Configuration, mise en oeuvre de
PostGreSQL et performances
Agnés BOCCHINO - Alexandra DANTE

PostgreSCQL.

Sommaire
. Installation et architecture page 3
2. Configuration de 'environnement
et du serveur page 22
. Base de données PostGreSQL page 47
4. Gestion des rbles et acces a la base
de données page 84
5. Les journaux page 97
6. Sauvegarde et restauration page 117
7. Optimisation et performances page 129
8. Genetic Query Optimizer page 163
9. Revue des paramétres d’optimisation page 171

10. Bilan sur Fadministration page 182

Cours PostGreSQL : Chapitre 1

1. Installation et architecture

Installation et architecture

> Définition de T'utilitaire RPM page 5
@ PostGreSQL v8.1.2

et récupération des packages page 10
|nstallation de PostGreSQL page 13

® Architecture systéme de PostGreSQL page 19

Définition de l'utilitaire RPM

= RPM (RedHat Package Manager) = utilitaire de gestion de packages
RedHat (installation / désinstaliation de packages)

2 |niegré aux distributions RedHat, Mandrake, Caldera et SUSE de Linux,
utilisable avec d'autres distributions ou systémes Unix, comme par
exemple FreeBSD

s ‘rpmbuild’ installé avec le package « rpm-build »

- Permet de prendre le code source de logiciels et de 'empaqueter :
soit sous forme de sources qui pourront &tre compilés
soit sous forme de binaires qui pourront &tre installés

2 RPM maintient une base de données de ious les packages installés sur
une machine

Référence : http: //www.rpm.org/max-rpm/index_ html

Définition d’'un package RPM source

@ Packages dont le nom se termine par « .src.rom»

Via le gestionnaire de fichier « me », on voit que le RPM source
contient :
- un fichier tar.gz (fichiers source)
- éventuellement des fichiers de patch

- un fichier de spécifications (.spec), qui cantient en fait toutes les
informations sur le package (nom, version, url, licence, fichiers

contenus ...)
B [Fabrication d’'un RPM a partir d’'un RPM source, deux
methodes

1. rpmbuild --rebuild source_xrpm
1. Endeux temps :

rpm -1 source_rpm : éclate le fichier src.rpm sur
1'arborescence /usr/src/.../

cd /usr/src/.../SPECS/
rpmbuild -bb specfile

Définition d’un package tar.gz

B Contient les sources du produit a installer

B Nécessite un fichier « specfile » contenant les
informations sur le package que I'on veut faire (nom,
version ...) et des parametres de compilation

2 Méme méthode de fabrication du rpm que pour un
package RPM source :

rpmbuild -bb specfile

Avantages / Inconvénients
des packages RPM

= Avantages :
- faciliter 'administration des logiciels en terme :

~ installation
- mise a jour facile des produits

deésinstallation

gestion des conflits

gestion des dépendances

gestion de la sécurité

@ |[nconvénienis :

t

~ Les rpms disponibles correspondent rarement a la derniére
version du produit, mais a la derniére version certifiée

Installation et architecture

& Définition de I'utilitaire RPM page 5
> PostGreSQL v8.1.2

et récupération des packages page 10
B [nstallation de PostGreSQL page 13
@ Architecture systéme de PostGreSQL page 19

Présentation de PostGreSQL v8.1.2

@ Date de sortie : 09/01/2006
2 Corrections de bugs de la version 8.1.1:

Changements majeurs faits depuis la v8.0 :

- Commit a deux-phases

- Savepoints

- Point-In-Time Recovery

~ Tablespaces

-~ Possibilité de modifier le type d’'une colonne

Recherche de package pour
PostGreSQL

FTP Browser
« Downloads

* FYP Browsar Ton
«# SnTarrent

e Commercal
Feadushs

Ciractories

aém
» GHONEOR E]d'-’-‘i
.ﬂggdmin}_‘
iz P

@ sable gan3chot
i 12 94

[:3 %inda

Installation et architecture

2 Définition de I'utilitaire RPM

PostGreSQL v8.1.2
et récupération des packages

> Installation de PostGreSQL
#@ Architecture systéme de PostGreSQL

page 5

page 10
page 13
page 19

| Compilatifon et installation a partir
d’'un package tar.gz

® Téléchargement de P'archive tar.gz

= tar —xzvf postgresql-8.x.x.tar.gz

& création d’'un super-utilisateur « postgres »
chown —R postgres:posigres postgresqglxxxx

B su - postgres

B cd postgresql-8.x.x

@ [configure --prefix=/var/lib/psal
2 make

make check

@ make install

FH

Manipulations des RPM

& Lister le contenu d’'un package qu’on se propose
d’'installer

rpm ~gpli nom_du_package

@ Installer : rpm -ivh nom_du_package
@ Mettre a jour un logiciel installé :
rpm -Uvh nom_du_package.rpm
® |nterroger la base de données des logiciels installés :

rpm —ga|grep post renvoie les packages de nom
*post™ installés

Instaliation d’'un package RPM

RPM généré sous LINUX RHEL4-AS avec
compilateur Intel icc V9

2 RPM runtime des librairies partagées du compilateur
Intel icc V9

@ Pré-installation, Post-installation

% SRB d'installation

Espace disque

@ Comparé a d ‘autres SGBD, I'installation de
PostGreSQL nécessite peu d ’espace disque

& || faut approximativement :
- 65 Mo pour dépaqueter et compiler les sources

- 30 Mo pour le répertoire d ’installation du cluster de base de
données

- 8i vous desirez exécuter les tests de régression, vous aurez
besoin temporairement de 135 Mo supplémentaires.

Anatomie de Pinstallation PostGreSQL

[Répertoire dinstalation de PosiGreSQL |

* Cliquez p_.-

Binaires et outils comme Documentation
pg_cti et postmaster | | au format HTML

inghide: 0

Fichiers "include” Librairies
nécessaires au développement nécessaires pour développer | |
des applications sous N des applications sous
PostGraSaL PostGreSQL
Manuel des outils PostGreSQL Exemple de {ichiers
de configuration

La base de données,
initiafisée par initdb,
répertoire SPGDATA

Installation et architecture

@ Définition de l'utilitaire RPM page 5
2 PostGreSQL v8.1.2

et récupération des packages page 10
@ |nstallation de packages page 13

> Architecture systéme de PostGreSQL page 19

Architecture systeme de PostGreSQL

B Utilisation d’'un modéle client / serveur :
- le processus serveur « positmaster »

- l'application cliente des utilisateurs qui veulent effectuer des
opérations sur la base de données

Gestion de multiples connexions simultanées depuis
les clients en dupliquant le processus « postgres »

& Process writer utilisé en background depuis la V8

Process bgwriter

= Depuis V8.0, process d'écriture separé des process
serveur

® Processus d’'écriture en tache de fond
@ | es processus serveur ne sont plus en attente
@ Diminution des durees d’écriture lors des checkpoints

@ Configuration fine et ajustement en fonction de
I'application

Augmentation de la charge en entrées/sorties

Cours PostGreSQL. : Chapitre 2

2. Configuration de I'environnement
et du serveur

Configuration de I'environnement

et du serveur

> Configuration initiale du systeme

@ |nitialisation du serveur

B Fichiers de configuration

@ Parameétres initiaux de configuration
B Lancement du serveur

Configuration initiale, environnement
du systeme d’'exploitation

page 24
page 27
page 32
page 34
page 44

B Création du super-utilisateur du moteur (souvent

nommé « postgres »)

® Création du cluster ou groupe de bases de données
~ Créer eventuellement un emplacement de stockage pour le

catalogue du cluster

-~ En terme de systéme de fichier, ¢’est un simple répertoire

(variable d'environnement $PGDATA)

® Donner les droits d’acces a ce répertoire pour le
super utilisateur

Configuration initiale, environnement
du systéme d’exploitation

Mise a jour de I'environnement du super-utilisateur
de la base de données en ajoutant dans le fichier

d’initialisation « .bash_profile » :

- PGDIR=répertoire d'installation de PostGreSQL
~ PGDATA=répertoire des bases de données
- LD_LIBRARY_PATH=repertoire des librairies de

PostGreSQL

- PATH=repertoire des binaires
- MANPATH=répertoire du manuel

Configuration de 'environnement
et du serveur

B Configuration initiale du systéme

» Initialisation du serveur

& Fichiers de configuration

B Paramétres initiaux de configuration
Lancement du serveur

page 24
page 27
page 32
page 34
page 44

Initialisation du serveur

2@ Pour initialiser un groupe de bases de données
(cluster) :

initdb [option...] --pgdata | -D répertoire

Comme alternative a l'option —D , la variable
d'environnement $PGDATA peut étre initialisee

a [’option « --noclean » désactive le « nettoyage » de
I'arborescence $PGDATA en cas d’erreur au
lancement d’initdb et permet d’analyser les erreurs
d'initialisation du serveur

Initialisation du serveur

B « initdb » crée 'arborescence de $PGDATA, avec les
fichiers de configurations et plusieurs répertoires

B Sous le répertoire base, 3 bases sont créées :
> Base template0

- Base template1

—~ Base postgres

Initialisation du serveur

2 template0 est une base de référence, elle contient la
définition de toutes les tables systéemes, les
définitions des objets standards

= templatet, a l'initialisation du serveur est une base
identique a template O

template1 est un modéle qui peut évoluer, en lui
ajoutant des types de données, des fonctions, des

tables...

2 postgres est une base de données par défaut utilisée
par les outils, les applications tiers

Initialisation du serveur : description
de larborescence créée

« Cliquez pour ajouter uri pian

 py_hbaicont
- pg_ident.conf

| 11255 (pg_proc) .
i 11256 (pgiclass)is:

Configuration de I'environnement
et du serveur

@ Configuration initiale du systéme page 24
[nitialisation du serveur page 27
» Fichiers de configuration page 32
@ Paramétres initiaux de configuration page 34
@ Lancement du serveur page 44

Cinq fichiers de configuration

B postgresqgl.conf : fichier principal de configuration du
serveur

% pg_hba.conf : fichier de configuration pour
l'authentification basée sur I'nbéte

& pg_ident.conf : le fichier de configuration pour
I'authentification ident

 postmaster.pid : contient le PID du process
postmaster

@ postmaster.opts : options d‘exécution du programme
postmaster

Par défaut ces fichiers sont stockés dans le répertoire
$PGDATA du groupe des bases de données

Configuration de 'environnement
et du serveur

a Configuration initiale du systéme

& |nitialisation du serveur

Fichiers de configuration

> Parametres initiaux de configuration
2 Lancement du serveur

Paramétres initiaux de configuration

2 Parameétres d’emplacement des fichiers de
configuration

@ Parametres de securité
® Parametres de connexion
@ Parameétres d’authentification

page 24
page 27
page 32
page 34
page 44

Ces parameétres sont & positionner dans le fichier
« postgresql.conf »

Parametres demplacement

@ Tous ces paramétres sont pris en compte au
« démarrage du serveur »

@ DATA_DIRECTORY
Valeur par défaut $PGDATA
Réécriture : postmaster -D data-directory

2 CONFIG_FILE
Valeur par défaut $PGDATA/postgresql.conf

Réecriture : postmaster ~c config file=‘nom
de fichier’

Paramétres d’'emplacement

m HBA_FILE
Valeur par défaut SPGDATA/pg_hba.conf

Réecriture : postmaster -c hba_file='nom de
fichier*

= |IDENT_FILE
Valeur par défaut $PGDATA/pg_ident.conf

Réécriture : postmaster -c ident file=‘nom
de fichier’

Parameétres de sécurité

2 PASSWORD_ENCRYPTION

Valeur par défaut true

Prise en compte : SET

Réécriture :

SET PASSWORD_ENCRYTION TO true/false

CREATE ROLE WITH ENCRYPTED/UNENCRYPTED
PASSWORD

ALTER ROLE WITH ENCRYPTED/UNENCRYPTED
PASSWORD

T

¥,

Paramétres de connexion

LISTEN_ADDRESSES : autorisation de connexion réseaux,

Spécifie les adresses TCP/IP sur lesquelles le serveur
écoute les connexions des applications client.

Valeur par défaut localhost
Prise en compte : postmaster startup
Réécriture : postmaster -h address [,address, ... 1

« * »gignifie I'autorisation de toutes les connections réseaux

Ne pas oublier de configurer le fichier d’authentification pour les
connections

Parameétres de connexion

B PORT : 5432 par défaut
Le port TCP sur lequel le serveur €coute

2 MAX_CONNECTIONS
Détermine le nombre maximum de connexions

concurrentes au serveur de la base de données

Parameétres d’authentification
fichier pg_hba.conf)

® Fichier d’authentification des utilisateurs
& Fichier pris en compte au lancement du moteur
m ndique les accés locaux (local) et distants (host)

B [ndique au serveur les utilisateurs, clients, bases de
données, et méthodes d’authentification a prendre en

compte
Exemple :
"local" is for Unix domain socket connectionsg only
local all all trust

IPv6 local connections:
host all all 129.183.0.0/16 trust

Parameétres d’authentification

= Format des lignes du fichier d’authentification
TYPE DATABASE USER CIDR-ADDRESS METHOD

TYPE local ou host

DATABASE liste des Databases (ou all)

USER liste des utilisateurs ou groupes
(rOles)

CIDR-ADDRESS (Classless Inter-DomainRouting),
liste @IP+ bit mask

METHOD indique la méthode
d’authentification

Parameétres d’authentification

METHOD : méthode d’authentification

trust pas d'authentification, pas de mot de passe exigé
reject rejet systématique

md5 chiffrage md5 , mécanisme de chiffrage
L’utilisateur doit fournir un mot de passe crypté avec mdd

crypt chiffrage par crypt (similaire & md5 avant 7.2)

password mot de passe en clair
krb4 ou krb5 kerberos version 4 ou 5

ident sameuser ou ident map*

* Lutilisateur est authentifié avec le nom du client (OS du host)
et les correspondances indiquées dans le fichier pg_ident.conf

pam par les mécanismes Linux
(Pluggable Authentication Modules)

Configuration de I'environnement
et du serveur

& Configuration initiale du systeme page 23
® Initialisation du serveur page 26
@ Fichiers de configuration page 31
B Parameétres initiaux de configuration page 33
> Lancement du serveur page 44

lLancement du serveur « postmaster »

postmaster -D /usr/local/pgsgl/data >fic_log 2>&1 &

@ Principales options en mode mulii utilisateur

-B# initialise le nombre de buffers 8ko utilisés

-D répertoire_de_données

-l active les connexions sécurisées utilisant SSL
-N nombre_max_connexions

-p port spécifie le port TCP/IP

Démarrage / arrét du serveur :
commande pg_cil

pg._ctl start [-w] [-s] [-D datadir] [-p path] [-0 options]
pg_ctl stop [-w] [-D datadir] [-m{s(mart)] [f{ast)] [ifmmediate]]]

B pg_ctl start -1 fic_log = lancementdu
serveur
® pg_ctl stop -> arrét du serveur

% pg_ctl reload -2 re-lecture des fichiers de
configuration et prise en compte des paramétres ne
nécessitant pas l'arrét du moteur

Z pg_ctl status - information sur I'état du
serveur

Démarrage automatique du serveur

= Se connecter ‘roof’

g Copier le script de démarrage du répertoire contrib/start-scripts
nommeé « linux » sous le répertoire /etc/re.d/init.d/postgresql

Vérifier les variables et path definis dans ce script
B Exécuter la commande chkconfig pour démarrer/arréter
automatiquement PostgreSQL au boot/arrét du systéme:
/shin/chkconfig -add postgresgl

Au boot du systéme, PostGreSQL sera lance en mode multi-
utilisateur

[T > A Parrét du systéme, le serveur sera arrété

Cours PostGreSQL. : Chapitre 3

3. Base de données PostGreSQL

Base de données PostGreSQL

*> Création d’'une base de données page 49
@ Définition des schémas page 51
Accés aux bases de données via psql ou pgAdminlll page 54
a Gestion des tables page 58
- création

- suppression

- meodification
& Gestion des tablespaces page 62
a2 Contrble d'acceés simultané et verrous page 67
m Création d'index page 77
B Chargement des tables page 81
- ® Analyse des tables page 8%3

Création d’'une base de données

= Commande SQL CREATE DATABASE

CREATE DATABASE nom [[WITH] [OWNER [=]
propridtaire 1 [TEMPLATE (=] modele 1 [ENCODING
[=] codage] [TABLESPACE (=] espacelogigue]

[CONNECTION LIMIT (=] Iimite connexion] 1;

2 Utilitaire createdb
createdb [option...] [nombasel [description]

2 Par défaut, toute base de donnees sera créée en clonant la
base systéme standard template1. Pour spécifier un modeéle
différent :

- CREATE DATABASE db TEMPLATE templatel;
- createdb -T templatel db

Base de données PostGreSQL

® Création d’une base de données page 49
> Définition de schémas page 51
2 Accés aux bases de données via psql ou pgAdminlll page 54
B Gestion des tables page 58

—- création

- suppression

- modification
B Gestion des tablespaces page 62
Contrdle d'accés simultané et verrous page 67
& Création d’index page 77
2 Chargement des tables page 81
2 Analyse des tables page 83

Notion de schémas

» Cliquez pour ajouter un plan

Table1

Définition de schémas

= Schéma = collection de tables, pouvant aussi
contenir des vues, index, séquences, types de
données, opérateurs et fonctions

@ A chaque connexion, un « schema search_path » est
utilisé. Par défaut : $user, public

B Syntaxe :
CREATE SCHEMA nom_schema;

Base de données PostGreSQL

& Création d'une base de données page 49
= Notion de schémas page 51
» Acces aux bases de données via psql ou pgAdminill page 54

3 (Gestion des tables page 58
- création
~ suppression
- modification
8 Gestion des tablespaces page 62
@ Contrdle d'accés simultané et verrous page 67
Création d'index page 77
8 Chargement des fables page 81

Analyse des tables

Acces aux bases de données via psql

@ Ulilitaire psql
- gonnexion aux bases de données
-~ exécution de requétes
- administration de |la base de données
- possibilité d’exécuter des requétes a partir d’'un fichier

2 Connexion via la ligne de commande :
psgl [option...] [nombase
[nomutilisateur]]

= Détail de psgl : psgl --help

2 Sans aucun parameétre précisé, utilisation du nom

d'utilisateur systéme avec lequel on est connecté et
connexion a la base de méme nom

Accés aux bases de données
via pgAdminll|

PgAdminill
- logiciel libre d’administration (réles, tablespaces, tables, ...)
- créé pour les versions 7.3 et plus de PostGreSQL
~ interface graphique
- outil de requétes SQL

= Utilisable sur les plate-formes Linux, FreeBSD
Solaris, Mac OSX et Windows

@ Package téléchargeable a partir du site
SR Sy ot o org s Tngia s oha

Acceés aux bases de données
via pgAdminlli

AR

129.3929.3
o

Y) Prrorypkd
& & shiman (1) o temelie
Lo bk e 12
. . @ Arbgets (O o
< PrgeL . bromrirct-(pi, ssmpied by <} 9.0 XS
. ¥ Coraines (3) al
: Foneriord () e
: %ﬁnﬁm m
: Prectdue @) AIIR05 13:40:08
§ Bowmng o
D TR G depbder O
pivndsy iy | Swintmurs | Diomndde] Pidivancs pur
: g
Br Réchtaton {0}
240y Tabiwoares)
2 ek
<2 gt

L5 ABes e)
= e Aferdecoreanontl)

2 a2

Base de données PostGreSQL

m Création d'une base de données page 49
@ Notion de schémas page 51
@ Accés aux bases de données via psgl ou pgAdminill page 54
*» Gestion des tables page 58

—- création

- suppression

- medification
% (Gestion des tablespaces page 62
8 Contrdle d'accés simultané et verrous page 67
® Création d'index page 77
Chargement des tables page 81
2 Analyse des tables page 83

Création de tables

@ Syntaxe SQL :
CREATE TABLE nom_table
(voir la page

)

@ Depuis la version 8.0, une table peut étre créée dans
un autre espace que le répertoire $PGDATA, dans
un tablespace

%@w@_—

Suppression de tables

B Syntaxe SQL

DROP TABLE nom [, ...] [CASCADE |
RESTRICT]

@ Seul le propriétaire d'une table peut la détruire

@ Pour vider une table de ses lignes, sans détruire la
table, utiliser DELETE

B DROP TABLE supprime tout index, régle,
déclencheur et contrainte existant sur la table cible

Pour supprimer automatiquement les objets

dépendants de la table (comme les vues), I'option
CASCADE doit étre ajoutée

Modification de tables

@ Ajout d’'une colonne :

ALTER TABLE nom_table ADD nom_colonne
tyvpe_colonne

B Suppression d’'une colonne :
ALTER TABLE nom_table DROP nom_colonne

@ Depuis la v8.0, modification du type d'une colonne :

ALTER TABLE nom_table

- ALTER [COLUMN] colonne TYPE type [USING
expression]

Base de données PostGreSQL

a Création d’une base de données page 49
m Notion de schémas page 51
m Acces aux bases de données via psql ou pgAdminlll page 54
@ Gestion des tables page 58

- création

~ suppression

- modification
> (estion des tablespaces page 62
ContrOle d'accés simultané et verrous page 67
2 Creation d'index page 77
Chargement des tables page 81
@ Analyse des tables page 83

Gestion des tablespaces

2 |ntroduits avec la version 8.0

@ Espace logique correspondant a un répertoire dans
lequel sont stockés des fichiers contenant les objets
de la base de données

2 Pour créer un nouveau tablespace :
CREATE TABLESPACE nom-espace-logique
[OWNER nom utilisateur] LOCATION
' répertoire’

E Suite a la création d’'un nouveau tablespace :

- PostGreSQL. change les droits du « répertoire »

- crée un fichier PG_VERSION sous le « répertoire »,
contenant la version de PostGreSQL au moment de la
creation du tablespace

Gestion des tablespaces

- ajoute une ligne & la table systéme pg tablespace et assigne un
nouvel OID (object-id) & cette ligne

- e serveur utilise cet OID pour creer un lien symbolique vers le
« repertoire » du tablespace

® Réalisés par des liens symboliques, stockés sous le répertoire
$PGDATA/pg_tbispc

& Par défaut, 2 tablespaces sont créés a linitialisation du cluster
de base de données, localisation $PGDATA :

- pg_default
- pg_global

Gestion des tablespaces

® Lister les tablespaces existants sous psql
« \db+ »

Exemple :
templatel=# \db+

List of tablespaces

Name | Owner | Location | Access
privileges

pg_default | pg_812 | |
pg_global | pg_812 | |
(2 rows)

select spcname from pg_tablespace

e e o 7
ey A BoceHino BA | -

Tablespaces vs schémas

& Ne pas confondre les deux méme s’ils permetient
d’organiser les tables a l'intérieur d’'un cluster

2 Tablespace : concerne l'organisation physique des
données, définit ou sont stockées les données

SChéma .

- concerne l'organisation logique des données a l'intérieur
d’'une base de données

- impacte le nommage d'accés aux tables, sans se
préoccuper de leur localisation physique

Base de données PostGreSQL

a8 Création d’'une base de données page 49
& Notion de schémas page 51
@ Acces aux bases de données via psqgl ou pgAdminlil page 54
@ (Gestion des tables page 58

- création

- suppression

- modification
8 Gestion des tablespaces page 62
*» Contrdle d'accés simultané et verrous page 67
B Création d’index page 77
& Chargement des tables page 81
Analyse des tables page 83

Controle d'accés simultané

Standard SQL : 4 niveaux d'isolation

PostgreSQL maintient [a cohérence des données a
l'aide d'un modele multi-versions {Multiversion
Concurrency Control, MVCC)

Deux niveaux d’isolation dans PostgreSQL.:

~ Read Commited est le niveau d'isolation par défaut de
PostgreSQL

- Serializable
® Read uncommitted => Read Commited

Repeatablie read => Serializable

Niveau d'isolation standards SQL

@ Standard SQL : 4 niveaux d’isolation
Read uncommitted

Read Commited

Read repetable

Serializable

2 Trois comportements « indésirables »
Dirty read

Nonrepeatable read

phantoms

Niveaux d'isolation : 3 comportements
indésirables

Une donnée est lue alors qu'une écriture
concurrente est en cours. C'est un cas de lecture
inconsistante ou sale (Dirly read)

Si rollback, perte des mises a jour

Transaction 1 Transaction 2

update Enri

select Enri

roliback

Niveaux d'isolation : 3 comporiements
indésirables

2 Une transaction lit deux fois la méme donnée et
obtient des résultats différents car une modification
est intervenue entre temps. C'est un cas de lecture
non répétitive (Nonrepeatable read)

Transaction 1 Transaction 2
select Enr1 update Enrt
actions update Enri;
commit;
select Enri

Niveaux d'isolation : 3 comportements
indésirables

2 Une transaction calcule deux fois un ensemble
d'enregistrements satisfaisant la méme condition et
les résultats different. C'est un cas de lignes
fantdémes (phantoms)

Transaction 1

select Enr

Transaction 2

select Enr2

update Enri
delete Enr2

insert Enr5

select Enr3

Enr4d

7 I T

Quatre Niveaux d'isolation

Standard SQL
Niveau d'isolation| Dirty read Nonrc:g:gtable phantoms
Read Uncommited Possible Possible Possible
Read Commited Impossible Possible Possible
Read Repeatabie Impossible Impossible Possible
Serializable Impossible Impossible Impossible

Contrdle d'accés simultané

8 Standard SQL : 4 niveaux d’isolation

PostgreSQL maintient la cohérence des données a
l'aide d'un modele multi-versions (Multiversion
Concurrency Control, MVCC)

@ Deux niveaux d'isolation dans PostgreSQL.:

- Read Commited est le niveau d'isolation par défaut de
PostgreSQL

- Serializable
8 Read uncommitied => Read Commited

Repeatable read => Serializable

Controle d'accés simultané MVCC

B Versions concurrentes des lignes

Version de la base au démarrage de la transaction
& | jire he bloque jamais I'écriture

@ Ecrire ne bloque jamais la lecture

= | 'écriture bloque tout autre écriture sur la ligne

SET TRANSACTION mode_transaction (valide pour la
transaction seulement)

g SET SESSION CHARACTERISTICS AS TRANSACTION
mode_transaction (mode de transaction configurable au
niveau d’'une session)

Contrble d’acces Verrous

Verrou exclusif :un verrou est dit exclusif s’ interdit toute autre
obtention d'un verrou, de quelque type que ce soit, sur I'élément
verrouillé par une autre transaction

Verrou partagé : si une transaction obtient un verrou partage
sur un élement, une autre transaction peut obtenir aussi un
verrou partage sur cet élement ; mais aucune transaction ne
peut obtenir de verrou exclusif sur cet élément tant que tous les
verrous partages ne sont pas libérés

u Positionnement explicite des verrous par PostGreSQL pour la
plupart des commandes

B PostGreSQL fournit des modes de verrous pour controler le
verrouillage par l'application dans des situations ol MVCC n'a
pas le comportement désiré

2 Verrous au niveau table et lignes. Consuliation des verrous
dans la vue pg_locks

Base de données PostGreSQL

= Création d’une base de données page 49
@ Notion de schémas page 51
= Accés aux bases de données via psqgl ou pgAdminlll page 54
B Gestion des tables page 58

-~ creation

- suppression

- meodification
@ Gestion des tablespaces page 62
m Contrble d'accés simultané et verrous page 67
> Création d'index page 77
Chargement des tables page 81
B

Analyse des tables page 83

Création d’'index

2 4 types d'index :

- Be-tree : index par défaut, utilisé dans des egalités et des
recherches sur des tranches de valeurs de lindex

~ R-tree : requétes sur des données spatiales

CREATE INDEX nom ON table USING RTREE
(colonne) ;

- Hash : simples comparaisons d'égalité

CREATE INDEX nom ON table USING HASH
(colonne) ;

- @GIiST : index pouvant étre étendu a des objets complexes
(images, ...)

Création d’index : B-iree

Mathieu
~ Maxime

Création d’'index

Index uniques : garantir I'unicité des valeurs d'une
colonne, ou l'unicité des valeurs combinées de
plusieurs colonnes

2 Index multi-colonnes : porte sur plus d'une colonne
d'une table

@ [Index sur les expressions : fonction ou une
expression calculée a partir d'une ou plusieurs
colonnes de la table

Index partiel : index construit sur un sous-ensemble
d'une table

Base de données PostGreSQL

Création d’'une base de données page 49
Notion de schémas page 51
m Acces aux bases de donnees via psqgl ou pgAdminlll page 54
a8 Gestion des tables page 58

- creation

~ suppression

- modification
@ (Gestion des tablespaces page 62
#@ Contrble d'accés simultané et verrous page 67
m Création d’index page 77
» Chargement des tables page 81

B Analyse des tables page 83

Chargement des tables

2 Commande INSERT :
INSERT INTQ nom_table VALUES (..);

Commande COPY : plus performant pour charger
beaucoup de données dans une fable

- COPY nom_table TQO nom_£fichier : écrit le contenu
d’une table dans un fichier

-~ COPY nom_table FROM nom_fichier :insére les
données lues a partir d’'un fichier dans la table

Base de données PostGreSQL

= Création d'une base de données page 49
Notion de schémas page 51
Accés aux bases de données via psqgl ou pgAdminill page 54
2 (Gestion des tables page 58
- création
- suppression
- modification
Gestion des tablespaces page 62
Contrdle d'accés simultané et verrous page 67
Création d'index page 77
®m Chargement des tables page 81

Analyse des tables page 83

Analyse des tables

@ Commande ANALYZE :

- collecte des statistiques sur le contenu des tables de la base
de données

- stocke les résultats dans la table systeme « pg_statistic »

= Echantillons de valeurs les plus communes dans
chaque colonne pour effectuer une distribution

B Seules quelques lignes de la table sont analysées au
lieu d’examiner la table compléte

B VACUUM ANALYZE...

Cours PostGreSQL : Chapitre 4

4. Gestion des roles et acces a la base
de données

Gestion des rdles et acces a la base
de données

> Gestion des rdies page 86
@ Types de privileges page 91
& Gratifier / révoquer des privileges page 96

Gestion des rbles

2 Intégrés avec la version 8.1

® Comprend les concepts des « utilisateurs » et des
« groupes »

2 Peuvent posséder des objets de la base de données
et affecter des droits sur ces objets a d'autres rdles

® Séparés des utilisateurs du systéme d'exploitation

@ Un utilisateur est le propriétaire des objets qu'il crée

2 n role peut étre vu soit comme un utilisateur, soit
comme un groupe d'utilisateurs

Gestion des réles (suite)

@ Création d’un rdle utilisateur :
- CREATE ROLE nom utilisateur LOGIN;
@ Creation d’'un rbie groupe :
- CREATE ROLE nom_utilisateur;
- eéquivalent 8 NOLOGIN
2 Parametres principaux :
- CREATEDB / NOCREATEDB

- SUPERUSER / NOSUPERUSER : I'utilisateur créé avec
SUPERUSER posséde tous les privileges

- CREATEROLE / NOCREATEROLE : le nouveau rdle pourra
créer d'autres roles

- INHERIT / NOINHERIT : {e nouveau rdle hérite des
privileges des rdles dont il sera membre

Gestion des rdles (suite)

- IN ROLE rolename : liste un ou plusieurs réles existants auxqueis
le nouveau réle sera immeédiatement ajouté en tant que nouveau
membre

-~ ROLE rolename : liste un ou plusieurs roles existants qui sont
automatiqguement ajoutés comme membre du nouveau rdle

m Par défaut, il existe un rdle utilisateur prédéfini qui a le méme
nom que l'utilisateur du systéme d'exploitation ayant initialisé le
groupe de bases de données

% |.a commande CREATE USER est équivalent & CREATE ROLE
LOGIN

Gestion des roles

B Pour déterminer I'ensemble des rdles existants
~ SELECT * FROM pg_roles;
- ou\du sous psql

B Pour déterminer 'ensemble des rbles utilisateurs
- SELECT * FROM pg_user;
- SELECT * FROM pg_roles;

Gestion des rdles et accés a la base
de données

| Gestion des rbles page 86
> Types de privileges page 91
@ Gratifier / révoquer des privileges page 96

Types de privileges

2 SELECT (symbole r)
- appliqué & des tables, vues et séquences

- contrble le droit de faire des SELECT sur les colonnes d’une table,
vue ou séquence

m DELETE (symbole d)
- appliqué a des tahles, vues et sequences

- contrdle le droit de supprimer des données d’une table, vue cu
séquence

INSERT (symbole a)
- appligué a des tables, vues et séquences

-~ conirdle le droit d’'insérer de nouvelles valeurs dans une table, vue
ou séguence

Types de privileges

UPDATE (symbole w)
- appliqué a des tables, vues et séquences

- contréle le droit de mettre & jour des valeuwrs dans une table, vue ou
séquence

2 RULE (symbole R)
- appliqué a des tables et des vues
- conirdle le droit de créer de nouvelles régles sur une table ou vue

REFERENCES (symbole x)
- appliqué a des tables

- controle le droit de lier deux tables avec une contrainie de clé
étrangére

Types de privileges

TRIGGER (symbole t)
~ appliqué a des tables
~ contréle le droit de créer des triggers sur une table

a CREATE (symbole C)
~ appliqué a des bases de données, tablespaces et schémas

- contrdle le droit de créer de nouveaux schémas a l'intérieur d’'une
base de données, de nouveaux objets dans un schéma ou de
nouveaux index (ou tables) dans un tablespace

® TEMPORARY ou TEMP (symbole T)
- appligué a des bases de données

- contréle le droit de créer des tables temporaires dans une hase de
données

Types de privileges

® EXECUTE (symbole X)

- appliqué a des fonctions

- contrdle le droit d’exécuter une fonction
#

USAGE (symbole U)
- appliqué a des schémas, langages
- autorise l'accés aux objets contenus dans le schéma

spécifié, ou la création de nouvelles fonctions avec un
langage donné

ALL PRIVILEGES (symboles arwdRxt)
- donne tous les droits disponibles en une fois

Gestion des roles et acces a la base
de données

& Gestion des rdles page 86
Types de privileges page 91
> QGratifier / révoquer des privileges page 96

Gratifier / révoquer des privileges

2 Gratifier, deux variantes :

1, donner des droits sur un objet de la base de données pour
un ou plusieurs rdles

2. rendre un ou plusieurs rbles membre(s) d'un autre role.
L'appartenance a un rdle est significatif car il peut apporter
tous les droits accordés a ce rdle a tous ses membres

GRANT type_privilége CON nom_table T0 rble
utilisateur | rdle groupe

Révoquer : retirer des droits précédemment attribués a un ou
plusieurs roles

REVOKE type_privilége ON nom_table FROM rdle
utilisateur | rdle groupe

@ Pour visualiser les privileges sous psql, « \z » Ou « \dp »

Cours PostGreSQL : Chapitre 5

5. Les journaux

Les journaux

> Journal des erreurs du moteur page 99

2 Rotation des journaux page 105
@ Journal des transactions (WAL) page 107
2 Checkpoints page 110

@ Mécanisme interne des WAL page 113

Journal des erreurs du moteur

B Plusieurs methodes pour la journalisation des
messages du serveur, dont stderr et syslog

= Possibilité de sélectionner le niveau de traces des
clients, du serveur et des requétes SQL

Possibilité de faire une rotation des journaux

Plusieurs méthodes pour journaliser

@ Parametre log_destination de « postgresql.conf »

m Options & définir avant le démarrage du postmaster
- log_destination=stderr que I'on peut rediriger avec le
parametre redirect_stderr=true puis
- log_directory
- log_filename
- log_truncate_on_rotations
- log_rotation_age

- log_rotation_size

- log_destination=syslog (Unix)
- log_destination=eventlog (Windows)

Journalisation via syslog

m Par défaut, les messages systéme sont journalisés
dans le fichier « /var/log/messages »

B Deux configurations a faire pour utiliser syslog :
- Ajouter dans /etc/syslog.conf le service PostGreSQL
- Positionner dans postgresql.conf :
- log_destination=syslog
- syslog_ident="‘postgres’
- gyslog facility='LOCALX’

@ Relancer syslog et postgresql via
- service syslog restart
- service postgresql restart (ou relancer le moteur)

Niveaux de traces

8 Les événements tracés sont définis dans
« postgresqgl.conf »

% Niveaux en priorité croissante : DEBUGS, ...,
DEBUG1, INFO, NOTICE, WARNING, ERROR,
FATAL, PANIC

B Messages des clients :
client_min_messages=niveau

2 Messages du moteur :
log_min_messages=niveau

® Ordres SQL en erreur :
log_min_error_statement=niveau

Que journaliser ?

® Différents événements journalisables :

- Les connections
-~ nom de l'utilisateur
- adresse |IP du serveur

- Les déconnections

~ Les ordres SQL :
- modification de données
- modification de structures des tables
- tous les ordres SQL
- la durée de I'ordre SQL

Les journaux

® Journal des erreurs du moteur
» Rotation des journaux (Log)

& Journal des transactions (WAL)
& Checkpoints

B8 Mecanisme interne des WAL

page 99

page 105
page 107
page 110
page 113

Rotation des journaux Log

2 |_es journaux d’erreurs peuvent étre assez
volumineux en fonction du niveau de traces

= nécessité de faire une rotation
@ Sj stderr redirigé dans un fichier, la seule fa

gon de le

tronquer est d‘arréter et de redémarrer le postmaster

B Siredirect_stderr=true, il est possible de
configurer un programme interne de rotation a l'aide

des parameétres de contrble :

~ log_rotation_age : durée de vie maximum d'un journal

individuel
- log_rotation_size : la taille maximum d'un journal

individuel

- log_truncate_on_rotation : possibilité de tronquer le journal

Les journaux

2 Journal des erreurs du moteur
& Rotation des journaux

> Journal des transactions (WAL)
i Checkpoints

@ Mécanisme interne des WAL

page 99

page 105
page 107
page 110
page 113

Journal des transactions (WAL)

@ Objectifs des WAL(Write-Ahead Logging) :
- Cohérence des données en cas de panne
- Fiabilité
- Limitation du nombre d'écritures disque

@ Concept des WAL

- s’'assurer que l'historique du déroulement des transactions
sur disque a été sauvegardé vers le stockage permanent
avant d’écrire les « data » sur disque

Journal des transactions (WAL)

a Write-Ahead Logging (WAL) : écriture d'un journal de
transactions

¥ Ecriture dans les fichiers de données uniquement
aprées écriture dans un journal

@ | a description du travail effectué par les transactions
est stockée dans un premier temps dans les WAL
buffers, puis est écrite sur disque sous le répertoire

pg_xlog

Les journaux

Journal des erreurs du moteur page 99

@ Rotation des journaux page 105
m Journal des transactions page 107
» Checkpoints page 110
@ Mécanisme interne des WAL page 113

Checkpoints

m Les checkpoints assurent la synchronisation entre la
version de la base de données en mémoire et la
version de la base de données sur disque

8 Quand se produisent les checkpoints ?
lors d’'un ordre SQL « CHECKPOINT »
des que « checkpoint_time » est écoulé

a I'arrét normal de l'instance

tous les « checkpoint_segment »

H

i

Checkpoints

2 | es « checkpoints » garantissent ia mise a jour des

fichiers de données avec les informations

enregistrées dans le journal depuis le « checkpoint »

précédent

Data WAL buffers

— 1. Ecriture des
— ~1 WAL buffers

2. Ecriture des
données

Les journaux

@ Journal des erreurs du moteur
= Rotation des journaux

@ Journal des transactions (WAL)
8 Checkpoints

> Mécanisme interne des WAL

page 99

page 105
page 107
page 110
page 113

Mécanisme interne des WAL

Nombre de segments WAL :
Min :1

Max : 2*checkpoint_segment + 1

Noms des segments WAL :

0000000100000000G00000000

X [fichiers
segments
_ de| 16MB

Mécanisme interne des WAL

Mémoire partagée

WAL buffers

de 8Ko
Checkpoint_timeout
WAL buffers pleins
CHECKPOINT X [fichiers
COMMIT segments
de| 16MB
X segments =

2*checkpoint_segment + 1

r

Ecriture sur le disque des WAL

B |La copie sur disque d’Unix peut rendre la main méme
si tous ses buffers ne sont pas totalement écrits sur
disque

= Pour éviter une incohérence des données die au
décalage entre la réelle écriture et le retour de fin de
copie, le choix de la méthode de synchronisation peut
étre indiqué au postmaster

B Pgramétres a positionner :
- fsync=true

- wal_sync_method=fsync

WAL & Point-In-Time-Recovery (PITR)

& Depuis la v8.0, il est possible d'archiver ies WAL
2 Lorsque le systéme n'utilise pas l'archivage des WAL, les
fichiers WAL sont créés puis recyclés
& Avec l'archivage des WAL, on peut effectuer une sauvegarde
incrémentale :
- faire un backup complet
- archiver péricdiquement les WAL

- si crash, restaurer le backup complet et rejouer tous les WAL en
séquence jusqu'a un instant t (PITR)

@ Meéthode d'archivage flexible
Nouveau process « archiver »
B Parameétre de configuration :

- archive_command (cp, tar, cpio, ...)

Cours PostGreSQL : Chapitre 6

6. Sauvegarde et restauration

Sauvegarde et restauration

» Sauvegarde d’une base de données
2 Restauration d’'une base de données

#@ Sauvegarde d’un cluster de
bases de données avec pg_dumpall

Restauration d'un cluster

page 119
page 124

page 126
page 128

Sauvegarde d’'une base données

Deux méthodes :

. Créer une archive du file system, comprenant la base de
données (tar, cpio, ou backup)

2. Creer un fichier dump via I'utilitaire pg_dump, décrivant
comment ré-écrire les données de la base de données

Sauvegarde d’une base données
avec pg_dump

& Utilitaire pour sauvegarder une base de données
Sauvegardes a « chaud »

@ Ne bloque pas {'accés des autres utilisateurs (ni en
l[ecture ni en écriture)

Plusieurs formats de fichiers d’archive possibles :
- un fichier de scripts SQL en texte simple (par défaut)
- une archive tar utilisable par « pg_restore », option « -Ft »

- une archive personnalisée convenable pour « pg_restore »,
option « -Fc »

2 Commande : pg_dump [option...]
[nom_base]

Sauvegarde d’une base donnéeém
avec pg_dump (suite)

B Choix de COPY ou INSERT pour le rechargement
ultérieur des tables (par défaut COPY)

- -d (--inserts) : sauvegarde les données avec des
commandes INSERT

- -D (--columns —inserts) : sauvegarde les données avec des
commandes INSERT et des noms de colonnes explicites

2 Possibilité de sauvegarder uniquement une table
avec l'option « -t nom_table »

= Sauvegarde les privileges mais les rbles sont a re-
créer aprés restauration

Sauvegarde d’'une base données
avec pg_dump (suite)

En fonction des OS, taille maximum des fichiers de
2GB a 4GB

@ Pour contourner ce probiéme : compression ou
decoupage
- pg_dump nom_base | gzip -9 > nom_base.gz
- pg_dump nom_base | bzip2 -9 > nom_base.bz2
- pg_dump —-format ¢ nom base > nom _base.bak

- pg_dump nom_base | split --bytes=100m -
nom_base
(génére un ensemble de fichiers de 100 mégas avec
les noms « nom_baseaa » 4 « nom_basezz »)

Sauvegarde et restauration

B Sauvegarde d’une base de données
> Restauration d’'une base de données

 Sauvegarde d’un cluster de
bases de données avec pg_dumpall

= Restauration d'un cluster

Restauration d’'une base données

page 119
page 124

page 126
page 128

@ Si I'archive générée avec pg_dump est un script
SQL, restauration via psql sinon utilisation de

« pg_restore »

@ Restauration via psql :
psgl -d base ~f base.out

& Restauration via pg_restore a partir d'un fichier

d'archive créeé par pg_dump :

pg_restore -d nouvellebase base.tar

Sauvegarde et restauration

@ Sauvegarde d'une base de données
@ Restauration d’une base de données

» Sauvegarde d’'un clusier de
bases de données avec pg_dumpali

2 Restauration d’un cluster

Sauvegarde d’un cluster de bases
données avec pg_dumpall

page 119
page 124

page 126
page 128

= Qutil pour sauvegarder toutes les bases de données

d'un cluster dans un script SQL

® |nvocation de pg_dump pour chaque base de

données du cluster

m Sauvegarde des rdles de la base de données et des

privileges

B Mémes options disponibles que pour pg_dump mais
produit une archive en format texte seulement

B Commande :

pg_dumpall > allDBs.out

Sauvegarde et restauration

Sauvegarde d’une base de données
B Restauration d’'une base de données

B Sauvegarde d’un cluster de
bases données avec pg_dumpall

» Restauration d'un cluster

page 119
page 124

page 126
page 128

Restauration d’'un cluster

& Le script généré par « pg_dumpall » contient les
ordres SQL de création de toutes les bases de

données

& Commande :
psgl -f db.out postgres

bours PostGreSQL : Chapitre 7

7. Optimisation et performances

bptimisation et performances

> VACUUM

2 VACUUM et ANALYZE

= Démon autovacuum

2 Exécution d’'une requéte

& Lecture d’'un plan d’exécution

2 [nteraction entre jointures,
index et choix de F'optimiseur

B Conseils d’'indexation

page 131
page 134
page 137
page 139
page 143

page 160
page 162

VACUUM

% Les versions périmées des lignes aprés un UPDATE
ou un DELETE ne sont pas supprimées
immédiatement

VACUUM permet de réutiliser les lignes associées a
des données « flaggées » périmées

VACUUM FULL récupeére l'espace disque et
réorganise les tables sur disque

VACUUM (suite)

Avec VACUUM FULL, un verrou exclusif est placé
sur chaque table avant qu’elle ne soit traitée

2 VACUUM FULL demande également beaucoup
d’activités sur disque pour réorganiser les fichiers de
données

= Les performances de requétes concurrentes sur la
base de données peuvent étre diminuées

Optimisation et performances

VACUUM

> VACUUM et ANALYZE

2 Démon autovacuum

= Exécution d’'une requéte

& Lecture d’'un plan d’exécution

@ Interaction entre jointures,
index et choix de l'optimiseur

Conseils d'indexation

VACUUM et ANALYZE

page 131
page 134
page 137
page 139
page 143

page 160
page 162

8 Les statistiques utilisées par 'optimiseur sont
collectées par la commande ANALYZE, qui peut étre
invoquée seule ou comme une option de VACUUM

toute la base de données

7 VACUUM ANALYZE collecte des statistiques sur

2 VACUUM et ANALYZE mettent a jour le catalogue
systéeme pg_class :
- mise & jour du champ reltuples, nombre de lignes de la table

- mise a jour du champ relpages, taille du fichier disque,
exprimee en pages

VACUUM et ANALYZE (suite)

B ANALYZE et VACUUM ANALYZE mettent a jour le catalogue
systeme pg_statistic

~ stocke des données statistiques sur les tables et les valeurs des
expressions d'index

~ une entrée pour chaque colonne de tabte qui a été analysée

- ne doit pas étre lisible par le public car méme les données
statistiques peuvent &tre considérées comme sensibles

m |a vue pg_stats fournit un accés aux informations stockées
dans la table systéme pg_statistic

u Cette vue est aussi congue pour afficher l'information dans un
format plus lisible

Optimisation et performances

@ VACUUM page 131
2 VACUUM et ANALYZE page 134
> Démon autovacuum page 137
1 Exécution d’une requéte page 139
2 | ecture d’un plan d’exécution page 143
@ |nteraction entre jointures,

index et choix de I'optimiseur page 160

= Conseils d'indexation page 162

Démon autovacuum

2 A partir de la v8.1, le démon autovacuum automatise
I'exécution des commandes VACUUM et ANALYZE

8 Pour activer autovacuum, configurer :
~ stats_start_collector=txrue
- stats_row_level=true

B autovacuum s'exécute toutes les
autovacuum_naptime secondes et détermine
quelles bases de données fraiter (bases dont les
tables ont un grand nombre de lignes insérées, mises
a jour ou supprimées)

Optimisation et performances

2 VACUUM page 131
2 VACUUM et ANALYZE page 134
Démon autovacuum page 137
> Exécution d'une requéte page 139
B Lecture d’'un plan d’exécution page 143
|nieraction entre jointures,

index et choix de l'optimiseur page 160

Conseils d'indexation page 162

Exécution d’une requéte

Ordre SQL

Serveur
PostGraSQL

Texte de la requéte

3

Vérification de la

« Parser » g 1ave de la requéte

de requéte

Si syntaxe

correcte

Création d’un « parse tree »

Exécution d’une requéte (suite)

Exemple de "parse tree"

Exécution d’'une requéte (suite)

8 | e « parse tree » est confié a I'optimiseur de
requétes afin qu’il trouve tous les plans d’exécution

possibles de cette requéte

Lorsque tous les plans d'exécution possibles ont été

généres, Foptimiseur cherche le moins colteux
@ A chaque plan est assigné un co(t d’exécution,

mesuré en unité de disque 1/O

B Une fois le meilleur plan d'exécution sélectionné, la
requéte est exécuiée et le résultat est retourné au
client

Optimisation et performances

2 VACUUM

@ VACUUM et ANALYZE

&% Démon autovacuum

B Exécution d’'une requéte

> Lecture d’un plan d’exécution

@ |nteraction entre jointures,
index et choix de l'optimiseur

@ Conseils d’'indexation

page 131
page 134
page 137
page 139
page 143

page 160
page 162

Lecture d’'un plan d’exécution

2 Le plan d’exécution affiche comment la (les) table(s)
référencée(s) par l'instruction sera(ont) parcourue(s)
et quels algorithmes de jointure sera(ont) utilisés

@ EXPLAIN permet d’avoir le plan d'exécution choisi
par 'optimiseur
@ EXPLAIN peut étre lanceé sur toute requéte SELECT,

INSERT, UPDATE, DELETE, EXECUTE ou
DECLARE

= Colts mesurés en unités de récupération de page
disque : un codt de 1,0 équivaut a une lecture de
page disque

Lecture d’'un plan d’exécution (suite)

& Exemple :
entrepot=# EXPLAIN SELECT * FROM client:;

QUERY PLAN

Seqg Scan on ciient ({(cost=0.00..10.90 rows=90
width=864)

(1 row)

2 |Les nombres donnés par EXPLAIN sont ;
- le colit d'exécution avant que fa premiére ligne ne soit renvoyée
- le colt total estimé pour renvoyer toutes les lignes
- e nombre de lignes estimees en sortie par ce nceud de plan

- a largeur moyenne estimée (en octets) des lignes en sortie par ce
neeud de plan

SRR e

SR RO

Lecture d’un plan d’exécution (suite)

= EXPLAIN ANALYZE ne planifie pas seulement
Iinstruction mais 'exécute

&2 Renvoie le temps « réel » passé (en millisecondes) et
le nombre total de lignes renvoyées

® Permet de vérifier si les estimations du planificateur
sont proches de la réalité

entrepot=# EXPLAIN ANALYZE SELECT * FROM client;

QUERY PLAN

Seg Scan on client (cost=0.00..10.90 rows=90
widith=864) {(actual time=0.016..0.030 rows=13)

Total rutime: 0.089 ms

Lecture d’un plan d’exécution (suite)

a Si ANALYZE n'est pas exécutée au préalable pour enregistrer
les statistiques sur la distribution des données & l'intérieur de la
table :

- les colts estimés ne sont pas cohérents avec les données réelles
- un plan de requéte médiocre pourrait &tre choisi

® Exemple : la table « client » contient reellement 13 lignes
entrepot=# select count{*} from client;
count

13
(1 row)

entrepot=# ANALYZE client;

Lecture d’'un plan d’exécution (suite)

entrepot=# EXPLAIN SELECT * FROM client;
QUERY PLAN

Seqg Scan on client {cost=0.00..1.13 rows=13
width=246)

(1 row)

entrepot=# EXPLAIN ANALYZE SELECT * FROM client;
QUERY PLAN

Seq Scan on client (cost=0.00..1.13 rows=13
width=246) {(actual time=0.014..0.028 rows=13)

Total runtime: 0.080 ms
(2 rows)

Opération « Seq scan »

3 Parcours séquentiel de la table
Une table peut contenir des lignes supprimées et des
lignes non visibles car non « committées »

2 Seq Scan ne les inclut pas dans les résultats mais les
parcourt ce qui peut étre colteux en terme de temps
d’exécution

® Seq Scan est choisi par le planificateur :

- g'il n'existe pas d'index pouvant étre utilisé pour exécuter la
requéte

- g'il considére que le parcours entier de la table est moins
colteux

Opération « Index Scan »

B Parcours la structure d’'un index

B Avantages par rapport a un Seq Scan :
- Index Scan ne lira pas toutes les lignes de la table
- Index Scan retournera les données ordonnées selon 'index

@ [e planificateur utilise un Index Scan lorsqu'’il peut :
- réduire le nombre de données parcourues

-~ @viter un tri des données & cause du tri implicite offert par un
index

Opération « Bitmap Index »

@ Avant la v8.1, un seul index pouvait &tre utilisé a la
fois pour le parcours d’'une table

= | es Bitmap Index permettent de combiner plusieurs
index pour exécuter une requéte

® Le plus souvent utilisé dans les applications
décisionnelles

a2 Pour chaque valeur distincte de la colonne indexée,
l'index contient un tableau de bits indiquant si chaque
lignhe de la colonne a cette valeur ou non

| es différents tableaux de bits sont ensuite combinés
pour répondre aux sélections de type « coli=valeurt
AND col2=valeur2 » ou col1 et col2 sont indexées

Opération « Bitmap Index » (suite)

Table produit :

. ident couleur taille
1 brun medivm
2 rouge madium
3 rouge small
4 bleu large
5 reuge mediom
6 brun Small ‘—‘
b | XK
Couleur = *blev’ 0001001010100010
Couleur = ‘rouge” 0110100100001001
Couleur = ‘brun’ 1000010001010100
AND
Taille = “small’ 0010010101000101
Taille = ‘medium’ 1100101006010100
Taille = “large’ a001000015101010
Requéte :
SELECT count(®)
FROM PRODUIT
iile = ‘medium’ AND go

WHERE

Opération « Sort »

® PostGreSQL a deux stratégies pour trier les données

- un tri en mémuoire, en fonction de |a taille définie dans le
paramétre work_mem

~ un tri sur disque

4 Si la taille nécessaire dépasse work_mem, Sort
travaillera en mémoire puis dans des fichiers
temporaires, sinon le tri sera fait entierement en
memoire

Sort est utilisé pour :

~ des operations de tri (ORDER BY)
- des jointures

- des intersections de données, ...

Opération « Unique »

2 Elimine les données dupliquées dans les résultats

2 Unigue compare chaque ligne avec la précédente
trouvée. Si les valeurs sont identiques, la ligne en
doublon est supprimée des résultats

& Unique est utilisé pour :
- satisfaire un DISTINCT

- pour eliminer des doublons dans un UNION

Opérations
«Limit », « Aggregate », « Append »

Limit limite le nombre de lignes renvoyées par un
requéte et est appliqué pour satisfaire un LIMIT et/ou
OFFSET dans une requéte

AVG(), COUNT(), MAX(), MIN(), SUM(), ...

% Append est utilisé pour implémenter un UNION entre
une requéte A et une requéte B

- Les colits renvoyés par Append correspondent a la somme
des colits des requétes Aet B

Opération « Nested Loop »

a Utilisé pour réaliser une jointure entre deux tables
2 Exemple :

SELECT * FROM client, commande

WHERE client.client_id = commande.client_id;
- Latable commande est la « outer table »

- Latable client est la « inner table »

- La outer table est toujours parcourue en premier
- Pour chaque ligne de la outer table, Nested Loop lit la ligne
correspondante dans la inner table en utilisant, s'il existe,
I'index défini sur la colonne de jointure
@ Nested Loop est utilisé pour améliorer les
performances de jointures internes, jointures
externes, et unions

Opération « Merge Join »

B Merge Join est également utilisé pour améliorer les
performances de jointures internes, jointures
externes, et unions

m Différence avec Nested Loop : Merge Join effectue
les jointures entre deux tables triées (au préalable ou
triées par Merge Join lui-méme)

Opérations « Hash » et « Hash Join »

@ Ces deux opérations fonctionnent ensemble

Hash Join n’a pas besoin que les tables soient triées
sur la colonne de jointure

@ Hash Join commence par créer une « inner table »
en utilisant 'opération Hash

@ ['opération Hash crée un index Hash temporaire qui
couvre la colonne de jointure dans la « inner table »

2 Hash Join lit ensuite chaque ligne dans la « outer
table », parcourt la colonne de jointure et cherche
dans l'index temporaire les valeurs correspondantes

® Hash Join est utilisé dans des jointures internes,
jointures externes, et unions

Opérations « Group »,
« Subquery Scan » et « Subplan »

@ Group est utilisé pour satisfaire un GROUP BY

@ Subquery Plan est utilisé pour exécuter un UNION

B Subplan est utilisé pour exécuter des sous-selects

Optimisation et performances

a2 VACUUM

B VACUUM et ANALYZE

@ Démon autovacuum

m Exécution d’'une requéte

[ecture d'un plan d’exécution

» Interaction entre jointures,
index et choix de 'optimiseur

B Conseils d’'indexation

Interaction entre jointures, index
et choix de I'optimiseur

2 Un index :

page 131
page 134
page 137
page 139
page 143

page 160
page 162

- permet d'augmenter les performances d'une base de

données

- permet de retrouver une ligne spécifique bien plus

rapidement que sans index

& | e planificateur realisera une jointure entre « n »

tables dans n'importe quel ordre

@ e planificateur va explorer foutes les possibilités de
jointure pour trouver le plan de requéte le plus

efficace

= Le nombre d'ordres de jointures possibles grandit de facon

exponentielle au fur et a mesure que le nombre de tables
augmente

Optimisation et performances

@ VACUUM page 131
7 VACUUM et ANALYZE page 134
Démon autovacuum page 137
@ Exécution d’une requéte page 139
& Lecture d’'un plan d’exécution page 143
@ Interaction entre jointures,

index et choix de l'optimiseur page 160
» Conseils d'indexation page 162

Conseils d’indexation

& |ndexer les colonnes de jointure
® |ndexer les colonnes de filire
@ Indexer les colonnes frequemment utilisées pour le tri

Créer des index multi-colonnes

Cours PosiGreSQL : Chapitre 8

8. Genetic Query Optimizer

Genetic Query Optimizer (geqo)

> Définition du Genetic Query Optimizer page 165
@ Parametres liés a geqo page 169

Définition du Genetic Query Optimizer

B Le nombre de plans croit de fagon exponentielle avec
le nombre de jointures

= Difficultés a exécuter et a optimiser la jointure entre
tables

2 | 'implémentation de I'optimiseur produit un ordre de
jointure presque optimal mais peut prendre beaucoup
de temps et d'espace mémoire en fonction du
nombre de jointures dans une requéte

= L’optimiseur ordinaire de requétes de PostgreSQL
est peu efficace pour de telles requétes

Définition du Genetic Query Optimizer
suite)

2 Genetic Query Optimizer est basé sur un algorithme génétique,
c'est-a-dire un algorithme tentant de faire de la planification de
requétes sans recherche exhaustive

2 Dans un algorithme génétique, I'ensemble des solutions
possibles pour le probléme d'optimisation est considéré comme
une population d'individus

& Le degre d'adaptation d'un individu dans son environnement est
spécifié par sa forme physique

@ Les coordonnées d'un individu dans I'espace de recherche sont
représentées par des chromosomes, un ensemble de chaines
de caractéres

Définition du Genetic Query Optimizer
suite)

= Depuis la v6.5, le module geqo est la solution du
probléme d'optimisation des requétes

2 |es plans de requétes possibles sont codés comme
des chaines d'entiers

Chaque chaine représente l'ordre de jointure d'une
relation de la requéte a une autre

% L'implémentation d'un algorithme génétique permet
une convergence rapide vers des plans de requétes
améliorés

Genetic Query Optimizer (geqo)

= Définition du Genetic Query Optimizer page 165
» Parametres liés a geqo page 169

Parameétres liés a geqo, fichier
ostgresql.conf

4 geqo
- Active ou désactive |'optimisation génétique des requétes —
activé par défaut
& geqo_threshold

- Indique que geqo sera utilisé si le nombre d'élements
impligués dans la clause FROM est supérieur ou egale a ce
seuil

- Valeur par défaut : 12

~ Controle I'équité entre le temps de planification et I'efficacité
du plan de requéte dans GEQO

- Valeur entre 1 et 10, et par défaut : 5

Paramétres liés a geqo, fichier
ostgresgl.conf (suite)

3 geqo_pool_size
- Contrdle |a taille de la queue, nombre d'individus dans une
population génétique, utilisée par GEQO
@ geqo_generations

~ Contrble le nombre d'itérations de l'algorithme utilisé par
GEQO

- Valeur : au moins 1, si 0 alors valeur choisie en fonction de
geqo_pool_size

2 geqo_selection_bias

- Contrédle le biais de sélection utilisé par GEQO, pression
sélective & l'intérieur de la population

- Valeur par défaut : 2,00

Cours PostGreSQL : Chapitre 9

9. Revue des paramétres d’optimisation

Revue des paramétres d’optimisation

> Parametres d'optimisation
liés a la mémoire page 173
E Statistiques et surveillance du serveur page 180

R e

| Paramétres doptimisation de
ostgresqgl.conf

2 Mémoire
- postmaster utilise des ressources systéme dont les IPC (mémoire
partagée et sémaphores)

- La mémoire partagée utilisée par le postmaster fait partie des
segments de mémoire partagée du systéme

- Pour visualiser le nombre de segments utilisés par PostGreSQL :

ipcs —m
—————— Shared Memory Segments ----—-—-—-—
key shmid owner perms bytes nattch
status
0x00000000 32768 gdm 600 393218 2
dest
0x00000000 65537 oralol 640 1343488 14
0x00000000 2949520 oral(l 640 1241513984 2%
0x0396fd42c 327689 oralCl 640 16384 25

e P

Parameétres d’optimisation de
ostgresaql.conf (suite)

- La meémaoire allouée pour la mémoire partagée de
PostGreSQL. ne doit pas excéder SHMMAX

Nom Muttiplicateur approximatif
(octets par increment)

max_connections 100 + 220 *
max_locks_per_transaction

max_prepared_transactions B00 + 220 *
max_locks_per_transaction

shared_buffers 3300 (assuming 8K BLCKSZ)
fval_buffers 8200 (assuming 8K BLCKSZ)
max_fsm_relations 70

max_fsm_pages 6 &

Péramétres d’optimisation de
ostgresqgl.conf (suite)

@ Approximativement, PostGreSQL consomme :
250 Ko + 8,2KB * shared_buffers
+ 14,2KB * max_connections

@ Attention : cette valeur qui ne doit pas excéder
SHMMAX (taille maximum d’'un segment de mémoire
partagée)

@ Pour connaiire la valeur actuelle de SHMMAX :
cat /proc/sys/kernel/shmmax

Paramétres d’optimisation de
ostgresql.conf , mémoire

2 shared_buffers

Initialise le nombre de buffers en mémoire partagee utilisés par
le serveur de bases de données

Min : 16 ou 2* max_connections
Valeur par défaut 1000

2 temp_buffers

Configure le nombre maximum de buffers temporaires utilisés
au niveau de la session seulement pour accéder aux tables
temporaires

Valeur par défaut 1000

max_prepared_iransactions

Configure le nombre maximum de transactions simultanées
dans l'état « prépare »

Si 0 => désactive la fonctionnalité
Valeur par défaut 5

Paramétres d’optimisation de

ostgresql.conf , mémoire

2 maintenance_work_mem

Spécifie la mémoire maximum utilisée dans les opérations de
maintenance telles que VACUUM, CREATE INDEX et ALTER
TABLE ADD FOREIGN KEY (anciennement vacuum_mem)

Valeur par défaut 16384 (soit 16 Mo)

z max_stack_depth

Spécifie la profondeur maximum de la pile d'exécution du
serveur

Valeur par défaut 2048 (soit 2 Mo)

work_mem

Spécifie la mémoire a utiliser pour les opérations de tri interne
et pour les opérations de « hachage » avant de basculer sur
des fichiers temporaires sur disque(anciennement sort_mem)

Valeur par défaut 1024 (soit 1 ig).

Parameétres d’optimisation de
ostgresqgl.conf , memoire

Free Space Map

« Mapping » des emplacements libres dans la base de
données.

Si la taille est insuffisante, PostGreSQL demandera plus
d'espace disque au systeme d'exploitation lorsqu'il aura besoin
de stocker de nouvelles données

max_fsm_pages
Initialise le nombre maximum de pages disque tracées
Valeur par défaut 20000 (> a 16 * max_fsm_relations)

max_fsm_relations
Initialise le nombre maximum de relations (tables et index)
tracées

Valeur par défaut 1000

Revue des parameétres d’optimisation

@ Parametres d’optimisation

liés a la mémoire page 173
> Statistiques et surveillance du serveur page 180

Statistiques et surveillance du serveur

Collecteur de statistiques sur P'activité du serveur
- stats_start_collector= true pour activer le collecteur

stats_command_string

Active la récupération de statistiques sur les commandes en
cours d'execution par session, avec le temps d'exécution de la
commande.

Les données produites sont accessibles via la vue systéme
« pg_stat_activity »

= stats_block_level

Active la récupération des statistiques au niveau du bloc disque
sur l'activité de la base de donnees.

Les données produites sont accessibles via la famille de vues
. systeme « pg_stat_* » et « pg_statio_* »

£

SRl A ‘BochinnAs

Statistiques et surveillance du serveur
(suite)

@ stats_row_level
Active la récupération de statistiques au niveau ligne
sur l'activité de la base de données.

Les données produites sont accessibles via la famille
de vues systéme « pg_stat_* » et « pg_statio_* »

stats_reset_on_server_start

Si ce paramétre est activé, les statistiques
récupérées sont réinitialisées a chaque fois que le
serveur est redémarré

Cours PostGreSQL : Chapitre 10

10. Bilan sur I'administration

Bilan sur 'administration

» Taches d’administration courantes page 183
2 Conseils d’administration page 200

Taches d’administration courantes :
VACUUM

2 VACUUM et ANALYZE incontournables pour :

- récupérer 'espace disque engendré par les mises & jour et
suppression de données

- mettre & jour les statistiques pour un choix judicieux d’exécution
des requétes

- éviter de perdre les anciennes données de transactions (XID,
transaction ID wraparound)

Quand lancer VACUUM ?

- dépend de I'application et de la dispenibilité de la base de données
pour des taches de maintenance ou de batch

~ choisir, par exemple, les tables fréquemment modifiées (insertion /
suppression de données)

- gi la durée d'une transaction augmente réguliérement
- le lancer quotidiennement ou lancer autovacuum

Téaches d’administration courantes :
VACUUM (suite)

2 Bilan :

- lancer quotidiennement VACUUM sur les tables
fréquemment modifiées (insertion / suppression de
données)

- lancer VACUUM ANALYZE quotidiennement ou lancer
ANALYZE a un instant t en fonction de l'impact sur la base
de données

~ lancer VACUUM FULL s'il existe (ou pour prévenir) des
probléemes d’espace disque

- lancer VACUUM FULL ANALYZE régulierement

Taches d’administration courantes :
estion des index

@ Depuis la v7.4, les pages d’index vides sont
réutilisées

2 Ulilisation inefficace de 'espace en cas de pages
d’index presque vides (pour les index B-tree)

@ Une reconstruction des index permet de rééquilibrer

Findex B-tree

- parfois acces aux données plus rapide avec une
réindexation pour des index souvent modifiés

- performances meilleures avec une réindexation périodique
des index

Taches d’administration courantes :
{aille de la base de données

oid2name fait partie des outils de contribution de PostGreSQL

® oid2name exirait les OID des bases de données, leurs noms
ainsi gue les tablespaces auxquelles elles sont rattachées

Exemple :
-bash-3.008 oid2name

All databases:
0id Database Name Tablespace

24594 entrepot pg_default
10793 postgres pg_default
10792 templatel} pg_default
1 templatel pg _default

Taches d’administration courantes :
taille de la base de données (suite)

2 dbsize faisait partie des outils de contribution de PostGreSQL

& |es fonctions de ce module sont maintenant incluses dans
PostgreSQL

2 Pour avoir une liste des fonctions disponibles avec ce module,
taper la commande suivante qui renvoie :

psgl -d templatel -AtF " " -c "\df pg_*_size" |

awk '{print $2}°
pg_column_size
pg_database_size
pg_database_size
pg_relation_size
pg_relation_size
pg_tablespace_size
pg_tablespace_size
pg_total_relation_size
pg_total_relation_size

Taches d’administration courantes :
taille de la base de données (suite)

B pg_column_size affiche I'espace utilisé pour stocker toute
valeur individuelle

pg_tablespace_size et pg_database_size acceptent 'OID ou le
nom d'un tablespace ou d'une base de données, et renvoient
l'espace disque total utilisé

m pg_relation_size accepte I'OID ou le nom d'une table, d'un index
ou d'une table toast, et renvoie la taille en octet

pg_total_relation_size accepte I'OID ou le nom d'une table ou
d'une table ioast, et renvoie la taille en octets des données et de
tous les index et tables toast associés

pg_size_pretty peut étre utilisé pour formater le résultat d'une
des autres fonctions en utilisant KB, MB, GB ou TB lorsque cela
est approprié

Taches d’administration courantes :
taille de la base de données (suite)

Exemple :

entrepot=# select pg database_gize('entrepot');
pg_database_size

121368444
(1 row)

entrepot=# select
py_size pretty(pg database_sgize('entrepcot')):

pg_size_pretty

Bilan sur I'administration

® Taches d’administration courantes page 183
» Conseils d’administration page 191

Conseils d’administration

Au lieu de « commiter » chaque modification
individuellement, englober les actions dans une
transaction (un seul « commit » a la fin)

& Utiliser un « COPY » pour insérer de nombreuses
lignes plutdt qu’une suite d’'INSERT
- COPY est optimisé

- COPY est plus rapide qu’un INSERT (méme si PREPARE
est utilisé) et les insertions sont englobées dans une méme
transaction

@ | ors de la modification d’'un grand nombre de
données d’'une table, supprimer puis recréer les index
plutbt que de les metire a jour a chaque modification
(plus rapide)

Q}onseils d’administration (suite)

2 Méme comportement avec les clés étrangeres
(suppression avant une mise a jour importante)

@ Modifier temporairement certains parametres de

mémoire pour :

- CREATE INDEX et ALTER TABLE ADD FOREIGN KEY :
paramétre maintenance_work_mem

- chargement de nombreuses données : paramétre
checkpoint_segments (réduction du nombre de checkpoints)
& Exécuter ANALYZE aprés un chargement important
de données

a Ajuster les paramétres définis pour le process writer,
si la durée des checkpoints est trop pénalisante

kConseils d’administration (suite)

2 ANALYZE et VACUUM ANALYZE permettent
d’obtenir des statistiques en prenant aléatoirement
plusieurs lignes de la table

@ Par défaut, 'échantillon obtenu contiendra les 10
valeurs (valeur de la variable
« default_statistics_target ») les plus communes
dans chaque colonne

m ’ampleur de collecte des statistiques par colonne
pour les opérations d'analyse peut prendre une
valeur entre 10 et 1000

2 La commande a exécuter pour la modifier est :

ALTER TABLE nom_table ALTER COLUMN
nom_colonne SET STATISTICS valeur;

Conseils d’administration (suite)

2 Exemple .
ALTER TABLE dummy3 ALTER COLUMN relname
SET STATISTICS 1000;

= I'échantillon obtenu contiendra les 1000 valeurs les
pius communes dans chaque colonne

= la totalité des lignes de la table dummy3 aura été
utilisée pour récupérer ces 1000 valeurs

8@ Optimiser les paramétres de configuration de
VACUUM et autovacuum pour limiter leurs impacts
sur la base de données

Questions...

Architect of an Open World™

o

T
o
i

”.5 =
e

.
Ay

RS
SRR e

R

SRR

AR A

i
A S

