Rappels de

développement

HOCOOTCAC 11997 000" CHOT 01 00101 CHO01 10410
11 0CHOCHOARA01 TP 070" D 0 O A 00n 10711000 007 20 09 04019 19071
O OO0 00 0 DA D01 04 1 11101 1 0001 1 0101 0011001

00 OCH 001 0101 D41 10 3 01 CT08 000 T MCT 01011 020 00100° 0160 20" 1110 _,ﬂ
0 CO D £ D001 0100 0000 O ST 11 T DI OB 0 000 0 0 bﬁ“ﬁ,
P00 QT Q0 e EHO T el O CHO e oot o e o o

Q10 QC I om0 oI et 0T Cr oo 1 1o

HOA0CA LA E 1111000 CHE 0 A D1 RO 11011111 711 A 00 297 CHR0

REF. OSP001

GAYET Thierry

Plan de la présentation

Introduction
Extensions de fichiers
Chaine de création
Compilation

Linkage

Librairies dynamiques
Librairie statique
Conclusion
Références

[

al

{

al

{

al

{

il

{

al

[

al

f

al

L

[

28/02/05 2

Introduction

A l'aide d'un langage donné, il est possible de compiler la retranscription
d'un algorithme, lui- méme issu d'une analyse, afin d'en obtenir un
binaire, exécutable ou non, une librairie dynamique ou bien statique.

Une description de ces différentes transformations est détaillée dans ce
document de synthese.

Il traite principalement des plateformes SUN OS et Solaris, IBM Aix et bien
entendu GUN Linux (toutes distributions).

28/02/05

Extensions i:

Source en langage C nécessitant un pré- processing
Source en langage C ne nécessitant pas de preé- processing

Source en langage C++ nécessitant un pré- processing

Source en langage C++ ne nécessitant pas de pré- processing

Fichier header ne devant pas étre compilé ou linké !l

28/02/05

Extensions z:

Source en langage assembleur nécessitant un pré- processing.

Source en langage assembleur ne nécessitant pas de pre-
processing.

Fichier objet en langage machine.
Librairie statique (et dynamique sous IBM Aix).

Librairie dynamique (GNU Linux et SUN Solaris).

28/02/05 5

Chalne de création...

Vue complete de la chaine de compilation et de linkage :

Fichier objet
.0

l Fichier objet (.0)

Exécutable

Compilation Linkage Librairie statique .3

I dynamique .0/ .sQ

Librairie statique .
a
et/ ou
dynamigue .0/ .
SO

Include

28/02/05 6

En 6 étapes

LA COMPILATION

28/02/05 7

Etape 1 : la compilation we

Analyse (lexicale Lex®™/ Flex® et grammaticale Yacc®/ Bison®) du code source
pour obtenir une version ciblée a une plateforme matérielle donnee (sparc,
rs6000, x86, powerpc ...):

Fichier Source
.C ‘

Fichier objet
Compilation compilé

n \J

Fichier Include

1) cutils issus des Uni x conmerci aux.
2) Version libre (GNU) de ces outils.

28/02/05 8

Etape 1 : la compilation s

Il s’agit d’une conversion de formats pouvant étre représentée par larégle
suivante :

COMPILATEUR

REGLE DE
ceth . CONVERSION

Fichier d’entrée Fichier de sortie

Analyse Analyse
lexicale | grammatica

| PaY
1c

Cette étape appelée « compilation » permet d’associer a un langage donné

(C, Pascal, Jva ...) une mnémonique objet liée a une plateforme matérielle
donnée.

Ici comme dans la continuité de la chaine, les extensions sont importantes

pour le programme « make » car elle permettent de deéfinir le bon
programme a utiliser.

28/02/05

Etape 1 : la compilation e

Exemple de compilation d’un seul source en langage C (test.c) et de son fichier
header implicite (test.h) pour obtenir un fichier objet test.o

Chaine d’appel au compilateur :
gcc -Cc -0 test.o test.c

Cette commande compile (- c) le source en langage
sortie un fichier objet (.0)."L’'extension_de sortie
cas ou elle est omise, le Compilateur ajoutera la
génerer un executable.

C (.c) tout en générant en
est importante car dans le
phase de linkage afin de

De plus, dans le cas ou les fichiers sources (.c) et/ qu les fichiers headers (.h)
soient localisés dans un répertoire / src respectivement /include, different
du chemin courant, il est possible de préciser leur localisation au
compilateur :

gcc -c -o test.o ./src/test.c —I./include

28/02/05 10

Etape 1 : la compilation 4

Exemple de compilation dite modulaire de plusieurs sources en I_anga(f:;_e C
(testl.c et test2.c) et d'un fichier header (test.h) pour obtenir un fichier
objet test.o

Chaine d’appel au compilateur :
gcc -0 test.o testl.c test2.c

A noter qu’il n’est pas possible d’utiliser le parametre —c dans le cas d’une
compilation modulaire (avec plusieurs fichiers sources).

Nom des compilateurs par plate- forme :

GNU Li nux gcc
SUN OS/ Sol ari s gcc ou acc
| BM Ai x gcc ou ccC ou cc_r

28/02/05 11

Etape 1 : la compilation s

Il est de méme possible de rajouter quelques parametres liés au débuggage :

gcc -c -Wall -2 —g -0 test.o ./src/test.c —I./include
-Wall active tous | es warning possibles

-g produit des informations de débuggage, utiles avec gdb, ddd, workshop,
total view,

-01 Optimse du code lors de |a phase de conpilation (peut réduire |a
taille du code généré ainsi que le tenps d’ exécution).

-02 Optim sation avancée du code.
-Cs active tous les types d' optim sation
(Par défaut |e conpilateur n optim se pas du tout |e code)

D autres paranetres existent : -ggdb, -gstabs, etc

A noter le parametre —ansi qui force I'analyseur lexical du compilateur a n’utiliser que la
sémantique propre au langage c ansi ou tout autre langage I1SO C90 (C, fortran, etc

28/02/05 12

Etape 1 : la compilation es

Dans certain cas il est parfois nécessaire de passer certains éléments au
compilateur afin d’utiliser une compilation dite conditionnelle :

Exemple de compilation conditionnelle (.c) :

/* Code a inclure*/

printf(“affichage de ce texte ..);

Pour indiquer au compilateur qu’il doit inclure_le printf dans le code source
a compiler il faut passer a ce dernier le parametre suivant :

gcc —¢c -0 test.o -D test.c

28/02/05 13

En 3 étapes

LE LINKAGE

28/02/05 14

Etape 2 : le linkage w2

Représentation de la phase de mise a jour de la liste des symboles :

28/02/05

Fichier objet
.0

|

Fichier compilé Linkage

ﬁ

Y

Librairie statique .
a

et/ ou
dynamique .a/ .so

Exeécutable
Librairie statique .4

Librairie
Dynamique .a/ .sg

15

Etape 2 : le linkage 2

Il s’agit la aussi d’une conversion de format d’un fichier objet (.0) en un fichier
exécutable.

Executable

LINKAGE ~ou
0 Librairie

REGLE DE statique

Fichier d'entrée Fichier de sor>tie ou

CONVERSION Librairie
dynamique

Cette étape appelée « linkage » rajoute au fichier objet une table de
symboles décrivant les différentes entrées.

Le programme utilisé habituellement pour réaliser cette conversion est « Id
». Certains compilateurs tels que « gcc ou cc » integre aussi la fonction de
linkage en natif.

28/02/05 16

Etape 2 : le linkage 33

Exemple : linkage d’un objet (.0) afin d’obtenir un exécutable :
gcc —c —0 test test.o
Commande identique a partir de plusieurs fichiers sources :

gcc —o0 test testl.o test2.0

Nou? p)ouvons remarquer que pour le linkage, les fichiers d’entrée sont des fichiers objets
.0).

Combinaisons possibles d’un fichier source (.c) :

gcc —c —0 test test.c (compilation & linkage)

Pour information, sous le systeme GNU Linux le format par défaut est ELF et non a.out . La
greatlon d’un exécutable au lieu d’un objet indique au linkeur d’ajouter le point
‘entrée main.

Editeurs de liens/ Linkeur par plate-forme :

GNU Li nux gcc ou ld
SUN COS/ Sol ari s gcc ou acc ou ld
| BM Ai x gcc ou cc ouccr ould

28/02/05 17

En 6 étapes

LES LIBRAIRIES DYNAMIQUES

28/02/05 18

Les librairies dynamiques u

Définition : Programme
exécutable

Une librairie dynamique est une bibliotheque de fonctions qui st
chargées de facon dynamique. Plus précisément, ces librairies sont
chargées au moment de leur utilisation et déchargées lorsque nous ‘

n’en n’avons plus besoin :

- taille des binaires et objets plus petits
- chargé une seule fois méme si utilisé par plusieurs programme.
- permet de changer Dynamiquement de version de librairie

Désavantages :

- nécessite d’avoir la librairie dans le path.
- se doit d'étre linkée par Id ou gcc.

28/02/05 19

Les librairies dynamiques 2z

Création :

La création revient a linker un ensemble de fichier objets en un seul afin de former une
bibliotheque. Néanmoins, méme si le principe de'base reste le méme, les parametres a
passer different d’une plateforme a une autre :

GNU Li nux # gcc —c —shared -0 test.so test.o
SUN OS/ Sol ari s #1d —dY -G -0 test.so test.o
| BM Al X # 1d —-dY -G -0 test.o test.o

D’autre part, méme si sous SUN OY Solaris et IBM Aix, le linkeur utilisé de facon courante
est '/, il est de Iplus de plus courant_d’utiliser le compilateur méme qui offre de nos
jour cette double fonction de fagon intrinseque.

Extension d’une librairie dynamique :

GN\U Li nux

Sun OS/ Sun Sol aris
| BM Ai x

M CRCSOFT W ndows

28/02/05 20

Les librairies dynamiques s+

Test de dépendances :

Une fois compilé, il est possible de lister les dépendances d’un exécutable avec des
librairies dynamiques (ainsi que leurs versions). Cela est utile pour permettre d’'une
part de savoir si un programme est compilé avec une librairie dynamique et d’autre
part le nom de cette librairie.

/usr/bin/ldd test

Exemple de résultat : # |dd test

| i banasnv.so => /hone/tgayet/vittan2/1ib.i386_|inux/libanasnv.so
(0x40017000)

libc.so.6 =>/lib/tls/libc.so.6 (0x42000000)
/[1ib/1d-linux.so0.2 => /lib/ld-linux.so.2 (0x40000000)

Quand bien méme, le programme n’utilise pas de librairie dynamique « utilisateur », nous
pouvons remarquer qu’implicitement, ce dernier utilise des librairies dynamiques
s¥_steme comme celle de glibc : (implémentation des fonctions géneéeriques

utilisable en langage C).

28/02/05 21

Les librairies dynamigues 4+

D’autre part, cette librairie possede la

particularité de posséder un point
d’entreée.

En effet, il est possible de I’exécuter tel # /usr/bin/gcc -v
un programme . # /lib/libc.so.6

GNU C Library stable release version 2.3.2, by Roland McGrath et al. Reading specs from / agl/ tools/ perl/ current/ bin/

; i ..I'lib/gcc-1ib/i386- redhat- linux/ 3.2.2/ specs
Copyright (C) 2003 Free Software Foundation, Inc. . . . - .
py ont (©) .) . Configured with: ../ configure - - prefix=/usr - - mandir=/usr/ share/ man
This is free software; see the source for copying conditions. - -infodir=/ usr/ share/ info

There is NO warranty; not even for MERCHANTABILITY or FITNESSFORA - - enable- shared - - enable- threads=posix - - disable- checking
PARTICULAR PURPOSE. - -with- system- zlib])]
Compiled by GNU CC version 3.2.2 20030222 (Red Hat Linux 3.2.2- 5). }h?ggglgojgﬁaggg?;” - - host=1386-redhat- linux
Compiled on a Linux 2.4.20 system on 2003-11-12. gcc version 3.2.2 20030222 (Red Hat Linux 3.2.2-5)
Available extensions:

GNU libio by Per Bothner

crypt add- on version 2.1 by Michael Glad and others

linuxthreads- 0.10 by Xavier Leroy

The C stubs add- on version 2.1.2.

BIND-8.2.3-T5B

NIS(YP)/ NIS+ NSS modules 0.19 by Thorsten Kukuk

Glibc- 2.0 compatibility add- on by Cristian Gafton

libthread_db work sponsored by Alpha Processor Inc

Une autre source d'information est :

Thread- local storage support included.
Report bugs using the " glibcbug' script to <bugs@gnu.org>.

28/02/05 22

Les librairies dynamiques s

PATH :

Lors de I’exécution d’un programme nécessitant une librairie dynamigue,il peut étre
parfois nécessaire de modifier le cache systeme lié aux librairies a/namiques. En effet,
si cette derniére ne se trouve pas dans dans le répertoire courant du binaire, une
erreur de chargement se produira. Pour résoudre ce probleme de chemin, il existe
deux solutions :

1. Modifier la variable d’environnement afin d'y ajouter le chemin
souhaité :

setenv LD_LIBRARY PATH $ LD LIBRARY_PATH:/ nouveau_chemin
ou export LD LIBRARY PATH=$ LD LIBRARY_PATH:/ nouveau_chemin

nb : sous IBM Aix, la variable se nomme : LIBPATH
2. Réactualiser le cache lié aux librairies :

Fichier de paramétrage du cache : /et c/ 1 d. so. conf
Commande de régénération -/ sbin/ldconfig (U En root

Il est courant de voir le fichier |d.so.conf contenir les chemins suivants : / lib, / usr/ lib
(parfois un alias), / usr/ X11R6/ lib, / usr/local/ lib, / usr/ openwin/ lib, /
opt/ kde3/lib,/opt/gnome2/lib ...

28/02/05 23

Les librairies dynamiques e+

Exemple détaillé d’utilisation en langage C du chargement d’une librairie dynamique :

Exemple de chargement de la
test.c fonction test dans la Librairie
#i ncl ude <dl fcn. h> dynamique

#i ncl ude <stdlib. h>
#i ncl ude <stdio. h> Ouverture (handle) / Chargement

de la librairie libtest.so

Typedef void (*test_fonction)(void); Recherche du pointeur de la

i nt mai n(voi d) fonction fonction_test()
{ _ Excution de la fonction
voi d *nodul e;

Fermeture de la librairie

nodul e = dl open("l'i bt est®, RTLD_LAZY);
test _fonction dl syn(nodul e, " fonction_test");

/* utilisation de la fonction ici */ A noter que |e chargenent est aujourd’ hui
Inplicite et que ces étapes sont tranparentes.
Les fonctions dl open, dlsyn et dlclose sont

dl cl ose();
0O i mpl énment és dans la glibc.

28/02/05 24

Les librairies dynamigues -

Linkage :
Une librairie dynamique n’est liée a un programme qu’au moment du linkage :

GNU Li nux # gcc -fPICtest.0o -L./lib —ltest
SUN OS/ Sol ari s # gcc -KPICtest.o —L./lib —ltest
| BM Al x # gcc test.o —-L./lib —ltest

Nb : Le préfixe est rajouté automatiquement devant t est pour forner |ibtest.

—fPIC définit que le bloc dynamique qui sera chargé en mémoire pourra étre placé a
différente zone.

Tout comme pour |la phase de compilatign il est paossible de préciser certains parametres. En
effet, lors du linkage il est parfois nécessaire d’inclure des librairies statiques ou
dynamiques. Le parametre nécessaire pour ces faire est le suivant :

-1 /1ib —L./1ib/test

Le parametre -4 demande a |I’éditeur de lien de rechercher dans le chemin ./lib, a partir du
chemin courant, une bibliothéque statique |ibitest.2 ou bien partagée/ dynamique libtest.so.
L'editeur de liens parcourt tous les répertoires de bibliothéques standards (cf variable |
d’environnement _ :) et tous les - L indiqués. S le linkeur trouve a la fois une
librairie statiqgue et dynamique, il choisit de préférence la librairie dynamique sauf si le
parametre est’ passé aussi.

28/02/05 25

En 4 étapes

LES LIBRAIRIES STATIQUES

28/02/05 26

Les librairies statiques u4

Définition :

Une librairie statique est comme la librairie dynamique, une Programme
bibliothéque de fonctions mais au lieu que le code soit exécutable
dissocié du programme et chargé au moment de son

utilisation propre, ce dernier est compilé en dur.

Avantages :

- facile a gérer.
- ne nécessite rien d’autre ; facilement diffusable.

Désavantages :

- Peut former des binaires de taille conséquente ;

augmente donc la consommation de ressources, mais une fois alloué en RAM, aucun
autre

chargement n’est nécessaire.

28/02/05 27

Les librairies statiques 24

Création :

La création d’une librairie statique requiert I'utilisation du programme ar (commande uniforme quelque
soit la plateforme) :

/fusr/binfar —rv test.a testl.o test2.0 test3.0
ou
/Jusr/bin/far —rv test.a *.0

Celarassemb]le les 3 fichiers objets (testl.0, test2.0 et test3.0) en une librairie statique (test.a). |
k/’lngtwenglon .a((lzl,'g)ne librairie statique est constante quelque soir la plateforme Unix a I’exception de
ndows. (.lib).

Extension d’une librairie statique :

GN\U Li nux

Sun OS/ Sun Solaris
| BM Ai x

M CRCSOFT W ndows

Il est possible de solliciter la recréation de cette table (utile pour SUN OS mais implicite sur les autres
plateformes) :

ranlib test.a®u jpmlicite sur une majorité de plateforme sauf sous SUN OS.

28/02/05 28

Les librairies statiques sz

Test :

Il est aussi possible de lister le contenu des fichiers objets inclus dans la librairie :

lusr/bin/far -t test. a

Exemple de résultats :

ad_server.o
cominter.o
com_util.o
filointer.o
miscell.o
paral.o
pilot.o
simul_api.o
spyinter.o
userint.o

La commande suivante permet de lister cette table de symboles :

/fusr/bin/nm test.a

Légende :

U : undefined (implémentation
externe)
T :implémenté al'intérieur

Exemple de résultats :

ad_server.o:
00000099 T affichage_etat_client
00000004 C bDebugAd
00000004 C bDebugSu

U bTrace
00000390 T close_socket
0000040f T close_tab_client
0000046d T connexion_client

cominter.o:

U atoi
00000004 d bComlnit
00000000 d bNolnitWarn
00000010 b bTrComlInter

« Pour un objet, cela liste les fonctions et pour une librairie

les fonctions par objet. »

28/02/05

29

Les librairies statiques a4

Linkage :

Le linkage d’un binaire avec une librairie statique permet d’ajouter les fonctions
implémentées
a l'intérieur de cette derniere. Au final, la table de symboles ainsi générée sera commune.

Compilation d’un fichier source (test.c) avec la librairie statique afin de générer le
binaire (test) :

G\U Li nux # gcc —c test.o —0 test
SUN Sol ari s # gcc —c test.o -0 test
| BM Ai X # gcc —c test.o -0 test

~ test

Le linkage d’une librairie statique avec un binaire est identique au linkage d’un fichier
objet.

28/02/05 30

Conclusion

Jespére que ce document vous rendra service.

Pour davantage d’aide sur les différentes commandes :
man
--help
Les how to sur |la conpilation (glibc, gcc, gdb ..).
Les foruns dédi és (Newsgroups).
| es sites dédi és.
Et bien entendu Google.fr

http://ww. fortran-2000. or g/ ArnaudReci pes/ sharedli.htn
http://ww. nyangau. fsnet. co.uk/dl1/dll.htm

28/02/05 31

Making of...

Diaporama réalisé a partir des deux projets open source suivant :

5# OpenOffice.fr

Chaal| Gimp

28/02/05 32

(-

i-lll!%

4
!

=
=

(g =
i
D)
._n"”____.

u_l
I
- =

L)
=
=
O

(a'a

33

28/02/05

