
Introduct ion aux Makefile

GAYET Thierry

REF. OSP002

Thierry.Gayet@laposte.net

28/ 02/ 05 2

Plan de la présentat ion

Introduct ion
Outils de t ransformation
Règles de t ransformation
Make
Créat ion d’un makefile pas à pas.
Conclusion

28/ 02/ 05 3

Introduct ion 1/ 2

Sous Unix il est courant de faire appel aux commandes suivantes :

make Interprétation du fichier Makefile
du chemin courant

Ou bien :

./configure Génération d’un script propre à la
 plateforme

make Compilation
make install Installation du programme

Cette commande lance immédiatement une compilat ion automat ique en gérant les
dépendances (date de la dernière modif icat ion, …) en ne régénérant que ce qui est
nécessaire.

« C’est en gros une sorte d’automate intelligent ,
Un parseur de règles »

28/ 02/ 05 4

Introduct ion 2/ 2

Le programme make est un programme permettant de réaliser des
transformations d’un format à un autre. Dans 90% des cas il est utilisé
pour l’automatisation des tâches de compilation et de linkage.

Make a pour rôle de prendre en compte tout ce que nous venons de voir, mais
aussi :

- de gérer en plus les dépendances sur ce qui est déjà crée et ce qui ne
l’est pas.

- de prendre en compte les plate formes (si besoin).

- de gérer aussi bien la compilation que le linkage.

- de créer des exécutables, des librairies statiques et dynamiques, etc …

28/ 02/ 05 5

LES OUTILS DE TRANSFORMATION

3 étapes

28/ 02/ 05 6

Outils de transformation 1/ 4

Vue complète de la chaîne de création (compilation et linkage) :

Source
.c

Include
.h

Compilat ion Linkage

Fichier objet (.o)

Exécutable

Librairie statique .a

Librairie
Dynamique .o / .so

Librairie stat ique .
a

et / ou
dynamique .o / .

so

Fichier objet
.o

ETAPE N°1 ETAPE N°2

.o

28/ 02/ 05 7

Outils de transformation 2/ 4

.c

.o

Compi lat i
on

.h

Sources

T1 T2

Linkage

.a

.o/ .so

Objets
temporaires

CC

.o

Executable

.a

.o/ .soLibrair ie
dynamique

Librair ie
stat ique

Résultant

1 2 3
LD

CC

AR

28/ 02/ 05 8

Outils de transformation 2/ 4

Compilateur C :

GNU Linux gcc
SUN OS/ Solaris acc ou gcc
IBM Aix cc_r ou cc ou gcc

(*) le compilateur gnu gcc existe pour toutes les plateformes.

Linker / editeur de liens :

GNU Linux gcc et ld
SUN OS/ Solaris acc ou gcc et ld
IBM Aix cc_r ou cc ou gcc et ld

CC

LD

28/ 02/ 05 9

Outils de transformation 3/ 4

Outils de création de librairie statique :

Pour toute les plate- forme : ar

 ranlib

Note sur les exécutables :

AR

RL

Une fois un exécutable généré, il est conseillé de le rendre réellement exécutable
(s’ il ne l’est déjà) :

chmod u= rw
x

result

(u= rwx peut êt re remplacé par son code octal : 04755)

28/ 02/ 05 10

REGLES DE TRANSFORMATION

5 étapes

ET DE DEPENDANCE

28/ 02/ 05 11

Règles de créat ion 1/ 5

Compilation simple d’un source .c/ .h pour obtenir un objet .o :

CC - c - o f ichier.o fichier.c

fichier.c

Diagramme de transformation :

f ichier.o

Compi lat ion

Flag de
compilat ion

Compilateur
C

Fichier résul tant
de la compi lat ion

Fichier source
 à compiler

Quand bien même il peut y avoir un outil ou une règle pour une transformation,
Il peut être du goût de chacun d’ut iliser un compilateur ou un linkeur plutôt qu’un
Autre.

28/ 02/ 05 12

Règles de créat ion 2/ 5

Linkage d’un seul fichier source .c :

A part ir du moment où un exécutable est requis, il est nécessaire de faire intervenir la
phase de linkage.

CC - c - o result f ichier.c

fichier.c

Diagramme de transformation :

f ichier.o

Compi lat ion Linkage

result

ou

- o resultLD

CC - c - o result.o fichier.c

fichier.o

Phase de compilat ion

Phase de l inkage

2 étapes en 1

28/ 02/ 05 13

Règles de créat ion 3/ 5

Linkage de n fichiers sources .c :

CC - c - o result f ichier1.c

fichier1.o

ou

- o resultLD

CC - c - o result1.o fichier1.c

fichiern.c

CC - c - o resultn.o fichiern.c

fichiern.o

Diagramme de transformation :

f ichier1.c

Compi lat ion
Linkage

result

f ichier1.o

fichiern.c

fichiern.o

28/ 02/ 05 14

Règles de créat ion 4/ 5

Création d’une librairie statique .a (toute plateforme) :

Extraction des objets .o d’une librairie statique .a :

AR - rv lib_statique.a *.o

Il est juste nécessaire de lancer le programme ranlib sous SUN OS afin de
Remettre à jour la table de symboles de la librairie :

RL lib_statique.a

AR - x lib_statique.a

28/ 02/ 05 15

Règles de créat ion 5/ 5

Création d’une librairie dynamique :

 GNU Linux :

 SUN OS/ Solaris / IBM Aix :

CC - c - o lib_dynamic.so fichier.c- shared

CC - o lib_dynamic.so fichier.o- shared

LD - dY -
G

- o lib_dynamic.so fichier.o

LD - dY -
G

- o
lib_dynamic.o

fichier.o

CC - c - o lib_dynamic.so fichier.c

SUN

IBM

28/ 02/ 05 16

LE PROGRAMME MAKE

2 étapes

GNU

28/ 02/ 05 17

Appel

Le binaire du programme make est situé dans le répertoire : /usr/bin

Par défaut ce programme prend en compte le f ichier makefile ou Makefile du
répertoire courant. Il suffit donc de lui faire appel :

make

Néanmoins, il est possible de lui spécif ier un autre nom de fichier :

make –f Makefile2

Si make ne trouve aucun fichier, ce dernier afficher le message suivant :

make: *** No targets specified and no makefile found. Stop.

28/ 02/ 05 18

Point d’entrée

Dans la majorité des cas le Makefile est appelé directement, c’est- à- dire :

make

Dans ce cas, le Makefile ira au point d’entrée par défaut (do). Cela se représentera
dans le fichier Makefile par le préfixe suivant :

do:

Cependant, il peut être parfois nécessaire de lui passer des noms afin de lui préciser
d’autres points d’entrée :

make clean ou encore # make install

Le premier appel est souvent ut ilisé pour permettre de nettoyer l’environnement de

développement. Le second pour installer une applicat ion sur une dest ination précise.

Dans ces derniers cas le point d’entrée est respect ivement clean: ou install: et non
do:

28/ 02/ 05 19

Commentaires

Suivant la philosophie du Shell Unix, un commentaire dans un Makefile est symbolisé par
un dièse : #

Exemple de commentaire :

Cette ligne est en commentaire jusqu’au retour chariot

Contrairement au langage C, un commentaire nécessitant plusieurs lignes, ne pourra
ut iliser les symboliques suivantes :

/* // #

 Commentaire // Commentaire # Commentaire

 sur plusieurs // sur plusieurs # sur plusieurs

 lignes // lignes # lignes

*/ // #

FAUX FAUX
CORRECT

Un message est prioritaire sur tout le reste ; en d’autres terme un dièse inhibe le reste de la ligne.

28/ 02/ 05 20

Macros 1/ 2

Les fichiers makefile permettent l’ut ilisat ion intrinsèque de macros. Ces dernières
permettent de clarif ier la syntaxe en factorisant les informations :

Exemple de définit ion de macros :

Définition d’une macro SRC qui sera égale à ./src

SRC = ./src

 Par convention, le nom des macros est en majuscule !!

La lecture et donc l’exécution d’un Makefile étant linéaire, cette macro peut être ut ilisée
(après la définit ion) en utilisant la syntaxe suivante : $(NOM_VARIABLE)

src_test = $(SRC)/test

Cela créera : src_test = ./src/test

D’autre part, cela permet de récupérer le contenu d’une variable d’environnement :

CC = $(COMPILATEUR_C)

(le contenu de SRC sera subst i tué dans la chaîne)

(ici la var iable d’envi ronnement compi lateur_c sera rem placée
par son) contenu préalablement posi t ionné)

28/ 02/ 05 21

Macros 2/ 2

Technique utilisable pour s’assurer qu’une chaîne soit bien assigné à une valeur par défaut
:

ARCHREF = Linux

ARCH = $(ARCHREF$(CIBLE))$(CIBLE)

Ici si la variable d’environnement CIBLE existe, la condit ion $(ARCHREF$(CIBLE)) ne sera
pas validée et ARCH sera égal à CIBLE. Dans le cas contraire il sera égal à ARCHREF.

En détaillant, la syntaxe suivante $(ARCHREF$(CIBLE)) revient à rechercher la chaîne
CIBLE dans la seconde chaîne ARCHREF . Il est donc logique que la recherche soit
infructueuse puisque ARCH est différent de ARCHREF dans le cas où CIBLE est
posit ionné. Dans le second cas, CIBLE étant nul, la recherche est inact ive puisque qu’il
n’y a rien à rechercher dans ARCHREF ; ARCH est donc égal à ARCHREF.

Il est à noter que sous Unix, une chaîne inexistante ne retourne pas d’erreur mais une
chaîne vide. En effet :

ARCH = $(CIBLE)

Si CIBLE n’existe pas ARCH sera équivalent à un chaîne vide

28/ 02/ 05 22

D’un makefile à l’autre

Dans un makefile il est possible d’appeler une série de commande :

RMOBJ = @rm –f *.o

clean:

$(RMOBJ)

La commande en ligne apparaîtra ici. La faire précéder par un arobase @ permet de ne pas
l’afficher tout en continuant de l’exécuter.

Pour cumuler plusieurs commande sur une seule ligne, il est possible d’utiliser la syntaxe
suivante :

@(cd src; rm –f *.o; make)

Il est possible à part ir d’un makefile d’en appeler un second puisque make est aussi une
commande.

va dans le réper toi re src, suppr ime les .o
puis lance le makef i le

28/ 02/ 05 23

Variables automatiques

Make autorise un certain nombre de variables automatique dont les plus
courantes sont :

$@ Fichier destination après transformation

$< Fichier source avant transformation

Transformation
$@$<

28/ 02/ 05 24

Définit ion d’une
transformat ion

Quand bien même make accepte un certain nombre de règles implicites, il lui est possible de
redéfinir ces dernière. Avec la même logique, il est possible de lui en ajouter.

Définit ion personnalisée de règle de transformation d’un format à un autre ; d’une extension à un
autre :

.SUFFIXES: .o .c

.c.o:
$(CC) –c $(CFLAG) –o $@ $<

Ici lorsque make trouvera un .c et qu’il souhaite obtenir un .o, il passera dans la règle
ci- dessus. Cette dernière est assez générale via l’ut ilisat ion des variables automatiques.

Nouvelle
Transformation

.c .o

28/ 02/ 05 25

Premier Makefile 1/ 2

Exemple de Makefile :

Répertoire de travail :
SRC = ./ src
INC = ./ src/ include
BIN = ./ bin

Nom de l’exécutable à générer :
BINTEST = $(BIN)/ test

Compilateur C Ansi :
CC = gcc

Flags de compilat ion / débug / warning
CFLAG = - g –Wall –O2 –I$(INC)

do: $(BINTEST)

$(BINTEST)
$(CC) –c $(CFLAG) $(SRC)/ test.c –o $@

Chaîne de créat ion :
test = test.c + test.h

Appel du make :
make

Equivalent à :

gcc –c -g –Wall –O2 -I../ src/ include
 ./ src/ test.c - o ../ bin/ test

Point
d’entrée

(Ici $@ est égal à BINTEST)

Source : test.c + test.h $<

Binaire cible : test $@

 .c / .h .o bin

28/ 02/ 05 26

 Premier Makefile2/ 2

Commande :

gcc –c –o ./bin/test ./
src/test.c

gcc

gcc

Fichier d’entrée : test.c

Fichier de sortie : test
Type : exécutable

Avant tout il faut avoir bien en tête le
schéma de transformation d’un fichier .c / .
h vers un f ichier exécutable.

Dans la mesure où il n’y a qu’un
seul f ichier (test.c / test.h) à
compiler il est possible de générer
l’exécutable souhaité (test) en
une seule commande.

CC

LD

28/ 02/ 05 27

APPRENTISSAGE

PAR L’EXEMPLE

28/ 02/ 05 28

Préambule

La philosophie pour arriver à écrire un Makefile est la suivante :

 Quels f ichiers sources avons nous ? Quel format de fichier ? Quel langage ? Y a- t - il une
arborescence précise pour le projet (include/ librairies/ binaire/ source) ?

 Que voulons nous générer comme fichiers (exécutable, librairie stat ique/ dynamique, …) ?

 Connaissons nous toutes les règles de transformat ion ?

 Souhaitons nous un fonct ionnement mult i- plateforme / mult i système d’exploitat ion ?

Tout comme dans une majorité de domaine, il est possible de générer une mult itude de Makefile
différents mais qui réaliseront exactement la même chose. Il en va de chacun pour personnaliser ce
dernier et ut iliser les outils que nous avons l’habitude d’ut iliser.

« Nous allons donc prendre un exemple
et le retranscrire pas à pas au sein d’un Makefile »

28/ 02/ 05 29

Arborescence

Exemple standard d’une arborescence :

Projet

src

lib

obj

bin

include Fichiers header .h

Fichiers source .c

Librair ies stat ique /
dynamiques

.a / .so

Fichiers objet t emporaires
.o

Fichiers binaire exécutable

SRC

INC

LIB

OBJ

BIN

28/ 02/ 05 30

Ce que l’on souhaite

Disposant de plusieurs f ichiers sources, nous souhaitons générer un binaire et
une librairie statique.

Les source sont en langage C .c sont localisés dans le répertoire ./ src

Les includes .h dans le répertoire ./ src/ include

Les objets temporaires dans : ./ obj

La librairies dans ./ lib

 Nom souhaité : libtest.a

Et enfin le binaires exécutables dans ./ bin :

 Nom souhaité : test

28/ 02/ 05 31

Les sources

Les f ichiers utilisés pour l’exemple :

Les sources .c :

./ src/ test1.c

./ src/ test2.c

./ src/ test3.c

./ src/ libtest.c

Le source .h :

 ./ src/ include/ test.h

Pour le binaire

Pour la librairie stat ique

c-an
si
c-an
si
c-an
si
c-an
si

28/ 02/ 05 32

Créat ion pas à pas d’un
Makefile

Bien que les Makefiles soient adaptés à la compilat ion / Linkage de n fichiers ils sont
d’autant plus adaptés aux programmes découpés de façon modulaire :

./ bin/ test = ./ src/ test1.c + ./ src/ test2.c + ./ src/ test3.c + /
src/ include/ test.h

./ lib/ libtest.a = ./ src/ libtest.c + /
src/ include/ test.h

Pour ce faire, il est possible de créer les chaînes de fabricat ion :

./ obj/ libtest.o = ./ src/ libtest.c + ./ src/ include/ test.h
(compilation)

./ bin/ test = ./ obj/ test1.o + ./ obj/ test2.o + ./ obj/ test3.o + / lib/ libtest.a
 (linkage)
./ obj/ test1.o = ./ src/ test1.c + ./ src/ include/ test.h (compilation)
./ obj/ test2.o = ./ src/ test2.c + ./ src/ include/ test.h (compilation)
./ obj/ test3.o = ./ src/ test3.c + ./ src/ include/ test.h (compilation)

28/ 02/ 05 33

Créat ion pas à pas d’un
Makefile

Les commandes de compilation unitaire peuvent être retranscrites de la façon
suivante :

./ obj/ libtest.o = ./ src/ libtest.c + ./ src/ include/ test.h

gcc - c - o ./ obj/ libtest.o –i./ src/ include ./ src/ libtest.c

et
./ obj/ testx.o = ./ src/ testx.c + ./ src/ include/ test.h

gcc - c - o ./ obj/ testx .o –i./ src/ include ./ src/ testx .c (1)

(1) avec x compr is ent re 1 et 3.
De même pour la commande de linkage :

./ bin/ test = ./ obj/ test1.o + ./ bin/ test2.o + ./ bin/ test3.o + / lib/ libtest.a

gcc - o ./ bin/ test ./ obj/ test1.o ./ bin/ test2.o ./ bin/ test3.o / lib/ libtest.a

28/ 02/ 05 34

Créat ion pas à pas d’un
Makefile

Arbre de création

./ src/ test1.c

./ src/ test2.c

./ src/ test3.c

./ obj/ test1.o

./ obj/ test2.o

./ obj/ test3.o

./ bin/ test

Compilat ion

Linkage

1

2

3

4

En tout il y aura 6 transformations
Synchrones.

./ lib/ Libtest.a

./ src/ libtest.c ./ obj/ libtest.o

include : ./ src/ include

28/ 02/ 05 35

Enfin le makefile
Makefile du test :

Répertoire de travail :
SRC = ./ src
INC = ./ src/ include
LIB = ./ lib
OBJ = ./ obj
BIN = ./ bin
TARGETDIR = / usr/ local/ progtest

Nom des fichiers à générer :
BINTEST = $(BIN)/ test
LIBTEST = $(LIB)/ libtest.a
TYPEOS = LINUX

Compilateur C Ansi :
CC = gcc
AR = @ar –rv
RMOBJ = @rm –f $(OBJ)/ *.o
ECHO = @echo
MKREP = @mkdir $(TARGETDIR)
MKDROIT = @chmod u= rwx
CPPROG = @(cp $(BIN)/ * $(TARGETDIR); cp $(LIB)/ * $(TARGETDIR))

Flags de compilat ion / débug / warning
CFLAG = - g –Wall –O2 –I$(INC) - D$(TYPEOS)

…

1/ 2

28/ 02/ 05 36

Suite du Makefile
2/ 2

do: $(LIBTEST) $(BINTEST)

$(LIBTEST):
$(CC) –c $(CFLAG) $(SRC)/ libtest.c –o $(OBJ)/ libtest.o
$(AR) $@ $(OBJ)/ libtest.o

$(BINTEST):
$(CC) –c $(CFLAG) $(SRC)/ test1.c –o $(OBJ)/ test1.o
$(CC) –c $(CFLAG) $(SRC)/ test2.c –o $(OBJ)/ test2.o
$(CC) –c $(CFLAG) $(SRC)/ test3.c –o $(OBJ)/ test3.o
$(CC) $(LIBTEST) $(OBJ)/ test1.o $(OBJ)/ test2.o $(OBJ)/ test3.o - o $@
$(MKDROIT) $@
$(ECHO) «Programme compilé.»

clean:
$(RMOBJ)
$(ECHO) «Environnement nettoyé.»

install:
$(MKREP)
$(CPPROG)
$(ECHO) «Programme installé.»

start:
$(ECHO) «Lancement du programme»
$(BINTEST)

make start

make install

make clean

make

1
2

Génère la l ibrai r ie stat ique.

Génère le binai re en ut i l i sant
la l ibrai r ie.

Point
d ’ent rée
par
défaut

Trai tement l inéai re/ séquent iel

28/ 02/ 05 37

Seconde méthode

Une autre possibi li té aurait été d’écrire :

$(LIBTEST): $(OBJ)/ libtest.o

$(AR) $@ $(OBJ)/ libtest.o

$(BINTEST): $(OBJ)/ test1.o $(OBJ)/ test2.o $(OBJ)/ test3.o

 $(CC) $(LIBTEST) $(OBJ)/ test1.o $(OBJ)/ test2.o $(OBJ)/ test3.o - o $@

 $(MKDROIT) $@

 $(ECHO) «Programme compilé.»

.SUFFIXES: .o .c

.c.o:
$(ECHO) “génération de” $@ ”à partir de” $<
$(CC) –c $(CFLAG) –o $@ $<

Pour la générat ion de libtest ou bintest, make regardera s’ il possède l’équivalent en .c
qu’ il sait compilé par la règle définit par le suff ixe.

28/ 02/ 05 38

Résumé

4 Point d’entrée :

make
génère la librairie PUIS le binaire

make clean

nettoie l’environnement des objets et binaires précédents

make install

crée le répertoire et copie le programme dans
un emplacement choisi

make start

lance l’exécution du programme

28/ 02/ 05 39

Evolut ions

Une évolution possible des makefiles est l’ut il isation des programmes gnu open source
Suivant :

- automake
- autoconf

En effet, ils permettent de créer un fichier de configuration (Makefile.in) utilisable par la
suite dans les Compilations. De plus, il vérif ie si la totalité de la chaîne complète que
make utilisera par La suite (présence des binaires et librairies utiles pour les
transformations, version des Librairies).

Une fois le f ichier de config généré (via ./ configure), il est possible de lancer
successivement sa compilation (make) et enfin son installation (make install).

http:/ / www.gnu.org/ software/ automake/
http:/ / www.gnu.org/ software/ autoconf/
http:/ / www.amath.washington.edu/ ~lf/ tutorials/ autoconf/

Makefile.am
automake

Makefile.in

28/ 02/ 05 40

Autres ut ilisat ions

Comme nous l’avons vu les makefile sont utilisés principalement pour le développement.

Néanmoins, d’un point de vue conceptuel, il en résulte une transformation de formats.

Il est possible de l’util iser pour les utilisations suivantes :

- transformation du latex (.tex) en Postscript (.ps) ou Acrobat (.pdf)

- transformation du .xml avec un .xsl+ .dtd pour générer diverse sorties.

- etc…

28/ 02/ 05 41

Conclusion

J’espère que ce document vous rendra service.

Pour davantage d’aide sur les différentes commandes :

man commande

commande --help

Les how to sur la compilation (glibc, make, ld, gcc, gdb …).

Les forums dédiés (Newsgroups).

les sites dédiés.

Et bien entendu google.fr, gnu.org, freshmeat.net

28/ 02/ 05 42

Bibliographie

Managing Projects with GNU make, 3rd Edition
By Robert Mecklenburg
3 rd Edition Nov em ber 2004
ISBN: 0- 596 - 00610- 1
3 00 pages
Edition O’REILLY

Un livre de référence :

http:/ / www.gnu.org/ software/ make/ manual/ make.html
http:/ / www.madchat.org/ coding/ c/ c.ansi/
http:/ / www.oreilly.com/ catalog/ make3/ index.html

Deux liens à retenir :

28/ 02/ 05 43

Making of…

OpenOffice.fr

Gimp

Diaporama réalisé à part ir des deux projets open source suivant :

28/ 02/ 05 44

Fin

