or unenforceable under any particular circumstance, the
balance of the section is intended to apply and the section as a whole is intended to apply in other

8.

Didacticiel sur Iptables, version 1.2.0

152 1. TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

circumstances.

It is not the purpose of this section to induce you to infringe any patents or other property right claims
or to contest validity of any such claims; this section has the sole purpose of protecting the integrity of
the free software distribution system, which is implemented by public license practices. Many people
have made generous contributions to the wide range of software distributed through that system in
reliance on consistent application of that system; it is up to the author/donor to decide if he or she is
willing to distribute software through any other system and a licensee cannot impose that choice.

This section is intended to make thoroughly clear what is believed to be a consequence of the rest of
this License.

If the distribution and/or use of the Program is restricted in certain countries either by patents or by
copyrighted interfaces, the original copyright holder who places the Program under this License may
add an explicit geographical distribution limitation excluding those countries, so that distribution is
permitted only in or among countries not thus excluded. In such case, this License incorporates the
limitation as if written in the body of this License.
The Free Software Foundation may publish revised and/or new versions of the General Public License
from time to time. Such new versions will be similar in spirit to the present version, but may differ in
detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Program specifies a version number of
this License which applies to it and "any later version", you have the option of following the terms
and conditions either of that version or of any later version published by the Free Software
Foundation. If the Program does not specify a version number of this License, you may choose any
version ever published by the Free Software Foundation.

9.

If you wish to incorporate parts of the Program into other free programs whose distribution conditions
are different, write to the author to ask for permission. For software which is copyrighted by the Free
Software Foundation, write to the Free Software Foundation; we sometimes make exceptions for this.
Our decision will be guided by the two goals of preserving the free status of all derivatives of our free
software and of promoting the sharing and reuse of software generally.

10.

NO WARRANTY

BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY
FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT
WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER
PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY OF ANY KIND,
EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS
WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

11.

IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR
REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR
DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL
DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE PROGRAM
(INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING RENDERED
INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF
THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER
OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

12.

END OF TERMS AND CONDITIONS

Didacticiel sur Iptables, version 1.2.0

1. TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION 153

2. How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest possible use to the public, the best way to
achieve this is to make it free software which everyone can redistribute and change under these terms.

To do so, attach the following notices to the program. It is safest to attach them to the start of each source file
to most effectively convey the exclusion of warranty; and each file should have at least the "copyright" line
and a pointer to where the full notice is found.

<one line to give the program's name and a brief idea of what it does.>
Copyright (C) <year> <name of author>

This program is free software; you can redistribute it and/or modify it under the terms of the
GNU General Public License as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this
program; if not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330,
Boston, MA 02111−1307 USA

Also add information on how to contact you by electronic and paper mail.

If the program is interactive, make it output a short notice like this when it starts in an interactive mode:

Gnomovision version 69, Copyright (C) year name of author Gnomovision comes with
ABSOLUTELY NO WARRANTY; for details type `show w'. This is free software, and you
are welcome to redistribute it under certain conditions; type `show c' for details.

The hypothetical commands `show w' and `show c' should show the appropriate parts of the General Public
License. Of course, the commands you use may be called something other than `show w' and `show c'; they
could even be mouse−clicks or menu items−−whatever suits your program.

You should also get your employer (if you work as a programmer) or your school, if any, to sign a "copyright
disclaimer" for the program, if necessary. Here is a sample; alter the names:

Yoyodyne, Inc., hereby disclaims all copyright interest in the program
`Gnomovision' (which makes passes at compilers) written by James Hacker.

<signature of Ty Coon>, 1 April 1989
Ty Coon, President of Vice

This General Public License does not permit incorporating your program into proprietary programs. If your
program is a subroutine library, you may consider it more useful to permit linking proprietary applications
with the library. If this is what you want to do, use the GNU Library General Public License instead of this

Didacticiel sur Iptables, version 1.2.0

154 2. How to Apply These Terms to Your New Programs

License.

Annexe J. Example scripts code−base

J.1. Example rc.firewall script

#!/bin/sh
#
rc.firewall − Initial SIMPLE IP Firewall script for Linux 2.4.x and iptables
#
Copyright (C) 2001 Oskar Andreasson <bluefluxATkoffeinDOTnet>
#
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; version 2 of the License.
#
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
#
You should have received a copy of the GNU General Public License
along with this program or from the site that you downloaded it
from; if not, write to the Free Software Foundation, Inc., 59 Temple
Place, Suite 330, Boston, MA 02111−1307 USA
#

###
#
1. Configuration options.
#

#
1.1 Internet Configuration.
#

INET_IP="194.236.50.155"
INET_IFACE="eth0"
INET_BROADCAST="194.236.50.255"

#
1.1.1 DHCP
#

#
1.1.2 PPPoE
#

#
1.2 Local Area Network configuration.
#
your LAN's IP range and localhost IP. /24 means to only use the first 24
bits of the 32 bit IP address. the same as netmask 255.255.255.0
#

LAN_IP="192.168.0.2"
LAN_IP_RANGE="192.168.0.0/16"
LAN_IFACE="eth1"

#
1.3 DMZ Configuration.
#

Didacticiel sur Iptables, version 1.2.0

Annexe J. Example scripts code−base 155

#
1.4 Localhost Configuration.
#

LO_IFACE="lo"
LO_IP="127.0.0.1"

#
1.5 IPTables Configuration.
#

IPTABLES="/usr/sbin/iptables"

#
1.6 Other Configuration.
#

###
#
2. Module loading.
#

#
Needed to initially load modules
#

/sbin/depmod −a

#
2.1 Required modules
#

/sbin/modprobe ip_tables
/sbin/modprobe ip_conntrack
/sbin/modprobe iptable_filter
/sbin/modprobe iptable_mangle
/sbin/modprobe iptable_nat
/sbin/modprobe ipt_LOG
/sbin/modprobe ipt_limit
/sbin/modprobe ipt_state

#
2.2 Non−Required modules
#

#/sbin/modprobe ipt_owner
#/sbin/modprobe ipt_REJECT
#/sbin/modprobe ipt_MASQUERADE
#/sbin/modprobe ip_conntrack_ftp
#/sbin/modprobe ip_conntrack_irc
#/sbin/modprobe ip_nat_ftp
#/sbin/modprobe ip_nat_irc

###
#
3. /proc set up.
#

#
3.1 Required proc configuration
#

echo "1" > /proc/sys/net/ipv4/ip_forward

#
3.2 Non−Required proc configuration

Didacticiel sur Iptables, version 1.2.0

156 J.1. Example rc.firewall script

#

#echo "1" > /proc/sys/net/ipv4/conf/all/rp_filter
#echo "1" > /proc/sys/net/ipv4/conf/all/proxy_arp
#echo "1" > /proc/sys/net/ipv4/ip_dynaddr

###
#
4. rules set up.
#

######
4.1 Filter table
#

#
4.1.1 Set policies
#

$IPTABLES −P INPUT DROP
$IPTABLES −P OUTPUT DROP
$IPTABLES −P FORWARD DROP

#
4.1.2 Create userspecified chains
#

#
Create chain for bad tcp packets
#

$IPTABLES −N bad_tcp_packets

#
Create separate chains for ICMP, TCP and UDP to traverse
#

$IPTABLES −N allowed
$IPTABLES −N tcp_packets
$IPTABLES −N udp_packets
$IPTABLES −N icmp_packets

#
4.1.3 Create content in userspecified chains
#

#
bad_tcp_packets chain
#

$IPTABLES −A bad_tcp_packets −p tcp −−tcp−flags SYN,ACK SYN,ACK \
−m state −−state NEW −j REJECT −−reject−with tcp−reset
$IPTABLES −A bad_tcp_packets −p tcp ! −−syn −m state −−state NEW −j LOG \
−−log−prefix "New not syn:"
$IPTABLES −A bad_tcp_packets −p tcp ! −−syn −m state −−state NEW −j DROP

#
allowed chain
#

$IPTABLES −A allowed −p TCP −−syn −j ACCEPT
$IPTABLES −A allowed −p TCP −m state −−state ESTABLISHED,RELATED −j ACCEPT
$IPTABLES −A allowed −p TCP −j DROP

#
TCP rules

Didacticiel sur Iptables, version 1.2.0

J.1. Example rc.firewall script 157

#

$IPTABLES −A tcp_packets −p TCP −s 0/0 −−dport 21 −j allowed
$IPTABLES −A tcp_packets −p TCP −s 0/0 −−dport 22 −j allowed
$IPTABLES −A tcp_packets −p TCP −s 0/0 −−dport 80 −j allowed
$IPTABLES −A tcp_packets −p TCP −s 0/0 −−dport 113 −j allowed

#
UDP ports
#

#$IPTABLES −A udp_packets −p UDP −s 0/0 −−destination−port 53 −j ACCEPT
#$IPTABLES −A udp_packets −p UDP −s 0/0 −−destination−port 123 −j ACCEPT
#$IPTABLES −A udp_packets −p UDP −s 0/0 −−destination−port 2074 −j ACCEPT
#$IPTABLES −A udp_packets −p UDP −s 0/0 −−destination−port 4000 −j ACCEPT

#
In Microsoft Networks you will be swamped by broadcasts. These lines
will prevent them from showing up in the logs.
#

#$IPTABLES −A udp_packets −p UDP −i $INET_IFACE −d $INET_BROADCAST \
#−−destination−port 135:139 −j DROP

#
If we get DHCP requests from the Outside of our network, our logs will
be swamped as well. This rule will block them from getting logged.
#

#$IPTABLES −A udp_packets −p UDP −i $INET_IFACE −d 255.255.255.255 \
#−−destination−port 67:68 −j DROP

#
ICMP rules
#

$IPTABLES −A icmp_packets −p ICMP −s 0/0 −−icmp−type 8 −j ACCEPT
$IPTABLES −A icmp_packets −p ICMP −s 0/0 −−icmp−type 11 −j ACCEPT

#
4.1.4 INPUT chain
#

#
Bad TCP packets we don't want.
#

$IPTABLES −A INPUT −p tcp −j bad_tcp_packets

#
Rules for special networks not part of the Internet
#

$IPTABLES −A INPUT −p ALL −i $LAN_IFACE −s $LAN_IP_RANGE −j ACCEPT
$IPTABLES −A INPUT −p ALL −i $LO_IFACE −s $LO_IP −j ACCEPT
$IPTABLES −A INPUT −p ALL −i $LO_IFACE −s $LAN_IP −j ACCEPT
$IPTABLES −A INPUT −p ALL −i $LO_IFACE −s $INET_IP −j ACCEPT

#
Special rule for DHCP requests from LAN, which are not caught properly
otherwise.
#

$IPTABLES −A INPUT −p UDP −i $LAN_IFACE −−dport 67 −−sport 68 −j ACCEPT

#

Didacticiel sur Iptables, version 1.2.0

158 J.1. Example rc.firewall script

Rules for incoming packets from the internet.
#

$IPTABLES −A INPUT −p ALL −d $INET_IP −m state −−state ESTABLISHED,RELATED \
−j ACCEPT
$IPTABLES −A INPUT −p TCP −i $INET_IFACE −j tcp_packets
$IPTABLES −A INPUT −p UDP −i $INET_IFACE −j udp_packets
$IPTABLES −A INPUT −p ICMP −i $INET_IFACE −j icmp_packets

#
If you have a Microsoft Network on the outside of your firewall, you may
also get flooded by Multicasts. We drop them so we do not get flooded by
logs
#

#$IPTABLES −A INPUT −i $INET_IFACE −d 224.0.0.0/8 −j DROP

#
Log weird packets that don't match the above.
#

$IPTABLES −A INPUT −m limit −−limit 3/minute −−limit−burst 3 −j LOG \
−−log−level DEBUG −−log−prefix "IPT INPUT packet died: "

#
4.1.5 FORWARD chain
#

#
Bad TCP packets we don't want
#

$IPTABLES −A FORWARD −p tcp −j bad_tcp_packets

#
Accept the packets we actually want to forward
#

$IPTABLES −A FORWARD −i $LAN_IFACE −j ACCEPT
$IPTABLES −A FORWARD −m state −−state ESTABLISHED,RELATED −j ACCEPT

#
Log weird packets that don't match the above.
#

$IPTABLES −A FORWARD −m limit −−limit 3/minute −−limit−burst 3 −j LOG \
−−log−level DEBUG −−log−prefix "IPT FORWARD packet died: "

#
4.1.6 OUTPUT chain
#

#
Bad TCP packets we don't want.
#

$IPTABLES −A OUTPUT −p tcp −j bad_tcp_packets

#
Special OUTPUT rules to decide which IP's to allow.
#

$IPTABLES −A OUTPUT −p ALL −s $LO_IP −j ACCEPT
$IPTABLES −A OUTPUT −p ALL −s $LAN_IP −j ACCEPT
$IPTABLES −A OUTPUT −p ALL −s $INET_IP −j ACCEPT

Didacticiel sur Iptables, version 1.2.0

J.1. Example rc.firewall script 159

#
Log weird packets that don't match the above.
#

$IPTABLES −A OUTPUT −m limit −−limit 3/minute −−limit−burst 3 −j LOG \
−−log−level DEBUG −−log−prefix "IPT OUTPUT packet died: "

######
4.2 nat table
#

#
4.2.1 Set policies
#

#
4.2.2 Create user specified chains
#

#
4.2.3 Create content in user specified chains
#

#
4.2.4 PREROUTING chain
#

#
4.2.5 POSTROUTING chain
#

#
Enable simple IP Forwarding and Network Address Translation
#

$IPTABLES −t nat −A POSTROUTING −o $INET_IFACE −j SNAT −−to−source $INET_IP

#
4.2.6 OUTPUT chain
#

######
4.3 mangle table
#

#
4.3.1 Set policies
#

#
4.3.2 Create user specified chains
#

#
4.3.3 Create content in user specified chains
#

#
4.3.4 PREROUTING chain
#

#
4.3.5 INPUT chain
#

#

Didacticiel sur Iptables, version 1.2.0

160 J.1. Example rc.firewall script

4.3.6 FORWARD chain
#

#
4.3.7 OUTPUT chain
#

#
4.3.8 POSTROUTING chain
#

J.2. Example rc.DMZ.firewall script

#!/bin/sh
#
rc.DMZ.firewall − DMZ IP Firewall script for Linux 2.4.x and iptables
#
Copyright (C) 2001 Oskar Andreasson <bluefluxATkoffeinDOTnet>
#
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; version 2 of the License.
#
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
#
You should have received a copy of the GNU General Public License
along with this program or from the site that you downloaded it
from; if not, write to the Free Software Foundation, Inc., 59 Temple
Place, Suite 330, Boston, MA 02111−1307 USA
#

###
#
1. Configuration options.
#

#
1.1 Internet Configuration.
#

INET_IP="194.236.50.152"
HTTP_IP="194.236.50.153"
DNS_IP="194.236.50.154"
INET_IFACE="eth0"

#
1.1.1 DHCP
#

#
1.1.2 PPPoE
#

#
1.2 Local Area Network configuration.
#
your LAN's IP range and localhost IP. /24 means to only use the first 24
bits of the 32 bit IP address. the same as netmask 255.255.255.0
#

Didacticiel sur Iptables, version 1.2.0

J.2. Example rc.DMZ.firewall script 161

LAN_IP="192.168.0.1"
LAN_IFACE="eth1"

#
1.3 DMZ Configuration.
#

DMZ_HTTP_IP="192.168.1.2"
DMZ_DNS_IP="192.168.1.3"
DMZ_IP="192.168.1.1"
DMZ_IFACE="eth2"

#
1.4 Localhost Configuration.
#

LO_IFACE="lo"
LO_IP="127.0.0.1"

#
1.5 IPTables Configuration.
#

IPTABLES="/usr/sbin/iptables"

#
1.6 Other Configuration.
#

###
#
2. Module loading.
#

#
Needed to initially load modules
#
/sbin/depmod −a

#
2.1 Required modules
#

/sbin/modprobe ip_tables
/sbin/modprobe ip_conntrack
/sbin/modprobe iptable_filter
/sbin/modprobe iptable_mangle
/sbin/modprobe iptable_nat
/sbin/modprobe ipt_LOG
/sbin/modprobe ipt_limit
/sbin/modprobe ipt_state

#
2.2 Non−Required modules
#

#/sbin/modprobe ipt_owner
#/sbin/modprobe ipt_REJECT
#/sbin/modprobe ipt_MASQUERADE
#/sbin/modprobe ip_conntrack_ftp
#/sbin/modprobe ip_conntrack_irc
#/sbin/modprobe ip_nat_ftp
#/sbin/modprobe ip_nat_irc

Didacticiel sur Iptables, version 1.2.0

162 J.2. Example rc.DMZ.firewall script

###
#
3. /proc set up.
#

#
3.1 Required proc configuration
#

echo "1" > /proc/sys/net/ipv4/ip_forward

#
3.2 Non−Required proc configuration
#

#echo "1" > /proc/sys/net/ipv4/conf/all/rp_filter
#echo "1" > /proc/sys/net/ipv4/conf/all/proxy_arp
#echo "1" > /proc/sys/net/ipv4/ip_dynaddr

###
#
4. rules set up.
#

######
4.1 Filter table
#

#
4.1.1 Set policies
#

$IPTABLES −P INPUT DROP
$IPTABLES −P OUTPUT DROP
$IPTABLES −P FORWARD DROP

#
4.1.2 Create userspecified chains
#

#
Create chain for bad tcp packets
#

$IPTABLES −N bad_tcp_packets

#
Create separate chains for ICMP, TCP and UDP to traverse
#

$IPTABLES −N allowed
$IPTABLES −N icmp_packets

#
4.1.3 Create content in userspecified chains
#

#
bad_tcp_packets chain
#

$IPTABLES −A bad_tcp_packets −p tcp −−tcp−flags SYN,ACK SYN,ACK \
−m state −−state NEW −j REJECT −−reject−with tcp−reset
$IPTABLES −A bad_tcp_packets −p tcp ! −−syn −m state −−state NEW −j LOG \
−−log−prefix "New not syn:"
$IPTABLES −A bad_tcp_packets −p tcp ! −−syn −m state −−state NEW −j DROP

Didacticiel sur Iptables, version 1.2.0

J.2. Example rc.DMZ.firewall script 163

#
allowed chain
#

$IPTABLES −A allowed −p TCP −−syn −j ACCEPT
$IPTABLES −A allowed −p TCP −m state −−state ESTABLISHED,RELATED −j ACCEPT
$IPTABLES −A allowed −p TCP −j DROP

#
ICMP rules
#

Changed rules totally
$IPTABLES −A icmp_packets −p ICMP −s 0/0 −−icmp−type 8 −j ACCEPT
$IPTABLES −A icmp_packets −p ICMP −s 0/0 −−icmp−type 11 −j ACCEPT

#
4.1.4 INPUT chain
#

#
Bad TCP packets we don't want
#

$IPTABLES −A INPUT −p tcp −j bad_tcp_packets

#
Packets from the Internet to this box
#

$IPTABLES −A INPUT −p ICMP −i $INET_IFACE −j icmp_packets

#
Packets from LAN, DMZ or LOCALHOST
#

#
From DMZ Interface to DMZ firewall IP
#

$IPTABLES −A INPUT −p ALL −i $DMZ_IFACE −d $DMZ_IP −j ACCEPT

#
From LAN Interface to LAN firewall IP
#

$IPTABLES −A INPUT −p ALL −i $LAN_IFACE −d $LAN_IP −j ACCEPT

#
From Localhost interface to Localhost IP's
#

$IPTABLES −A INPUT −p ALL −i $LO_IFACE −s $LO_IP −j ACCEPT
$IPTABLES −A INPUT −p ALL −i $LO_IFACE −s $LAN_IP −j ACCEPT
$IPTABLES −A INPUT −p ALL −i $LO_IFACE −s $INET_IP −j ACCEPT

#
Special rule for DHCP requests from LAN, which are not caught properly
otherwise.
#

$IPTABLES −A INPUT −p UDP −i $LAN_IFACE −−dport 67 −−sport 68 −j ACCEPT

#
All established and related packets incoming from the internet to the

Didacticiel sur Iptables, version 1.2.0

164 J.2. Example rc.DMZ.firewall script

firewall
#

$IPTABLES −A INPUT −p ALL −d $INET_IP −m state −−state ESTABLISHED,RELATED \
−j ACCEPT

#
In Microsoft Networks you will be swamped by broadcasts. These lines
will prevent them from showing up in the logs.
#

#$IPTABLES −A INPUT −p UDP −i $INET_IFACE −d $INET_BROADCAST \
#−−destination−port 135:139 −j DROP

#
If we get DHCP requests from the Outside of our network, our logs will
be swamped as well. This rule will block them from getting logged.
#

#$IPTABLES −A INPUT −p UDP −i $INET_IFACE −d 255.255.255.255 \
#−−destination−port 67:68 −j DROP

#
If you have a Microsoft Network on the outside of your firewall, you may
also get flooded by Multicasts. We drop them so we do not get flooded by
logs
#

#$IPTABLES −A INPUT −i $INET_IFACE −d 224.0.0.0/8 −j DROP

#
Log weird packets that don't match the above.
#

$IPTABLES −A INPUT −m limit −−limit 3/minute −−limit−burst 3 −j LOG \
−−log−level DEBUG −−log−prefix "IPT INPUT packet died: "

#
4.1.5 FORWARD chain
#

#
Bad TCP packets we don't want
#

$IPTABLES −A FORWARD −p tcp −j bad_tcp_packets

#
DMZ section
#
General rules
#

$IPTABLES −A FORWARD −i $DMZ_IFACE −o $INET_IFACE −j ACCEPT
$IPTABLES −A FORWARD −i $INET_IFACE −o $DMZ_IFACE −m state \
−−state ESTABLISHED,RELATED −j ACCEPT
$IPTABLES −A FORWARD −i $LAN_IFACE −o $DMZ_IFACE −j ACCEPT
$IPTABLES −A FORWARD −i $DMZ_IFACE −o $LAN_IFACE −m state \
−−state ESTABLISHED,RELATED −j ACCEPT

#
HTTP server
#

$IPTABLES −A FORWARD −p TCP −i $INET_IFACE −o $DMZ_IFACE −d $DMZ_HTTP_IP \

Didacticiel sur Iptables, version 1.2.0

J.2. Example rc.DMZ.firewall script 165

−−dport 80 −j allowed
$IPTABLES −A FORWARD −p ICMP −i $INET_IFACE −o $DMZ_IFACE −d $DMZ_HTTP_IP \
−j icmp_packets

#
DNS server
#

$IPTABLES −A FORWARD −p TCP −i $INET_IFACE −o $DMZ_IFACE −d $DMZ_DNS_IP \
−−dport 53 −j allowed
$IPTABLES −A FORWARD −p UDP −i $INET_IFACE −o $DMZ_IFACE −d $DMZ_DNS_IP \
−−dport 53 −j ACCEPT
$IPTABLES −A FORWARD −p ICMP −i $INET_IFACE −o $DMZ_IFACE −d $DMZ_DNS_IP \
−j icmp_packets

#
LAN section
#

$IPTABLES −A FORWARD −i $LAN_IFACE −j ACCEPT
$IPTABLES −A FORWARD −m state −−state ESTABLISHED,RELATED −j ACCEPT

#
Log weird packets that don't match the above.
#

$IPTABLES −A FORWARD −m limit −−limit 3/minute −−limit−burst 3 −j LOG \
−−log−level DEBUG −−log−prefix "IPT FORWARD packet died: "

#
4.1.6 OUTPUT chain
#

#
Bad TCP packets we don't want.
#

$IPTABLES −A OUTPUT −p tcp −j bad_tcp_packets

#
Special OUTPUT rules to decide which IP's to allow.
#

$IPTABLES −A OUTPUT −p ALL −s $LO_IP −j ACCEPT
$IPTABLES −A OUTPUT −p ALL −s $LAN_IP −j ACCEPT
$IPTABLES −A OUTPUT −p ALL −s $INET_IP −j ACCEPT

#
Log weird packets that don't match the above.
#

$IPTABLES −A OUTPUT −m limit −−limit 3/minute −−limit−burst 3 −j LOG \
−−log−level DEBUG −−log−prefix "IPT OUTPUT packet died: "

######
4.2 nat table
#

#
4.2.1 Set policies
#

#
4.2.2 Create user specified chains
#

Didacticiel sur Iptables, version 1.2.0

166 J.2. Example rc.DMZ.firewall script

#
4.2.3 Create content in user specified chains
#

#
4.2.4 PREROUTING chain
#

$IPTABLES −t nat −A PREROUTING −p TCP −i $INET_IFACE −d $HTTP_IP −−dport 80 \
−j DNAT −−to−destination $DMZ_HTTP_IP
$IPTABLES −t nat −A PREROUTING −p TCP −i $INET_IFACE −d $DNS_IP −−dport 53 \
−j DNAT −−to−destination $DMZ_DNS_IP
$IPTABLES −t nat −A PREROUTING −p UDP −i $INET_IFACE −d $DNS_IP −−dport 53 \
−j DNAT −−to−destination $DMZ_DNS_IP

#
4.2.5 POSTROUTING chain
#

#
Enable simple IP Forwarding and Network Address Translation
#

$IPTABLES −t nat −A POSTROUTING −o $INET_IFACE −j SNAT −−to−source $INET_IP

#
4.2.6 OUTPUT chain
#

######
4.3 mangle table
#

#
4.3.1 Set policies
#

#
4.3.2 Create user specified chains
#

#
4.3.3 Create content in user specified chains
#

#
4.3.4 PREROUTING chain
#

#
4.3.5 INPUT chain
#

#
4.3.6 FORWARD chain
#

#
4.3.7 OUTPUT chain
#

#
4.3.8 POSTROUTING chain
#

Didacticiel sur Iptables, version 1.2.0

J.2. Example rc.DMZ.firewall script 167

J.3. Example rc.UTIN.firewall script

#!/bin/sh
#
rc.UTIN.firewall − UTIN Firewall script for Linux 2.4.x and iptables
#
Copyright (C) 2001 Oskar Andreasson <bluefluxATkoffeinDOTnet>
#
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; version 2 of the License.
#
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
#
You should have received a copy of the GNU General Public License
along with this program or from the site that you downloaded it
from; if not, write to the Free Software Foundation, Inc., 59 Temple
Place, Suite 330, Boston, MA 02111−1307 USA
#

###
#
1. Configuration options.
#

#
1.1 Internet Configuration.
#

INET_IP="194.236.50.155"
INET_IFACE="eth0"
INET_BROADCAST="194.236.50.255"

#
1.1.1 DHCP
#

#
1.1.2 PPPoE
#

#
1.2 Local Area Network configuration.
#
your LAN's IP range and localhost IP. /24 means to only use the first 24
bits of the 32 bit IP address. the same as netmask 255.255.255.0
#

LAN_IP="192.168.0.2"
LAN_IP_RANGE="192.168.0.0/16"
LAN_IFACE="eth1"

#
1.3 DMZ Configuration.
#

#
1.4 Localhost Configuration.
#

LO_IFACE="lo"
LO_IP="127.0.0.1"

Didacticiel sur Iptables, version 1.2.0

168 J.3. Example rc.UTIN.firewall script

#
1.5 IPTables Configuration.
#

IPTABLES="/usr/sbin/iptables"

#
1.6 Other Configuration.
#

###
#
2. Module loading.
#

#
Needed to initially load modules
#

/sbin/depmod −a

#
2.1 Required modules
#

/sbin/modprobe ip_tables
/sbin/modprobe ip_conntrack
/sbin/modprobe iptable_filter
/sbin/modprobe iptable_mangle
/sbin/modprobe iptable_nat
/sbin/modprobe ipt_LOG
/sbin/modprobe ipt_limit
/sbin/modprobe ipt_state

#
2.2 Non−Required modules
#

#/sbin/modprobe ipt_owner
#/sbin/modprobe ipt_REJECT
#/sbin/modprobe ipt_MASQUERADE
#/sbin/modprobe ip_conntrack_ftp
#/sbin/modprobe ip_conntrack_irc
#/sbin/modprobe ip_nat_ftp
#/sbin/modprobe ip_nat_irc

###
#
3. /proc set up.
#

#
3.1 Required proc configuration
#

echo "1" > /proc/sys/net/ipv4/ip_forward

#
3.2 Non−Required proc configuration
#

#echo "1" > /proc/sys/net/ipv4/conf/all/rp_filter
#echo "1" > /proc/sys/net/ipv4/conf/all/proxy_arp
#echo "1" > /proc/sys/net/ipv4/ip_dynaddr

Didacticiel sur Iptables, version 1.2.0

J.3. Example rc.UTIN.firewall script 169

###
#
4. rules set up.
#

######
4.1 Filter table
#

#
4.1.1 Set policies
#

$IPTABLES −P INPUT DROP
$IPTABLES −P OUTPUT DROP
$IPTABLES −P FORWARD DROP

#
4.1.2 Create userspecified chains
#

#
Create chain for bad tcp packets
#

$IPTABLES −N bad_tcp_packets

#
Create separate chains for ICMP, TCP and UDP to traverse
#

$IPTABLES −N allowed
$IPTABLES −N tcp_packets
$IPTABLES −N udp_packets
$IPTABLES −N icmp_packets

#
4.1.3 Create content in userspecified chains
#

#
bad_tcp_packets chain
#

$IPTABLES −A bad_tcp_packets −p tcp −−tcp−flags SYN,ACK SYN,ACK \
−m state −−state NEW −j REJECT −−reject−with tcp−reset
$IPTABLES −A bad_tcp_packets −p tcp ! −−syn −m state −−state NEW −j LOG \
−−log−prefix "New not syn:"
$IPTABLES −A bad_tcp_packets −p tcp ! −−syn −m state −−state NEW −j DROP

#
allowed chain
#

$IPTABLES −A allowed −p TCP −−syn −j ACCEPT
$IPTABLES −A allowed −p TCP −m state −−state ESTABLISHED,RELATED −j ACCEPT
$IPTABLES −A allowed −p TCP −j DROP

#
TCP rules
#

$IPTABLES −A tcp_packets −p TCP −s 0/0 −−dport 21 −j allowed
$IPTABLES −A tcp_packets −p TCP −s 0/0 −−dport 22 −j allowed
$IPTABLES −A tcp_packets −p TCP −s 0/0 −−dport 80 −j allowed
$IPTABLES −A tcp_packets −p TCP −s 0/0 −−dport 113 −j allowed

Didacticiel sur Iptables, version 1.2.0

170 J.3. Example rc.UTIN.firewall script

#
UDP ports
#

#$IPTABLES −A udp_packets −p UDP −s 0/0 −−source−port 53 −j ACCEPT
#$IPTABLES −A udp_packets −p UDP −s 0/0 −−source−port 123 −j ACCEPT
#$IPTABLES −A udp_packets −p UDP −s 0/0 −−source−port 2074 −j ACCEPT
#$IPTABLES −A udp_packets −p UDP −s 0/0 −−source−port 4000 −j ACCEPT

#
In Microsoft Networks you will be swamped by broadcasts. These lines
will prevent them from showing up in the logs.
#

#$IPTABLES −A udp_packets −p UDP −i $INET_IFACE −d $INET_BROADCAST \
#−−destination−port 135:139 −j DROP

#
If we get DHCP requests from the Outside of our network, our logs will
be swamped as well. This rule will block them from getting logged.
#

#$IPTABLES −A udp_packets −p UDP −i $INET_IFACE −d 255.255.255.255 \
#−−destination−port 67:68 −j DROP

#
ICMP rules
#

$IPTABLES −A icmp_packets −p ICMP −s 0/0 −−icmp−type 8 −j ACCEPT
$IPTABLES −A icmp_packets −p ICMP −s 0/0 −−icmp−type 11 −j ACCEPT

#
4.1.4 INPUT chain
#

#
Bad TCP packets we don't want.
#

$IPTABLES −A INPUT −p tcp −j bad_tcp_packets

#
Rules for special networks not part of the Internet
#

$IPTABLES −A INPUT −p ALL −i $LO_IFACE −s $LO_IP −j ACCEPT
$IPTABLES −A INPUT −p ALL −i $LO_IFACE −s $LAN_IP −j ACCEPT
$IPTABLES −A INPUT −p ALL −i $LO_IFACE −s $INET_IP −j ACCEPT

#
Rules for incoming packets from anywhere.
#

$IPTABLES −A INPUT −p ALL −d $INET_IP −m state −−state ESTABLISHED,RELATED \
−j ACCEPT
$IPTABLES −A INPUT −p TCP −j tcp_packets
$IPTABLES −A INPUT −p UDP −j udp_packets
$IPTABLES −A INPUT −p ICMP −j icmp_packets

#
If you have a Microsoft Network on the outside of your firewall, you may
also get flooded by Multicasts. We drop them so we do not get flooded by
logs
#

Didacticiel sur Iptables, version 1.2.0

J.3. Example rc.UTIN.firewall script 171

#$IPTABLES −A INPUT −i $INET_IFACE −d 224.0.0.0/8 −j DROP

#
Log weird packets that don't match the above.
#

$IPTABLES −A INPUT −m limit −−limit 3/minute −−limit−burst 3 −j LOG \
−−log−level DEBUG −−log−prefix "IPT INPUT packet died: "

#
4.1.5 FORWARD chain
#

#
Bad TCP packets we don't want
#

$IPTABLES −A FORWARD −p tcp −j bad_tcp_packets

#
Accept the packets we actually want to forward
#

$IPTABLES −A FORWARD −p tcp −−dport 21 −i $LAN_IFACE −j ACCEPT
$IPTABLES −A FORWARD −p tcp −−dport 80 −i $LAN_IFACE −j ACCEPT
$IPTABLES −A FORWARD −p tcp −−dport 110 −i $LAN_IFACE −j ACCEPT
$IPTABLES −A FORWARD −m state −−state ESTABLISHED,RELATED −j ACCEPT

#
Log weird packets that don't match the above.
#

$IPTABLES −A FORWARD −m limit −−limit 3/minute −−limit−burst 3 −j LOG \
−−log−level DEBUG −−log−prefix "IPT FORWARD packet died: "

#
4.1.6 OUTPUT chain
#

#
Bad TCP packets we don't want.
#

$IPTABLES −A OUTPUT −p tcp −j bad_tcp_packets

#
Special OUTPUT rules to decide which IP's to allow.
#

$IPTABLES −A OUTPUT −p ALL −s $LO_IP −j ACCEPT
$IPTABLES −A OUTPUT −p ALL −s $LAN_IP −j ACCEPT
$IPTABLES −A OUTPUT −p ALL −s $INET_IP −j ACCEPT

#
Log weird packets that don't match the above.
#

$IPTABLES −A OUTPUT −m limit −−limit 3/minute −−limit−burst 3 −j LOG \
−−log−level DEBUG −−log−prefix "IPT OUTPUT packet died: "

######
4.2 nat table
#

#

Didacticiel sur Iptables, version 1.2.0

172 J.3. Example rc.UTIN.firewall script

4.2.1 Set policies
#

#
4.2.2 Create user specified chains
#

#
4.2.3 Create content in user specified chains
#

#
4.2.4 PREROUTING chain
#

#
4.2.5 POSTROUTING chain
#

#
Enable simple IP Forwarding and Network Address Translation
#

$IPTABLES −t nat −A POSTROUTING −o $INET_IFACE −j SNAT −−to−source $INET_IP

#
4.2.6 OUTPUT chain
#

######
4.3 mangle table
#

#
4.3.1 Set policies
#

#
4.3.2 Create user specified chains
#

#
4.3.3 Create content in user specified chains
#

#
4.3.4 PREROUTING chain
#

#
4.3.5 INPUT chain
#

#
4.3.6 FORWARD chain
#

#
4.3.7 OUTPUT chain
#

#
4.3.8 POSTROUTING chain
#

Didacticiel sur Iptables, version 1.2.0

J.3. Example rc.UTIN.firewall script 173

J.4. Example rc.DHCP.firewall script

#!/bin/sh
#
rc.DHCP.firewall − DHCP IP Firewall script for Linux 2.4.x and iptables
#
Copyright (C) 2001 Oskar Andreasson <bluefluxATkoffeinDOTnet>
#
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; version 2 of the License.
#
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
#
You should have received a copy of the GNU General Public License
along with this program or from the site that you downloaded it
from; if not, write to the Free Software Foundation, Inc., 59 Temple
Place, Suite 330, Boston, MA 02111−1307 USA
#

###
#
1. Configuration options.
#

#
1.1 Internet Configuration.
#

INET_IFACE="eth0"

#
1.1.1 DHCP
#

#
Information pertaining to DHCP over the Internet, if needed.
#
Set DHCP variable to no if you don't get IP from DHCP. If you get DHCP
over the Internet set this variable to yes, and set up the proper IP
address for the DHCP server in the DHCP_SERVER variable.
#

DHCP="no"
DHCP_SERVER="195.22.90.65"

#
1.1.2 PPPoE
#

Configuration options pertaining to PPPoE.
#
If you have problem with your PPPoE connection, such as large mails not
getting through while small mail get through properly etc, you may set
this option to "yes" which may fix the problem. This option will set a
rule in the PREROUTING chain of the mangle table which will clamp
(resize) all routed packets to PMTU (Path Maximum Transmit Unit).
#
Note that it is better to set this up in the PPPoE package itself, since
the PPPoE configuration option will give less overhead.
#

Didacticiel sur Iptables, version 1.2.0

174 J.4. Example rc.DHCP.firewall script

PPPOE_PMTU="no"

#
1.2 Local Area Network configuration.
#
your LAN's IP range and localhost IP. /24 means to only use the first 24
bits of the 32 bit IP address. the same as netmask 255.255.255.0
#

LAN_IP="192.168.0.2"
LAN_IP_RANGE="192.168.0.0/16"
LAN_IFACE="eth1"

#
1.3 DMZ Configuration.
#

#
1.4 Localhost Configuration.
#

LO_IFACE="lo"
LO_IP="127.0.0.1"

#
1.5 IPTables Configuration.
#

IPTABLES="/usr/sbin/iptables"

#
1.6 Other Configuration.
#

###
#
2. Module loading.
#

#
Needed to initially load modules
#

/sbin/depmod −a

#
2.1 Required modules
#

/sbin/modprobe ip_conntrack
/sbin/modprobe ip_tables
/sbin/modprobe iptable_filter
/sbin/modprobe iptable_mangle
/sbin/modprobe iptable_nat
/sbin/modprobe ipt_LOG
/sbin/modprobe ipt_limit
/sbin/modprobe ipt_MASQUERADE

#
2.2 Non−Required modules
#

#/sbin/modprobe ipt_owner
#/sbin/modprobe ipt_REJECT
#/sbin/modprobe ip_conntrack_ftp
#/sbin/modprobe ip_conntrack_irc

Didacticiel sur Iptables, version 1.2.0

J.4. Example rc.DHCP.firewall script 175

#/sbin/modprobe ip_nat_ftp
#/sbin/modprobe ip_nat_irc

###
#
3. /proc set up.
#

#
3.1 Required proc configuration
#

echo "1" > /proc/sys/net/ipv4/ip_forward

#
3.2 Non−Required proc configuration
#

#echo "1" > /proc/sys/net/ipv4/conf/all/rp_filter
#echo "1" > /proc/sys/net/ipv4/conf/all/proxy_arp
#echo "1" > /proc/sys/net/ipv4/ip_dynaddr

###
#
4. rules set up.
#

######
4.1 Filter table
#

#
4.1.1 Set policies
#

$IPTABLES −P INPUT DROP
$IPTABLES −P OUTPUT DROP
$IPTABLES −P FORWARD DROP

#
4.1.2 Create userspecified chains
#

#
Create chain for bad tcp packets
#

$IPTABLES −N bad_tcp_packets

#
Create separate chains for ICMP, TCP and UDP to traverse
#

$IPTABLES −N allowed
$IPTABLES −N tcp_packets
$IPTABLES −N udp_packets
$IPTABLES −N icmp_packets

#
4.1.3 Create content in userspecified chains
#

#
bad_tcp_packets chain
#

Didacticiel sur Iptables, version 1.2.0

176 J.4. Example rc.DHCP.firewall script

$IPTABLES −A bad_tcp_packets −p tcp −−tcp−flags SYN,ACK SYN,ACK \
−m state −−state NEW −j REJECT −−reject−with tcp−reset
$IPTABLES −A bad_tcp_packets −p tcp ! −−syn −m state −−state NEW −j LOG \
−−log−prefix "New not syn:"
$IPTABLES −A bad_tcp_packets −p tcp ! −−syn −m state −−state NEW −j DROP

#
allowed chain
#

$IPTABLES −A allowed −p TCP −−syn −j ACCEPT
$IPTABLES −A allowed −p TCP −m state −−state ESTABLISHED,RELATED −j ACCEPT
$IPTABLES −A allowed −p TCP −j DROP

#
TCP rules
#

$IPTABLES −A tcp_packets −p TCP −s 0/0 −−dport 21 −j allowed
$IPTABLES −A tcp_packets −p TCP −s 0/0 −−dport 22 −j allowed
$IPTABLES −A tcp_packets −p TCP −s 0/0 −−dport 80 −j allowed
$IPTABLES −A tcp_packets −p TCP −s 0/0 −−dport 113 −j allowed

#
UDP ports
#

$IPTABLES −A udp_packets −p UDP −s 0/0 −−source−port 53 −j ACCEPT
if [$DHCP == "yes"] ; then
 $IPTABLES −A udp_packets −p UDP −s $DHCP_SERVER −−sport 67 \
 −−dport 68 −j ACCEPT
fi

#$IPTABLES −A udp_packets −p UDP −s 0/0 −−source−port 53 −j ACCEPT
#$IPTABLES −A udp_packets −p UDP −s 0/0 −−source−port 123 −j ACCEPT
#$IPTABLES −A udp_packets −p UDP −s 0/0 −−source−port 2074 −j ACCEPT
#$IPTABLES −A udp_packets −p UDP −s 0/0 −−source−port 4000 −j ACCEPT

#
In Microsoft Networks you will be swamped by broadcasts. These lines
will prevent them from showing up in the logs.
#

#$IPTABLES −A udp_packets −p UDP −i $INET_IFACE \
#−−destination−port 135:139 −j DROP

#
If we get DHCP requests from the Outside of our network, our logs will
be swamped as well. This rule will block them from getting logged.
#

#$IPTABLES −A udp_packets −p UDP −i $INET_IFACE −d 255.255.255.255 \
#−−destination−port 67:68 −j DROP

#
ICMP rules
#

$IPTABLES −A icmp_packets −p ICMP −s 0/0 −−icmp−type 8 −j ACCEPT
$IPTABLES −A icmp_packets −p ICMP −s 0/0 −−icmp−type 11 −j ACCEPT

#
4.1.4 INPUT chain
#

#

Didacticiel sur Iptables, version 1.2.0

J.4. Example rc.DHCP.firewall script 177

Bad TCP packets we don't want.
#

$IPTABLES −A INPUT −p tcp −j bad_tcp_packets

#
Rules for special networks not part of the Internet
#

$IPTABLES −A INPUT −p ALL −i $LAN_IFACE −s $LAN_IP_RANGE −j ACCEPT
$IPTABLES −A INPUT −p ALL −i $LO_IFACE −j ACCEPT

#
Special rule for DHCP requests from LAN, which are not caught properly
otherwise.
#

$IPTABLES −A INPUT −p UDP −i $LAN_IFACE −−dport 67 −−sport 68 −j ACCEPT

#
Rules for incoming packets from the internet.
#

$IPTABLES −A INPUT −p ALL −i $INET_IFACE −m state −−state ESTABLISHED,RELATED \
−j ACCEPT
$IPTABLES −A INPUT −p TCP −i $INET_IFACE −j tcp_packets
$IPTABLES −A INPUT −p UDP −i $INET_IFACE −j udp_packets
$IPTABLES −A INPUT −p ICMP −i $INET_IFACE −j icmp_packets

#
If you have a Microsoft Network on the outside of your firewall, you may
also get flooded by Multicasts. We drop them so we do not get flooded by
logs
#

#$IPTABLES −A INPUT −i $INET_IFACE −d 224.0.0.0/8 −j DROP

#
Log weird packets that don't match the above.
#

$IPTABLES −A INPUT −m limit −−limit 3/minute −−limit−burst 3 −j LOG \
−−log−level DEBUG −−log−prefix "IPT INPUT packet died: "

#
4.1.5 FORWARD chain
#

#
Bad TCP packets we don't want
#

$IPTABLES −A FORWARD −p tcp −j bad_tcp_packets

#
Accept the packets we actually want to forward
#

$IPTABLES −A FORWARD −i $LAN_IFACE −j ACCEPT
$IPTABLES −A FORWARD −m state −−state ESTABLISHED,RELATED −j ACCEPT

#
Log weird packets that don't match the above.
#

$IPTABLES −A FORWARD −m limit −−limit 3/minute −−limit−burst 3 −j LOG \

Didacticiel sur Iptables, version 1.2.0

178 J.4. Example rc.DHCP.firewall script

−−log−level DEBUG −−log−prefix "IPT FORWARD packet died: "

#
4.1.6 OUTPUT chain
#

#
Bad TCP packets we don't want.
#

$IPTABLES −A OUTPUT −p tcp −j bad_tcp_packets

#
Special OUTPUT rules to decide which IP's to allow.
#

$IPTABLES −A OUTPUT −p ALL −s $LO_IP −j ACCEPT
$IPTABLES −A OUTPUT −p ALL −s $LAN_IP −j ACCEPT
$IPTABLES −A OUTPUT −p ALL −o $INET_IFACE −j ACCEPT

#
Log weird packets that don't match the above.
#

$IPTABLES −A OUTPUT −m limit −−limit 3/minute −−limit−burst 3 −j LOG \
−−log−level DEBUG −−log−prefix "IPT OUTPUT packet died: "

######
4.2 nat table
#

#
4.2.1 Set policies
#

#
4.2.2 Create user specified chains
#

#
4.2.3 Create content in user specified chains
#

#
4.2.4 PREROUTING chain
#

#
4.2.5 POSTROUTING chain
#

if [$PPPOE_PMTU == "yes"] ; then
 $IPTABLES −t nat −A POSTROUTING −p tcp −−tcp−flags SYN,RST SYN \
 −j TCPMSS −−clamp−mss−to−pmtu
fi
$IPTABLES −t nat −A POSTROUTING −o $INET_IFACE −j MASQUERADE

#
4.2.6 OUTPUT chain
#

######
4.3 mangle table
#

#

Didacticiel sur Iptables, version 1.2.0

J.4. Example rc.DHCP.firewall script 179

4.3.1 Set policies
#

#
4.3.2 Create user specified chains
#

#
4.3.3 Create content in user specified chains
#

#
4.3.4 PREROUTING chain
#

#
4.3.5 INPUT chain
#

#
4.3.6 FORWARD chain
#

#
4.3.7 OUTPUT chain
#

#
4.3.8 POSTROUTING chain
#

J.5. Example rc.flush−iptables script

#!/bin/sh

rc.flush−iptables − Resets iptables to default values.

Copyright (C) 2001 Oskar Andreasson <bluefluxATkoffeinDOTnet>
#
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; version 2 of the License.
#
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
#
You should have received a copy of the GNU General Public License
along with this program or from the site that you downloaded it
from; if not, write to the Free Software Foundation, Inc., 59 Temple
Place, Suite 330, Boston, MA 02111−1307 USA

#
Configurations
#
IPTABLES="/usr/sbin/iptables"

#
reset the default policies in the filter table.
#
$IPTABLES −P INPUT ACCEPT
$IPTABLES −P FORWARD ACCEPT

Didacticiel sur Iptables, version 1.2.0

180 J.5. Example rc.flush−iptables script

$IPTABLES −P OUTPUT ACCEPT

#
reset the default policies in the nat table.
#
$IPTABLES −t nat −P PREROUTING ACCEPT
$IPTABLES −t nat −P POSTROUTING ACCEPT
$IPTABLES −t nat −P OUTPUT ACCEPT

#
reset the default policies in the mangle table.
#
$IPTABLES −t mangle −P PREROUTING ACCEPT
$IPTABLES −t mangle −P POSTROUTING ACCEPT
$IPTABLES −t mangle −P INPUT ACCEPT
$IPTABLES −t mangle −P OUTPUT ACCEPT
$IPTABLES −t mangle −P FORWARD ACCEPT

#
flush all the rules in the filter and nat tables.
#
$IPTABLES −F
$IPTABLES −t nat −F
$IPTABLES −t mangle −F
#
erase all chains that's not default in filter and nat table.
#
$IPTABLES −X
$IPTABLES −t nat −X
$IPTABLES −t mangle −X

J.6. Example rc.test−iptables script

#!/bin/bash
#
rc.test−iptables − test script for iptables chains and tables.
#
Copyright (C) 2001 Oskar Andreasson <bluefluxATkoffeinDOTnet>
#
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; version 2 of the License.
#
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
#
You should have received a copy of the GNU General Public License
along with this program or from the site that you downloaded it
from; if not, write to the Free Software Foundation, Inc., 59 Temple
Place, Suite 330, Boston, MA 02111−1307 USA
#

#
Filter table, all chains
#
iptables −t filter −A INPUT −p icmp −−icmp−type echo−request \
−j LOG −−log−prefix="filter INPUT:"
iptables −t filter −A INPUT −p icmp −−icmp−type echo−reply \
−j LOG −−log−prefix="filter INPUT:"

Didacticiel sur Iptables, version 1.2.0

J.6. Example rc.test−iptables script 181

iptables −t filter −A OUTPUT −p icmp −−icmp−type echo−request \
−j LOG −−log−prefix="filter OUTPUT:"
iptables −t filter −A OUTPUT −p icmp −−icmp−type echo−reply \
−j LOG −−log−prefix="filter OUTPUT:"
iptables −t filter −A FORWARD −p icmp −−icmp−type echo−request \
−j LOG −−log−prefix="filter FORWARD:"
iptables −t filter −A FORWARD −p icmp −−icmp−type echo−reply \
−j LOG −−log−prefix="filter FORWARD:"

#
NAT table, all chains except OUTPUT which don't work.
#
iptables −t nat −A PREROUTING −p icmp −−icmp−type echo−request \
−j LOG −−log−prefix="nat PREROUTING:"
iptables −t nat −A PREROUTING −p icmp −−icmp−type echo−reply \
−j LOG −−log−prefix="nat PREROUTING:"
iptables −t nat −A POSTROUTING −p icmp −−icmp−type echo−request \
−j LOG −−log−prefix="nat POSTROUTING:"
iptables −t nat −A POSTROUTING −p icmp −−icmp−type echo−reply \
−j LOG −−log−prefix="nat POSTROUTING:"
iptables −t nat −A OUTPUT −p icmp −−icmp−type echo−request \
−j LOG −−log−prefix="nat OUTPUT:"
iptables −t nat −A OUTPUT −p icmp −−icmp−type echo−reply \
−j LOG −−log−prefix="nat OUTPUT:"

#
Mangle table, all chains
#
iptables −t mangle −A PREROUTING −p icmp −−icmp−type echo−request \
−j LOG −−log−prefix="mangle PREROUTING:"
iptables −t mangle −A PREROUTING −p icmp −−icmp−type echo−reply \
−j LOG −−log−prefix="mangle PREROUTING:"
iptables −t mangle −I FORWARD 1 −p icmp −−icmp−type echo−request \
−j LOG −−log−prefix="mangle FORWARD:"
iptables −t mangle −I FORWARD 1 −p icmp −−icmp−type echo−reply \
−j LOG −−log−prefix="mangle FORWARD:"
iptables −t mangle −I INPUT 1 −p icmp −−icmp−type echo−request \
−j LOG −−log−prefix="mangle INPUT:"
iptables −t mangle −I INPUT 1 −p icmp −−icmp−type echo−reply \
−j LOG −−log−prefix="mangle INPUT:"
iptables −t mangle −A OUTPUT −p icmp −−icmp−type echo−request \
−j LOG −−log−prefix="mangle OUTPUT:"
iptables −t mangle −A OUTPUT −p icmp −−icmp−type echo−reply \
−j LOG −−log−prefix="mangle OUTPUT:"
iptables −t mangle −I POSTROUTING 1 −p icmp −−icmp−type echo−request \
−j LOG −−log−prefix="mangle POSTROUTING:"
iptables −t mangle −I POSTROUTING 1 −p icmp −−icmp−type echo−reply \
−j LOG −−log−prefix="mangle POSTROUTING:"

Didacticiel sur Iptables, version 1.2.0

182 J.6. Example rc.test−iptables script

	Table des matières
	Didacticiel sur Iptables, version 1.2.0
	Oskar Andreasson
	Dédicaces
	A propos de l'auteur
	Exploration de ce document
	Préalables
	Conventions utilisées dans ce document
	Chapitre 1. Introduction
	1.1. Motivations
	1.2. Contenu
	1.3. Termes spécifiques
	Chapitre 2. Rappel TCP/IP
	2.1. Couches TCP/IP
	2.2. Caractéristiques IP
	2.3. En-têtes IP
	2.4. Caractéristiques TCP
	2.5. En-têtes TCP
	2.6. Caractéristiques UDP
	2.7. En-têtes UDP
	2.8. Caractéristiques ICMP
	2.9. En-têtes ICMP
	2.9.1. Écho requête/réponse ICMP
	2.9.2. Destination Injoignable ICMP
	2.9.3. Coupure de source
	2.9.4. Redirection
	2.9.5. TTL égale 0
	2.9.6. Paramètre problème
	2.9.7. Horodatage requête/réponse
	2.9.8. Requête/réponse information

	2.10. Destination TCP/IP par routage
	2.11. Prochaine étape
	Chapitre 3. Introduction au filtrage IP
	3.1. Qu'est-ce qu'un filtre IP ?
	3.2. Termes et expressions du filtrage IP
	3.3. Comment configurer un filtre IP ?
	3.4. Au prochain chapitre
	Chapitre 4. Introduction à la Traduction d'adresse Réseau
	4.1. Comment le Nat est utilisé et termes et expressions de base
	4.2. Divergences sur l'utilisation du NAT
	4.3. Exemple d'une machine NAT en théorie
	4.3.1. Ce qui est nécessaire pour une machine NAT
	4.3.2. Emplacement des machines NAT
	4.3.3. Comment placer les proxies ?
	4.3.4. Étape finale pour votre machine NAT

	4.4. Prochain chapitre
	Chapitre 5. Préparatifs
	5.1. Obtenir Iptables ?
	5.2. Configuration du noyau
	5.3. Configuration du domaine utilisateur
	5.3.1. Compilation des applications
	5.3.2. Installation sur Red Hat 7.1

	Chapitre 6. Traversée des tables et des chaînes
	6.1. Généralités
	6.2. La table mangle
	6.3. La table nat
	6.4. La table filter
	Chapitre 7. La machine d'état
	7.1. Introduction
	7.2. Les entrées de conntrack
	7.3. États de l'espace utilisateur
	7.4. Connexions TCP
	7.5. Connexions UDP
	7.6. Connexions ICMP
	7.7. Connexions par défaut
	7.8. Protocoles complexes et traçage de connexion
	Chapitre 8. Sauvegarde et restauration des tables de règles importantes
	8.1. Considérations de vitesse
	8.2. Inconvénients avec restore
	8.3. iptables-save
	8.4. iptables-restore
	Chapitre 9. Création d'une règle
	9.1. Bases de la commande iptables
	9.2. Les tables
	9.3. Commandes
	Chapitre 10. Correspondances
	10.1. Correspondances génériques
	10.2. Correspondances implicites
	10.2.1. Correspondances TCP
	10.2.2. Correspondances UDP
	10.2.3. Correspondances ICMP

	10.3. Correspondances explicites
	10.3.1. Correspondance AH/ESP
	10.3.2. Correspondance conntrack
	10.3.3. Correspondance DSCP
	10.3.4. Correspondance ECN
	10.3.5. Correspondance Helper
	10.3.6. Correspondance de plage IP
	10.3.7. Correspondance Length
	10.3.8. Correspondance Limit
	10.3.9. Correspondance MAC
	10.3.10. Correspondance mark
	10.3.11. Correspondance multiport
	10.3.12. Correspondance owner
	10.3.13. Correspondance type de paquet
	10.3.14. Correspondance Recent
	10.3.15. Correspondance state
	10.3.16. Correspondance TCPMSS
	10.3.17. Correspondance TOS
	10.3.18. Correspondance TTL
	10.3.19. Correspondance unclean

	Chapitre 11. Iptables cibles et sauts
	11.1. Cible ACCEPT
	11.2. Cible CLASSIFY
	11.3. Cible DNAT
	11.4. Cible DROP
	11.5. Cible DSCP
	11.6. Cible ECN
	11.7. Options de la cible LOG
	11.8. Cible MARK
	11.9. Cible MASQUERADE
	11.10. Cible MIRROR
	11.11. Cible NETMAP
	11.12. Cible QUEUE
	11.13. Cible REDIRECT
	11.14. Cible REJECT
	11.15. Cible RETURN
	11.16. Cible SAME
	11.17. Cible SNAT
	11.18. Cible TCPMSS
	11.19. Cible TOS
	11.20. Cible TTL
	11.21. Cible ULOG
	Chapitre 12. Débogage des scripts
	12.1. Déboguer, une nécessité
	12.2. Débogage en Bash
	12.3. Outils système pour le débogage
	12.4. Débogage d'Iptables
	12.5. Autres outils de débogage
	12.5.1. Nmap
	12.5.2. Nessus

	12.6. Le chapitre suivant
	Chapitre 13. Fichier rc.firewall
	13.1. Exemple de rc.firewall
	13.2. Explication du rc.firewall
	13.2.1. Options de configuration
	13.2.2. Chargement initial des modules supplémentaires
	13.2.3. Réglage du proc
	13.2.4. Déplacement des règles vers différentes chaînes
	13.2.5. Mise en place des actions par défaut
	13.2.6. Implémentation des chaînes utilisateur dans la table filtre
	13.2.7. Chaîne INPUT
	13.2.8. Chaîne FORWARD
	13.2.9. Chaîne OUTPUT
	13.2.10. Chaîne PREROUTING de la table nat
	13.2.11. Démarrage de SNAT et la chaîne POSTROUTING

	Chapitre 14. Exemples de scripts
	14.1. Structure du script rc.firewall.txt
	14.1.1. La structure

	14.2. rc.firewall.txt
	14.3. rc.DMZ.firewall.txt
	14.4. rc.DHCP.firewall.txt
	14.5. rc.UTIN.firewall.txt
	14.6. rc.test-iptables.txt
	14.7. rc.flush-iptables.txt
	14.8. Limit-match.txt
	14.9. Pid-owner.txt
	14.10. Recent-match.txt
	14.11. Sid-owner.txt
	14.12. Ttl-inc.txt
	14.13. Iptables-save
	Chapitre 15. Interfaces utilisateur graphiques pour Iptables/netfilter
	15.1. fwbuilder
	15.2. Projet Turtle Firewall
	15.3. Integrated Secure Communications System
	15.4. IPMenu
	15.5. Easy Firewall Generator
	15.6. Partie suivante
	Annexe A. Explication détaillée des commandes spéciales
	A.1. Affichage de votre table de règles
	A.2. Mise à jour et vidange des tables
	Annexe B. Problèmes et questions courants
	B.1. Problèmes de chargement des modules
	B.2. Paquets état NEW sans bit SYN placé
	B.3. SYN/ACK et les paquets NEW
	B.4. Fournisseurs d'accès Internet qui utilisent des adresses IP assignées
	B.5. Laissez les requêtes DHCP traverser iptables
	B.6. Problèmes avec le DCC de mIRC
	Annexe C. Types ICMP
	Annexe D. Options TCP
	Annexe E. Autres ressources et liens
	Annexe F. Remerciements
	Annexe G. History
	Annexe H. GNU Free Documentation License
	0. PREAMBLE
	1. APPLICABILITY AND DEFINITIONS
	2. VERBATIM COPYING
	3. COPYING IN QUANTITY
	4. MODIFICATIONS
	5. COMBINING DOCUMENTS
	6. COLLECTIONS OF DOCUMENTS
	7. AGGREGATION WITH INDEPENDENT WORKS
	8. TRANSLATION
	9. TERMINATION
	10. FUTURE REVISIONS OF THIS LICENSE
	. How to use this License for your documents
	Annexe I. GNU General Public License
	0. Preamble
	1. TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION
	2. How to Apply These Terms to Your New Programs
	Annexe J. Example scripts code-base
	J.1. Example rc.firewall script
	J.2. Example rc.DMZ.firewall script
	J.3. Example rc.UTIN.firewall script
	J.4. Example rc.DHCP.firewall script
	J.5. Example rc.flush-iptables script
	J.6. Example rc.test-iptables script

