
Rappels de
développement

GAYET Thierry

REF. OSP001

Thierry.Gayet@laposte.net

28/ 02/ 05 2

Plan de la présentat ion

Introduction
Extensions de f ichiers
Chaîne de création
Compilation
Linkage
Librairies dynamiques
Librairie statique
Conclusion
Références

28/ 02/ 05 3

Introduct ion

A l 'aide d 'un langage donné, i l est possible de compi ler la ret ranscr ipt ion
d 'un algor i t hme, lu i - même issu d 'une analyse, af in d 'en obtenir un

b inaire, exécutable ou non, une l ibrai r ie dynamique ou b ien st at ique.

Une descr ipt ion de ces d i f f érentes t ransformat ions est détai l lée dans ce
document de synthèse.

Il t rai t e pr incipalement des p lateformes SUN OS et Solar is, IBM Aix et b ien
ent endu GUN Linux (t outes d ist r ibut ions).

28/ 02/ 05 4

Extensions 1/ 2

.c Source en langage C nécessitant un pré- processing

.i Source en langage C ne nécessitant pas de pré- processing

.cc

.cp

.cxx

.cpp/

.c+ +

.C

.ii Source en langage C+ + ne nécessitant pas de pré- processing

.h Fichier header ne devant pas être compilé ou linké !!!!

Source en langage C+ + nécessitant un pré- processing

28/ 02/ 05 5

Extensions 2/ 2

.s Source en langage assembleur nécessitant un pré- processing.

.S Source en langage assembleur ne nécessitant pas de pré-
 processing.

.o Fichier objet en langage machine.

.a Librairie statique (et dynamique sous IBM Aix).

 .so Librairie dynamique (GNU Linux et SUN Solaris).

28/ 02/ 05 6

Chaîne de créat ion…

Vue complète de la chaîne de compilation et de linkage :

Source
.c

Include
.h

Compilat ion Linkage

Fichier objet (.o)

Exécutable

Librairie statique .a

dynamique .o / .so

Librairie stat ique .
a

et / ou
dynamique .o / .

so

Fichier objet
.o

ETAPE N°1 ETAPE N°2

28/ 02/ 05 7

Etape n°1

LA COMPILATION

En 6 étapes

28/ 02/ 05 8

Etape 1 : la compilat ion 1/ 6

Fichier Source
.c

Fichier Include
.h

Compilat ion

Analyse (lexicale Lex (1)/ Flex (2) et grammaticale Yacc(1)/ Bison(2)) du code source
pour obtenir une version ciblée à une plateforme matérielle donnée (sparc,
rs6000, x86, powerpc …) :

Fichier objet
compilé

.o

(1) Outils issus des Unix commerciaux.
(2) Version libre (GNU) de ces outils.

28/ 02/ 05 9

Etape 1 : la compilat ion 2/ 6

Il s’agit d’une conversion de formats pouvant être représentée par la règle
suivante :

REGLE DE

CONVERSION
.c et .h .o

Cette étape appelée « compilation » permet d’associer à un langage donné
(C, Pascal, Java …) une mnémonique objet liée à une plateforme matérielle
donnée.

Ici comme dans la continuité de la chaîne, les extensions sont importantes
pour le programme « make » car elle permettent de définir le bon
programme à utiliser.

Fichier d ’ent rée Fich ier de sor t ie

Analyse
lexicale

Analyse
grammat ica

le

COMPILATEUR

28/ 02/ 05 10

Etape 1 : la compilat ion 3/ 6

Exemple de compilation d’un seul source en langage C (test.c) et de son f ichier
header implicite (test.h) pour obtenir un fichier objet test.o

Chaîne d’appel au compilateur :

gcc -c -o test.o test.c

 Cette commande compile (- c) le source en langage C (.c) tout en générant en
sortie un f ichier objet (.o). L’extension de sortie est importante car dans le
cas où elle est omise, le compilateur ajoutera la phase de linkage afin de
générer un exécutable.

De plus, dans le cas où les fichiers sources (.c) et/ ou les f ichiers headers (.h)
soient localisés dans un répertoire / src respectivement / include, différent
du chemin courant, il est possible de préciser leur localisation au
compilateur :

gcc -c -o test.o ./src/test.c –I./include

28/ 02/ 05 11

Etape 1 : la compilat ion 4/ 6

Exemple de compilation dite modulaire de plusieurs sources en langage C
(test1.c et test2.c) et d’un f ichier header (test.h) pour obtenir un fichier
objet test.o

Chaîne d’appel au compilateur :

gcc -o test.o test1.c test2.c

A noter qu’ il n’est pas possible d’utiliser le paramètre –c dans le cas d’une
compilation modulaire (avec plusieurs f ichiers sources).

Nom des compilateurs par plate- forme :

GNU Linux gcc
SUN OS/Solaris gcc ou acc

 IBM Aix gcc ou cc ou cc_r

28/ 02/ 05 12

Etape 1 : la compilat ion 5/ 6

Il est de même possible de rajouter quelques paramètres liés au débuggage :

gcc -c -Wall -O2 –g -o test.o ./src/test.c –I./include

-Wall active tous les warning possibles

 -g produit des informations de débuggage, utiles avec gdb, ddd, workshop,
total view, ….

 -01 Optimise du code lors de la phase de compilation (peut réduire la
taille du code généré ainsi que le temps d’exécution).

 -02 Optimisation avancée du code.

 -Os active tous les types d’optimisation

 (Par défaut le compilateur n’optimise pas du tout le code)

D’autres paramètres existent : -ggdb, -gstabs, etc …

A noter le paramètre –ansi qui force l’analyseur lexical du compilateur à n’ut iliser que la
sémantique propre au langage c ansi ou tout autre langage ISO C90 (C, fortran, etc
…).

28/ 02/ 05 13

Etape 1 : la compilat ion 6/ 6

Dans certain cas il est parfois nécessaire de passer certains éléments au
compilateur afin d’utiliser une compilation dite conditionnelle :

Exemple de compilation condit ionnelle (.c) :

/* Code à inclure*/
#define CONDITION
printf(“affichage de ce texte …“);
#endif

Pour indiquer au compilateur qu’ il doit inclure le printf dans le code source
à compiler il faut passer à ce dernier le paramètre suivant :

gcc –c –o test.o –DCONDITION test.c

28/ 02/ 05 14

Etape n°2

LE LINKAGE

En 3 étapes

28/ 02/ 05 15

Etape 2 : le linkage 1/ 2

Représentation de la phase de mise à jour de la liste des symboles :

Linkage

Exécutable

Librairie stat ique .a

Librairie
Dynamique .a / .so

Librairie stat ique .
a

et / ou
dynamique .a / .so

Fichier objet
.o

Fichier compilé

28/ 02/ 05 16

Etape 2 : le linkage 2/ 3

Il s’agit là aussi d’une conversion de format d’un fichier objet (.o) en un f ichier
exécutable.

REGLE DE

CONVERSION

.o

Executable
ou

Librairie
stat ique

ou
Librairie

dynamique

Cette étape appelée « linkage » rajoute au fichier objet une table de
symboles décrivant les différentes entrées.

Le programme utilisé habituellement pour réaliser cette conversion est « ld
». Certains compilateurs tels que « gcc ou cc » intègre aussi la fonction de
linkage en natif.

Fichier d ’ent rée Fichier de sor t ie

LINKAGE

28/ 02/ 05 17

Etape 2 : le linkage 3/ 3

Exemple : linkage d’un objet (.o) afin d’obtenir un exécutable :

gcc –c –o test test.o

Commande identique à part ir de plusieurs f ichiers sources :

gcc –o test test1.o test2.o

Nous pouvons remarquer que pour le linkage, les fichiers d’entrée sont des f ichiers objets
(.o).

Combinaisons possibles d’un f ichier source (.c) :

gcc –c –o test test.c (compi lat ion & l inkage)

Pour information, sous le système GNU Linux le format par défaut est ELF et non a.out . La
création d’un exécutable au lieu d’un objet indique au linkeur d’ajouter le point
d’entrée main.

Editeurs de liens/ Linkeur par plate- forme :

GNU Linux gcc ou ld
SUN OS/Solaris gcc ou acc ou ld

 IBM Aix gcc ou cc ou cc_r ou ld

28/ 02/ 05 18

LES LIBRAIRIES DYNAMIQUES

En 6 étapes

28/ 02/ 05 19

Les librairies dynamiques 1/ 7

Définition :

Une librairie dynamique est une bibliothèque de fonctions qui sont
chargées de façon dynamique. Plus précisément, ces librairies sont
chargées au moment de leur utilisation et déchargées lorsque nous
n’en n’avons plus besoin :

Avantages :

- taille des binaires et objets plus petits
- chargé une seule fois même si utilisé par plusieurs programme.
- permet de changer Dynamiquement de version de librairie

Désavantages :

- nécessite d’avoir la librairie dans le path.
- se doit d’être linkée par ld ou gcc.

Programme
exécutable

Librairie
dynamique

28/ 02/ 05 20

Les librairies dynamiques 2/ 7

Création :

La création revient à linker un ensemble de fichier objets en un seul afin de former une
bibliothèque. Néanmoins, même si le principe de base reste le même, les paramètres à
passer diffèrent d’une plateforme à une autre :

GNU Linux # gcc –c –shared –o test.so test.o
SUN OS/Solaris # ld –dY –G –o test.so test.o

 IBM Aix # ld –dY –G –o test.o test.o

D’autre part, même si sous SUN OS/ Solaris et IBM Aix, le linkeur ut ilisé de façon courante
est ld, il est de plus de plus courant d’ut iliser le compilateur même qui offre de nos
jour cette double fonct ion de façon intrinsèque.

Extension d’une librairie dynamique :

GNU Linux .so
Sun OS / Sun Solaris .so
IBM Aix .o
MICROSOFT Windows .dll

28/ 02/ 05 21

Les librairies dynamiques 3/ 7

Test de dépendances :

Une fois compilé, il est possible de lister les dépendances d’un exécutable avec des
librairies dynamiques (ainsi que leurs versions). Cela est ut ile pour permettre d’une
part de savoir si un programme est compilé avec une librairie dynamique et d’autre
part le nom de cette librairie.

/usr/bin/ldd test

Exemple de résultat : # ldd test

 libanasm7.so => /home/tgayet/vittam2/lib.i386_linux/libanasm7.so
(0x40017000)

 libc.so.6 => /lib/tls/libc.so.6 (0x42000000)
 /lib/ld-linux.so.2 => /lib/ld-linux.so.2 (0x40000000)

Quand bien même, le programme n’utilise pas de librairie dynamique « ut ilisateur », nous
pouvons remarquer qu’implicitement, ce dernier ut ilise des librairies dynamiques
système comme celle de glibc : libc.so.6 (implémentation des fonct ions génériques
ut ilisable en langage C).

28/ 02/ 05 22

Les librairies dynamiques 4/ 7

D’autre part, cette librairie possède la
particularité de posséder un point

d’entrée.
En effet, il est possible de l’exécuter tel
un programme : # /lib/libc.so.6

GNU C Library stable release version 2.3.2, by Roland McGrath et al.

Copyright (C) 2003 Free Software Foundation, Inc.

This is free software; see the source for copying condit ions.

There is NO warranty; not even for MERCHANTABILITY or FITNESS FOR A

PARTICULAR PURPOSE.

Compiled by GNU CC version 3.2.2 20030222 (Red Hat Linux 3.2.2- 5).

Compiled on a Linux 2.4.20 system on 2003- 11- 12.

Available extensions:

 GNU libio by Per Bothner

 crypt add- on version 2.1 by Michael Glad and others

 linuxthreads- 0.10 by Xavier Leroy

 The C stubs add- on version 2.1.2.

 BIND- 8.2.3- T5B

 NIS(YP)/ NIS+ NSS modules 0.19 by Thorsten Kukuk

 Glibc- 2.0 compatibility add- on by Crist ian Gafton

 libthread_db work sponsored by Alpha Processor Inc

Thread- local storage support included.

Report bugs using the ` glibcbug' script to < bugs@gnu.org> .

Reading specs from / agl/ tools/ perl/ current/ bin/
../ l ib/ gcc- l ib/ i386- redhat- linux / 3.2.2/ specs
Configured with: ../ configure - - prefix= / usr - - mandir= / usr/ share/ man
 - - infodir= / usr/ share/ info
- - enable- shared - - enable- threads= posix - - disable- checking
- - with- system- zlib
- - enable- __cxa_atex it - - host= i386- redhat- linux
Thread model: posix
gcc version 3.2.2 20030222 (Red Hat Linux 3.2.2- 5)

Une autre source d'information est :

/usr/bin/gcc -v

28/ 02/ 05 23

Les librairies dynamiques 5/ 7

PATH :

Lors de l’exécution d’un programme nécessitant une librairie dynamique,il peut être
parfois nécessaire de modifier le cache système lié aux librairies dynamiques. En effet,
si cette dernière ne se trouve pas dans dans le répertoire courant du binaire, une
erreur de chargement se produira. Pour résoudre ce problème de chemin, il existe
deux solut ions :

1. Modif ier la variable d’environnement LD_LIBRARY_PATH afin d’y ajouter le chemin
souhaité :

setenv LD_LIBRARY_PATH $ LD_LIBRARY_PATH:/ nouveau_chemin
ou export LD_LIBRARY_PATH= $ LD_LIBRARY_PATH:/ nouveau_chemin

nb : sous IBM Aix, la variable se nomme : LIBPATH

2. Réactualiser le cache lié aux librairies :

Fichier de paramétrage du cache : /etc/ld.so.conf
Commande de régénération : /sbin/ldconfig (1)

Il est courant de voir le fichier ld.so.conf contenir les chemins suivants : / l ib, / usr / l ib
(par f ois un al ias), / usr / X11R6/ l ib, / usr / local/ l ib, / usr / openwin/ l ib, /
opt / kde3/ l ib, / opt / gnome2/ l ib …

(1) En root

28/ 02/ 05 24

Les librairies dynamiques 6/ 7

Exemple détaillé d’utilisation en langage C du chargement d’une librairie dynamique :

#include <dlfcn.h>
#include <stdlib.h>
#include <stdio.h>

Typedef void (*test_fonction)(void);

int main(void)
{

void *module;

 module = dlopen("libtest“, RTLD_LAZY);
test_fonction = dlsyn(module, " fonction_test“);

/ * ut ilisat ion de la fonct ion ici */

dlclose();
}

Exemple de chargement de la
f onct ion test dans la Librair ie
dynamique libtest.so

 Ouverture (handle) / Chargement
de la librairie libtest.so

 Recherche du pointeur de la
fonct ion fonction_test()

 Excution de la fonct ion

 Fermeture de la librairie

test.c

 A noter que le chargement est aujourd’hui
Implicite et que ces étapes sont tranparentes.
Les fonctions dlopen, dlsyn et dlclose sont
implémentés dans la glibc.

28/ 02/ 05 25

Les librairies dynamiques 7/ 7

Linkage :

Une librairie dynamique n’est liée à un programme qu’au moment du linkage :

GNU Linux # gcc -fPIC test.o –L./lib –ltest
SUN OS/Solaris # gcc -KPIC test.o –L./lib –ltest
IBM Aix # gcc test.o –L./lib –ltest

Nb : Le préf ixe lib est rajouté automat iquement devant test pour former libtest.

–fPIC déf init que le bloc dynamique qui sera chargé en mémoire pourra être placé à
dif férente zone.

Tout comme pour la phase de compilat ion il est possible de préciser certains paramètres. En
effet , lors du linkage il est parfois nécessaire d’ inclure des librairies stat iques ou
dynamiques. Le paramètre nécessaire pour ces faire est le suivant :

-l./lib –L./lib/test

Le paramètre –l demande à l’éditeur de lien de rechercher dans le chemin ./ lib, à part ir du
chemin courant, une bibliothèque stat ique libtest .a ou bien partagée/ dynamique libtest .so.
L’éditeur de liens parcourt tous les répertoires de bibliothèques standards (cf variable
d’environnement LD_LIBRARY_PATH) et tous les - L indiqués. Si le linkeur t rouve à la fois une
librairie stat ique et dynamique, il choisit de préférence la librairie dynamique sauf si le
paramètre - stat ic est passé aussi.

28/ 02/ 05 26

LES LIBRAIRIES STATIQUES

En 4 étapes

28/ 02/ 05 27

Les librairies stat iques 1/ 4

Définition :

Une librairie statique est comme la librairie dynamique, une
bibliothèque de fonct ions mais au lieu que le code soit
dissocié du programme et chargé au moment de son
ut ilisat ion propre, ce dernier est compilé en dur.

Avantages :

- facile à gérer.
- ne nécessite rien d’autre ; facilement diffusable.

Désavantages :

- Peut former des binaires de taille conséquente ;
 augmente donc la consommation de ressources, mais une fois alloué en RAM, aucun
autre

 chargement n’est nécessaire.

Programme
exécutable

Librairie
statique

28/ 02/ 05 28

Les librairies stat iques 2/ 4

Création :

La créat ion d’une librairie stat ique requiert l’ut ilisation du programme ar (comm ande uni forme quelque
soi t la plateforme) :

/usr/bin/ar –rv test.a test1.o test2.o test3.o
ou
/usr/bin/ar –rv test.a *.o

Cela rassemble les 3 f ichiers objets (test1.o, test2.o et test3.o) en une librairie stat ique (test.a).
L’extension .a d’une librairie stat ique est constante quelque soir la plateforme Unix à l’except ion de
MS Windows. (.lib).

Extension d’une librairie stat ique :

GNU Linux .a
Sun OS / Sun Solaris .a
IBM Aix .a
MICROSOFT Windows .lib

Il est possible de solliciter la recréation de cette table (ut ile pour SUN OS mais implicite sur les autres
plateformes) :

ranlib test.a (1).(1) Implicite sur une majorité de plateforme sauf sous SUN OS.

28/ 02/ 05 29

Les librairies stat iques 3/ 4

Test :

Il est aussi possible de lister le contenu des fichiers objets inclus dans la librairie :

/usr/bin/ar –t test.a

La commande suivante permet de lister cette table de symboles :

/usr/bin/nm test.a

Légende :

U : undefined (implémentation
externe)
T : implémenté à l’ intérieur

ad_server.o
cominter.o
com_util.o
f ilointer.o
miscell.o
paral.o
pilot.o
simul_api.o
spyinter.o
userint.o

ad_server.o:
00000099 T aff ichage_etat_client
00000004 C bDebugAd
00000004 C bDebugSu
 U bTrace
00000390 T close_socket
0000040f T close_tab_client
0000046d T connexion_client

cominter.o:
 U atoi
00000004 d bComInit
00000000 d bNoInitWarn
00000010 b bTrComInter

Exemple de résultats :

Exemple de résultats :

« Pour un objet , cela l iste les fonct ions et pour une l ibrai r ie
les fonct ions par objet . »

28/ 02/ 05 30

Les librairies stat iques 4/ 4

Linkage :

Le linkage d’un binaire avec une librairie stat ique permet d’ajouter les fonctions
implémentées

à l’ intérieur de cette dernière. Au f inal, la table de symboles ainsi générée sera commune.

Compilation d’un f ichier source (test.c) avec la librairie stat ique libtest.a afin de générer le
binaire (test) :

GNU Linux # gcc –c test.o libtest.a –o test

SUN Solaris # gcc –c test.o libtest.a –o test

IBM Aix # gcc –c test.o libtest.a –o test

Le linkage d’une librairie stat ique avec un binaire est ident ique au linkage d’un f ichier
objet.

test.o Libtest.a
test

28/ 02/ 05 31

Conclusion

J’espère que ce document vous rendra service.

Pour davantage d’aide sur les différentes commandes :

man commande

commande --help

Les how to sur la compilation (glibc, gcc, gdb …).

Les forums dédiés (Newsgroups).

les sites dédiés.

Et bien entendu Google.fr

 http://www.fortran-2000.org/ArnaudRecipes/sharedli.html
 http://www.nyangau.fsnet.co.uk/dll/dll.htm

28/ 02/ 05 32

Making of…

OpenOffice.fr

Gimp

Diaporama réalisé à part ir des deux projets open source suivant :

28/ 02/ 05 33

Fin

