Introduction aux Makefile

10000 A0 011111010901 M 01010104 a0t 12110

10000 00091907109 01 2 07 010704 01 001 107 1007007 0 010101111101
N0 0007070071011 007 0070070707 &1 191107 09 0109 09 04 09 0709 001107

1010070072010 0 01 009 0 CA O 0107 0011 011 00 001 D0 0 A 014190 w_,ﬂ
1010707 0710070011071 007 00707 ¢ o 191109 0109 0 CA 09 0709 07 001 1

100N 0T MO A M H MM 0100110110 Lﬁﬂﬁ'
0000 0 0T 0T M MO 0 0 00 10110

100 0N AN 01110101 01 01 019 A Aot 1011014111111 1001 011 21 00

REF. OSP002

GAYET Thierry

Plan de la présentation

m

Introduction

Outils de transformation

Regles de transformation P

Make QpenClassioon .5

Création d’un makefile pas a p: -
el -

Conclusion

w w o

[

28/02/05 2

Introduction -

Sous Unix il est courant de faire appel aux commandes suivantes :

make Interprétation du fichier Mkefile
du chem n cour ant

Ou bien :

./configure Génération d un script propre a la
pl at ef or e

make Conpi | ati on
make install Installation du programre

Cette commande lance immeédiatement une compilation automatique en gérant les
dépendances (date de la derniere modification, ...) en ne régénérant que ce qui est
nécessaire.

« C'est en gros une sorte d’automate intelligent ,
Un parseur de régles »

28/02/05

Introduction 2:

Le protqramme make est un programme permettant de réaliser des L
ransformations d’un format a un autre. Dans 90%des cas il est utilisé
pour I'automatisation des taches de compilation et de linkage.

Make a pour role de prendre en compte tout ce que nous venons de voir, mais
aussi :

I- d? gérer en plus les dépendances sur ce qui est déja crée et ce qui ne
'est pas.

- de prendre en compte les plate formes (si besoin).
- de gérer aussi bien la compilation que le linkage.

- de créer des exécutables, des librairies statiques et dynamiques, etc ...

28/02/05 4

LES OUTILS DE TRANSFORMATION

28/02/05 5

Outils de transformation i

Vue complete de la chaine de création (compilation et linkage) :

Fichier objet
.0

|

Compilation : Linkage

Include

28/02/05

[

Librairie statique .
a

et/ ou
dynamique .0/ .

Fichier objet (.0)
Exécutable
Librairie statique .4

Librairie
Dynamique .0 / .S

SO

Outils de transformation 2.

T1

Compilati

T2
Linkage

ags

Librairie
statique

.0

Sources

1

28/02/05

Objets
temporaires

j@/\' Executable
e

.0/ .so

Librairie
dynamique

.0/ .so

Résultant

3

Outils de transformation 2.

Compilateur C:
GNU Linux gcc
SUN OY Solaris accC ou gcc
IBM Aix CCr ou cc oOu gcc

(*) le compilateur gnu gcc existe pour toutes les plateformes.

Linker / editeur de liens :

GNU Linux gcc et Id
SUN OY Solaris acc ou gcc et Id

IBM Aix cCcCr ou cc ou cc et Id
: :

28/02/05 8

Outils de transformation s

Outils de création de librairie statique :

Pour toute les plate- forme : ar

ranlib

Note sur les exécutables :

Une fois un exécutable généré, il est conseillé de le rendre réellement exécutable

(s’il ne I'est déja) :
chmod| | u=rw | Bl

X
(u=rwx peut étre remplacé par son code octal : 04755)

28/02/05 9

REGLES DE TRANSFORMATION

ET DE DEPENDANCE

28/02/05 10

Regles de creation us

Compilation simple d’un source .c/ .h pour obtenir un objet .0 :

F

Comp(l:lateur Flag de Fichier résultant Fichier source
compilation de la compilation a compiler

Diagramme de transformation :

fichior cgu @D fichier 0

Compilation

Quand bien méme il peut y avoir un outil ou une regle pour une transformation,
Il peut étre du golt de chacun d’utiliser un compilateur ou un linkeur plutdét qu’un

Autre.

28/02/05 11

Regles de creation zs

Linkage d’un seul fichier source .c:

A partir du moment ou un exéecutable est requis, il est necessaire de faire intervenir la
phase de linkage.

- 0 result fichier.c 2 étapesen 1

-0 result.cyl fichier.c Phase de compilation
- 0 result m Phase de linkage

Diagramme de transformation :
Compilation Linkage

_O >© N result

28/02/05 12

Regles de creation ss

Linkage de n fichiers sources .c:

o R o e Qe

ou

C

Diagramme de transformation g

o S
Compilation/vQ—’m

Linkage

icnern R

28/02/05 13

Regles de creation s

Création d’une librairie statique .a (toute plateforme) :

Il est juste nécessaire de lancer le programme ranlib sous SUN OS afin de
Remettre a jour la table de symboles de la librairie :

lib_statique.a

Extraction des objets .0 d’'une librairie statique .a :

lib_statique.a

28/02/05 14

Regles de creation sis

Création d’une librairie dynamique :

GNU Linux :

CC -0 lib_dynamic.sq
CC -0 lib_dynamic.sq

SUN OY Solaris / IBM Aix :

-C - 0 lib_dynamic.sc

_dY _o lib_dynamic.sd SUN

28/02/05 15

;Z_f N
LE PROGRAMME MAKE

28/02/05 16

Le binaire du programme make est situé dans le répertoire : / usr/ bin

Par défaut ce programme prend en compte le fichier makefile ou Makefile du
répertoire courant. Il suffit donc de lui faire appel :

make

Néanmoins, il est possible de lui spécifier un autre nom de fichier :

make —f

S make ne trouve aucun fichier, ce dernier afficher le message suivant :

make: *** No targets specified and no nakefile found. Stop.

28/02/05 17

Point d’entree

Dans la majorité des cas le Makefile est appelé directement, c’est- a- dire :
make

Dans ce cas, le Makefile ira au point d’entrée par défaut (do). Cela se représentera
dans le fichier Makefile par le préfixe suivant :

do:

Cependant, il peut étre parfois nécessaire de lui passer des noms afin de lui préciser
d’autres points d’entree :

make cl ean OuU encore # make i nstall

Le premier appel est souvent utilisé pour f)ermettre de nettoyer I'’environnement de
développement. Le second pour installer une application sur une destination précise.

Dans ces derniers cas le point d’entrée est respectivement cl ean: ouinstall: et non
do:

28/02/05 18

Commentaires

SJivantolla\phil?#sophie du Shell Unix, un commentaire dans un Makefile est symbolisé par
un diese :

Exemple de commentaire :

Cette ligne est en commentaire jusqu' au retour chari ot

Contrairement au langage C, un commentaire nécessitant plusieurs lignes, ne pourra
utiliser les symboliques suivantes :

#
Co ntaire / # Commentaire
sur plusieurs
|ignes
#

pl usi eurs
nes

CORRECT
FAUX

Un message est prioritaire sur tout le reste ; en d’autres terme un diese inhibe le reste de/la ligr

19

28/02/05

Macros iz

Les fichiers makefile permettent |'utilisation intrinséque de macros. Ces dernieres
permettent de clarifier la syntaxe en factorisant les informations :

Exemple de définition de macros :

Déefinition d une macro SRC qui sera égale a ./src
SRC = . /src

Par convention, |e nomdes nmacros est en ngjuscule !!

La lecture et donc |’exécution d’un Makefile étant linéaire, cette macro Eeut étre utilisée
(apres la définition) en utilisant la syntaxe suivante : $(NOM_VARIABLE)

src_test = $(SRC)/test

Celacréera:src test = . /src/test (le contenu de SRC sera substitué dans la chaine)

D’autre part, cela permet de récupérer le contenu d’une variable d’environnement :

CC = $(COMPILATEUR C)

(ici lavariable d’environnement compilateur_c sera remplacée
par son) contenu préalablement positionné)

28/02/05 20

Macros::

Technique utilisable pour s’assurer qu’une chaine soit bien assigné a une valeur par défaut

ARCHREF = Li nux
ARCH = $(ARCHREFS$(Cl BLE)) $(Cl BLE)

Ici si la variable d’environnement CIBLE existe, la condition $_$ARCHREF$(CIBL) he sera
pas validée et ARCH sera égal a CIBLE. Dans le cas contraire il sera égal a ARCHREF.

En détaillant, la syntaxe suivante $(ARCHREF$(CIBLE)) revient a rechercher la chaine
CIBLE dans la seconde chaine ARCHREF . Il est donc logique que la recherche soit
infructueuse puisque ARCH est difféerent de ARCHREF dans le cas ou CIBLE est _
positionné. Dans le second cas, CIBLE etant nul, la recherche est inactive puisque qu’il
n'y arien a rechercher dans ARCHREF ; ARCH est donc égal a ARCHREF.

Il est a noter que sous Unix, une chaine inexistante ne retourne pas d’erreur mais une
chaine vide. En effet :

ARCH = $(Cl BLE)

Si CIBLE n’existe pas ARCH sera équivalent a un chaine vide

28/02/05 21

D'un makefile a |'autre

Dans un makefile il est possible d’appeler une série de commande :
RMOBJ = @m-f *.0

cl ean:
$(RMOBJ)

La commande en ligne apparaitra ici. La faire précéder par un arobase @ permet de ne pas
I’afficher tout en continuant de I’exécuter.

Pour cumuler plusieurs commande sur une seule ligne, il est possible d’utiliser la syntaxe
suivante :

. _ * . , i i
@cd src; rm~f *.o nake) va dans le répertoire src, supprime les .o

puis lance le makefile

Il est possible a partir d’un makefile d’en appeler un second puisque make est aussi une
commande.

28/02/05 22

Variables automatiques

Make autorise un certain nombre de variables automatique dont les plus
courantes sont :

$@ Fichier destination apres transformation

$< Fichier source avant transformation

Transformation

28/02/05 23

Définition d’'une
transformation

Quand bien méme make accepte un certain nombre de regles implicites, il lui est possible de
redéfinir ces derniere. Avec la méme logique, il est possible de lui en ajouter.

Définition personnalisée de regle de transformation d’un format a un autre ; d’une extension a un
autre :

.SUFFI XES: .0 .cC

.C.O.
$(CO —c $(CFLAG -0 $@ $<

Ici lorsque make trouvera un .c et qu’il souhaite obtenir un .o, il passera dans la regle
ci- dessus. Cette derniere est assez genérale via |'utilisation des variables automatiques.

Transformation

,| Nouvelle

28/02/05 24

Premier Makefile 12

Point
d’entrée

28/02/05

> S$(BINTEST)

Chaine de création :

test = test.c + test.h

Exemple de Makefile :

Répertoire de travail :
SRC = ./src
INC .I'srclinclude

Appel du make :
make

BIN ./ bin

Nom de I’exécutable a générer :

Source s test.c + test.h

BINTEST = $(BIN)/ test

Compilateur C Ansi :

Binaire cible : test

CC = gcc

Hags de compilation / débug / warning

cl/ h — o

CFLAG = - g -Wall -02 —$(INC)
do: $(BINTEST)

$(CC) — $(CFLAG) $(SRC)/ test.

Equivalent a :

gcc —C -g -wWall —-@ -1../src/include
C —0/$f@ test.c -0 ../bin/ test

(lci $@est égal a BINTEST)

25

Premier Makefilez:

E# gcc —¢c -0 ./ bin/test
src/test.c

' Fichier d’entrée : test.c

. Dans lamesure ol il n'yaqu'un | Hchier de sortie : test
- seul fichier (test.c/ test.h) a . Type : exécutable

. compiler il est possible de générer @

. I’exécutable souhaité (test) en

' une seule commande.

Avant tout il faut avoir bien en téte le
schéma de transformation d’un fichier .c/ .
h vers un fichier exécutable.

28/02/05 26

APPRENTISSAGE

PAR L'EXEMPLE

28/02/05 27

Préambule

La philosophie pour arriver & écrire un Makefile est la suivante :

Quels fichiers sources avons nous ? Quel format de fichier ?Quel langage ?Y a-t-il une
arborescence précise pour le projet (include/ librairies/ binaire/ source) ?

Que voulons nous générer comme fichiers (exécutable, librairie statique/ dynamique, ...) ?
Connaissons nous toutes les regles de transformation ?

Souhaitons nous un fonctionnement multi- plateforme / multi systeme d’exploitation ?

Tout comme dans une majorité de domaine, il est possible de généerer une multitude de Makefile
différents mais qui réaliseront exactement la méme chose. Il en va de chacun pour personnaliser ce
dernier et utiliser les outils que nous avons |I’habitude d’utiliser.

« Nous allons donc prendre un exemple
et le retranscrire pas a pas au sein d’'un Makefile »

28/02/05 28

Arborescence

Exemple standard d’une arborescence :

—— SIC

L. include

28/02/05

—— lib

— 0bj

— bin

Fichiers source .c

Fichiers header .h

Librairies statique /
dynamiques
al .so
Fichiers objet temporaires
.0

Fichiers binaire exécutable

29

Ce gque I’on souhaite

Disposant de plusieurs fichiers sources, nous souhaitons générer un binaire et
une librairie statique.

Les source sont en langage C .c sont localisés dans le répertoire ./ src
Les includes .h dans le répertoire ./ src/include

Les objets temporaires dans : ./ obj

La librairies dans ./ lib

Nom souhaité : |ibhtest.a

E enfin le binaires exécutables dans ./ bin :

Nom souhaité : test

28/02/05 30

Les sources

Les fichiers utilisés pour I’'exemple :
Les sources .c :
Jsrc/testl.c

Jsrc/test2.c
Jsrc/test3.c Pour le binaire

J/src/libtest. g

Le source .h: Pour la librairie statique

/src/include/ test.h

28/02/05 31

Création pas a pas d’un
Makefile

Bien que les Makefiles soient adaptés a la compilation / Linkage de n fichiers ils sont
d’autant plus adaptés aux programmes découpés de fagcon modulaire :

Jbin/test = /src/testl.c+ ./src/test2.c+ ./src/test3.c+ /
src/include/ test.h

Jlib/libtest.a = .I'src/ libtest.c + /
src/ include/ test.h

Pour ce faire, il est possible de créer les chaines de fabrication :

Jobj/libtest.o = ./src/libtest.c + ./src/include/ test.h
(conpi | ati on)

[/ bin/test Jobj/testl.o + ./obj/test2.0 + ./obj/test3.0 + /lib/libtest.a
(11 nkage)

Jobj/testl.o = ./src/testl.c + ./src/include/test.h (conpi | ati on)
Jobj/test2.0 = ./src/test2.c + ./src/include/test.h (conpil ati on)
Jobj/test3.0 = ./src/test3.c + ./src/include/test.h (conpil ati on)

28/02/05 32

Création pas a pas d’un
Makefile

Les co_mm{:mdes de compilation unitaire peuvent étre retranscrites de la fagcon
suivante :

Jobj/libtest.o = ./src/libtest.c + ./src/include/test.h
#gcc-c-o0./obj/libtest.o —./src/include ./src/libtest.c
Jobj/testx.o = ./src/testx.c + ./src/include/test.h

gcc-c-o0./obj/test.o 4./src/include ./src/test.c®@

) avec x compris entre 1 et 3.

De méme pour lacommande de linkage :

Jbin/test = ./obj/testl.o + ./bin/test2.0 + ./bin/test3.0 + /lib/libtest.a

gcc-o0 ./bin/test ./obj/testl.0 ./bin/test2.0 ./bin/test3.0 /lib/libtest.a

28/02/05 33

Création pas a pas d’un
Makefile

Arbre de création

/'src/ testl.c O 1 11ib/ Libtest.a

./src/testZ.CE) ./ bin/ test

./src/testS.CE é./obj/testS.o

:Compilation! En tout il y aura 6 transformations
""""" T Synchr ones.

include : ./src/include

28/02/05

34

Enfin le makefile

Makefile du test :

Répertoire de travail :

SRC = ./src

INC ' src/include

LIB lib

OBJ ./ obj

BIN . bin

TARGETDIR = /usr/local/ progtest

Nom des fichiers a générer :
BINTEST = $(BIN)/ test
LIBTEST = $(LIB)/ libtest.a
TYPEOS = LINUX

Compilateur C Ansi :
= gcc
= @ar v
= @m —f $(OBJ)/ *.0
= @echo
MKREP = @mkdir $(TARGETDIR)
MKDROIT = @chmod u=rwx
CPPROG = @(cp $(BIN)/ * $(TARGETDIR); cp $(LIB)/ * $(TARGETDIR))

Hags de compilation / débug / warning
CFLAG = -g -Wall 02 —$(INC) - D$(T VPEOS)

28/02/05 35

Suite du Makefile

»Traitement linéaire/ séquentiel

do: $(LIBTEST) $(BINTEST)

1

$(LIBXEST): -~ 2
. ggg\% ?@EB&C(E)LQ]S I)|§t(§§?)o/“bt68t € —0 $(OBJ)/ libtest.o Génére la librairie statique.

$(BINTEST):

$(CC) — $(CFLAG) $(SRC)/ testl.c —o0 $(OBJ)/ testl.o

$(CC) — $(CFLAG) $(SRC)/ test2.c —0 $(OBJ)/ testZ2.0 |
$(CC) — $(CFLAG) $(SRC)/ test3.c -0 $(OBJ)/ test3.0 '
$(CC) $(LIBTEST) $(OBJ)/ testl.0 $(OBJ)/ test2.0 $(OBJ)/ test3.0 -0 $@
$(MKDROIT) %@

$(ECHO) «Programme compilé.»

clean: Génére le binaire en utilisan
$(RMOB) la librairie.
ake clean $(ECHO) «Environnement nettoyé.»

install:

$(MKREP)
$(CPPROG)
$(ECHO) «Programme installé.»

$(ECHO) «Lancement du programme»
$(BINTEST)

e start

28/02/05 36

Seconde methode

Une autre possibilité aurait été d’écrire :

$(LIBTEST): $(OBJ)/libtest.o
$(AR) $@ $(OBJ)/ libtest.o

$(BINTEST): $(OBJ)/ testl.0 $(OBJ)/ test2.0 $(OBJ)/ test3.0
$(CC) $(LIBTEST) $(OBJ)/ testl.0 $(OBJ)/ test2.0 $(OBJ)/test3.0 -0 $@
$(MKDROIT) $@
$(ECHO) «Programme compilé.»

. C. O:
$(ECHO “génération de” $@"a partir de” $<
$(CC) —c $(CFLAG) -0 $@ $<

Pour la génération de libtest ou bintest, make regardera s’il possede I’équivalent en .c
gu’il sait compilé par la regle définit par le suffixe.

28/02/05 37

4 Point d’entrée :

make
génere la librairie PUIS le binaire

make clean
nettoie I’environnement des objets et binaires précédents

make install

crée le répertoire et copie le programme dans
un emplacement choisi

make start

lance I’exécution du programme

28/02/05 38

Evolutions

Une évolution possible des makefiles est I'utilisation des programmes gnu open source
Suivant :

- automake automake
- autoconf Makefile.am *» Makefile.in

En effet, ils permettent de créer un fichier de configuration (Makefile.in) utilisable par la
suite dans les Compilations. De plus, il vérifie si la totalité de la chaine compléete que
make utilisera par La suite (présence des binaires et librairies utiles pour les
transformations, version des Librairies).

Une fois le fichier de config généré (via ./ configure), il est possible de lancer
successivement sa compilation (make) et enfin son installation (make install).

http://www.gnu.org/ software/ automake/

http://www.gnu.org/ software/ autoconf/
http://www.amath.washington.edu/ ~If/ tutorials/ autoconf/

28/02/05 39

Autres utilisations

Comme nous I'avons vu les makefile sont utilisés principalement pour le développémen
Néanmoins, d’un point de vue conceptuel, il en résulte une transformation de formats.
Il est possible de I'utiliser pour les utilisations suivantes :

- transformation du latex (.tex) en Postscript (.ps) ou Acrobat (.pdf)

- transformation du .xml avec un .xsl+.dtd pour générer diverse sorties.

- etc...

28/02/05 40

Conclusion

Jespere que ce document vous rendra service.

Pour davantage d’aide sur les différentes commandes :

--hel p
Les how to sur la conpilation (glibc, make, 1d, gcc, gdb .).
Les foruns dédi és (Newsgroups).
| es sites dedi és.

Et bien entendu google.fr, gnu.org, freshneat. net

28/02/05 41

Bibliographie

S
3 -
N i
/ F’ Ty
Abaiircifass L -
Fragses o i

GNU Make

B Un livre de référence :

Managing Projects with GNU make, 3rd Edition
By Robert Mecklenburg

3rd Edition November 2004

ISBN: 0- 596- 00610- 1

300 pages

Edition O'REILLY

B Deux liens aretenir :

http://www.gnu.org/ software/ make/ manual/ make.html
http:// www.madchat.org/ coding/ c/ c.ansi/
http://www.oreilly.com/ catalog/ make3/index.html

28/02/05

42

Making of...

Diaporama réalisé a partir des deux projets open source suivant :

5# OpenOffice.fr

Chaal| Gimp

28/02/05 43

(-

i-lll!%

4
!

=
=
S

D)

._n"”____.

u_l
I
- =

L)
=
=
O

(a'a

44

28/02/05

