
Support de cours

PostgreSQL 8

installation
configuration

exploitation
v_20100130

(c) 2008, 2009, 2010, Sébastien Namèche (sebastien@nameche.fr)

(c) 2008, 2009, 2010, Sébastien Namèche (sebastien@nameche.fr) - 2

Ce document peut être librement lu, stocké, reproduit, diffusé, traduit et cité par tous moyens et sur tous supports aux conditions suivantes :
! tout lecteur ou utilisateur de ce document reconnaît avoir pris connaissance de ce qu'aucune garantie n'est donnée quant à son contenu, à tous points de

vue, notamment véracité, précision et adéquation pour toute utilisation ;
! il n'est procédé à aucune modification autre que cosmétique, changement de format de représentation, traduction, correction d'une erreur de syntaxe

évidente ou en accord avec les clauses ci-dessous ;
! le nom, le logo et les coordonnées de l'auteur devront être préservés sur toutes les versions dérivées du document à tous les endroits où ils apparaissent

dans l'original, les noms et logos d'autres contributeurs ne pourront pas apparaître dans une taille supérieure à celle des auteurs précédents, des
commentaires ou additions peuvent êtres insérés à condition d'apparaître clairement comme tels ;

! les traductions ou fragments doivent faire clairement référence à une copie originale complète, si possible à une copie facilement accessible ;
! les traductions et les commentaires ou ajouts insérés doivent être datés et leur(s) auteur(s) doi(ven)t être identifiable(s) (éventuellement au travers d'un

alias) ;
! cette licence est préservée et s'applique à l'ensemble du document et des modifications et ajouts éventuels (sauf en cas de citation courte), quelqu'en

soit le format de représentation ;
! quel que soit le mode de stockage, reproduction ou diffusion, toute version imprimée doit contenir une référence à une version numérique librement

accessible au moment de la première diffusion de la version imprimée, toute personne ayant accès à une version numérisée de ce document doit
pouvoir en faire une copie numérisée dans un format directement utilisable et si possible éditable, suivant les standards publics, et publiquement
documentés en usage ;

! la transmission de ce document à un tiers se fait avec transmission de cette licence, sans modification, et en particulier sans addition de clause ou
contrainte nouvelle, explicite ou implicite, liée ou non à cette transmission. En particulier, en cas d'inclusion dans une base de données ou une
collection, le propriétaire ou l'exploitant de la base ou de la collection s'interdit tout droit de regard lié à ce stockage et concernant l'utilisation qui
pourrait être faite du document après extraction de la base ou de la collection, seul ou en relation avec d'autres documents.

Toute incompatibilité des clauses ci-dessus avec des dispositions ou contraintes légales, contractuelles ou judiciaires implique une limitation
correspondante : droit de lecture, utilisation ou redistribution verbatim ou modifiée du document.
Adapté de la licence Licence LLDD v1, octobre 1997, Libre reproduction © Copyright Bernard Lang [F1450324322014].
URL : http://pauillac.inria.fr/~lang/licence/lldd.html
L'original de ce document est disponible à cette URL : http://sebastien.nameche.fr/cours
La photographie de la couverture est Copyright (c) Shonali Laha (http://www.fiu.edu/~lahas/), tous droits réservés. Utilisée ici avec son aimable
autorisation, je l'en remercie. Elle a été prise en mai 2002. Il s'agit d'un éléphant vivant probablement dans le Parc National de Tarangire, en Tanzanie.
Dédicace de la version du 30 janvier 2010, à Nolwenn.

Licence pour la diffusion de ce document

(c) 2008, 2009, 2010, Sébastien Namèche (sebastien@nameche.fr) - 2

(c) 2008, 2009, 2010, Sébastien Namèche (sebastien@nameche.fr) - 3

Plan

La formation suivra ce plan :
- introduction ;
- partie 1 : installation et configuration ;
- partie 2 : structure et organisation des objets au sein d'un serveur PostgreSQL ;
- partie 3 : administration des bases de données.

Il s'agit d'une formation interactive, il est donc tout à fait indiqué d'interrompre le
formateur pour lui poser des questions, lui faire préciser certains points, demander l'étude
d'un cas particulier, etc.

Ce support fait référence à la version 8.3 de PostgreSQL.

(c) 2008, 2009, 2010, Sébastien Namèche (sebastien@nameche.fr) - 3

(c) 2008, 2009, 2010, Sébastien Namèche (sebastien@nameche.fr) - 4

Cette formation est une introduction à l'administration du serveur de bases de données
PostgreSQL. Elle se focalisera sur les tâches d'administration et les spécificités de ce
logiciel par rapport à d'autres gestionnaires de bases de données.

En particulier, on attend de chaque stagiaire :
- des connaissances générales en administration des systèmes informatiques ;
- des notions sur les réseaux IP ;
- la maîtrise du langage SQL (LDD et LMD) ;
- la maîtrise d'un éditeur de texte.

Pré-requis

(c) 2008, 2009, 2010, Sébastien Namèche (sebastien@nameche.fr) - 4

(c) 2008, 2009, 2010, Sébastien Namèche (sebastien@nameche.fr) - 5

PostgreSQL est un gestionnaire de bases de données relationnelles (SGBDR) supportant
le langage SQL. Il est a été développé à partir du projet Postgres 4.2 initié par l'Université
de Californie à Berkeley (UCB), département informatique, dès 1986. Postgres est lui-
même dérivé de Ingres.

PostgreSQL est développé selon le mode «!Open Source!», sous licence BSD.

Plusieurs dizaines de développeurs et des nombreuses entreprises participent au
développement. L'équipe référente sur le projet reste, elle, indépendante.

PostgreSQL dispose notamment des fonctionnalités suivantes :
- respect de la norme SQL92 ;
- clés étrangères ;
- plusieurs langages procéduraux ;
- déclencheurs ;
- vues ;
- conforme au modèle transactionnel ACID.

Introduction

(c) 2008, 2009, 2010, Sébastien Namèche (sebastien@nameche.fr) - 5

(c) 2008, 2009, 2010, Sébastien Namèche (sebastien@nameche.fr) - 6

Contenu du fichier COPYRIGHT du répertoire du code source de PostgreSQL :

PostgreSQL Database Management System
(formerly known as Postgres, then as Postgres95)

Portions Copyright (c) 1996-2008, PostgreSQL Global Development Group

Portions Copyright (c) 1994, The Regents of the University of California

Permission to use, copy, modify, and distribute this software and its
documentation for any purpose, without fee, and without a written agreement
is hereby granted, provided that the above copyright notice and this
paragraph and the following two paragraphs appear in all copies.

IN NO EVENT SHALL THE UNIVERSITY OF CALIFORNIA BE LIABLE TO ANY PARTY FOR
DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING
LOST PROFITS, ARISING OUT OF THE USE OF THIS SOFTWARE AND ITS
DOCUMENTATION, EVEN IF THE UNIVERSITY OF CALIFORNIA HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

THE UNIVERSITY OF CALIFORNIA SPECIFICALLY DISCLAIMS ANY WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE. THE SOFTWARE PROVIDED HEREUNDER IS
ON AN "AS IS" BASIS, AND THE UNIVERSITY OF CALIFORNIA HAS NO OBLIGATIONS TO
PROVIDE MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS.

La licence BSD

(c) 2008, 2009, 2010, Sébastien Namèche (sebastien@nameche.fr) - 6

(c) 2008, 2009, 2010, Sébastien Namèche (sebastien@nameche.fr) - 7

Les versions marquantes :
1995-05-01 Postgres95 0.01 première version
1995-09-05 PostgreSQL 1.0 le code devient modifiable (évolution de la licence)
1997-01-29 PostgreSQL 6.0 changement dans la numérotation, industrialisation du développement
1997-06-08 PostgreSQL 6.1 nouvel optimiseur
1998-03-01 PostgreSQL 6.3 subselect, variables d'environnement côté client
1998-10-30 PostgreSQL 6.4 vues, règles (rules), UTF réellement utilisable
1999-06-09 PostgreSQL 6.5 MVCC, sauvegardes à chaud, tables temporaires
2000-05-08 PostgreSQL 7.0 clés étrangères, amélioration de l'optimiseur, jointures SQL92
2001-04-13 PostgreSQL 7.1 WAL, TOAST, jointures ouvertes, requêtes complexes
2002-02-04 PostgreSQL 7.2 améliore la gestion des bases conséquentes, internationalisation
2002-11-27 PostgreSQL 7.3 schémas, requêtes préparées
2008-01-07 PostgreSQL 7.3.21
2003-11-17 PostgreSQL 7.4 dictionnaire, tsearch2, autovacuum, nombreuses optimisations
2005-01-19 PostgreSQL 8.0 natif Windows, savepoints, PITR, tablespaces, prêt pour l'entreprise
2005-11-08 PostgreSQL 8.1 validation en deux phases, rôles
2006-12-05 PostgreSQL 8.2 nombreuses améliorations fonctionnelles et optimisations
2008-02-04 PostgreSQL 8.3 encore plus d'améliorations fonctionnelles et d'optimisations
2009-03-17 PostgreSQL 7.4.25
2009-07-04 PostgreSQL 8.4 fenêtrage, CTE et requêtes récursives, permissions par colonnes
2010-03-15 PostgreSQL 8.0.24*, 8.1.20*, 8.2.16, 8.3.10, 8.4.3

* À l'exception des versions 8.0 et 8.1 pour Windows qui ne sont plus supportées.

Versions de PostgreSQL

(c) 2008, 2009, 2010, Sébastien Namèche (sebastien@nameche.fr) - 7

(c) 2008, 2009, 2010, Sébastien Namèche (sebastien@nameche.fr) - 8

La politique de gestion des versions est la suivante :

- les deux premiers numéros représentent les versions majeurs
=> environ une version majeure par an
=> introduction de nouvelles fonctionnalités compatibles
=> les base de données doivent être migrées entres deux versions majeures

- le troisième numéro est la version mineure
=> quelques versions mineures par an
=> correctifs de sécurité, résolution des problèmes, etc.
=> la plupart du temps, le format binaire des bases de données est compatible

Il est recommandé de toujours utiliser la dernière version mineure disponible («!ne pas
migrer est plus risqué que migrer!»).

Les failles de sécurité découvertes sont décrites sur cette page :
http://www.postgresql.org/support/security

Versions de PostgreSQL

(c) 2008, 2009, 2010, Sébastien Namèche (sebastien@nameche.fr) - 8

(c) 2008, 2009, 2010, Sébastien Namèche (sebastien@nameche.fr) - 9

La version bêta 1 de PostgreSQL 8.4 a été rendue publique le 15 avril 2009.
Elle a été publiée le 1er juillet 2009.

- Windowing Functions
- Common Table Expressions and Recursive Joins
- Default and variadic parameters for functions
- Parallel Restore
- Column Permissions
- Per-database locale settings
- Improved hash indexes
- Improved join performance for EXISTS and NOT EXISTS queries
- Easier-to-use Warm Standby
- Automatic sizing of the Free Space Map
- Visibility Map (greatly reduces vacuum overhead for slowly-changing tables)
- Version-aware psql (backslash commands work against older servers)
- Support SSL certificates for user authentication
- Per-function runtime statistics
- Easy editing of functions in psql
- New contrib modules: pg_stat_statements, auto_explain, citext, btree_gin

Versions de PostgreSQL

(c) 2008, 2009, 2010, Sébastien Namèche (sebastien@nameche.fr) - 9

(c) 2008, 2009, 2010, Sébastien Namèche (sebastien@nameche.fr) - 10

Le site pgFoundry.org héberge de nombreux projets indépendants :
- connecteurs pour les différents langages ;
- langages procéduraux ;
- outils d'aide à l'administration ;
- logiciels pour la haute disponibilité (réplication, gestion des connexions, etc.).
Citons : - pgFouine création de rapports à partir du journal d'activité de PostgreSQL

- PGCluster réplication synchrone multi-maîtres
- pgpool gestion des connexions (limitation, réplication, répartition, parallélisation)
- pg-toolbox un ensemble de scripts pour l'aide à l'administration

D'autres projets existent :
- Slony http://slony.info réplication maître vers plusieurs esclaves
- phpPgAdmin http://phppgadmin.sf.net interface Web d'administration
- pgAdmin http://pgadmin.org client d'administration

Le site français PostgreSQLFr.org propose des nouvelles et des traductions de la
documentation officielle et héberge un forum de discussion.
La communauté maintient également l'excellent Wiki :

http://wiki.postgresql.org/

Communauté

(c) 2008, 2009, 2010, Sébastien Namèche (sebastien@nameche.fr) - 10

(c) 2008, 2009, 2010, Sébastien Namèche (sebastien@nameche.fr) - 11

La documentation de PostgreSQL est consultable en ligne :
http://www.postgresql.org/docs/8.3/interactive/index.html

Ou disponible au format PDF :
http://www.postgresql.org/files/documentation/pdf/8.3/postgresql-8.3-A4.pdf

Ou installée avec PostgreSQL, par exemple dans ce répertoire :
$PREFIX/doc/html/index.html

L'association PostgreSQLFr maintient une traduction en ligne :
http://docs.postgresqlfr.org/8.3/

Téléchargeable :
http://docs.postgresqlfr.org/8.3/pg833.tar.gz
http://docs.postgresqlfr.org/pg83.pdf

Un fois PostgreSQL installé, des pages de manuels Unix sont également consultables
avec la commande man (commandes Unix en section 1, commandes SQL en section 7).

Documentation

(c) 2008, 2009, 2010, Sébastien Namèche (sebastien@nameche.fr) - 11

(c) 2008, 2009, 2010, Sébastien Namèche (sebastien@nameche.fr) - 12

De telles comparaisons sont souvent périlleuses.
Malgré tout :

PostgreSQL 8 MySQL 5 Oracle 10g
espaces de tables oui non oui
tables partitionnées émulées oui oui
conforme ACID oui avec InnoDB oui
intégrité référetielle oui avec InnoDB oui
langage procédural plusieurs oui PL/SQL, Java
déclencheurs oui limités oui
curseurs oui limités oui
authentifications LDAP, kerberos, non SE, kerberos
externes PAM, GSSAPI, etc.

Concernant les performances, il est souvent admis que MySQL est plus rapide lorsqu'il
est utilisé avec le moteur MyISAM. Cependant, cet environnement pose plusieurs
problèmes (notamment corruption possible des données et contention des verrous).

Comparatif avec les autres BDD

(c) 2008, 2009, 2010, Sébastien Namèche (sebastien@nameche.fr) - 12

(c) 2008, 2009, 2010, Sébastien Namèche (sebastien@nameche.fr) - 13

Installation et configuration

Partie 1

(c) 2008, 2009, 2010, Sébastien Namèche (sebastien@nameche.fr) - 13

(c) 2008, 2009, 2010, Sébastien Namèche (sebastien@nameche.fr) - 14

PostgreSQL a été portés sur de très nombreux systèmes d'exploitation : Linux, Unix,
Windows et Mac OS X.

Quelque soit l'environnement, ces étapes seront nécessaires :
1) Installation des binaires.
2) Préparation du système d'exploitation.
3) Initialisation des fichiers de l'instance.
4) Configuration.
5) Installation des scripts de démarrage sous Unix ou services sous Windows.

Les étapes de l'installation

(c) 2008, 2009, 2010, Sébastien Namèche (sebastien@nameche.fr) - 14

(c) 2008, 2009, 2010, Sébastien Namèche (sebastien@nameche.fr) - 15

En fonction du système d'exploitation et des contraintes de développement et
d'exploitation, plusieurs solutions existent pour installer les binaires :

- sous Linux, à partir des paquets livrés avec la distribution ;
- pour les systèmes BSD, en utilisant les ports ;
-!en récupérant un paquet binaire sur le site officiel :

(pour Solaris, Windows ou les systèmes Fedora et RHEL)
http://www.postgresql.org/ftp/binary

- à partir d'un paquet binaire compilé par la société EnterpriseDB :
http://www.enterprisedb.com/products/download.do

- avec Yum à partir du dépôt PGDG, pgsqlrpms.org (pour Fedora, CentOS et RHEL) ;
- en compilant le code source :

http://www.postgresql.org/ftp/source

1 – Installation des binaires

(c) 2008, 2009, 2010, Sébastien Namèche (sebastien@nameche.fr) - 15

(c) 2008, 2009, 2010, Sébastien Namèche (sebastien@nameche.fr) - 16

La version stable de Debian (lenny à ce jour) propose une version 8.3.6 de PostgreSQL.
Pour l'installer, il suffit d'utiliser APT :
apt-get install postgresql

Les paquets suivants seront installées (dépendances) :
postgresql-common postgresql-client-common
postgresql-8.3 postgresql-client-8.3 libpq5

Les paquets suivants sont recommandés :
postgresql-contrib-8.3 postgresql-doc-8.3 pgdocs-pdf-a4

Les paquets des langages procéduraux sont :
postgresql-plperl-8.3 postgresql-plpython-8.3 postgresql-pltcl-8.3
postgresql-8.3-pljava-gcj postgresql-8.3-plruby postgresql-8.3-plsh

Enfin, voici quelques autres paquets liés à PostgreSQL :
postgresql-8.3-postgis postgis libpostgis-java
slony1-bin potgresql-8.3-slony1 slony1-doc pgpool pgpool2 pgfouine
postgresql-8.3-orafce ora2pg pgdesigner pgadmin3 kpogre

Installer PostgreSQL sous Debian

(c) 2008, 2009, 2010, Sébastien Namèche (sebastien@nameche.fr) - 16

(c) 2008, 2009, 2010, Sébastien Namèche (sebastien@nameche.fr) - 17

CentOS 5.2 propose des paquets pour la version 8.1.11 de PostgreSQL. D'autres versions
des paquets RPM sont disponibles sur le site de PostgreSQL ici :

http://www.postgresql.org/ftp/binary/v8.x.x/linux/rpms/

Pour CentOS 5.2, utiliser les paquets disponibles dans les répertoires redhat/rhel-5-i386
ou redhat/rhel-5-x86_64, les paquets suivants, au moins, sont nécessaires :

postgresql-libs postgresql postgresql-server

Ceux-ci sont recommandés :
postgresql-contrib postgresql-docs postgresql-devel

Langages procéduraux :
postgresql-plperl postgresql-plpython postgresql-pltcl

Installation et démarrage :
rpm -ivh postgresql-*
service postgresql initdb
service postgresql start

Installer PostgreSQL sous CentOS

(c) 2008, 2009, 2010, Sébastien Namèche (sebastien@nameche.fr) - 17

(c) 2008, 2009, 2010, Sébastien Namèche (sebastien@nameche.fr) - 18

Le site pgsqlrpms.org fournit des paquets binaires pour les systèmes suivants :
- Fedora 7 à 9 ;
- RedHat Enterprise Linux 4 et 5 ;
- CentOS 4 et 5.

Les versions de PostgreSQL disponibles sont 7.3 et 7.4 ainsi que 8.0 à 8.3 et même 8.4
(développement). Des paquets pour les outils et contributions PostgreSQL s'y trouvent
également (pgAdmin, pgfouine, pgpool, Slony, PostGIS, etc.).

Les étapes sont :
- choisir un fichier RPM pour la distribution et la version de PostgreSQL à partir de :

http://yum.pgsqlrpms.org/reporpms/repoview/
- installer ce paquet, par exemple :

rpm -ivh pgdg-fedora-8.3-4.noarch.rpm

- supprimer les paquets PostgreSQL éventuellement installés :
rpm -qa |grep -i postgres |xargs rpm -e

- installer les paquets avec Yum :
yum install postgresql postgresql-server

Installer PostgreSQL à partir du dépôt PGDG

(c) 2008, 2009, 2010, Sébastien Namèche (sebastien@nameche.fr) - 18

(c) 2008, 2009, 2010, Sébastien Namèche (sebastien@nameche.fr) - 19

PostgreSQL utilise l'outil configure. Sa compilation est donc relativement simple. Le
code source est disponible à partir de :

http://www.postgresql.org/ftp/source/

Les outils de compilation et bibliothèques nécessaires sont :
- GNU make ;
- compilateur C ANSI (tel que gcc) ;
- tar et gzip ou bzip2 ;
- la bibliothèque GNU readline (optionnelle) ;
- la bibliothèque zlib (optionnelle) ;
- une implémentation de l'API gettext pour activer NLS (Native Language Support) ;
- ! les bibliothèques Kerberos, OpenSSL, OpenLDAP et/ou PAM pour activer des
types d'authentification et de chiffrements spécifiques.

D'autres composants logiciels sont nécessaires pour certains langages procéduraux :
- Perl et la bibliothèque libperl pour PL/Perl ;
- Python et le module distutils pour PL/Python ;
- Tcl pour PL/Tcl.

Compiler PostgreSQL sous Unix

(c) 2008, 2009, 2010, Sébastien Namèche (sebastien@nameche.fr) - 19

(c) 2008, 2009, 2010, Sébastien Namèche (sebastien@nameche.fr) - 20

Le processus général à suivre pour compiler PostgreSQL est le suivant :
wget ftp://ftp.postgresql.org/pub/source/v8.x.x/postgresql-8.x.x.tar.gz
zcat postgresql-8.x.x.tar.gz | tar xf -
cd postgresql-8.x.x
./configure --prefix=/usr/local/postgresql8xx --with-openssl
make
make install
echo 'PATH=/usr/local/postgresql8xx/bin:$PATH' >> /etc/profile
echo 'MANPATH=/usr/local/postgresql8xx/man:$MANPATH' >> /etc/profile
echo 'export PATH MANPATH' >> /etc/profile

D'autres options de configure sont :
 --without-readline
 --without-zlib
 --enable-nls='fr de'
 --with-ldap
 --with-pam
 --with-perl
 --with-python
 --with-tcl

Pour obtenir toutes les options, exécuter :
./configure --help

Compiler PostgreSQL sous Unix

(c) 2008, 2009, 2010, Sébastien Namèche (sebastien@nameche.fr) - 20

(c) 2008, 2009, 2010, Sébastien Namèche (sebastien@nameche.fr) - 21

Une version de PostgreSQL compilée pour Windows est disponible sous forme de paquet
installable à cet endroit :

http://www.postgresql.org/ftp/binary/v8.x.x/win32/

Télécharger le fichier postgresql-8.x.x-x.zip, en extraire le fichier postgresql-8.x.msi et
l'exécuter. Dérouler les écrans d'installation. La procédure prend en charge la création
d'un service Windows ainsi que la création d'un premier groupe de bases de données pour
le serveur PostgreSQL.

L'installation des différents langages procéduraux est possible si ceux-ci sont déjà
installés sur le système d'exploitation.

Parmi les contributions utiles à installer figure notamment adminpack qui permet
d'étendre les fonctions de l'interface graphique pgAdminIII.

Installer PostgreSQL sous Windows

(c) 2008, 2009, 2010, Sébastien Namèche (sebastien@nameche.fr) - 21

(c) 2008, 2009, 2010, Sébastien Namèche (sebastien@nameche.fr) - 22

Trois tâches essentielles :
1) Création d'un utilisateur système.
2) Choix des répertoires pour les fichiers de l'instance.
3) Paramétrage de la mémoire partagée.

Le serveur PostgreSQL n'est jamais exécuté en tant que root. L'utilisateur système utilisé
est traditionnellement postgres et n'a pas besoin de mot de passe.

Le choix du répertoire de l'instance est important :
- prendre en compte la capacité et la vitesse du disque ;
- prévoir la possibilité de créer plusieurs instances ;
- ! les fichiers de données, les index et les journaux des transactions pourront être
répartis sur plusieurs disques grâce aux espaces de tables (tablespaces) ;
-!ce répertoire doit être accessible en lecture et écriture pour l'utilisateur postgres (et
uniquement cet utilisateur).

Par exemple : /var/postgres/u01/inst5432

2 – Préparation du système d'exploitation

(c) 2008, 2009, 2010, Sébastien Namèche (sebastien@nameche.fr) - 22

(c) 2008, 2009, 2010, Sébastien Namèche (sebastien@nameche.fr) - 23

PostgreSQL utilise des segments de mémoire partagée entre les différents processus du
serveur. Cette fonction est propre aux systèmes Unix.

Les valeurs de ces paramètres sont souvent trop faibles :
[root@pga ~]# sysctl -a |grep kernel.shm |sort
kernel.shmall = 2097152 (soit 8 Go, car exprimé en nombre de blocs)
kernel.shmmax = 33554432 (soit 32 Mo)
kernel.shmmni = 4096
[root@pga ~]# ipcs -m -l
------ Shared Memory Limits --------
max number of segments = 4096
max seg size (kbytes) = 32768
max total shared memory (kbytes) = 8388608
min seg size (bytes) = 1

En général, mais cela dépend des systèmes Unix, les paramètres du noyau sont configurés
par l'intermédiaire du fichier /etc/sysctl.conf. Par exemple, sous Linux :
kernel.shmall = 2097152 (soit 8 Go, car exprimé en nombre de blocs)
kernel.shmmax = 134217728 (soit 128 Mo)
kernel.shmmni = 256

Attention, le paramètre shmall peut s'exprimer en octets ou nombre de blocs.

Paramètres de la mémoire partagée sous Unix

(c) 2008, 2009, 2010, Sébastien Namèche (sebastien@nameche.fr) - 23

(c) 2008, 2009, 2010, Sébastien Namèche (sebastien@nameche.fr) - 24

Une instance PostgreSQL est composée :
- d'un ensemble de processus dont un écoutant sur un port TCP (5432 par défaut) ;
- d'un répertoire (appelé «!groupe de bases de données!») contenant notamment :

* les bases de données (dans le répertoire base) ;
* un fichier de configuration postgresql.conf ;
* un fichier pour la gestion de l'authentification pg_hba.conf.

Il est possible de configurer plusieurs instances actives simultanément sur un même
serveur à condition d'allouer un répertoire et un port TCP distincts pour chacune. Ces
instances peuvent même exécuter des versions différentes de PostgreSQL.

En fonction de la manière dont PostgreSQL a été installé, il peut être nécessaire de créer
ou non le premier groupe de bases de données et de l'initialiser.

3 – Initialiser une instance

(c) 2008, 2009, 2010, Sébastien Namèche (sebastien@nameche.fr) - 24

(c) 2008, 2009, 2010, Sébastien Namèche (sebastien@nameche.fr) - 25

La procédure est la suivante :

1) Créer l'utilisateur et le groupe postgres :
groupadd postgres
useradd -g postgres -d /var/pg -c "PostgreSQL Software Owner" \
 -s /bin/sh postgres

2) Créer le répertoire et lui associer les droits adéquats :
mkdir /var/pg
chown postgres:postgres /var/pg
chmod 700 /var/pg

3) Initialiser les fichiers de l'instance :
su - postgres
$ initdb --encoding=UTF8 --locale=C --pwprompt /var/pg/u01/inst5432
$ ls /var/pg/u01/inst5432
base pg_clog pg_ident.conf pg_subtrans pg_twophase pg_xlog
global pg_hba.conf pg_multixact pg_tblspc PG_VERSION postgresql.conf

Initialiser une instance

(c) 2008, 2009, 2010, Sébastien Namèche (sebastien@nameche.fr) - 25

(c) 2008, 2009, 2010, Sébastien Namèche (sebastien@nameche.fr) - 26

Le fichier postgresql.conf contient les différents paramètres de l'instance. Les valeurs par
défaut permettent d'exécuter une instance de taille modeste sans problème particulier.
Nous reviendrons sur différents paramètres de ce fichier. Pour l'instant, seuls ceux
destinés à configurer les accès réseau nous intéressent.

Le paramètre port (dont la valeur par défaut est 5432) permet de choisir un port TCP
différent, ce qui est nécessaire si plusieurs instances sont exécutées sur une même
machine.

Le paramètre listen_addresses liste les adresses IP sur lesquelles PostgreSQL écoutera.
Par défaut seule l'adresse locale 127.0.0.1 sera utilisée. Pour permettre la connexion de
puis d'autres machines du réseau, il faut donc modifier ce paramètre. Par exemple :

listen_adresses = '*'

4 – Configurer l'instance

(c) 2008, 2009, 2010, Sébastien Namèche (sebastien@nameche.fr) - 26

(c) 2008, 2009, 2010, Sébastien Namèche (sebastien@nameche.fr) - 27

L'authentification est gérée par :
- le fichier pg_hba.conf ;
- les objets rôles.

Le fichier pg_hba.conf est utilisé pour configurer la manière d'authentifier les connexions
en fonction de leur origine et de la base de données concernée.

Attention !
Le fichier pg_hba.conf par défaut autorise toutes les connexions locales de
n'importe quel utilisateur vers n'importe quelle base de données sans
authentification. Aucune connexion ne sera acceptée depuis une autre machine
du réseau.

Il donc nécessaire de modifier ce fichier la plupart du temps.

Configurer l'authentification

(c) 2008, 2009, 2010, Sébastien Namèche (sebastien@nameche.fr) - 27

(c) 2008, 2009, 2010, Sébastien Namèche (sebastien@nameche.fr) - 28

Le format d'une ligne du fichier pg_hba.conf est le suivant :
 type base_de_données utilisateur addresse méthode option

Les types supportés sont :
- local : connexion par une socket du domaine Unix (la colonne adresse est vide) ;
- host : connexion chiffrée ou non par une socket TCP/IP ;
- hostssl : connexion chiffrée par une socket TCP/IP ;
- hostnossl : connexion non chiffrée par une socket TCP/IP.

La colonne base_de_données contient un ou une liste de ces éléments séparés par une
virgule :

- le nom d'une base de données ;
- ou «!all » ;
- ou «!samerole ».

La colonne utilisateur contient un ou une liste de ces éléments séparés par une virgule :
- le nom d'un utilisateur ;
- ou «!all » ;
- ou le nom d'un groupe (rôle) précédé du caractère «!+!».

Configurer l'authentification

(c) 2008, 2009, 2010, Sébastien Namèche (sebastien@nameche.fr) - 28

(c) 2008, 2009, 2010, Sébastien Namèche (sebastien@nameche.fr) - 29

Le format d'une ligne du fichier pg_hba.conf est le suivant :
 type base_de_données utilisateur addresse méthode option

La colonne adresse contient l'adresse IP d'origine de la connexion au format CIDR. Elle
doit être vide lorsque le type de connexion est local.

Enfin, la méthode d'authentification est choisie parmi :
- trust : autoriser sans même vérifier le mot de passe ;
- reject : rejeter la connexion ;
- md5 : vérifier le mot de passe fourni (ne plus utiliser crypt ou password) ;
- ident : utiliser le protocole IDENT pour vérifier l'utilisateur ;
- krb5, pam ou ldap : authentifications spécifiques.

La colonne option n'est employée que lorsque la méthode d'authentification l'exige (par
exemple, pour ident ou pam).

Configurer l'authentification

(c) 2008, 2009, 2010, Sébastien Namèche (sebastien@nameche.fr) - 29

(c) 2008, 2009, 2010, Sébastien Namèche (sebastien@nameche.fr) - 30

Voici un exemple sensé (lire «!recommandé!») pour le fichier pg_hba.conf :
TYPE DATABASE USER CIDR-ADDRESS METHOD
local all postgres ident sameuser
host all all 192.168.1.0/24 md5
host all all 0.0.0.0/0 reject

L'ordre des lignes dans ce fichier est important car elles sont évaluées les unes à la suite
des autres. La première correspondant aux critères type, base de données, utilisateur et
origine l'emporte.

L'exemple ci-dessus permet à l'utilisateur postgres de se connecter en local à condition
que cette connexion soit réalisée par l'utilisateur du système qui porte le même nom.

Les connexions à partir du réseau 192.168.1.0/24 seront autorisées mais nécessiteront un
mot de passe. Un utilisateur (rôle) devra exister pour cela dans l'instance.

Toutes les autres connexions seront refusées.

Configurer l'authentification

(c) 2008, 2009, 2010, Sébastien Namèche (sebastien@nameche.fr) - 30

(c) 2008, 2009, 2010, Sébastien Namèche (sebastien@nameche.fr) - 31

La commande pg_ctl peut être utilisée pour contrôler une instance. Notamment pour la
démarrer, l'arrêter, obtenir son état ou lui faire relire ses fichiers de configuration :
su - postgres
$ pg_ctl -D /var/pg/u01/inst5432 -l /var/pg/u01/inst5432/stderr.log start
$ pg_ctl -D /var/pg/u01/inst5432 status
$ pg_ctl -D /var/pg/u01/inst5432 reload
$ pg_ctl -D /var/pg/u01/inst5432 [-m smart|fast|immediate] stop

Pour l'arrêt :
- smart (SIGTERM)

Interdit les nouvelles connexions mais laisse les sessions actives se terminer.
- fast (SIGINT)

Interdit les nouvelles connexions, les transactions en cours sont annulées et les
sessions actives fermées.

- immediate (SIGQUIT)
Arrêt immédiat, arrêt brutal des transactions, à éviter.

Démarrer et arrêter l'instance

(c) 2008, 2009, 2010, Sébastien Namèche (sebastien@nameche.fr) - 31

(c) 2008, 2009, 2010, Sébastien Namèche (sebastien@nameche.fr) - 32

Si PostgreSQL a été installé avec un paquet d'une distribution, il est préférable d'utiliser
les scripts fournis.

Sous Debian :
/etc/init.d/postgresq-8.1 start|stop|status|reload

Sous RedHat ou CentOS :
service postgresql start|stop|status|reload

Enfin, sous Windows :
> net start|stop pgsql

Démarrer et arrêter l'instance

(c) 2008, 2009, 2010, Sébastien Namèche (sebastien@nameche.fr) - 32

(c) 2008, 2009, 2010, Sébastien Namèche (sebastien@nameche.fr) - 33

Les processus associés à l'instance sont les suivantes :
ps faux
postgres 30603 ? S /usr/local/postgresql834/bin/postmaster -D /var/pg/u01/inst5
postgres 30605 ? Ss _ postgres: logger process
postgres 30606 ? Ss _ postgres: writer process
postgres 30607 ? Ss _ postgres: wal writer process
postgres 30608 ? Ss _ postgres: autovacuum launcher process
postgres 30609 ? Ss _ postgres: stats collector process
postgres 30617 ? Ss _ postgres: postgres postgres 127.0.0.1(35342) idle

Le processus père de tous les autres est le postmaster. Certains processus fils ne sont
présents que lorsque certains paramètres sont activés.

Le dernier processus de cette liste est un processus associé à un client. Un tel processus
sera créé pour chaque nouvelle session.

Processus de l'instance

(c) 2008, 2009, 2010, Sébastien Namèche (sebastien@nameche.fr) - 33

(c) 2008, 2009, 2010, Sébastien Namèche (sebastien@nameche.fr) - 34

Sous Unix, lorsque PostgreSQL est compilé, les scripts de démarrage ne sont pas
installés.

Pour Linux, un script de démarrage est disponible dans le répertoire contrib/start-scripts
du code source.

Par exemple, pour les System V :
cp contrib/start-scripts/linux /etc/init.d/postgresql_inst5432
chmod 755 /etc/init.d/postgresql_inst5432
/etc/init.d/postgresql_inst5432

Modifier les variables suivantes :
prefix=/usr/local/postgresql836
PGDATA="/var/pg/u01/inst5432"

ln -s /etc/init.d/postgresql_inst5432 /etc/rc2.d/S30postgresql_inst5432
ln -s /etc/init.d/postgresql_inst5432 /etc/rc5.d/S30postgresql_inst5432
ln -s /etc/init.d/postgresql_inst5432 /etc/rc0.d/K70postgresql_inst5432
ln -s /etc/init.d/postgresql_inst5432 /etc/rc6.d/K70postgresql_inst5432

5 – Configurer le démarrage

(c) 2008, 2009, 2010, Sébastien Namèche (sebastien@nameche.fr) - 34

(c) 2008, 2009, 2010, Sébastien Namèche (sebastien@nameche.fr) - 35

Pourquoi utiliser de nouvelles instances :
- pour exécuter des versions différentes de PostgreSQL ;
- pour exécuter des instances de PostgreSQL avec des paramètres différents ;
- pour des environnements différents (développement, pré-production, production) ;
- pour isoler des bases de données.

Pour créer une nouvelle instance sur le même serveur, il faut :
1) Choisir un port TCP et un répertoire différent pour l'instance.
2) Créer les fichiers de l'instance avec initdb.
3) Modifier la configuration de l'instance.
4) Installer le script de démarrage.

Instances supplémentaires

(c) 2008, 2009, 2010, Sébastien Namèche (sebastien@nameche.fr) - 35

(c) 2008, 2009, 2010, Sébastien Namèche (sebastien@nameche.fr) - 36

Par exemple :

su - postgres
$ initdb --encoding=UTF8 --locale=C --pwprompt /var/pg/u01/inst5433
$ vi /var/pg/u01/inst5433/postgresql.conf

Modifier la variable suivante :
port = 5433

$ exit
cp /etc/init.d/postgresql_inst5432 /etc/init.d/postgresql_inst5433
vi /etc/init.d/postgresql_inst5433

Modifier la variable suivante :
PGDATA="/var/pg/u01/inst5433"

ln -s /etc/init.d/postgresl_inst5433 /etc/rc2.d/S30postresql_inst5433
ln -s /etc/init.d/postgresl_inst5433 /etc/rc0.d/K70postresql_inst5433
ln -s /etc/init.d/postgresl_inst5433 /etc/rc6.d/K70postresql_inst5433

Instances supplémentaires

(c) 2008, 2009, 2010, Sébastien Namèche (sebastien@nameche.fr) - 36

(c) 2008, 2009, 2010, Sébastien Namèche (sebastien@nameche.fr) - 37

Les développeurs Debian des paquets PostgreSQL ont créé des scripts qui facilitent la
gestion des versions de PostgreSQL et des instances sur un même serveur.

Les scripts pour la gestion des instances sont :
- pg_createcluster création d'une instance ;
- pg_lsclusters liste des instances existantes ;
- pg_ctlclusters arrêt/démarrage des instances ;
- pg_dropcluster suppression d'une instance ;
-!pg_upgradecluster migration d'une instance vers une version plus récente ;
- pg_maintenance exécution des actions de maintenance sur toutes les instances.

Le démarrage des instances lors du démarrage du système est également pris en charge, il
n'est donc pas nécessaire de créer et modifier des scripts dans /etc/init.d.

Les scripts installés par Debian

(c) 2008, 2009, 2010, Sébastien Namèche (sebastien@nameche.fr) - 37

(c) 2008, 2009, 2010, Sébastien Namèche (sebastien@nameche.fr) - 38

Les clients se connectent au serveur par l'intermédiaire d'une socket Unix ou d'une socket
TCP (sur le port 5432 par défaut). Deux informations sont nécessaires pour ouvrir une
session :

- le nom d'une base de données ;
- le nom d'un rôle.

Un mot de passe est requis selon la configuration de pg_hba.conf.

Le jeu de caractères utilisé par le client peut être différent de celui de la base de données.
Le ré-encodage sera effectué par le serveur.

Sessions

(c) 2008, 2009, 2010, Sébastien Namèche (sebastien@nameche.fr) - 38

(c) 2008, 2009, 2010, Sébastien Namèche (sebastien@nameche.fr) - 39

Pour utiliser des sessions chiffrées en SSL, trois étapes sont nécessaires :
1) Générer une clé privée et un certificat x509 pour le serveur.
2) Activer l'option ssl dans le fichier postgresql.conf de l'instance.
3) Redémarrer l'instance.

La clé privée et le certificat x509 doivent être enregistrés respectivement dans les fichiers
server.key et server.crt du répertoire de l'instance.

Par exemple, pour générer un certificat auto-signé avec OpenSSL :
cd /var/pg/u01/inst5432
openssl req -new -nodes -out server.req -keyout server.key
openssl req -x509 -in server.req -key server.key -out server.crt
chown postgres server.*
chmod 600 server.key

SSL

(c) 2008, 2009, 2010, Sébastien Namèche (sebastien@nameche.fr) - 39

(c) 2008, 2009, 2010, Sébastien Namèche (sebastien@nameche.fr) - 40

Plusieurs outils sont installés avec PostgreSQL :
createdb dropdb clusterdb pg_dump initdb pg_ctl
createlang droplang reindexdb pg_dumpall ipcclean postgres
createuser dropuser vacuumdb pg_restore pg_resetxlog postmaster
psql pg_config ecpg pg_controldata

Beaucoup permettent d'exécuter des actions qui peuvent l'être en SQL. Nous nous
concentrerons sur leur équivalent SQL. Pour cela, le client principal est l'interpréteur de
commandes psql. Ses principaux paramères (tous optionnels) sont :
$ psql -h machine -p port nombdd utilisateur

Par exemple :
$ psql -h 192.168.1.42 postgres postgres
Password for user postgres:
Welcome to psql 8.3.6, the PostgreSQL interactive terminal.

Type: \copyright for distribution terms
 \h for help with SQL commands
 \? for help with psql commands
 \g or terminate with semicolon to execute query
 \q to quit

postgres=#

Clients

(c) 2008, 2009, 2010, Sébastien Namèche (sebastien@nameche.fr) - 40

(c) 2008, 2009, 2010, Sébastien Namèche (sebastien@nameche.fr) - 41

L'invite de commande de psql change en fonction du contexte, elle est composée de trois
parties :

pagila=#

pagila est le nom de la base de données active pour cette session
= signifie que psql attend une nouvelle commande
indique que l'utilisateur connecté est un administrateur de l'instance

postgres->

postgres est le nom de la base de données active pour cette session
- signifie que psql attend la suite d'une instruction SQL
> indique que l'utilisateur connecté n'est pas un administrateur de l'instance

Les signes = et - peuvent également être remplacés par :
' une chaîne est ouverte (un caractère ' a été saisi sur une ligne précédente)
(une parenthèse a été ouverte sur une ligne précédente

Client psql

(c) 2008, 2009, 2010, Sébastien Namèche (sebastien@nameche.fr) - 41

(c) 2008, 2009, 2010, Sébastien Namèche (sebastien@nameche.fr) - 42

En plus des instructions SQL LDD et LMD, l'interpréteur psql comprend certaines
commandes qui lui sont propres. Ces commandes sont précédées du caractère «!\!». Voici
celles qui sont le plus souvents utilisées :

\c [nombdd|- [utilisateur|- [machine|- [port|-]]]]
se connecter à une autre instance PostgreSQL

\i fichier exécuter un fichier SQL
\o fichier envoyer la sortie vers un fichier
\d nom décrire une relation (table, index, séquence ou vue)
\d{t|i|s|v} [modèle] lister les tables, index, séquences ou vues
\db [modèle] lister les espaces de tables
\du [modèle] lister les utilisateurs
\dg [modèle] lister les groupes
\dn [modèle] lister les espaces de noms (schémas et catalogues)
\l lister les bases de données de l'instance
\z nom afficher les privilèges associés à une relation
\? lister les commandes de psql
\h instruction obtenir de l'aide sur une instruction SQL
\encoding [encodage] obtenir ou configurer l'encodage pour la session
\q quitter psql

Client psql

(c) 2008, 2009, 2010, Sébastien Namèche (sebastien@nameche.fr) - 42

(c) 2008, 2009, 2010, Sébastien Namèche (sebastien@nameche.fr) - 43

L e l o g i c i e l
pgAdminIII est
souvent utilisé
comme alternative
graphique à psql.

Client pgAdminIII

(c) 2008, 2009, 2010, Sébastien Namèche (sebastien@nameche.fr) - 43

(c) 2008, 2009, 2010, Sébastien Namèche (sebastien@nameche.fr) - 44

L'installation de pgAdminIII dépend du système d'exploitation.

Pour Debian :
apt-get install pgadmin3

Des versions compilées sont disponibles pour FreeBSD, Mac OS X et certaines
distributions de Linux à cet endroit :

http://www.postgresql.org/ftp/pgadmin3/release/

Pour RedHat, CentOS et Fedora, le dépôt de logiciels Dag en fournit une version à cette
adresse :

http://dag.wieers.com/rpm/packages/pgadmin3/

Par exemple, sous CentOS ou RHEL 5 :
wget http://dag.wieers.com/rpm/packages/pgadmin3/pgadmin3-1.4.3-1.el5.rf.i386.rpm
rpm -ivh pgadmin3-1.4.3-1.el5.rf.i386.rpm

Pour Windows, pgAdminIII est compris dans le paquet d'installation présenté
précédemment.

Client pgAdminIII

(c) 2008, 2009, 2010, Sébastien Namèche (sebastien@nameche.fr) - 44

(c) 2008, 2009, 2010, Sébastien Namèche (sebastien@nameche.fr) - 45

Afin de pouvoir utiliser toutes les fonctions de pgAdminIII, il est nécessaire d'installer
certaines fonctions dans l'instance.

Ces fonctions sont disponibles dans une contribution fournie avec le code source de
PostgreSQL si celui-ci a été compilé. Deux étapes sont nécessaires pour les installer :

1) Compiler et installer la bibliothèque dynamique.
2) Créer les références aux fonctions avec un script SQL.

Par exemple :
cd /root/postgresql-8.3.6/contrib/adminpack
make install
psql postgres postgres \
 < /usr/local/postgresql836/share/contrib/adminpack.sql

Client pgAdminIII

(c) 2008, 2009, 2010, Sébastien Namèche (sebastien@nameche.fr) - 45

(c) 2008, 2009, 2010, Sébastien Namèche (sebastien@nameche.fr) - 46

Le client d'administration pgAdmin III requiert un accès direct au serveur via le port TCP
5432. Cela n'est pas toujours possible, ni souhaitable. L'application Web phpPgAdmin
peut être utilisée dans cette situation. Il s'installe sur le serveur.

Il est disponible à cette adresse :
http://phppgadmin.sourceforge.net

Son installation requiert un serveur Web et le langage PHP avec l'extension pgsql.

Client phpPgAdmin

(c) 2008, 2009, 2010, Sébastien Namèche (sebastien@nameche.fr) - 46

(c) 2008, 2009, 2010, Sébastien Namèche (sebastien@nameche.fr) - 47

Client phpPgAdmin

(c) 2008, 2009, 2010, Sébastien Namèche (sebastien@nameche.fr) - 47

(c) 2008, 2009, 2010, Sébastien Namèche (sebastien@nameche.fr) - 48

Structure et organisation
d'une instance PostgreSQL

Partie 2

(c) 2008, 2009, 2010, Sébastien Namèche (sebastien@nameche.fr) - 48

(c) 2008, 2009, 2010, Sébastien Namèche (sebastien@nameche.fr) - 49

Le langage SQL est constitué de deux sous-ensembles :
- le Langage de Description des Données (LDD) ;
- le Langage de Manipulation des Données (LMD).

Le langage de description des données est utilisé pour créer, modifier et détruire les objets
de la base de données (tables, index, séquences, procédures, rôles, etc.). Ce sous-
ensemble est représenté par les verbes :

create alter drop grant revoke

Souvent, un groupe d'instructions LDD qui décrivent un ensemble d'objets liés est appelé
schéma de données.

Le langage de manipulation des données permet d'ajouter, modifier, supprimer et
récupérer les données qui sont stockées dans les objets créés avec le langage de
description des données. Ce sous-ensemble est représenté par les verbes :

insert select update delete

LDD/LMD

(c) 2008, 2009, 2010, Sébastien Namèche (sebastien@nameche.fr) - 49

(c) 2008, 2009, 2010, Sébastien Namèche (sebastien@nameche.fr) - 50

Les différents types d'objet qu'il est possible de créér dans une instance PostgreSQL sont :
- organisation physique et logique des données

bases de données databases
espaces de tables tablespaces
schémas schemas

- relations
tables tables
vues views
index indexes
séquences sequences

- autres
domaines domains
règles rules
rôles roles
fonctions functions
déclencheurs triggers

Types d'objets

(c) 2008, 2009, 2010, Sébastien Namèche (sebastien@nameche.fr) - 50

(c) 2008, 2009, 2010, Sébastien Namèche (sebastien@nameche.fr) - 51

Bases de données

(c) 2008, 2009, 2010, Sébastien Namèche (sebastien@nameche.fr) - 51

(c) 2008, 2009, 2010, Sébastien Namèche (sebastien@nameche.fr) - 52

Une instance est composée par :
- un ensemble de fichiers (groupe de bases de données, ou database cluster) ;
- un ensemble de processus.

Une instance gère plusieurs bases de données. Pour chaque instance, il existe au moins
ces bases de données :

- postgres ;
- template0 ;
- template1.

Les relations (tables, index, etc.) sont stockées dans les bases de données. Chaque base de
données est compartimentée en espaces de noms : les schémas et les catalogues.

Pour chaque base de données il existe au moins le schéma public et les catalogues!:
- information_schema ;
- pg_catalog ;
- pg_toast ;
- pg_toast_temp_1.

Instances, bases de données, schémas

(c) 2008, 2009, 2010, Sébastien Namèche (sebastien@nameche.fr) - 52

(c) 2008, 2009, 2010, Sébastien Namèche (sebastien@nameche.fr) - 53

Les OID (Object Identifiers) sont utilisés par PostgreSQL pour la clé primaire d'un certain
nombre de tables système.

Par exemple :
postgres=# \d pg_database
 Table "pg_catalog.pg_database"
 Column | Type | Modifiers
---------------+-----------+-----------
 datname | name | not null
 datdba | oid | not null
 encoding | integer | not null
 datistemplate | boolean | not null
 datallowconn | boolean | not null
 datconnlimit | integer | not null
.../...

postgres=# select oid, datname from pg_database;
 oid | datname
-------+-----------
 1 | template1
 11510 | template0
 11511 | postgres
 16395 | bla
(4 rows)

Notion de OID

(c) 2008, 2009, 2010, Sébastien Namèche (sebastien@nameche.fr) - 53

(c) 2008, 2009, 2010, Sébastien Namèche (sebastien@nameche.fr) - 54

Les données des tables de PostgreSQL sont enregistrées dans des fichiers dont le nom est
un entier. Cet entier est appelé filenode. Le filenode d'une table est souvent identique à
l'OID associé à cette table. Mais certaines opérations sur les relations altèrent le filenode
sans modifier l'OID.

La taille des fichiers de données est limitées à 1 Go. Lorsque la taille d'une table atteint
cette limite, un nouveau fichier est créé dont le nom est composé du filenode associé au
fichier et d'un numéro séquentiel séparés par un point.

Par exemple :

cd $PGDATA/base/16400
du -hsc 20048*
1,0G 20048
1,0G 20048.1
 82M 20048.2
2,1G total

Notion de filenode

(c) 2008, 2009, 2010, Sébastien Namèche (sebastien@nameche.fr) - 54

(c) 2008, 2009, 2010, Sébastien Namèche (sebastien@nameche.fr) - 55

Le répertoire de chaque instance contient les fichiers et sous-répertoires suivants :
$PGDATA
 PG_VERSION version de PostgreSQL associée à cette instance
 pg_hba.conf configuration de l'authentification
 pg_ident.conf configuration de l'authentification ident
 postgresql.conf configuration de l'instance
 postmaster.opts options de démarrage du processus postmaster
 postmaster.pid PID du postmaster
$PGDATA/base répertoire associé à l'espace de tables pg_default
$PGDATA/base/oid répertoire de la base de données associées à l'OID oid
$PGDATA/base/pgsql_tmp fichiers temporaires pour certaines opérations
$PGDATA/global tables système (espace de tables pg_global)
$PGDATA/pg_clog données relatives au statut de validation des transactions
$PGDATA/pg_log journaux d'activité
$PGDATA/pg_multixact données relatives au statut des transactions multiples
$PGDATA/pg_subtrans données relatives au statut des transactions imbriquées
$PGDATA/pg_tblspc contient un lien symbolique pour chaque espace de tables
$PGDATA/pg_twophase données pour les transactions préparées
$PGDATA/pg_xlog journaux binaires (WAL)

Arborescence des répertoires et des fichiers

(c) 2008, 2009, 2010, Sébastien Namèche (sebastien@nameche.fr) - 55

(c) 2008, 2009, 2010, Sébastien Namèche (sebastien@nameche.fr) - 56

Toutes les relations (terme utilisé par PostgreSQL pour désigner un ensemble d'objets tels
que les tables, index, séquences, etc.) appartiennent à une base de données.

Les données associées à chaque relation sont stockées dans un fichier dont le nom est
l'OID de la relation dans le répertoire de la base de données :

$PGDATA/base/oid_bdd/filenode_relation

La base de données postgres fait exception à la règle, ses relations sont enregistrées dans
le répertoire $PGDATA/global.

Ce répertoire contient les fichiers suivants :
$PGDATA/global
 pg_auth fichier texte, copie des identifiants et mots de passe des rôles utilisateurs
 pg_control positions et données de contrôle des journaux et transactions
 pg_database fichier texte, copie des bases de données présentes dans l'instance
 pgstat.stat statistiques collectées par PostgreSQL
 filenode identifiant de fichier de la relation associée

Arborescence des répertoires et des fichiers

(c) 2008, 2009, 2010, Sébastien Namèche (sebastien@nameche.fr) - 56

(c) 2008, 2009, 2010, Sébastien Namèche (sebastien@nameche.fr) - 57

La création d'une base de données se fait avec l'instruction :
CREATE DATABASE nom
 [[WITH] [OWNER [=] utilisateur]
 [TEMPLATE [=] modèle]
 [ENCODING [=] encodage]
 [TABLESPACE [=] espace_de_tables]

Le propriétaire par défaut est l'utilisateur connecté.
La base de données modèle par défaut est template1.
L'encodage par défaut est celui de l'instance.
D'autres sont UTF8, WIN1252, LATIN1, LATIN9 et SQL_ASCII.
L'espace de tables par défaut est pg_default.
Seul un administrateur ou un utilisateur qui dispose l'attribut createdb peut créer une base
de données (mais elle lui appartiendra obligatoirement).

Par exemple :
postgres=# create database test;
CREATE DATABASE
postgres=# \c test
You are now connected to database "test".

Bases de données

(c) 2008, 2009, 2010, Sébastien Namèche (sebastien@nameche.fr) - 57

(c) 2008, 2009, 2010, Sébastien Namèche (sebastien@nameche.fr) - 58

Pour supprimer une base de données :
DROP DATABASE [IF EXISTS] nom

Une base de données ne peut être supprimée tant que des utilisateurs y sont connectés.
Seul l'administrateur ou le propriétaire d'une base de données peut la détruire.

Attention !
Lors de la suppression d'une base de données, tous les objets qu'elle contient
sont détruits sans avertissement et sans possibilité de retour en arrière.

Par exemple :
test=# drop database test;
ERREUR: n'a pas pu supprimer la base de données actuellement ouverte

test=# \c postgres
You are now connected to database "postgres".

postgres=# drop database test;
DROP DATABASE

Bases de données

(c) 2008, 2009, 2010, Sébastien Namèche (sebastien@nameche.fr) - 58

(c) 2008, 2009, 2010, Sébastien Namèche (sebastien@nameche.fr) - 59

Les schémas sont simplement des espaces de noms. Ainsi, il est possible de créer dans
une même base de données des objets qui portent le même nom tant qu'ils le sont dans
des schémas différents.

Les objets d'un schéma sont accessibles en préfixant leur nom par le nom du schéma
suivit d'un point : «!schema.objet!».

La variable search_path contient une liste de noms de schéma qui seront considérés pour
trouver des noms d'objet qui ne sont pas qualifiés. Cette variable contient par défaut :

"$user",public

La commande \dn de psql permet de lister les espaces de noms (dont les schémas)
présents dans la base de données. Pour créer un schéma :
CREATE SCHEMA nom [AUTHORIZATION utilisateur]

Le propriétaire par défaut est l'utilisateur connecté. Seuls les administrateurs et les
utilisateurs qui disposent du privilège create sur la base de données peuvent créer de
nouveaux schémas.

Schémas

(c) 2008, 2009, 2010, Sébastien Namèche (sebastien@nameche.fr) - 59

(c) 2008, 2009, 2010, Sébastien Namèche (sebastien@nameche.fr) - 60

Pour détruire un schéma :
DROP SCHEMA [IF EXISTS] nom [CASCADE]

Seuls un administrateur et le propriétaire du schéma peuvent le détruire.
L'option CASCADE permet la suppression d'un schéma qui contient des objets.

Par exemple :
test=# create schema compta;
CREATE SCHEMA

test=# create table compta.clients (id int, nom varchar);
CREATE TABLE

test=# drop schema compta;
NOTICE: table compta.bla depends on schema compta
ERROR: cannot drop schema compta because other objects depend on it
HINT: Use DROP ... CASCADE to drop the dependent objects too.

test=# drop schema compta cascade;
NOTICE: drop cascades to table compta.clients
DROP SCHEMA

Note : par défaut tous les droits sont octroyés à tous les utilisateurs sur le schéma public.

Schémas

(c) 2008, 2009, 2010, Sébastien Namèche (sebastien@nameche.fr) - 60

(c) 2008, 2009, 2010, Sébastien Namèche (sebastien@nameche.fr) - 61

Le catalogue pg_catalog contient notamment :
- l'ensemble des fonctions et types implémentées par le moteur de PostgreSQL ;
-!un ensemble de tables dont certaines en écriture servent à contrôler certains aspects
du fonctionnement du serveur ;
-!un ensemble de vues permettant de comprendre le comportement de l'instance.

Par exemple :
La table pg_autovacuum permet de contrôler le nettoyage automatique des tables.
La table pg_database contient la liste des bases de données de l'instance.
La table pg_tablespace contient la liste espaces de table de l'instance.
La table pg_namespace contient la liste des schémas de la base de données.
La vue pg_roles liste les rôles présents dans l'instance.
La vue pg_stat_activity liste l'activité (les sessions) sur le serveur.
La vue pg_stat_user_tables donne des statistiques sur les tables de la base de données.
La vue pg_stat_user_index donne des statistiques sur les index de la base de données.

Catalogue système

(c) 2008, 2009, 2010, Sébastien Namèche (sebastien@nameche.fr) - 61

(c) 2008, 2009, 2010, Sébastien Namèche (sebastien@nameche.fr) - 62

PostgreSQL supporte les types de données SQL standards :
boolean booléen
smallint entier sur 2 octets
integer entier sur 4 octets
bigint entier sur 8 octets
numeric(p, s) numérique exacte
real virgule flottante sur 4 octets
double precision virgule flottante sur 8 octets
date date
time heure
timestamp [with time zone] date et heure
interval intervalle de temps
char(n) chaîne de caractères de taille fixe
varchar(n) chaîne de caractères de taille variable
bytea chaînes d'octets

Ainsi que des types élémentaires plus évolués :
box path lseg cidr
circle point bytea inet
line polygon text macaddr

Types de données élémentaires

(c) 2008, 2009, 2010, Sébastien Namèche (sebastien@nameche.fr) - 62

(c) 2008, 2009, 2010, Sébastien Namèche (sebastien@nameche.fr) - 63

Les tables sont créées ainsi :
CREATE [TEMPORARY] TABLE nom_table (
 nom_colonne nom_type [DEFAULT expression] [contrainte_colonne] [, ...]
 [contrainte_table [, ...]])
[WITH (parametre_stockage [= valeur] [, ...])] [TABLESPACE tablespace]

Les contraintes sur les colonnes et les tables s'expriment ainsi :
[CONSTRAINT nom_contr_col] { NOT NULL | UNIQUE parametres_index
 | PRIMARY KEY parametres_index | CHECK (expression)
 | REFERENCES autre_table [(colonne)]
 [ON DELETE action] [ON UPDATE action] }

[CONSTRAINT nom_contr_tbl] { UNIQUE (colonne [, ...]) parametres_index
 | PRIMARY KEY (colonne [, ...]) parametres_index
 | CHECK (expression)
 | FOREIGN KEY (colonne [, ...])
 REFERENCES autre_table [(colonne [, ...])]
 [ON DELETE action] [ON UPDATE action] }

Les paramètres des index s'expriment ainsi :
[WITH (parametre_stockage [= valeur] [, ...])]
[USING INDEX TABLESPACE tablespace]

Relations, tables

(c) 2008, 2009, 2010, Sébastien Namèche (sebastien@nameche.fr) - 63

(c) 2008, 2009, 2010, Sébastien Namèche (sebastien@nameche.fr) - 64

Les indexes peuvent être ajoutés à une table déjà créée :
CREATE [UNIQUE] INDEX [CONCURRENTLY] nom
ON nom_table
 [USING type]
 ({ colonne | (expression) } [, ...])
 [WITH (parametre_stockage = valeur [, ...])]
 [TABLESPACE tablespace]

Les types d'index supportés sont : btree (défaut), hash (déconseillé), gist et gin.

Le seul paramètre de stockage supporté à ce jour est :
 FILLFACTOR = { 10-100 }

La valeur par défaut est 100 pour une table et 90 pour un index btree.

Relations, index

(c) 2008, 2009, 2010, Sébastien Namèche (sebastien@nameche.fr) - 64

(c) 2008, 2009, 2010, Sébastien Namèche (sebastien@nameche.fr) - 65

Les séquences sont des objets qui fournissent des suites d'entiers garantis uniques et ce à
travers les transactions.

Pour créer une séquence :
CREATE [TEMPORARY] SEQUENCE nom [INCREMENT [BY] increment]
 [MINVALUE valeur] [MAXVALUE valeur]
 [START [WITH] valeur] [[NO] CYCLE]
 [OWNED BY table.colonne }]

Par exemple :
plop=# create sequence journal.seq_article_id;
CREATE SEQUENCE

plop=# insert into journal.articles

plop-# values (nextval('journal.seq_article_id'), 'Bla...');
INSERT 0 1

plop=# select currval('journal.seq_article_id');
 currval

 1
(1 row)

Relations, séquences

(c) 2008, 2009, 2010, Sébastien Namèche (sebastien@nameche.fr) - 65

(c) 2008, 2009, 2010, Sébastien Namèche (sebastien@nameche.fr) - 66

Pour créer une vue, la syntaxe est :
CREATE [OR REPLACE] [TEMPORARY] VIEW nom [(nom_colonne [, ...])]
 AS requête

Relations, vues

(c) 2008, 2009, 2010, Sébastien Namèche (sebastien@nameche.fr) - 66

(c) 2008, 2009, 2010, Sébastien Namèche (sebastien@nameche.fr) - 67

Les verbes insert, select, update et delete du langage de manipulation de données se
comportent conformément à la norme SQL.

Langage de manipulation des données

(c) 2008, 2009, 2010, Sébastien Namèche (sebastien@nameche.fr) - 67

(c) 2008, 2009, 2010, Sébastien Namèche (sebastien@nameche.fr) - 68

L'instruction copy permet de transférer un nombre important de lignes d'une table vers un
fichier ou inversement.

Pour copier les lignes d'un fichier vers une table :
COPY table [(colonnes)]
 FROM { 'nom_fichier' | STDIN }
 [DELIMITER 'séparateur']
 [NULL 'chaîne nulle']
 [CSV [HEADER] [QUOTE 'quote'] [ESCAPE 'escape']]

Pour copier les lignes d'une table vers un fichier :
COPY { table [(colonnes)] | (requête) }
 TO { 'nom_fichier' | STDOUT }
 [DELIMITER 'séparateur']
 [NULL 'chaîne nulle']
 [CSV [HEADER] [QUOTE 'quote'] [ESCAPE 'escape']]

Seul un utilisateur de la base de données disposant des privilèges administrateur peut
utiliser un nom de fichier. De plus, ce fichier doit se trouver sur le serveur et être
accessible en lecture ou en écriture par le serveur PostgreSQL.

L'instruction copy

(c) 2008, 2009, 2010, Sébastien Namèche (sebastien@nameche.fr) - 68

(c) 2008, 2009, 2010, Sébastien Namèche (sebastien@nameche.fr) - 69

PostgreSQL implémente les transactions conforment au standard ACID :
Atomicité toutes les instructions de la transaction sont validées ou aucune ne l'est
Cohérence chaque transaction validée garantit un état cohérent de la base de données
Isolation les modifications d'une transaction sont invisibles aux autres transactions
Durabilité si la transaction est validée, les modifications engendrées sont pérennes

Par défaut, chaque instruction est réalisée dans le cadre d'une transaction qui est
automatiquement validée.

Pour commencer une nouvelle transaction, il faut utiliser explicitement l'instruction
begin. Les instructions commit et rollback permettent respectivement de valider et
d'annuler la transaction.

La fermeture d'une session provoque un rollback implicite.

Les instructions LDD sont prises en charge par les transactions sous PostgreSQL !
pagila=> begin;
pagila=> drop table film_actor;
pagila=> rollback;

Transactions

(c) 2008, 2009, 2010, Sébastien Namèche (sebastien@nameche.fr) - 69

(c) 2008, 2009, 2010, Sébastien Namèche (sebastien@nameche.fr) - 70

Dirty read

Isolation

(c) 2008, 2009, 2010, Sébastien Namèche (sebastien@nameche.fr) - 70

 update actor
 set first_name='Ford'
 where actor_id=42

 rollback

 select first_name
 from actor
 where actor_id=42 => Ford

 select first_name
 from actor
 where actor_id=42 => TOM

 begin transaction

 begin transaction

 commit

(c) 2008, 2009, 2010, Sébastien Namèche (sebastien@nameche.fr) - 71

Nonrepeatable read

Isolation

(c) 2008, 2009, 2010, Sébastien Namèche (sebastien@nameche.fr) - 71

 update actor
 set first_name='Ford'
 where actor_id=42

 commit

 select first_name
 from actor
 where actor_id=42 => TOM

 select first_name
 from actor
 where actor_id=42 => Ford

 begin transaction

 begin transaction

(c) 2008, 2009, 2010, Sébastien Namèche (sebastien@nameche.fr) - 72

Phantom read

Isolation

(c) 2008, 2009, 2010, Sébastien Namèche (sebastien@nameche.fr) - 72

 delete from actor
 where actor_id=42

 commit

 select *
 from actor
 where actor_id=42 => 1 ligne

 update actor
 set first_name='Leon'
 where actor_id=42

 begin transaction

 begin transaction

=> 0 ligne

(c) 2008, 2009, 2010, Sébastien Namèche (sebastien@nameche.fr) - 73

Le standard SQL définit quatre niveaux d'isolation entre les transactions :
dirty read non-repeatable read phantom read

read uncommited possible possible possible
read commited impossible possible possible
repeatable read impossible impossible possible
serializable impossible impossible impossible

PostgreSQL accepte ces quatre niveaux d'isolation mais n'implémente que les niveaux
read commited et serializable. Le niveau read uncommited correspond à read commited et
repeatable read à serializable.

L'instruction est set transaction :
SET TRANSACTION ISOLATION LEVEL

{ SERIALIZABLE | REPEATABLE READ | READ COMMITTED | READ UNCOMMITTED }

L'isolation entre les transactions est implémenté par le mécanisme MVCC (Multi-Version
Concurrency Control) qui génère bien moins de soucis qu'une implémentation basée sur
les verrous.

Niveaux d'isolation

(c) 2008, 2009, 2010, Sébastien Namèche (sebastien@nameche.fr) - 73

(c) 2008, 2009, 2010, Sébastien Namèche (sebastien@nameche.fr) - 74

L'usage des verrous est bien moins fréquent grâce à MVCC.

Il est néanmoins possible d'utiliser des verrous explicites. De plus, certaines opérations
requièrent un accès exclusifs aux objets de la base de données (notamment les
instructions LDD), PostgreSQL est donc amené à poser des verrous automatiquement.

Les verrous peuvent être posés :
- avec l'instruction lock ;
- en utilisant les clauses for update et for share de l'instruction select.

Il existe pas moins de 8 niveaux de verrous sur les tables (et 2 sur les lignes) :
LOCK table [, ...]
 [IN ACCESS SHARE | ROW SHARE | ROW EXCLUSIVE | SHARE UPDATE EXCLUSIVE
 | SHARE | SHARE ROW EXCLUSIVE | EXCLUSIVE | ACCESS EXCLUSIVE MODE]
 [NOWAIT]

Les verrous ne peuvent être posés que dans le cadre d'une transaction commencée avec
begin. Ils sont libérés lorsque la transaction est terminée.

 La liste des verrous actifs est consultable dans la vue système pg_locks.

Verrous

(c) 2008, 2009, 2010, Sébastien Namèche (sebastien@nameche.fr) - 74

(c) 2008, 2009, 2010, Sébastien Namèche (sebastien@nameche.fr) - 75

tsearch2 est une contribution qui a été intégrée à PostreSQL 8.3, elle permet d'effectuer
des recherches intégrales de texte (full text searches). Une recherche avec tsearch2
nécessite deux objets :

- un vecteur tsvector construit à partir du jeux de données à parcourir ;
- une requête tsquery qui représente les critères de la recherche.

Les fonctions to_tsvector et to_tsquery permettent d'obtenir ces objets qu'il suffit ensuite
de combiner avec l'opérateur @@. Par exemple :
bdd=> select to_tsvector('french', 'il était un petit navire qui n''avait jamais navigué');
 to_tsvector

 'jam':9 'pet':4 'navir':5 'navigu':10

postgres=> select to_tsquery('french', 'un & petit & naviguer');
 to_tsquery

 'pet' & 'navigu'

bdd=> select to_tsvector('french', 'il était un petit navire qui n''avait jamais navigué')
bdd-> @@ to_tsquery('french', 'un & petit & naviguer');
 ?column?

 t

bdd=> select to_tsvector('french', 'il était un petit navire qui n''avait jamais navigué')
bdd-> @@ to_tsquery('french', 'un & petit & bateau');
 ?column?

 f

Recherche de texte avec tsearch2

(c) 2008, 2009, 2010, Sébastien Namèche (sebastien@nameche.fr) - 75

(c) 2008, 2009, 2010, Sébastien Namèche (sebastien@nameche.fr) - 76

Pour recherche dans une table :
select art_id, art_titre from articles
where to_tsvector('french', art_texte)
 @@ to_tsquery('french', 'premier & homme & lune');

Pour améliorer la vitesse de recherche, il est possible de créer un index GIN :
create index idx_art_tsearch on articles
 using gin (to_tsvector('french', art_texte));

D'autres fonctions permettent de classer les résultats (ts_rank et ts_rank_cd) ou même de
mettre en valeur dans le texte les termes recherchés (ts_headline).

Recherche de texte avec tsearch2

(c) 2008, 2009, 2010, Sébastien Namèche (sebastien@nameche.fr) - 76

(c) 2008, 2009, 2010, Sébastien Namèche (sebastien@nameche.fr) - 77

Pour gérer l'ensemble des droits d'accès, PostgreSQL utilise le concept des rôles depuis la
version 8.1.

Un rôle peut représenter un utilisateur ou un groupe d'utilisateurs en fonction de la
manière dont il est configuré.

Un rôle peut :
- être propriétaire d'objets de l'instance (bases de données, tables, etc.) ;
- se voir octroyer des droits d'accès à des objets ou des droits système ;
- être membre d'un autre rôle ;
- se voir attribuer un mot de passe.

Les rôles remplacent donc les notions d'utilisateurs et de groupes qui étaient encore
utilisés par PostgreSQL 8.0.

Les rôles ne sont pas liés aux utilisateurs et groupes du système d'exploitation.
Ils sont associés à une instance.

Rôles

(c) 2008, 2009, 2010, Sébastien Namèche (sebastien@nameche.fr) - 77

(c) 2008, 2009, 2010, Sébastien Namèche (sebastien@nameche.fr) - 78

Pour créer un rôle :
CREATE ROLE nom_role [[WITH] [SUPERUSER] [CREATEDB]
 [CREATEROLE] [LOGIN]
 [ENCRYPTED PASSWORD 'mot_de_passe']
 [IN ROLE nom_role [, ...]]
 [ROLE nom_role [, ...]]]

Seul l'administrateur ou un utilisateur disposant de l'attribut createrole peut créer un rôle.

Par exemple, pour créer un rôle modélisant un utilisateur, on utilisera :
postgres=# create role sebastien login encrypted password 'blabla';
postgres=# \c postgres sebastien
Password for user "sebastien":
You are now connected to database "postgres" as user "sebastien".
postgres=>

Pour supprimer un rôle :
DROP ROLE [IF EXISTS] nom_role

Rôles

(c) 2008, 2009, 2010, Sébastien Namèche (sebastien@nameche.fr) - 78

(c) 2008, 2009, 2010, Sébastien Namèche (sebastien@nameche.fr) - 79

Les rôles sont également utilisés pour modéliser la notion de groupes d'utilisateurs. Il
suffit pour cela de créer un rôle sans mot de passe et ne disposant pas de l'attribut login.

Par exemple, l'instruction suivante crée un rôle (groupe) compta et lui associe deux autres
rôles. Ces derniers hériteront des droits octroyés au rôle compta :
create role compta role sebastien, dominique;

Cette instruction crée un autre rôle (utilisateur) et l'ajoute au rôle (groupe) compta :
create role daniel login encrypted password 'abcde' in role compta;

Rôles, groupes

(c) 2008, 2009, 2010, Sébastien Namèche (sebastien@nameche.fr) - 79

(c) 2008, 2009, 2010, Sébastien Namèche (sebastien@nameche.fr) - 80

Le système des droits de PostgreSQL est basé sur les rôles et utilise les instructions SQL
GRANT et REVOKE. Ces instructions sont utilisées pour :

- octroyer ou révoquer des droits d'accès sur des objets ;
- ajouter ou retirer des rôles (utilisateurs) à d'autres rôles (groupes).

Les rôles dispose également d'un certains nombres d'attributs :
- LOGIN / NOLOGIN ;
- SUPERUSER / NOSUPERUSER ;
- CREATEDB / NOCREATEDB ;
- CREATEROLE / NOCREATEROLE ;
- PASSWORD.

Ces attributs sont associés aux rôles lors de leur création (CREATE ROLE) ou avec
l'instruction ALTER ROLE.

Les rôles qui disposent de l'attribut SUPERUSER contournent le système des privilèges
(c'est-à-dire qu'ils ont tous les privilèges).

Droits

(c) 2008, 2009, 2010, Sébastien Namèche (sebastien@nameche.fr) - 80

(c) 2008, 2009, 2010, Sébastien Namèche (sebastien@nameche.fr) - 81

Par défaut, seul le propriétaire d'un objet (souvent son créateur) a accès à cet objet.

Des privilèges supplémentaires peuvent être associés aux objets avec l'instruction
GRANT comme ceci :
GRANT { privilège [,...] | ALL } ON [type_objet] nom_objet [, ...]
 TO { nom_role | PUBLIC } [, ...] [WITH GRANT OPTION]

Les privilèges octroyés dépendent du type d'objet :
- tables : SELECT | INSERT | UPDATE | DELETE | REFERENCES | TRIGGER
- séquences : USAGE | SELECT | UPDATE
- base de données : CREATE | CONNECT | TEMPORARY
- fonctions : EXECUTE
- langage : USAGE
- schémas : CREATE | USAGE
- espaces de tables : CREATE

ALL représente tous les privilèges et PUBLIC tous les rôles.
L'option WITH GRANT OPTION autorise le ou les rôles cibles à octroyer ces privilèges.

Droits, accès aux objets

(c) 2008, 2009, 2010, Sébastien Namèche (sebastien@nameche.fr) - 81

(c) 2008, 2009, 2010, Sébastien Namèche (sebastien@nameche.fr) - 82

La révocation des droits utilise cette syntaxe :
REVOKE [GRANT OPTION FOR]
 { privilège [,...] | ALL } ON [type_objet] nom_objet [, ...]
 FROM { nom_role | PUBLIC } [, ...] [CASCADE | RESTRICT]

Par exemple, pour révoquer tous les droits sur le schéma public :
revoke all on schema public from public;

Droits, accès aux objets

(c) 2008, 2009, 2010, Sébastien Namèche (sebastien@nameche.fr) - 82

(c) 2008, 2009, 2010, Sébastien Namèche (sebastien@nameche.fr) - 83

Plusieurs politiques peuvent être mises en œuvre :

1) Une base de données est associée à un rôle utilisateur. En général le nom de la base de
données est identique à celui du propriétaire. Souvent, une base de données est créée pour
une application.

2) Un schéma est associé à un utilisateur. Le nom du schéma est identique à celui de
l'utilisateur (cf. variable search_path dont la valeur par défaut est "$user",public).

3) Un schéma est associé à un rôle utilisateur, tous les objets utilisés par une application
sont créés dans ce schéma et appartiennent à cet utilisateur qui est l'administrateur de
l'application. Un rôle groupe est créé, des droits lui sont affectés pour utiliser les objets du
schéma. Les utilisateurs de l'application sont des rôles utilisateurs et sont membre du rôle
groupe.

Droits, bonnes pratiques

(c) 2008, 2009, 2010, Sébastien Namèche (sebastien@nameche.fr) - 83

(c) 2008, 2009, 2010, Sébastien Namèche (sebastien@nameche.fr) - 84

Un espace de tables (ou tablespace) est un répertoire du système de fichiers qui peut être
utilisé pour stocker les données de relations (tables et indexes).

Ils sont utilisés pour deux raisons :
1) Pour étendre des bases de données contraintes par la taille d'un système de fichiers

qui ne peut être agrandi.
2) Plus fréquemment, pour optimiser la vitesse d'exécution des requêtes en stockant,

par exemple, les tables sur un disque et les indexes sur un autre.

Les espaces de tables sont associés à l'instance, ils sont dons disponibles pour l'ensemble
des bases de données de l'instance.

Espaces de tables

(c) 2008, 2009, 2010, Sébastien Namèche (sebastien@nameche.fr) - 84

(c) 2008, 2009, 2010, Sébastien Namèche (sebastien@nameche.fr) - 85

Pour créer un espace de tables :
CREATE TABLESPACE nom [OWNER utilisateur] LOCATION 'répertoire'

Seul l'administrateur peut créer un espace de tables.
Le propriétaire par défaut est l'utilisateur connecté.
Le répertoire doit exister et l'utilisateur système qui exécute PostgreSQL doit y avoir
accès en écriture.

Sous psql, \db permet de lister les espaces de tables existants. Ou :
SELECT spcname FROM pg_tablespace;

Seul un administrateur ou son propriétaire peut détruire un espace de tables.
Pour supprimer un espace de tables :

DROP TABLESPACE [IF EXISTS] nom

Il ne peut l'être s'il contient des objets.
Mais il est possible de déplacer une table d'un espace de tables à un autre :

ALTER TABLE nom_table SET TABLESPACE nom_espace

Espaces de tables

(c) 2008, 2009, 2010, Sébastien Namèche (sebastien@nameche.fr) - 85

(c) 2008, 2009, 2010, Sébastien Namèche (sebastien@nameche.fr) - 86

Par exemple :
mkdir -m 700 /var/pg/u02/inst5432
chown postgres:postgres /var/pg/u02/inst5432
su - postgres -c psql
Bienvenue dans psql 8.3.6, l'interface interactive de PostgreSQL.

postgres=# create tablespace tbl_data location '/var/pg/u02/inst5432';
CREATE TABLESPACE
postgres=# \c test
You are now connected to database "test".
test=# \db
 List of tablespaces
 Name | Owner | Location
------------+----------+----------------------
 pg_default | postgres |
 pg_global | postgres |
 tbl_data | postgres | /var/pg/u02/inst5432
(3 rows)

test=# create table big_data (id int, data text) tablespace tbl_data;
CREATE TABLE
postgres=# \!ls -l /var/pg/u02/inst5432
total 8
drwx------ 2 postgres postgres 4096 jan 23 11:56 16390
-rw------- 1 postgres postgres 4 jan 23 11:50 PG_VERSION

Espaces de tables

(c) 2008, 2009, 2010, Sébastien Namèche (sebastien@nameche.fr) - 86

(c) 2008, 2009, 2010, Sébastien Namèche (sebastien@nameche.fr) - 87

Pour écrire des procédures stockées exécutables sur le serveur de bases de données,
PotgreSQL permet l'utilisation de plusieurs langages, notamment :

- PL/pgSQL, le langage procédural fournit avec PostgreSQL ;
- PL/Perl ;
- PL/Python ;
- PL/Tcl ;
- PL/Java.

Ces langages sont implémentés par des bibliothèques externes et ils doivent être créés
avant d'être utilisés. À l'exception, du langage PL/pgSQL, ces bibliothèques sont souvent
disponibles dans des paquets séparés des distributions Linux.

Pour obtenir la liste des langages créés dans une base de données :
postgres=# select lanname from pg_language where lanispl = true;
 lanname

(0 rows)

Langages procéduraux

(c) 2008, 2009, 2010, Sébastien Namèche (sebastien@nameche.fr) - 87

(c) 2008, 2009, 2010, Sébastien Namèche (sebastien@nameche.fr) - 88

Pour obtenir la liste des langages disponibles pour une base de données :
postgres=# select tmplname, tmpltrusted from pg_pltemplate;
 tmplname | tmpltrusted
-----------+-------------
 plperl | t
 plperlu | f
 plpgsql | t
 plpythonu | f
 pltcl | t
 pltclu | f
(6 rows)

Un langage dit sûr (trusted) est un langage qui ne permet pas d'outrepasser le système des
privilèges de PostgreSQL. Seul les rôles disposants de l'attribut administrateur auront
l'autorisation de créer des fonctions écrites avec un langage non sûr (untrusted).

Pour créer un langage dont un modèle est disponible, par exemple PL/pgSQL :
postgres=# create language plpgsql;
CREATE LANGUAGE

Le privilège USAGE est octroyé à PUBLIC pour un langage sûr lors de sa création.

Langages procéduraux

(c) 2008, 2009, 2010, Sébastien Namèche (sebastien@nameche.fr) - 88

(c) 2008, 2009, 2010, Sébastien Namèche (sebastien@nameche.fr) - 89

Par exemple, si le fichier repete.sql contient ce code :
create function repete(str varchar, nb int)
returns varchar
language plpgsql as $$
declare
 res varchar := '';
begin
 for i in 1..nb loop
 res := res || str;
 end loop;
 return res;
end;
$$;

Alors, la création et l'exécution de cette fonction se font ainsi :
plop=# \i repete.sql
CREATE FUNCTION

plop=# select repete('x', 20);
 repete

 xxxxxxxxxxxxxxxxxxxx
(1 row)

PL/pgSQL, fonctions

(c) 2008, 2009, 2010, Sébastien Namèche (sebastien@nameche.fr) - 89

(c) 2008, 2009, 2010, Sébastien Namèche (sebastien@nameche.fr) - 90

Il est également possible d'écrire des fonctions en SQL non procédural :
pagila=> create function delete_actor(int)
pagila-> returns void
pagila-> language sql as $$
pagila-> delete from film_actor where actor_id = $1;
pagila-> delete from actor where actor_id = $1;
pagila-> $$;
CREATE FUNCTION

pagila=> select delete_actor(1);
 delete_actor

(1 row)

Fonctions SQL

(c) 2008, 2009, 2010, Sébastien Namèche (sebastien@nameche.fr) - 90

(c) 2008, 2009, 2010, Sébastien Namèche (sebastien@nameche.fr) - 91

Les procédures PostgreSQL sont des fonctions qui retournent void. Par exemple :
drop table if exists scores;
create table scores (equipe varchar(20), points int);

create or replace function maj_points(i_equipe varchar, i_score int)
returns void as $$
begin
 update scores set points = points + i_score where equipe = i_equipe;
 if not found then
 insert into scores (equipe, points) values (i_equipe, i_score);
 end if;
end;
$$
language plpgsql;

Cette procédure stockée est créée et utilisée ainsi :
postgres=# select maj_points('Grand-Champ', 10);
 maj_points

(1 row)

plop=# select * from scores;
 equipe | points
-------------+--------
 Grand-Champ | 10
(1 row)

PL/pgSQL, procédures

(c) 2008, 2009, 2010, Sébastien Namèche (sebastien@nameche.fr) - 91

(c) 2008, 2009, 2010, Sébastien Namèche (sebastien@nameche.fr) - 92

Les déclencheurs (ou triggers) sont des fonctions qui sont exécutées automatiquement
lorsqu'une action spécifique (insertion, mise-à-jour, suppression d'enregistrements) a lieu
sur une table.

Les déclencheurs sont créés avec cette instruction SQL :
CREATE TRIGGER nom [BEFORE | AFTER] { évènement [OR ...] }
 ON table [FOR [EACH] { ROW | STATEMENT }]
 EXECUTE PROCEDURE fonction (paramètres)

Les évènements autorisés sont INSERT, UPDATE ou DELETE.

Une image de l'enregistrement en cours de traitement est disponible dans les pseudo-
enregistrements NEW (pour les insertions et mises-à-jour) et OLD (mises-à-jour et
suppression).

Un déclencheur appelle une fonction, il est donc nécessaire de commencer par écrire cette
fonction.

Déclencheurs

(c) 2008, 2009, 2010, Sébastien Namèche (sebastien@nameche.fr) - 92

(c) 2008, 2009, 2010, Sébastien Namèche (sebastien@nameche.fr) - 93

Une utilisation des déclencheurs est, parmi d'autres, l'historisation des modifications de
valeurs sur une table.

Par exemple :

drop table if exists histo;
create table histo (equipe varchar(20), jour date, avant int, apres int);

create or replace function trig_histo_scores()
returns trigger as $$
begin
 if OLD.points <> NEW.points then
 insert into histo (equipe, jour, avant, apres)
 values (NEW.equipe, current_date, OLD.points, NEW.points);
 end if;
 return NEW;
end;
$$
language plpgsql;

drop trigger if exists trig_after_update_scores on scores;
create trigger trig_after_update_scores after update on scores
for each row execute procedure trig_histo_scores();

Déclencheurs, premier exemple

(c) 2008, 2009, 2010, Sébastien Namèche (sebastien@nameche.fr) - 93

(c) 2008, 2009, 2010, Sébastien Namèche (sebastien@nameche.fr) - 94

Suite de l'exemple :

plop=# \i histo.sql
DROP TABLE
CREATE TABLE
CREATE FUNCTION
DROP TRIGGER
CREATE TRIGGER

postgres=# select maj_points('Grand-Champ', 5);
 maj_points

(1 row)

postgres=# select * from scores;
 equipe | points
-------------+--------
 Grand-Champ | 15
(1 row)

postgres=# select * from histo;
 equipe | jour | avant | apres
-------------+------------+-------+-------
 Grand-Champ | 2008-05-09 | 10 | 15
(1 row)

Déclencheurs, premier exemple

(c) 2008, 2009, 2010, Sébastien Namèche (sebastien@nameche.fr) - 94

(c) 2008, 2009, 2010, Sébastien Namèche (sebastien@nameche.fr) - 95

Autre exemple :

create or replace function trig_update_timestamp()
returns trigger as $$
begin
 NEW.when_modified = current_timestamp;
 NEW.who_modified = current_user;
 return NEW;
end;
$$ language plpgsql;

create or replace function trig_insert_timestamp()
returns trigger as $$
begin
 NEW.when_created = current_timestamp;
 NEW.who_created = current_user;
 return NEW;
end;
$$ language plpgsql;

drop trigger if exists trig_before_update_testtg on testtg;
create trigger trig_before_update_testtg before insert or update on testtg
for each row execute procedure trig_update_timestamp();

drop trigger if exists trig_before_insert_testtg on testtg;
create trigger trig_before_insert_testtg before insert or update on testtg
for each row execute procedure trig_insert_timestamp();

Déclencheurs, second exemple

(c) 2008, 2009, 2010, Sébastien Namèche (sebastien@nameche.fr) - 95

(c) 2008, 2009, 2010, Sébastien Namèche (sebastien@nameche.fr) - 96

Le serveur PostgreSQL est extensible : il est possible d'écrire de nouvelles fonctions en C
et de les compiler sous forme de bibliothèques dynamiques utilisables ensuite dans les
instructions SQL.

Une fois la bibliothèque compilée et placée au bon endroit, il suffit d'utiliser l'instruction
create function ainsi :

CREATE [OR REPLACE] FUNCTION nom ([paramètres...])
 [RETURNS type]
 [IMMUTABLE | STABLE | VOLATILE]
 [CALLED ON NULL INPUT | STRICT]
 LANGUAGE c
 AS 'fichier', 'symbole'

Les extensions en C

(c) 2008, 2009, 2010, Sébastien Namèche (sebastien@nameche.fr) - 96

(c) 2008, 2009, 2010, Sébastien Namèche (sebastien@nameche.fr) - 97

#include "postgres.h"
#include <string.h>
#include "fmgr.h"

PG_MODULE_MAGIC;
PG_FUNCTION_INFO_V1(conway);

Datum conway(PG_FUNCTION_ARGS) {
 text *element = PG_GETARG_TEXT_P(0);

 int32 taille_element = VARSIZE(element)-VARHDRSZ;
 char *ptr;
 char courant = VARDATA(element)[0];
 int compteur = 1;
 char *element_suivant = palloc(2*taille_element + 1);
 char *ptr_suivant = element_suivant;

 for(ptr = VARDATA(element); ptr < VARDATA(element)+taille_element; ptr++){
 if(ptr[1] == courant){ compteur++; continue; }
 *ptr_suivant++ = compteur+48; *ptr_suivant++ = courant;
 compteur = 1; courant = ptr[1];
 }
 *ptr_suivant = 0;

 text *ret = (text *) palloc(VARHDRSZ + strlen(element_suivant));
 memcpy(VARDATA(ret), element_suivant, strlen(element_suivant));
 SET_VARSIZE(ret, VARHDRSZ + strlen(element_suivant));

 PG_RETURN_TEXT_P(ret);
}

Les extensions en C – Exemple, code

(c) 2008, 2009, 2010, Sébastien Namèche (sebastien@nameche.fr) - 97

(c) 2008, 2009, 2010, Sébastien Namèche (sebastien@nameche.fr) - 98

Si le code se trouve dans le fichier suites.c, il doit être compilé et installé ainsi :
$ cc -c -fpic -I`pg_config --includedir-server` -o suites.o suites.c
$ cc -shared -o suites.so suites.o
$ sudo install -m 644 suites.so `pg_config --pkglibdir`

Enfin, le code SQL suivant permet de créer la fonction SQL conway :
pagila=# drop function if exists conway(text);
DROP FUNCTION
pagila=# load 'suites';
LOAD
pagila=# create function conway(text) returns text
pagila-# immutable strict language C as 'suites', 'conway';
CREATE FUNCTION

Voici un exemple d'exécution pour trouver le sixième élément de la suite de Conway à
partir du cinquième :
postgres=# select '111221' as element, conway('111221') as suivant;
 element | suivant
---------+---------
 111221 | 312211
(1 row)

Les extensions en C – Exemple, installation

(c) 2008, 2009, 2010, Sébastien Namèche (sebastien@nameche.fr) - 98

(c) 2008, 2009, 2010, Sébastien Namèche (sebastien@nameche.fr) - 99

La version 5 de PHP offre un pilote générique pour l'accès aux données, PDO (PHP Data
Objects), compatible avec PostgreSQL.

Par exemple :
<?php
 header("Content-Type: text/plain; charset=ISO-8859-1");

 $user = 'sebastien';
 $pass = 'plopplop';
 $dsn = 'pgsql:host=localhost;dbname=test';

 try {
 $dbh = new PDO($dsn, $user, $pass);
 foreach ($dbh->query('select * from articles') as $row){
 print_r($row);
 }
 $dbh = null;
 }
 catch (PDOException $e) {
 print "Erreur ! : " . $e->getMessage();
 die();
 }
?>

Programmation côté client – PHP

(c) 2008, 2009, 2010, Sébastien Namèche (sebastien@nameche.fr) - 99

(c) 2008, 2009, 2010, Sébastien Namèche (sebastien@nameche.fr) - 100

Un pilote JDBC de type IV est disponible sur le site de PostgreSQL à cette adresse :
http://jdbc.postgresql.org/

Il est recommandé d'utiliser un gestionnaire de sessions JNDI dans les serveurs
d'applications afin d'optimiser la gestion des connexions.

Par exemple :
import java.sql.*;

Class.forName("org.postgresql.Driver");

String url = "jdbc:postgresql://localhost/test";
String username = "sebastien";
String password = "plopplop";

Connection db = DriverManager.getConnection(url, username, password);
Statement st = conn.createStatement();
ResultSet rs = st.executeQuery("select * FROM articles");
while (rs.next()){
 System.out.println(rs.getString(1));
}
rs.close();
st.close();

Programmation côté client – Java

(c) 2008, 2009, 2010, Sébastien Namèche (sebastien@nameche.fr) - 100

(c) 2008, 2009, 2010, Sébastien Namèche (sebastien@nameche.fr) - 101

#include <stdlib.h>
#include <string.h>

#define BUF_SIZE 100
#define LARGEUR_PRENOM 45

void gestion_err() { printf("ERR: %s\n", sqlca.sqlerrm.sqlerrmc); exit(2); }

int main(int argc, char **argv){

 EXEC SQL WHENEVER SQLWARNING SQLPRINT;
 EXEC SQL WHENEVER SQLERROR CALL gestion_err();

 EXEC SQL BEGIN DECLARE SECTION;
 char conn[BUF_SIZE+1], role[BUF_SIZE+1], pass[BUF_SIZE+1];
 int actor_id;
 char prenom[LARGEUR_PRENOM+1];
 EXEC SQL END DECLARE SECTION;

 if(argc != 6){ printf("ERR: 5 arguments requis. Fin.\n"); exit(1); }
 strncpy(conn, argv[1], BUF_SIZE); strncpy(role, argv[2], BUF_SIZE);
 strncpy(pass, argv[3], BUF_SIZE); actor_id = atoi(argv[4]);

 EXEC SQL CONNECT TO :conn USER :role IDENTIFIED BY :pass;
 EXEC SQL SELECT first_name INTO :prenom FROM actor WHERE actor_id = :actor_id;

 printf("Ancien prénom: %s\n", prenom);
 strncpy(prenom, argv[5], LARGEUR_PRENOM);

 EXEC SQL UPDATE actor SET first_name = :prenom WHERE actor_id = :actor_id;
 EXEC SQL COMMIT;
 EXEC SQL DISCONNECT;

 return 0;
}

ECPG – Exemple, code

(c) 2008, 2009, 2010, Sébastien Namèche (sebastien@nameche.fr) - 101

(c) 2008, 2009, 2010, Sébastien Namèche (sebastien@nameche.fr) - 102

Si le code se trouve dans le fichier stars.pgc, il doit être compilé ainsi :
$ ecpg -o stars.c stars.pgc
$ cc -o stars.o -I`pg_config --includedir` -c stars.c
$ cc -o stars -L`pg_config --libdir` -lecpg stars.o

Voici un exemple d'exécution :
$./stars pagila@localhost:5432 postgres plop 42 Jill
Ancien prénom: TOM
$./stars pagila@localhost:5432 postgres plop 42 Alcide
Ancien prénom: Jill

Avant l'exécution du programme, il peut être nécessaire de configurer le chemin de
recherche des bibliothèques dynamiques. Par exemple :
$ LD_LIBRARY_PATH=`pg_config --libdir`
$ export LD_LIBRARY_PATH

ECPG – Exemple, compilation

(c) 2008, 2009, 2010, Sébastien Namèche (sebastien@nameche.fr) - 102

(c) 2008, 2009, 2010, Sébastien Namèche (sebastien@nameche.fr) - 103

Administration, exploitation

Partie 3

(c) 2008, 2009, 2010, Sébastien Namèche (sebastien@nameche.fr) - 103

(c) 2008, 2009, 2010, Sébastien Namèche (sebastien@nameche.fr) - 104

Les journaux binaires sont utilisés pour garantir la durabilité (le « !D !» de ACID) des
transactions validées en évitant de grever significativement les performances.

Plutôt que d'écrire directement dans les fichiers de données à chaque fois qu'une
transaction est validée, les données modifiées sont écrites dans un journal linéaire. De
nombreux déplacement des têtes de lecture des disques sont ainsi évités.

Ce journal linéaire est lui-même enregistrés séquentiellement dans des fichiers du
répertoire $PGBASE/pg_xlog dont le nom est un entier qui est incrémenté. Sous
PostgreSQL, ces journaux sont appelés WAL (Write Ahead Logs). Le processus wal
writer process écrit dans ces journaux.

À intervalles réguliers un mécanisme appelé point de contrôle (checkpoint) permet
d'écrire les blocs modifiés en mémoire (et enregistrés dans les journaux binaires) vers les
fichiers de données. Le processus writer process est chargé de cette tâche.

Si un arrêt intempestif survient, PostgreSQL utilise les journaux binaires pour appliquer
aux fichiers de données les modifications générées par les dernières transactions validées
avant l'arrêt.

Les journaux binaires

(c) 2008, 2009, 2010, Sébastien Namèche (sebastien@nameche.fr) - 104

(c) 2008, 2009, 2010, Sébastien Namèche (sebastien@nameche.fr) - 105

À chaque point de contrôle un enregistrement spécifique est écrit dans les journaux
binaires. Toutes les données antérieures contenues dans ces journaux deviennent inutiles.
Les fichiers (appelés segments) qui contiennent des journaux binaires dont toutes les
données sont antérieures au dernier point de contrôle sont recyclés.

Les journaux binaires peuvent également être archivés. Ils permettent ainsi d'effectuer
une sauvegarde au fil de l'eau et fournissent un mécanisme de retour en arrière (nommé
PITR, pour Point-In-Time Recovery).

Un point de contrôle est exécuté lorsque l'une de ces situations survient :
- checkpoint_segments segments sont actifs ;
- checkpoint_timeout secondes ce sont écoulées depuis le dernier point de contrôle ;
- l'instruction checkpoint est exécutée.

La taille des segments est figée (16 Mo par défaut).

Si la base de données subit une forte activité transactionnelle, les performances seront
largement améliorées si les fichiers de données sont stockés sur des disques différents des
journaux binaires.

Les journaux binaires

(c) 2008, 2009, 2010, Sébastien Namèche (sebastien@nameche.fr) - 105

(c) 2008, 2009, 2010, Sébastien Namèche (sebastien@nameche.fr) - 106

Pour déterminer les valeurs des paramètres de PostgreSQL liés à l'utilisation de la
mémoire, il est nécessaire de garder à l'esprit que ces zones de mémoires peuvent être
partagées en deux grandes catégories :

1) les zones de mémoires locales allouées par processus ;
2) les zones de mémoires partagées entre tous les processus de l'instance.

Ces paramètres sont fixés dans le fichier postgresql.conf. Elles sont exprimées en Ko,
mais il est possible d'utiliser des unités de taille dans le fichier de configuration.

Dans psql, il est possible de voir les valeurs avec l'instruction show et de les modifier
avec l'instruction set pour celles qui peuvent l'être en fonctionnement.

Par exemple :
postgres=# show work_mem;
 work_mem

 2MB
(1 row)
postgres=# set work_mem = 4096;
SET

Gestion de la mémoire

(c) 2008, 2009, 2010, Sébastien Namèche (sebastien@nameche.fr) - 106

(c) 2008, 2009, 2010, Sébastien Namèche (sebastien@nameche.fr) - 107

Il y a essentiellement six paramètres importants :
shared_buffers (32 Mo par défaut, mémoire partagée)

Tampons de mémoire partagée entre tous les processus (ne peut dépasser shmmax).
La valeur de ce paramètre a un impact important sur les performances.

temp_buffers (8 Mo par défaut, mémoire locale)
Taille maximum des tampons locaux pour l'accès aux tables temporaires.

work_mem (1Mo par défaut, mémoire locale)
Mémoire utilisée pour les opérations de tri et hash en avant utilisation du disque.

maintenance_work_mem (16Mo, mémoire locale)
Mémoire utilisée pour les opérations de maintenance (vacuum, create index, etc.)
Peu d'utilisations simultanées, possibilité d'augmenter significativement.

max_stack_depth (2Mo par défaut, mémoire locale)
Taille maximum de la pile d'exécution (utiliser ulimit -s moins 1 ou 2 Mo).
Peut gêner l'exécution de requêtes ou procédures complexes si trop faible.

wal_buffers (64 Ko par défaut, mémoire partagée)
Doit être assez grand pour stocker les données d'une transaction type.

Gestion de la mémoire

(c) 2008, 2009, 2010, Sébastien Namèche (sebastien@nameche.fr) - 107

(c) 2008, 2009, 2010, Sébastien Namèche (sebastien@nameche.fr) - 108

Le collecteur de statistiques est un processus (stats collector process) qui maintient un
certains nombres de compteurs qui aident l'optimiseur de requêtes à fournir des plans
d'exécution optimaux. Ces indicateurs sont également utiles pour l'administration de la
base de données.

La collecte des statistiques est activée avec le paramètre track_counts.

Les statistiques collectées sont accessibles par l'intermédiaire des vues pg_stat_* et
pg_statio_* ainsi que des fonctions pg_stat_get_* du catalogue pg_catalog.

La fonction pg_stat_reset permet de réinitialiser les statistiques de la base de données
active.

Le collecteur de statistiques

(c) 2008, 2009, 2010, Sébastien Namèche (sebastien@nameche.fr) - 108

(c) 2008, 2009, 2010, Sébastien Namèche (sebastien@nameche.fr) - 109

Le journal d'activité est l'endroit où PostgreSQL consigne l'ensemble des messages
générés pendant son exécution, du plus insignifiant à l'erreur fatale selon la configuration
des paramètres du fichier postgresql.conf :

log_destination une combinaison de stderr, csvlog, syslog et eventlog (Windows)
logging_collector active l'envoi des messages vers des fichiers
log_directory répertoire dans lequel seront enregistrés ces fichiers
log_statement écrire les requêtes exécutées (none, ddl, mod ou all)

Des dizaines d'autres paramètres sont disponibles pour sélectionner les informations qui
doivent être envoyées dans le journal d'activité.

Le journal d'activité

(c) 2008, 2009, 2010, Sébastien Namèche (sebastien@nameche.fr) - 109

(c) 2008, 2009, 2010, Sébastien Namèche (sebastien@nameche.fr) - 110

Trois stratégies de sauvegardes sont possibles :
1) Export à partir d'une base de données active en utilisant le programme pg_dump.
2) Sauvegarde des fichiers de l'instance lorsqu'elle est arrêtée.
3) Archivage des journaux des transactions.

L'outil pg_dump est intéressant car :
- il permet de transférer rapidement des données entre bases de données ;
- il support trois types de format, dont le SQL ;
- il est simple d'emploi.

Mais il ne peut sauvegarder des bases de taille importante.

Sauvegardes

(c) 2008, 2009, 2010, Sébastien Namèche (sebastien@nameche.fr) - 110

(c) 2008, 2009, 2010, Sébastien Namèche (sebastien@nameche.fr) - 111

La commande pg_dump exporte une base de données d'une instance. Elle peut être
exécutée sur le serveur PostgreSQL (connexion par socket Unix) ou à partir d'une
machine du réseau (avec les mêmes options -h et -p que psql).

L'outil pg_dump supporte trois types de format :
1) Format texte (par défaut), les données seront restaurées avec psql.
2) Format tar, les données seront restaurées avec pg_restore.
3) Format spécifique, restauration avec pg_restore.

Par exemple :
$ pg_dump -h 192.168.2.42 -p 5433 compta > compta.sql

Quelques options :
-C ajouter les commandes pour créer la base de données dans l'export
-a n'exporter que les données (LMD)
-s n'exporter que le schéma (LDD)
-Ft utiliser le format tar
-Fc utiliser le format spécifique

Sauvegardes, pg_dump

(c) 2008, 2009, 2010, Sébastien Namèche (sebastien@nameche.fr) - 111

(c) 2008, 2009, 2010, Sébastien Namèche (sebastien@nameche.fr) - 112

Pour restaure un export réalisé au format texte :
$ pg_dump -h 192.168.2.42 -p 5433 -U postgres -C compta > compta.sql
$ psql -h 192.168.2.42 -p 5433 -U postgres postgres < compta.sql

Autres exemples :
$ pg_dump -h host1 db | psql -h host2 db

$ pg_dump db | gzip > db.sql.gz
$ zcat db.sql.gz | psql db

Pour les formats tar et spécifique, la restauration est faite avec pg_restore :
$ pg_dump -Ft db > db.tar
$ dropdb db
$ pg_restore -C -d postgres < db.tar

$ pg_dump -Fc db > db.dump
$ dropdb db
$ pg_restore -C -d postgres < db.dump

$ pg_dump -Fc db > db.dump
$ createdb copy
$ pg_restore -d copy < db.dump

Sauvegardes, pg_restore

(c) 2008, 2009, 2010, Sébastien Namèche (sebastien@nameche.fr) - 112

(c) 2008, 2009, 2010, Sébastien Namèche (sebastien@nameche.fr) - 113

À l'exception de cas simples, la sauvegarde des fichiers d'une instance doit se faire
lorsque celle-ci est arrêtée.

Si la taille des fichiers de l'instance est importante, l'utilisation d'un gestionnaire de
volumes logiques avec possibilité de réaliser des clichés peut aider à réduire les temps
d'interruption.

Le répertoire de l'instance doit être sauvegardé ainsi que les répertoires des espaces de
tables supplémentaires.

Le principe est le suivant :
$ pg_ctl stop
$ tar czfC /backups/AAAA-MM-JJ.tar.gz / var/pg/*/inst5432
$ pg_ctl start

Sauvegardes, système de fichiers

(c) 2008, 2009, 2010, Sébastien Namèche (sebastien@nameche.fr) - 113

(c) 2008, 2009, 2010, Sébastien Namèche (sebastien@nameche.fr) - 114

Les journaux des transactions (WAL) contiennent les données de toutes les transactions
exécutées sur une instance.

L'idée de la sauvegarde en continu consiste à sauvegarder chacun de ces journaux dès
qu'il est rempli ou lorsqu'un délai est dépassé. Ces journaux pourront ensuite être rejoués
sur une base de données restaurées à partir d'une sauvegarde complète.

Deux étapes sont nécessaires :
1) Activer l'archivage des journaux des transactions.
2) Exécuter régulièrement une sauvegarde complète de l'instance.

L'archivage des journaux est contrôlé avec ces options de postgresql.conf :
archive_mode = on
archive_command = ’test ! -f /mnt/logarch/%f && cp %p /mnt/logarch/%f’
archive_timeout = 1h

%f est le nom du fichier qui contient le journal à archiver, %p contient son chemin
complet (relativement à $PGDATA). La commande doit retourner le code sortie 0 si la
copie a été réalisée correctement.

Sauvegarde en continu (journaux des transactions)

(c) 2008, 2009, 2010, Sébastien Namèche (sebastien@nameche.fr) - 114

(c) 2008, 2009, 2010, Sébastien Namèche (sebastien@nameche.fr) - 115

Les sauvegardes complètes de l'instance doivent être réalisées d'une manière particulière :
1) Exécution de la function SQL pg_start_backup.
2) Sauvegarde des fichiers de l'instances à l'exception du répertoire pg_xlog.
3) Exécution de la fonction pg_stop_backup.

Par exemple :
$ psql
postgres=# select pg_start_backup(’Sauvegarde du AAAA-MM-JJ’);
postgres=# \q
$ tar czfC /mnt/logarch/AAAA-MM-JJ.tar.gz / var/pg/*/inst5432
$ psql
postgres=# select pg_stop_backup();
postgres=# \q

L'étiquette est conservée dans le fichier $PGDATA/backup_label.

Un fichier $PGDATA/pg_xlog/0000000100001234000055CD.007C9330.backup est créé
pour indiquer le dernier journal utilisé avant la sauvegarde.

Sauvegarde en continu (journaux des transactions)

(c) 2008, 2009, 2010, Sébastien Namèche (sebastien@nameche.fr) - 115

(c) 2008, 2009, 2010, Sébastien Namèche (sebastien@nameche.fr) - 116

Le processus de restauration est assez complexe, il est recommandé de l'écrire dans une
procédure et de la rejouer régulièrement afin de valider que l'environnement nécessaire à
la restauration n'a pas changé.

Le schéma est le suivant :
1) Installer un nouveau serveur identique au premier.
2) Restaurer la sauvegarde complète en prenant soin de rétablir les permissions.
3) S'assurer que le répertoire $PGDATA/pg_xlog/archive_status existe.
4) Créer un fichier recovery.conf dans $PGDATA à partir de recovery.conf.sample.
5) Démarrer PostgreSQL en s'assurant que les utilisateurs ne pourront se connecter.

Les deux paramètres importants de recovery.conf sont :
restore_command = 'cp /mnt/logarch/%f %p'
#recovery_target_time = '2008-04-23 11:20:55 EST'

Sauvegarde en continu, restauration

(c) 2008, 2009, 2010, Sébastien Namèche (sebastien@nameche.fr) - 116

(c) 2008, 2009, 2010, Sébastien Namèche (sebastien@nameche.fr) - 117

Pour chaque requête, l'optimiseur élabore un plan d'exécution. De sa pertinence dépend la
performance du serveur. L'instruction explain permet d'afficher le plan d'exécution prévu
pour une requête :

EXPLAIN [ANALYZE] requête

La requête ne sera pas exécutée à moins que la clause analyze ne soit utilisée. Pour être
certain de ne modifier aucune donnée, utiliser :
bdd=> begin;
bdd=> explain analyze requête;
bdd=> rollback;

Chaque ligne correspond à un nœud d'exécution, pour chaque nœud sont affichées les
informations suivantes :

- le type de l'action (parcours séquentiel, parcours d'un index, jointure, etc.) ;
- le coût estimé pour le démarrage du parcours ;
- le coût total estimé ;
- le nombre estimé de lignes renvoyées par le nœud d'exécution ;
- la largeur moyenne estimée des lignes.

L'analyse des requêtes avec explain

(c) 2008, 2009, 2010, Sébastien Namèche (sebastien@nameche.fr) - 117

(c) 2008, 2009, 2010, Sébastien Namèche (sebastien@nameche.fr) - 118

Avec la clause analyze, les données estimées sont complétées par les donnée réelles.

Par exemple :
pagila=# explain select count(*) from film where language_id=1;
 QUERY PLAN
--
 Aggregate (cost=69.00..69.01 rows=1 width=0)
 -> Seq Scan on film (cost=0.00..66.50 rows=1000 width=0)
 Filter: (language_id = 1)
(3 rows)

pagila=# explain analyze select count(*) from film where language_id=1;
 QUERY PLAN

 Aggregate (cost=69.00..69.01 rows=1 width=0) (actual time=5.086..5.088 rows=1 loops=1)
 -> Seq Scan on film (cost=0.00..66.50 rows=1000 width=0) (actual time=0.014..2.558 rows=1000 loops=1)
 Filter: (language_id = 1)
 Total runtime: 5.135 ms
(4 rows)

L'analyse des requêtes avec explain

(c) 2008, 2009, 2010, Sébastien Namèche (sebastien@nameche.fr) - 118

(c) 2008, 2009, 2010, Sébastien Namèche (sebastien@nameche.fr) - 119

explain nous permet de comparer les plans d'exécution avec ou sans utilisation d'un
index!:

pagila=# explain select rental_id from rental where return_date is null;
 QUERY PLAN
--
 Seq Scan on rental (cost=0.00..294.44 rows=166 width=4)
 Filter: (return_date IS NULL)
(2 rows)

pagila=# create index idx_rental_return on rental (return_date);
CREATE INDEX

pagila=# explain select rental_id from rental where return_date is null;
 QUERY PLAN
--
 Index Scan using idx_rental_return on rental (cost=0.00..32.97 rows=166 width=4)
 Index Cond: (return_date IS NULL)
(2 rows)

L'analyse des requêtes avec explain

(c) 2008, 2009, 2010, Sébastien Namèche (sebastien@nameche.fr) - 119

(c) 2008, 2009, 2010, Sébastien Namèche (sebastien@nameche.fr) - 120

L'instruction reindex permet de reconstruire le contenu d'un index à partir des données de
la table. Cela peut être nécessaire :

- si l'index est corrompu ;
- s'il est trop fragmenté ;
- si l'un de ses paramètres a changé (soit, fillfactor).

Plusieurs syntaxes sont possibles :
REINDEX INDEX nom_index
REINDEX TABLE nom_table
REINDEX DATABASE nom_bdd

La reconstruction d'index avec reindex

(c) 2008, 2009, 2010, Sébastien Namèche (sebastien@nameche.fr) - 120

(c) 2008, 2009, 2010, Sébastien Namèche (sebastien@nameche.fr) - 121

L'instruction analyze est utilisée pour échantillonner les données contenues dans une
table. Ces informations statistiques sont stockées dans la table pg_statistic du catalogue
pg_catalog.

L'optimiseur de requêtes les utilisera afin d'élaborer le meilleur plan d'exécution. Il est
donc important de les mettre à jour régulièrement.

Sa syntaxe est :
ANALYZE [VERBOSE] nom_table

Par exemple :
pagila=# analyze verbose rental;
INFO: analyzing "public.rental"
INFO: "rental": scanned 134 of 134 pages, containing 16045 live rows
 and 7 dead rows; 3000 rows in sample, 16045 estimated total rows
ANALYZE

Les statistiques ainsi échantillonnées ne doivent pas être confondues avec celles qui sont
maintenues par le collecteur de statistiques (processus stats collector process).

Échantillonnage avec analyze

(c) 2008, 2009, 2010, Sébastien Namèche (sebastien@nameche.fr) - 121

(c) 2008, 2009, 2010, Sébastien Namèche (sebastien@nameche.fr) - 122

Le processus nommé Vacuum (littéralement « ! aspirateur ! ») doit être exécuté
régulièrement sur une base de données PostgreSQL. Il permet de :

- récupérer l'espace libéré suite à la mise-à-jour ou la suppression d'enregistrements ;
- mettre à jour les statistiques utilisées par l'optimiseur de requêtes (analyze) ;
- prévenir la perte d'anciennes données par la rotation des identifiants de transaction.

Avant PostgreSQL 8.1, ce processus devait être planifié à intervalles réguliers. Depuis, un
processus (Autovacuum) prend en charge son exécution.

La procédure peut être exécutée pendant que la base de données est utilisée. Mais :
- un ralentissement sera perceptible ;
- les instructions qui modifient le schéma (LDD) ne pouront pas être utilisées.

Pour réduire le temps nécessaire à l'exécution de Vacuum, certains paramètres peuvent
être ajustés. Par exemple, les tables qui contiennent des enregistrements qui sont peu
modifiés et rarement supprimés n'ont pas besoin d'être nettoyées aussi souvent que
d'autres tables plus «!volatiles!».

Vacuum

(c) 2008, 2009, 2010, Sébastien Namèche (sebastien@nameche.fr) - 122

(c) 2008, 2009, 2010, Sébastien Namèche (sebastien@nameche.fr) - 123

Pour exécuter le processus vacuum manuellement, la syntaxe est :
VACUUM [FULL] [ANALYZE] table

L'option full permet de récupérer tout l'espace libre (défragmentation), mais le processus
peut s'avérer bien plus long et nécessite la pose d'un verrou exclusif sur les tables.

L'option analyze déclenche, en plus, l'échantillonnage des statistiques.

À partir de la version 8.1 de PostgreSQL, un démon, pg_autovocuum (processus
autovacuum launcher process), est chargé d'exécuter régulièrement les processus vacuum
et analyze sur les tables de l'instance.

Pour le configurer, modifier ces paramètres de postgresql.conf :
autovacuum = on
superuser_reserved_connections = 4
autovacuum_naptime = 5min

Puis redémarrer PostgreSQL.

Autovacuum

(c) 2008, 2009, 2010, Sébastien Namèche (sebastien@nameche.fr) - 123

(c) 2008, 2009, 2010, Sébastien Namèche (sebastien@nameche.fr) - 124

L'optimisation d'une base de données dépend de plusieurs paramètres :
- le schéma de la base de données (tables, index, vues, déclencheurs) ;
- sa volumétrie ;
- son usage (OLTP, data warehouse).

Les informations utiles sont obtenues :
- dans le journal d'activité ;
- dans les objets du catalogue pg_catalog ;
- en exécutant l'instruction explain ;
- à partir du résultat de l'instruction vacuum.

Les réglages sur lesquels il est possible d'intervenir sont :
- les paramètres du fichier postgresql.conf ;
- le schéma de données (index, structure des tables, vues, tables partitionnées, etc.) ;
- le matériel (mémoire, disques durs, processeur) ;
- les paramètres du système d'exploitation.

Optimisation

(c) 2008, 2009, 2010, Sébastien Namèche (sebastien@nameche.fr) - 124

(c) 2008, 2009, 2010, Sébastien Namèche (sebastien@nameche.fr) - 125

Annexes

(c) 2008, 2009, 2010, Sébastien Namèche (sebastien@nameche.fr) - 125

(c) 2008, 2009, 2010, Sébastien Namèche (sebastien@nameche.fr) - 126

PgPool est hébergé sur pgFoundry. Il permet de :
- limiter le nombre de connexions au serveur PostgreSQL ;
- réutiliser des sessions dont les propriétés sont identiques ;
- répliquer les instructions SQL vers plusieurs serveurs ;
- distribuer l'exécution des requêtes sur plusieurs serveurs ;
- répartir l'exécution d'une requête sur plusieurs serveurs (parallélisation).

Le site du projet est :
http://pgpool.projects.postgresql.org/

Le gestionnaire de connexions PgPool

(c) 2008, 2009, 2010, Sébastien Namèche (sebastien@nameche.fr) - 126

Le gestionnaire de connexions PgPool

(c) 2008, 2009, 2010, Sébastien Namèche (sebastien@nameche.fr) - 128

PostgreSQL gère les types avancés suivants :
- domaines ;
- tableaux ;
- types composites ;
- types énumérés et types ordonnés ;
- documents XML.

Les relations (tables) peuvent héritées les unes des autres.

Le mécanisme Toast permet de stocker des lignes de taille importante.

Les espaces libres dans les fichiers de données sont gérés par l'intermédiaire d'un
mécanisme connu sous le nom de FSM (Free Space Map).

Un système de règles (rules) permet de détourner l'exécution des instructions LMD sur
les relations (tables et vues).

Notions avancées

(c) 2008, 2009, 2010, Sébastien Namèche (sebastien@nameche.fr) - 128

(c) 2008, 2009, 2010, Sébastien Namèche (sebastien@nameche.fr) - 129

Livres
« PostgreSQL » 2ème édition

Sébastien Lardière – ENI Éditions
« PostgreSQL, Entraînez-vous à créer et programmer une base de données relationnelle »

François-Marie Colonna – ENI Éditions

Sites Web
Site officiel – http://www.postgresql.org/
Site de la communauté francophone – http://www.postgresqlfr.org/
Site du projet pgAdmin – http://www.pgadmin.org/
Wiki de PostgreSQL – http://wiki.postgresql.org/wiki/Main_Page

Presse
Numéros 103 et 106 à 112 du Linux Magazine France

Références

(c) 2008, 2009, 2010, Sébastien Namèche (sebastien@nameche.fr) - 129

(c) 2008, 2009, 2010, Sébastien Namèche (sebastien@nameche.fr) - 130

Sébastien Namèche

Conseil
Architecture des systèmes et réseaux
Sécurité transverse

Formation
Logiciels Libres
Systèmes Unix
Réseaux et protocoles IP
Base de données (Oracle, PostgreSQL, MySQL)
annuaires
Messageries
Supervision

Mob. +33 6 0373 1442
http://sebastien.nameche.fr

sebastien@nameche.fr

Pour en savoir plus...

