Support de cours

PostgreSQL &

installation
configuration
exploitation

v_20100130

ol .fi

(c) 2008, 2009, 2010, Sébastien Nameche (sebastien@nameche.fr)

Licence pour la diffusion de ce document

Ce document peut étre librement lu, stocké, reproduit, diffusé, traduit et cité par tous moyens et sur tous supports aux conditions suivantes :

e tout lecteur ou utilisateur de ce document reconnait avoir pris connaissance de ce qu'aucune garantie n'est donnée quant a son contenu, a tous points de
vue, notamment véracité, précision et adéquation pour toute utilisation ;

e il n'est procédé a aucune modification autre que cosmétique, changement de format de représentation, traduction, correction d'une erreur de syntaxe
évidente ou en accord avec les clauses ci-dessous ;

e le nom, le logo et les coordonnées de 1'auteur devront étre préservés sur toutes les versions dérivées du document a tous les endroits ou ils apparaissent
dans l'original, les noms et logos d'autres contributeurs ne pourront pas apparaitre dans une taille supérieure a celle des auteurs précédents, des
commentaires ou additions peuvent étres insérés a condition d'apparaitre clairement comme tels ;

e les traductions ou fragments doivent faire clairement référence a une copie originale complete, si possible a une copie facilement accessible ;

e les traductions et les commentaires ou ajouts insérés doivent étre datés et leur(s) auteur(s) doi(ven)t étre identifiable(s) (éventuellement au travers d'un
alias) ;

e cette licence est préservée et s'applique a I'ensemble du document et des modifications et ajouts éventuels (sauf en cas de citation courte), quelqu'en
soit le format de représentation ;

e quel que soit le mode de stockage, reproduction ou diffusion, toute version imprimée doit contenir une référence a une version numérique librement
accessible au moment de la premiere diffusion de la version imprimée, toute personne ayant acces a une version numérisée de ce document doit
pouvoir en faire une copie numérisée dans un format directement utilisable et si possible éditable, suivant les standards publics, et publiquement
documentés en usage ;

e la transmission de ce document a un tiers se fait avec transmission de cette licence, sans modification, et en particulier sans addition de clause ou
contrainte nouvelle, explicite ou implicite, liée ou non a cette transmission. En particulier, en cas d'inclusion dans une base de données ou une
collection, le propriétaire ou l'exploitant de la base ou de la collection s'interdit tout droit de regard 1i€¢ a ce stockage et concernant l'utilisation qui
pourrait €tre faite du document apres extraction de la base ou de la collection, seul ou en relation avec d'autres documents.

Toute incompatibilité des clauses ci-dessus avec des dispositions ou contraintes légales, contractuelles ou judiciaires implique une limitation
correspondante : droit de lecture, utilisation ou redistribution verbatim ou modifiée du document.

Adapté de la licence Licence LLDD v1, octobre 1997, Libre reproduction © Copyright Bernard Lang [F1450324322014].
URL : http://pauillac.inria.fr/~lang/licence/lldd .html

L'original de ce document est disponible a cette URL : http://sebastien.nameche.fr/cours

La photographie de la couverture est Copyright (c) Shonali Laha (http://www.fiu.edu/~lahas/), tous droits réservés. Utilisée ici avec son aimable
autorisation, je 1'en remercie. Elle a été prise en mai 2002. Il s'agit d'un éléphant vivant probablement dans le Parc National de Tarangire, en Tanzanie.

Dédicace de la version du 30 janvier 2010, a Nolwenn.

(c) 2008, 2009, 2010, Sébastien Nameche (sebastien@nameche fr) - 2

Plan

La formation suivra ce plan :
- introduction ;
- partie 1 : installation et configuration ;
- partie 2 : structure et organisation des objets au sein d'un serveur PostgreSQL ;
- partie 3 : administration des bases de données.

Il s'agit d'une formation interactive, il est donc tout a fait indiqué d'interrompre le
formateur pour lui poser des questions, lui faire préciser certains points, demander 1'étude
d'un cas particulier, etc.

Ce support fait référence a la version 8.3 de PostgreSQL.

(c) 2008, 2009, 2010, Sébastien Nameche (sebastien@nameche fr) - 3

Pré-requis

Cette formation est une introduction a l'administration du serveur de bases de données
PostgreSQL. Elle se focalisera sur les tiches d'administration et les spécificit€s de ce
logiciel par rapport a d'autres gestionnaires de bases de données.

En particulier, on attend de chaque stagiaire :
- des connaissances générales en administration des systeémes informatiques ;
- des notions sur les réseaux IP ;

- la maitrise du langage SQL (LDD et LMD) ;
- la maitrise d'un éditeur de texte.

(c) 2008, 2009, 2010, Sébastien Nameche (sebastien@nameche fr) - 4

Introduction

PostgreSQL est un gestionnaire de bases de données relationnelles (SGBDR) supportant
le langage SQL. Il est a ét€ développé a partir du projet Postgres 4.2 initi€ par I'Université
de Californie a Berkeley (UCB), département informatique, des 1986. Postgres est lui-
méme dérivé de Ingres.

PostgreSQL est développé selon le mode « Open Source », sous licence BSD.

Plusieurs dizaines de développeurs et des nombreuses entreprises participent au
développement. L'€quipe référente sur le projet reste, elle, indépendante.

PostgreSQL dispose notamment des fonctionnalités suivantes :
- respect de la norme SQLI2 ;
- clés étrangeres ;
- plusieurs langages procéduraux ;
- déclencheurs ;
- vues ;
- conforme au modele transactionnel ACID.

(c) 2008, 2009, 2010, Sébastien Nameche (sebastien@nameche fr) - 5

[La licence BSD

Contenu du fichier COPYRIGHT du répertoire du code source de PostgreSQL :

PostgreSQL Database Management System
(formerly known as Postgres, then as Postgres95)

Portions Copyright (c) 1996-2008, PostgreSQL Global Development Group
Portions Copyright (c) 1994, The Regents of the University of California

Permission to use, copy, modify, and distribute this software and its
documentation for any purpose, without fee, and without a written agreement
is hereby granted, provided that the above copyright notice and this
paragraph and the following two paragraphs appear in all copies.

IN NO EVENT SHALL THE UNIVERSITY OF CALIFORNIA BE LIABLE TO ANY PARTY FOR
DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING
LOST PROFITS, ARISING OUT OF THE USE OF THIS SOFTWARE AND ITS
DOCUMENTATION, EVEN IF THE UNIVERSITY OF CALIFORNIA HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

THE UNIVERSITY OF CALIFORNIA SPECIFICALLY DISCLAIMS ANY WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE. THE SOFTWARE PROVIDED HEREUNDER IS
ON AN "AS IS" BASIS, AND THE UNIVERSITY OF CALIFORNIA HAS NO OBLIGATIONS TO
PROVIDE MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS.

(c) 2008, 2009, 2010, Sébastien Nameche (sebastien@nameche fr) - 6

Versions de PostgreSQL

Les versions marquantes :

1995-05-01
1995-09-05
1997-01-29
1997-06-08
1998-03-01
1998-10-30
1999-06-09
2000-05-08
2001-04-13
2002-02-04
2002-11-27
2008-01-07
2003-11-17
2005-01-19
2005-11-08
2006-12-05
2008-02-04
2009-03-17
2009-07-04

2010-03-15

Postgres95 0.01
PostgreSQL 1.0
PostgreSQL 6.0
PostgreSQL 6.1
PostgreSQL 6.3
PostgreSQL 6.4
PostgreSQL 6.5
PostgreSQL 7.0
PostgreSQL 7.1
PostgreSQL 7.2
PostgreSQL 7.3

premicre version

le code devient modifiable (évolution de la licence)

changement dans la numérotation, industrialisation du développement
nouvel optimiseur

subselect, variables d'environnement coté client

vues, regles (rules), UTF réellement utilisable

MVCC, sauvegardes a chaud, tables temporaires

clés étrangeres, amélioration de 1'optimiseur, jointures SQL92
WAL, TOAST, jointures ouvertes, requétes complexes
améliore la gestion des bases conséquentes, internationalisation
schémas, requétes préparées

PostgreSQL 7.3.21

PostgreSQL 7.4

dictionnaire, tsearch2, autovacuum, nombreuses optimisations

PostgreSQL 8.0 natif Windows, savepoints, PITR, tablespaces, prét pour 1'entreprise
PostgreSQL 8.1 validation en deux phases, roles

PostgreSQL 8.2 nombreuses améliorations fonctionnelles et optimisations

PostgreSQL 8.3 encore plus d'améliorations fonctionnelles et d'optimisations
PostgreSQL 7.4.25

PostgreSQL 8.4 fenétrage, CTE et requétes récursives, permissions par colonnes

PostgreSQL 8.0.24°,8.1.20°, 8.2.16, 8.3.10, 84.3

* A l'exception des versions 8.0 et 8.1 pour Windows qui ne sont plus supportées.

(c) 2008, 2009, 2010, Sébastien Nameche (sebastien@nameche fr) - 7

Versions de PostgreSQL

La politique de gestion des versions est la suivante :

- les deux premiers numéros représentent les versions majeurs
=> environ une version majeure par an
=> introduction de nouvelles fonctionnalités compatibles
=> les base de données doivent €tre migrées entres deux versions majeures

- le troisieme numéro est la version mineure
=> quelques versions mineures par an
=> correctifs de s€curité, résolution des problemes, etc.
=> la plupart du temps, le format binaire des bases de données est compatible

Il est recommandé de toujours utiliser la derniere version mineure disponible («ne pas
migrer est plus risqué que migrer »).

Les failles de s€curité découvertes sont décrites sur cette page :
http://www.postgresql.org/support/security

(c) 2008, 2009, 2010, Sébastien Nameche (sebastien@nameche fr) - 8

Versions de PostgreSQL

La version béta 1 de PostgreSQL 8.4 a été€ rendue publique le 15 avril 2009.
Elle a ét€ publiée le 1* juillet 2009.

- Windowing Functions

- Common Table Expressions and Recursive Joins

- Default and variadic parameters for functions

- Parallel Restore

- Column Permissions

- Per-database locale settings

- Improved hash indexes

- Improved join performance for EXISTS and NOT EXISTS queries

- Easier-to-use Warm Standby

- Automatic sizing of the Free Space Map

- Visibility Map (greatly reduces vacuum overhead for slowly-changing tables)
- Version-aware psql (backslash commands work against older servers)

- Support SSL certificates for user authentication

- Per-function runtime statistics

- Easy editing of functions in psql

- New contrib modules: pg_stat_statements, auto_explain, citext, btree_gin

(c) 2008, 2009, 2010, Sébastien Nameche (sebastien@nameche fr) - 9

Communauté

Le site pgFoundry.org héberge de nombreux projets indépendants :
- connecteurs pour les différents langages ;
- langages procéduraux ;
- outils d'aide a 'administration ;
- logiciels pour la haute disponibilité (réplication, gestion des connexions, etc.).
Citons : - pgFouine création de rapports a partir du journal d'activit€é de Postgre SQL
- PGCluster réplication synchrone multi-maitres

- pgpool gestion des connexions (limitation, réplication, répartition, parallélisation)
- pg-toolbox un ensemble de scripts pour l'aide a I'administration

D'autres projets existent :

- Slony http://slony.info réplication maitre vers plusieurs esclaves
- phpPgAdmin http://phppgadmin.sf.net interface Web d'administration
- pgAdmin http://pgadmin.org client d'administration

Le site francais PostgreSQLFr.org propose des nouvelles et des traductions de la
documentation officielle et héberge un forum de discussion.

La communauté maintient €également I'excellent Wiki :
http://wiki.postgresql.org/

(c) 2008, 2009, 2010, Sébastien Nameche (sebastien@nameche .fr) - 10

Documentation

La documentation de PostgreSQL est consultable en ligne :
http://www.postgresql.org/docs/8.3/interactive/index.html

Ou disponible au format PDF :
http://www.postgresql.org/files/documentation/pdf/8.3/postgresql-8.3-A4 .pdf

Ou installée avec PostgreSQL, par exemple dans ce répertoire :
$PREFIX/doc/html/index.html

L'association PostgreSQLFr maintient une traduction en ligne :
http://docs.postgresqlfr.org/8.3/

Téléchargeable :
http://docs.postgresqlfr.org/8.3/pg833 .tar.gz
http://docs.postgresqlfr.org/pg83 .pdf

Un fois PostgreSQL installé, des pages de manuels Unix sont €galement consultables
avec la commande man (commandes Unix en section 1, commandes SQL en section 7).

(c) 2008, 2009, 2010, Sébastien Nameche (sebastien@nameche .fr) - 11

Comparatif avec les autres BDD

De telles comparaisons sont souvent périlleuses.

Malgré tout :

PostgreSQL 8 MySQL 5 Oracle 10g
espaces de tables oul non oui
tables partitionnées émulées oul oul
conforme ACID oul avec InnoDB oul
intégrité référetielle oui avec InnoDB oui
langage procédural plusieurs oui PL/SQL, Java
déclencheurs oui limités oui
curseurs oul limités oui
authentifications LDAP, kerberos, non SE, kerberos
externes PAM, GSSAPI, erc.

Concernant les performances, il est souvent admis que MySQL est plus rapide lorsqu'il
est utilisé avec le moteur MyISAM. Cependant, cet environnement pose plusieurs
problemes (notamment corruption possible des données et contention des verrous).

(c) 2008, 2009, 2010, Sébastien Nameche (sebastien@nameche fr) - 12

Partie 1

Installation et configuration

(c) 2008, 2009, 2010, Sébastien Nameche (sebastien@nameche fr) - 13

Les €tapes de I'installation

PostgreSQL a ét€ portés sur de tres nombreux systemes d'exploitation : Linux, Unix,
Windows et Mac OS X.

Quelque soit I'environnement, ces étapes seront nécessaires :
1) Installation des binaires.
2) Préparation du systeme d'exploitation.
3) Initialisation des fichiers de l'instance.

4) Configuration.
5) Installation des scripts de démarrage sous Unix ou services sous Windows.

(c) 2008, 2009, 2010, Sébastien Nameche (sebastien@nameche fr) - 14

1 — Installation des binaires

En fonction du systeme d'exploitation et des contraintes de développement et
d'exploitation, plusieurs solutions existent pour installer les binaires :

- sous Linux, a partir des paquets livrés avec la distribution ;
- pour les systemes BSD, en utilisant les ports ;

- en récupérant un paquet binaire sur le site officiel :
(pour Solaris, Windows ou les systemes Fedora et RHEL)
http ://www.postgresql.org/ftp/binary

- a partir d'un paquet binaire compilé par la soci€té EnterpriseDB :
http://www.enterprisedb.com/products/download.do

- avec Yum a partir du dépot PGDG, pgsqlrpms.org (pour Fedora, CentOS et RHEL) ;

- en compilant le code source :
http://www.postgresql.org/ftp/source

(c) 2008, 2009, 2010, Sébastien Nameche (sebastien@nameche fr) - 15

Installer PostgreSQL sous Debian

La version stable de Debian (lenny a ce jour) propose une version 8.3.6 de PostgreSQL.
Pour l'installer, 1l suffit d'utiliser APT :

apt-get install postgresql

Les paquets suivants seront installées (dépendances) :
postgresql-common postgresqgl-client-common
postgresql-8.3 postgresql-client-8.3 libpgb
Les paquets suivants sont recommandés :

postgresql-contrib-8.3 postgresql-doc-8.3 pgdocs-pdf-a4d

Les paquets des langages procéduraux sont :

postgresql-plperl-8.3 postgresql-plpython-8.3 postgresql-pltcl-8.3
postgresql-8.3-pljava-gcj postgresql-8.3-plruby postgresgl-8.3-plsh
Enfin, voici quelques autres paquets liés a PostgreSQL :

postgresql-8.3-postgis postgis libpostgis-java
slonyl-bin potgresqgl-8.3-slonyl slonyl-doc pgpool pgpool2 pgfouine
postgresql-8.3-orafce ora2pg pgdesigner pgadmin3 kpogre

(c) 2008, 2009, 2010, Sébastien Nameche (sebastien@nameche fr) - 16

Installer PostgreSQL sous CentOS

CentOS 5.2 propose des paquets pour la version 8.1.11 de PostgreSQL. D'autres versions
des paquets RPM sont disponibles sur le site de PostgreSQL ici :
http://www.postgresql.org/ftp/binary/v8 x x/linux/rpms/

Pour CentOS 5.2, utiliser les paquets disponibles dans les répertoires redhat/rhel-5-i386
ou redhat/rhel-5-x86_64, les paquets suivants, au moins, sont nécessaires :

postgresql-1libs postgresql postgresgl-server

Ceux-c1 sont recommandés :

postgresql-contrib postgresgl-docs postgresql-devel

Langages procéduraux :

postgresql-plperl postgresql-plpython postgresqgl-pltcl

Installation et démarrage :

rpm -ivh postgresql-*
service postgresqgl initdb
service postgresql start

(c) 2008, 2009, 2010, Sébastien Nameche (sebastien@nameche fr) - 17

Installer PostgreSQL a partir du dépot PGDG

Le site pgsqlrpms.org fournit des paquets binaires pour les systemes suivants :
-Fedora7a9;
- RedHat Enterprise Linux 4 et 5 ;
- CentOS 4 et 5.

Les versions de PostgreSQL disponibles sont 7.3 et 7.4 ainsi que 8.0 a 8.3 et méme 8.4
(développement). Des paquets pour les outils et contributions PostgreSQL s'y trouvent
¢galement (pgAdmin, pgfouine, pgpool, Slony, PostGIS, etc.).

Les étapes sont :

- choisir un fichier RPM pour la distribution et la version de PostgreSQL a partir de :
http:/[yum.pgsqlrpms.org/reporpms/repoview/

- installer ce paquet, par exemple :
rpm -ivh pgdg-fedora-8.3-4.noarch.rpm

- supprimer les paquets PostgreSQL éventuellement installés :
rpm -qa |grep -i postgres |xargs rpm -e

- installer les paquets avec Yum :
yum install postgresql postgresql-server

(c) 2008, 2009, 2010, Sébastien Nameche (sebastien@nameche fr) - 18

Compiler PostgreSQL sous Unix

PostgreSQL utilise 1'outil configure. Sa compilation est donc relativement simple. Le
code source est disponible a partir de :
http://www.postgresql.org/ftp/source/

Les outils de compilation et bibliotheques nécessaires sont :
- GNU make ;
- compilateur C ANSI (tel que gcc) ;
- tar et gzip ou bzip2 ;
- 1la bibliotheque GNU readline (optionnelle) ;
- la bibliotheque z/ib (optionnelle) ;
- une implémentation de I'API gettext pour activer NLS (Native Language Support) ;

- les bibliotheques Kerberos, OpenSSL, OpenLDAP et/ou PAM pour activer des
types d'authentification et de chiffrements spécifiques.

D'autres composants logiciels sont nécessaires pour certains langages procéduraux :
- Perl et la bibliotheque libperl pour PL/Perl ;
- Python et le module distutils pour PL/Python ;
- Tcl pour PL/Tcl.

(c) 2008, 2009, 2010, Sébastien Nameche (sebastien@nameche .fr) - 19

Compiler PostgreSQL sous Unix

Le processus général a suivre pour compiler PostgreSQL est le suivant :

wget ftp://ftp.postgresql.org/pub/source/v8.x.x/postgresql-8.x.x.tar.gz
zcat postgresql-8.x.x.tar.gz | tar xf -

cd postgresql-8.x.x

./configure --prefix=/usr/local/postgresql8xx --with-openssl

make

make install

echo 'PATH=/usr/local/postgresql8xx/bin:$SPATH' >> /etc/profile

echo 'MANPATH=/usr/local/postgresql8xx/man:$SMANPATH' >> /etc/profile
echo 'export PATH MANPATH' >> /etc/profile

FHFHFHRHRHHFHRHRH

D'autres options de configure sont :
--without-readline
—--without-zlib
—-—enable-nls="'fr de'
—--with-1ldap
—--with-pam
—--with-perl
--with-python
——-with-tcl

Pour obtenir toutes les options, exécuter :
./configure --help

(c) 2008, 2009, 2010, Sébastien Nameche (sebastien@nameche .fr) - 20

Installer PostgreSQL sous Windows

Une version de PostgreSQL compilée pour Windows est disponible sous forme de paquet
installable a cet endroit :
http://www.postgresql.org/ftp/binary/v8 x x/win32/

Télécharger le fichier postgresql-8.x.x-X.zip, en extraire le fichier postgresql-8 x.msi et
I'exécuter. Dérouler les écrans d'installation. La procédure prend en charge la création
d'un service Windows ainsi que la création d'un premier groupe de bases de données pour
le serveur PostgreSQL.

L'installation des différents langages procéduraux est possible si ceux-ci sont déja
installés sur le systeme d'exploitation.

Parmi les contributions utiles a installer figure notamment adminpack qui permet
d'étendre les fonctions de l'interface graphique pgAdminlII.

(c) 2008, 2009, 2010, Sébastien Nameche (sebastien@nameche fr) - 21

2 — Préparation du systeme d'exploitation

Trois taches essentielles :
1) Création d'un utilisateur systeme.
2) Choix des répertoires pour les fichiers de 1'instance.
3) Paramétrage de la mémoire partagée.

Le serveur PostgreSQL n'est jamais exécuté en tant que root. L'utilisateur systeme utilisé
est traditionnellement postgres et n'a pas besoin de mot de passe.

Le choix du répertoire de 1'instance est important :
- prendre en compte la capacité et la vitesse du disque ;
- prévoir la possibilit€ de créer plusieurs instances ;

- les fichiers de données, les index et les journaux des transactions pourront étre
répartis sur plusieurs disques grace aux espaces de tables (tablespaces) ;

- ce répertoire doit €tre accessible en lecture et €criture pour 1'utilisateur postgres (et
uniquement cet utilisateur).

Par exemple : /var/postgres/uOl1/inst5432

(c) 2008, 2009, 2010, Sébastien Nameche (sebastien@nameche fr) - 22

Parametres de la mémoire partagée sous Unix

PostgreSQL utilise des segments de mémoire partagée entre les différents processus du
serveur. Cette fonction est propre aux systemes Unix.

Les valeurs de ces parametres sont souvent trop faibles :

[root@pga ~]# sysctl -a |grep kernel.shm |sort

kernel.shmall = 2097152 (soit 8 Go, car exprimé en nombre de blocs)
kernel.shmmax = 33554432 (soit 32 Mo)
kernel.shmmni = 4096

[root@pga ~]# ipcs -m -1
—————— Shared Memory Limits —--—-————-

max number of segments = 4096

max seg size (kbytes) = 32768

max total shared memory (kbytes) = 8388608
min seg size (bytes) =1

En général, mais cela dépend des systemes Unix, les parametres du noyau sont configurés
par l'intermédiaire du fichier /etc/sysctl.conf. Par exemple, sous Linux :

kernel.shmall = 2097152 (soit 8 Go, car exprimé en nombre de blocs)
kernel.shmmax = 134217728 (soit 128 Mo)
kernel.shmmni = 256

Attention, le parametre shmall peut s'exprimer en octets ou nombre de blocs.

(c) 2008, 2009, 2010, Sébastien Nameche (sebastien@nameche fr) - 23

3 — Initialiser une 1instance

Une instance PostgreSQL est composée :
- d'un ensemble de processus dont un €coutant sur un port TCP (5432 par défaut) ;

- d'un répertoire (appelé « groupe de bases de données ») contenant notamment :
* les bases de données (dans le répertoire base) ;
* un fichier de configuration postgresqgl.conf ;
* un fichier pour la gestion de I'authentification pg_hba.conf.

Il est possible de configurer plusieurs instances actives simultanément sur un méme
serveur a condition d'allouer un répertoire et un port TCP distincts pour chacune. Ces
instances peuvent méme exécuter des versions différentes de PostgreSQL.

En fonction de la maniere dont PostgreSQL a €té install€, il peut €tre nécessaire de créer
ou non le premier groupe de bases de données et de I'initialiser.

(c) 2008, 2009, 2010, Sébastien Nameche (sebastien@nameche fr) - 24

Initialiser une instance

La procédure est la suivante :

1) Créer 1'utilisateur et le groupe postgres :

groupadd postgres
useradd -g postgres -d /var/pg -c "PostgreSQL Software Owner" \
-s /bin/sh postgres

2) Créer le répertoire et lui associer les droits adéquats :

mkdir /var/pg
chown postgres:postgres /var/pg
chmod 700 /var/pg

3) Initialiser les fichiers de 1'instance :

su - postgres

$ initdb --encoding=UTF8 --locale=C --pwprompt /var/pg/u0l/inst5432

$ 1s /var/pg/u0l1/inst5432

base pg _clog pg ident.conf pg subtrans pg twophase pg xlog

global pg hba.conf pg multixact pg tblspc PG_VERSION postgresqgl.conf

(c) 2008, 2009, 2010, Sébastien Nameche (sebastien@nameche fr) - 25

4 — Configurer l'instance

Le fichier postgresql.conf contient les différents parametres de 1'instance. Les valeurs par
défaut permettent d'exécuter une instance de taille modeste sans probleme particulier.
Nous reviendrons sur différents parametres de ce fichier. Pour l'instant, seuls ceux
destinés a configurer les acces réseau nous intéressent.

Le parametre port (dont la valeur par défaut est 5432) permet de choisir un port TCP
différent, ce qui est nécessaire si plusieurs instances sont exécutées sur une meéme
machine.

Le parametre listen_addresses liste les adresses IP sur lesquelles PostgreSQL écoutera.
Par défaut seule 1'adresse locale 127.0.0.1 sera utilisée. Pour permettre la connexion de
puis d'autres machines du réseau, il faut donc modifier ce parametre. Par exemple :

listen adresses = '*'

(c) 2008, 2009, 2010, Sébastien Nameche (sebastien@nameche fr) - 26

Configurer 'authentification

L'authentification est gérée par :
- le fichier pg_hba.conf ;
- les objets roles.

Le fichier pg_hba.conf est utilis€ pour configurer la manicre d'authentifier les connexions
en fonction de leur origine et de la base de données concernée.

Attention !

Le fichier pg hba.conf par défaut autorise toutes les connexions locales de
n'importe quel utilisateur vers n'importe quelle base de données sans
authentification. Aucune connexion ne sera acceptée depuis une autre machine
du réseau.

Il donc nécessaire de modifier ce fichier la plupart du temps.

(c) 2008, 2009, 2010, Sébastien Nameche (sebastien@nameche .fr) - 27

Configurer 'authentification

Le format d'une ligne du fichier pg_hba.conf est le suivant :

type base de données utilisateur addresse méthode option

Les types supportés sont :
- local : connexion par une socket du domaine Unix (la colonne adresse est vide) ;
- host : connexion chiffrée ou non par une socket TCP/IP ;
- hostssl : connexion chiffrée par une socket TCP/IP ;
- hostnossl : connexion non chiffrée par une socket TCP/IP.

La colonne base_de_données contient un ou une liste de ces €léments séparés par une
virgule :

- le nom d'une base de données ;

-ou«all»;

- ou « samerole ».

La colonne utilisateur contient un ou une liste de ces él€éments séparés par une virgule :
- le nom d'un utilisateur ;
-ou «all » ;
- ou le nom d'un groupe (r6le) précédé du caractere « + ».

(c) 2008, 2009, 2010, Sébastien Nameche (sebastien@nameche .fr) - 28

Configurer 'authentification

Le format d'une ligne du fichier pg_hba.conf est le suivant :

type base de données utilisateur addresse méthode option

La colonne adresse contient I'adresse IP d'origine de la connexion au format CIDR. Elle
doit €tre vide lorsque le type de connexion est local.

Enfin, la méthode d'authentification est choisie parmi :
- trust : autoriser sans méme vérifier le mot de passe ;
- reject : rejeter la connexion ;
- md)5 : vérifier le mot de passe fourni (ne plus utiliser crypt ou password) ;
- ident : utiliser le protocole IDENT pour vérifier I'utilisateur ;
- krb5, pam ou Ildap : authentifications spécifiques.

La colonne option n'est employée que lorsque la méthode d'authentification 1'exige (par
exemple, pour ident ou pam).

(c) 2008, 2009, 2010, Sébastien Nameche (sebastien@nameche .fr) - 29

Configurer 'authentification

Voici un exemple sensé (lire « recommandé€ ») pour le fichier pg_hba.conf :

TYPE DATABASE USER CIDR-ADDRESS METHOD

local all postgres ident sameuser
host all all 192.168.1.0/24 md5

host all all 0.0.0.0/0 reject

L'ordre des lignes dans ce fichier est important car elles sont évaluées les unes a la suite
des autres. La premicre correspondant aux crit€res type, base de données, utilisateur et
origine l'emporte.

L'exemple ci-dessus permet a l'utilisateur postgres de se connecter en local a condition
que cette connexion soit réalisée par 1'utilisateur du systeme qui porte le méme nom.

Les connexions a partir du réseau 192.168.1.0/24 seront autorisées mais nécessiteront un
mot de passe. Un utilisateur (role) devra exister pour cela dans I'instance.

Toutes les autres connexions seront refusées.

(c) 2008, 2009, 2010, Sébastien Nameche (sebastien@nameche .fr) - 30

Démarrer et arréter 1'instance

La commande pg_ctl peut €tre utilis€e pour contrdler une instance. Notamment pour la
démarrer, l'arréter, obtenir son état ou lui faire relire ses fichiers de configuration :

su - postgres

$ pg ctl -D /var/pg/u01/inst5432 -1 /var/pg/u0l1/inst5432/stderr.log start
$ pg ctl -D /var/pg/u0l1/inst5432 status

$ pg ctl -D /var/pg/u0l1/inst5432 reload

$ pg_ctl -D /var/pg/u0l/inst5432 [-m smart|fast|immediate] stop

Pour l'arrét :

- smart (SIGTERM)
Interdit les nouvelles connexions mais laisse les sessions actives se terminer.

- fast (SIGINT)
Interdit les nouvelles connexions, les transactions en cours sont annulées et les
sessions actives fermées.

- immediate (SIGQUIT)
Arrét immédiat, arrét brutal des transactions, a éviter.

(c) 2008, 2009, 2010, Sébastien Nameche (sebastien@nameche fr) - 31

Démarrer et arréter 1'instance

Si PostgreSQL a été€ installé avec un paquet d'une distribution, il est préférable d'utiliser
les scripts fournis.

Sous Debian :

/etc/init.d/postgresq-8.1 start|stop|status|reload

Sous RedHat ou CentOS :

service postgresql start|stop|status|reload

Enfin, sous Windows :

> net start|stop pgsql

(c) 2008, 2009, 2010, Sébastien Nameche (sebastien@nameche fr) - 32

Processus de 1'instance

Les processus associés a l'instance sont les suivantes :

ps faux

postgres
postgres
postgres
postgres
postgres
postgres
postgres

30603
30605
30606
30607
30608
30609
30617

D)))) V))

S

Ss
Ss
Ss
Ss
Ss
Ss

/usr/local/postgresqgl834/bin/postmaster -D /var/pg/ul0l/inst5

postgres:
postgres:
postgres:
postgres:
postgres:
postgres:

logger process

writer process

wal writer process

autovacuum launcher process

stats collector process

postgres postgres 127.0.0.1(35342) idle

Le processus pere de tous les autres est le postmaster. Certains processus fils ne sont
présents que lorsque certains parametres sont actives.

Le dernier processus de cette liste est un processus associé a un client. Un tel processus
sera cré€ pour chaque nouvelle session.

(c) 2008, 2009, 2010, Sébastien Nameche (sebastien@nameche fr) - 33

5 — Configurer le démarrage

Sous Unix, lorsque PostgreSQL est compilé, les scripts de démarrage ne sont pas
installés.

Pour Linux, un script de démarrage est disponible dans le répertoire contrib/start-scripts
du code source.

Par exemple, pour les System V :

cp contrib/start-scripts/linux /etc/init.d/postgresql inst5432
chmod 755 /etc/init.d/postgresql inst5432
/etc/init.d/postgresql inst5432
Modifier les variables suivantes :
prefix=/usr/local/postgresql836
PGDATA="/var/pg/u0l/inst5432"

ln -s /etc/init.d/postgresql inst5432 /etc/rc2.d/S30postgresql inst5432
ln -s /etc/init.d/postgresql inst5432 /etc/rc5.d4/S30postgresql inst5432
1ln -s /etc/init.d/postgresql inst5432 /etc/rc0.d/K70postgresql inst5432
1ln -s /etc/init.d/postgresql inst5432 /etc/rc6.d/K70postgresql inst5432

(c) 2008, 2009, 2010, Sébastien Nameche (sebastien@nameche fr) - 34

Instances supplémentaires

Pourquot utiliser de nouvelles instances :
- pour exécuter des versions différentes de PostgreSQL ;

- pour exécuter des instances de PostgreSQL avec des parametres différents ;
- pour des environnements différents (développement, pré-production, production) ;

- pour isoler des bases de données.

Pour créer une nouvelle instance sur le méme serveur, 1l faut :
1) Choisir un port TCP et un répertoire différent pour l'instance.
2) Créer les fichiers de 1'instance avec initdb.
3) Modifier la configuration de I'instance.
4) Installer le script de démarrage.

(c) 2008, 2009, 2010, Sébastien Nameche (sebastien@nameche fr) - 35

Instances supplémentaires

Par exemple :

#

S
$

HHWn

H HH

su - postgres
initdb --encoding=UTF8 --locale=C --pwprompt /var/pg/u0l/inst5433
vi /var/pg/u0l/inst5433/postgresql.conf
Modifier la variable suivante :
port = 5433

exit
cp /etc/init.d/postgresql inst5432 /etc/init.d/postgresql inst5433
vi /etc/init.d/postgresql inst5433
Modifier la variable suivante :
PGDATA="/var/pg/u0l/inst5433"

In -s /etc/init.d/postgresl inst5433 /etc/rc2.d/S30postresql inst5433
ln -s /etc/init.d/postgresl inst5433 /etc/rc0.d/K70postresql inst5433
ln -s /etc/init.d/postgresl inst5433 /etc/rc6.d/K70postresql inst5433

(c) 2008, 2009, 2010, Sébastien Nameche (sebastien@nameche fr) - 36

Les scripts installés par Debian

Les développeurs Debian des paquets PostgreSQL ont créé des scripts qui facilitent la
gestion des versions de PostgreSQL et des instances sur un méme serveur.

Les scripts pour la gestion des instances sont :

- pg_createcluster création d'une instance ;

- pg_lIsclusters liste des instances existantes ;

- pg_ctlclusters arrét/démarrage des instances ;

- pg_dropcluster suppression d'une instance ;

- pg_upgradecluster ~ migration d'une instance vers une version plus récente ;

- pg_maintenance exécution des actions de maintenance sur toutes les instances.

Le démarrage des instances lors du démarrage du systeme est €galement pris en charge, 1l
n'est donc pas nécessaire de créer et modifier des scripts dans /etc/init.d.

(c) 2008, 2009, 2010, Sébastien Nameche (sebastien@nameche .fr) - 37

Sessions

Les clients se connectent au serveur par l'intermédiaire d'une socket Unix ou d'une socket
TCP (sur le port 5432 par défaut). Deux informations sont nécessaires pour ouvrir une
session :

- le nom d'une base de données ;
- le nom d'un réle.

Un mot de passe est requis selon la configuration de pg_hba.conf.

Le jeu de caracteres utilis€ par le client peut €tre différent de celui de la base de données.
Le ré-encodage sera effectué par le serveur.

(c) 2008, 2009, 2010, Sébastien Nameche (sebastien@nameche .fr) - 38

SSL

Pour utiliser des sessions chiffrées en SSL, trois étapes sont nécessaires :
1) Générer une clé privée et un certificat X509 pour le serveur.
2) Activer l'option ssl dans le fichier postgresql.conf de 1'instance.
3) Redémarrer l'instance.

La clé privée et le certificat x509 doivent etre enregistrés respectivement dans les fichiers
server.key et server.crt du répertoire de l'instance.

Par exemple, pour générer un certificat auto-signé avec OpenSSL :

cd /var/pg/u0l1/inst5432

openssl req -new -nodes -out server.req -keyout server.key
openssl req -x509 -in server.req -key server.key -out server.crt
chown postgres server.*

chmod 600 server.key

FHFHRHFHFHH

(c) 2008, 2009, 2010, Sébastien Nameche (sebastien@nameche .fr) - 39

Clients

Plusieurs outils sont installés avec Postgre SQL :

createdb dropdb clusterdb pg dump initdb pg ctl
createlang droplang reindexdb pg dumpall ipcclean postgres
createuser dropuser vacuumdb pg restore pg resetxlog postmaster
psql pg config ecpg pg controldata

Beaucoup permettent d'exécuter des actions qui peuvent I'€tre en SQL. Nous nous
concentrerons sur leur équivalent SQL. Pour cela, le client principal est l'interpréteur de
commandes psqgl. Ses principaux parameres (tous optionnels) sont :

S psql -h machine -p port nombdd utilisateur

Par exemple :

S psql -h 192.168.1.42 postgres postgres
Password for user postgres:
Welcome to psql 8.3.6, the PostgreSQL interactive terminal.

Type: \copyright for distribution terms
\h for help with SQL commands
\? for help with psgl commands
\g or terminate with semicolon to execute query
\g to quit

postgres=#

(c) 2008, 2009, 2010, Sébastien Nameche (sebastien@nameche .fr) - 40

Client psql

L'invite de commande de psqgl change en fonction du contexte, elle est composée de trois
parties :

pagila=#

pagila estle nom de la base de données active pour cette session
= signifie que psql attend une nouvelle commande
indique que l'utilisateur connecté est un administrateur de 1'instance

postgres->

postgres estle nom de la base de données active pour cette session
- signifie que psql attend la suite d'une instruction SQL
> indique que 1'utilisateur connecté n'est pas un administrateur de l'instance

Les 31gnes = et - peuvent également etre remplaces par:
une chaine est ouverte (un caractere ' a ét€ saisi sur une ligne précédente)
(une parenthese a ét€ ouverte sur une ligne précédente

(c) 2008, 2009, 2010, Sébastien Nameche (sebastien@nameche fr) - 41

Client psql

En plus des instructions SQL LDD et LMD, l'interpréteur psgl comprend certaines
commandes qui lui sont propres. Ces commandes sont précédées du caractere « \ ». Voici
celles qui sont le plus souvents utilisées :

\c [nombdd|- [utilisateur|- [machine|- [port|-1]]]

\i fichier

\o fichier

\d nom

\d{t|i|s|v} [modéle]
\db [modéle]

\du [modéle]

\dg [modéle]

\dn [modéle]

\1

\z nom

\?

\h instruction
\encoding [encodage]

\q

se connecter a une autre instance PostgreSQL
exécuter un fichier SQL

envoyer la sortie vers un fichier

décrire une relation (table, index, séquence ou vue)
lister les tables, index, séquences ou vues

lister les espaces de tables

lister les utilisateurs

lister les groupes

lister les espaces de noms (schémas et catalogues)
lister les bases de données de 1'instance

afficher les privileges associés a une relation
lister les commandes de psgl

obtenir de 1'aide sur une instruction SQL

obtenir ou configurer 1'encodage pour la session
quitter psql

(c) 2008, 2009, 2010, Sébastien Nameche (sebastien@nameche fr) - 42

Client pgAdminlIII

® pgAdmin3 Fichier Edition

Affichage Outils Aide Window Help

600

pgAdmin Il

Navigateur d'objets

]

Le logiciel
pgAdminlIl est
souvent utilisé
comme alternative

graphique a psql.

[Propriétés = Statistiques Dépendances Objets dépendants
v [Serveurs (1)
v [J| puck (localhost:5432) Propriété Valeur
v | | Bases de données (1) Nom public
~ OID 2200
v L postgres Propriétaire postgres
> @ Catalogues (2) ACL {postgres=UC/postgres,=UC/postgres}
v & Schémas (1) Schéma systéme ? Non
Commentaires Standard public schema
% Réplication (0)
> Espaces de tables (2) c = i
Rdles groupe (0) - B
» S Réles de connexion (1) | [Fanneausql
-~ Schema: "public"

-~ DROP SCHEMA public;

CREATE SCHEMA public
AUTHORIZATION postgres;
GRANT ALL ON SCHEMA public TO postgres;
GRANT ALL ON SCHEMA public TO public;
COMMENT ON SCHEMA public IS 'Standard public schema';

E————

)4 | p>

Chargement des détails sur les objets Schéma...

Exécuté. 0,01 secondes

(c) 2008, 2009, 2010, Sébastien Nameche (sebastien@nameche.fr) - 43

Client pgAdminlIII

L'installation de pgAdminlIl dépend du systeme d'exploitation.

Pour Debian :

apt-get install pgadmin3

Des versions compilées sont disponibles pour FreeBSD, Mac OS X et certaines
distributions de Linux a cet endroit :
http://www.postgresql.org/ftp/pgadmin3/release/

Pour RedHat, CentOS et Fedora, le dépot de logiciels Dag en fournit une version a cette
adresse :
http://dag wieers.com/rpm/packages/pgadmin3/

Par exemple, sous CentOS ou RHEL 5 :

wget http://dag.wieers.com/rpm/packages/pgadmin3/pgadmin3-1.4.3-1.el5.rf.i386.rpm
rpm -ivh pgadmin3-1.4.3-1.el5.rf.i386.rpm

Pour Windows, pgAdminlll est compris dans le paquet d'installation présenté
précédemment.

(c) 2008, 2009, 2010, Sébastien Nameche (sebastien@nameche fr) - 44

Client pgAdminlIII

Afin de pouvoir utiliser toutes les fonctions de pgAdminlll, 1l est nécessaire d'installer
certaines fonctions dans l'instance.

Ces fonctions sont disponibles dans une contribution fournie avec le code source de
PostgreSQL si celui-c1 a ét€ compilé. Deux €tapes sont nécessaires pour les installer :

1) Compiler et installer la bibliotheque dynamique.
2) Créer les références aux fonctions avec un script SQL.

Par exemple :

cd /root/postgresql-8.3.6/contrib/adminpack
make install
psql postgres postgres \
< /usr/local/postgresql836/share/contrib/adminpack.sql

(c) 2008, 2009, 2010, Sébastien Nameche (sebastien@nameche fr) - 45

Client phpPgAdmin

Le client d'administration pgAdmin III requiert un acces direct au serveur via le port TCP
5432. Cela n'est pas toujours possible, ni souhaitable. L'application Web phpPgAdmin
peut €tre utilis€e dans cette situation. Il s'installe sur le serveur.

Il est disponible a cette adresse :
http://phppgadmin.sourceforge .net

Son installation requiert un serveur Web et le langage PHP avec l'extension pgsql.

(c) 2008, 2009, 2010, Sébastien Nameche (sebastien@nameche fr) - 46

Client phpPgAdmin

PostgreSQL 8.2.4 running on localhost:5434 -- You are logged in as user "postgres"”, 16th Nov, 2007 2:18PM SaL | Find | Logout

(2]

Q phpPgAdmin: D pgs8.2": ‘ ‘pagila 3
® & » g o= & d 3

Schemas saL Find Variables Processes Locks Admin Privileges Languages Casts Export

Schema Owner Actions Comment

information_schema postgres Drop] Privileges I Alter]

pg_catalog postgres Drop | Privileges | Alter ISystem catalog schema

public postgres Drop | Privileges | Alter |Standard public schema

Create schema

&€ public

Languages
2 Casts
-| | postgres
@[| templatel

< |

Termingé

(c) 2008, 2009, 2010, Sébastien Nameche (sebastien@nameche .fr) - 47

Partie 2

Structure et organisation
d'une instance PostgreSQL

(c) 2008, 2009, 2010, Sébastien Nameche (sebastien@nameche .fr) - 48

LDD/LMD

Le langage SQL est constitu€ de deux sous-ensembles :
- le Langage de Description des Données (LDD) ;
- le Langage de Manipulation des Données (LMD).

Le langage de description des données est utilis€ pour créer, modifier et détruire les objets
de la base de données (tables, index, séquences, procédures, roles, etc.). Ce sous-
ensemble est représenté par les verbes :

create alter drop grant revoke

Souvent, un groupe d'instructions LDD qui décrivent un ensemble d'objets li€s est appelé
schéma de données.

Le langage de manipulation des données permet d'ajouter, modifier, supprimer et
récupérer les données qui sont stockées dans les objets créés avec le langage de
description des données. Ce sous-ensemble est représenté par les verbes :

insert select update delete

(c) 2008, 2009, 2010, Sébastien Nameche (sebastien@nameche .fr) - 49

Types d'objets

Les différents types d'objet qu'il est possible de créér dans une instance PostgreSQL sont :

- organisation physique et logique des données

bases de données databases
espaces de tables tablespaces
schémas schemas
- relations
tables tables
vues views
index indexes
séquences sequences
- autres
domaines domains
regles rules
roles roles
fonctions functions
déclencheurs triggers

(c) 2008, 2009, 2010, Sébastien Nameche (sebastien@nameche .fr) - 50

Bases de données

client

port TCP
5432

Organisation des
bases de données

dans une instance
PostgreSQL.

instance

postgres base de données 1 base de données 2

g memEEEEEERERRRES 1 g TeEEEEEEERERRES 1
1 schéma 1 : 1 schéma 1 :
1 [|
' . ' : :
1 1 I I

roles I _ I i ||| Al I
: relations : : relations :
1 1 1 1
1 1 1 1
I- ------ bl e I l ------- e I
1 schéma 2 : 1 schéma 2 :
. : " :
1 l":” . [I .
" i I ! ' ||| 1 I
: relations : : relations :
1 \/J.' I\/- : ! \/J-' I\/ :
1 1

pg_global pg_default tblspcl tblspc2

(c) 2008, 2009, 2010, Sébastien Nameche (sebastien@nameche fr) - 51

Instances, bases de données, schémas

Une instance est composée par :
- un ensemble de fichiers (groupe de bases de données, ou database cluster) ;
- un ensemble de processus.

Une instance gere plusieurs bases de données. Pour chaque instance, il existe au moins
ces bases de données :

- postgres ;

- templateO ;

- templatel .

Les relations (tables, index, etc.) sont stockées dans les bases de données. Chaque base de
données est compartimentée en espaces de noms : les schémas et les catalogues.

Pour chaque base de données il existe au moins le schéma public et les catalogues :
- information_schema ;
- pg_catalog ;
- pg_toast ;
- pg_toast_temp_1.

(c) 2008, 2009, 2010, Sébastien Nameche (sebastien@nameche fr) - 52

Notion de OID

Les OID (Object Identifiers) sont utilisé€s par Postgre SQL pour la cl€ primaire d'un certain
nombre de tables systeme.

Par exemple :

postgres=# \d pg database
Table "pg catalog.pg database”

Column | Type | Modifiers
_______________ e e e
datname name not null
datdba oid not null
encoding integer not null
datistemplate boolean not null
datallowconn boolean not null
datconnlimit integer not null

ceo/ e

postgres=# select oid, datname from pg database;
oid | datname

_______ o

1 templatel
11510 template0
11511 postgres
16395 bla

(c) 2008, 2009, 2010, Sébastien Nameche (sebastien@nameche .fr) - 53

Notion de filenode

Les données des tables de PostgreSQL sont enregistrées dans des fichiers dont le nom est
un entier. Cet entier est appelé filenode. Le filenode d'une table est souvent identique a

I'OID associé a cette table. Mais certaines opérations sur les relations alterent le filenode
sans modifier 1'OID.

La taille des fichiers de données est limitées a 1 Go. Lorsque la taille d'une table atteint
cette limite, un nouveau fichier est créé dont le nom est composé du filenode associé au
fichier et d'un numéro séquentiel s€parés par un point.

Par exemple :

cd SPGDATA/base/16400
du -hsc 20048*
1,0G 20048
1,06 20048.1
82M 20048.2
2,1G total

(c) 2008, 2009, 2010, Sébastien Nameche (sebastien@nameche fr) - 54

Arborescence des répertoires et des fichiers

Le répertoire de chaque instance contient les fichiers et sous-répertoires suivants :

SPGDATA
PG _VERSION
pg_hba.conf
pg ident.conf
postgresqgl.conf
postmaster.opts
postmaster.pid

SPGDATA/base
SPGDATA/base/oid
SPGDATA/base/pgsgl tmp

SPGDATA/global
SPGDATA/pg_clog
SPGDATA/pg log
SPGDATA/pg multixact
SPGDATA/pg_subtrans
SPGDATA/pg tblspc
SPGDATA/pg twophase
SPGDATA/pg xlog

version de PostgreSQL associée a cette instance
configuration de 1'authentification

configuration de 1'authentification ident
configuration de 1'instance

options de démarrage du processus postmaster
PID du postmaster

répertoire associé a l'espace de tables pg_default
répertoire de la base de données associées a 1'OID oid
fichiers temporaires pour certaines opérations

tables systeme (espace de tables pg_global)

données relatives au statut de validation des transactions
journaux d'activité

données relatives au statut des transactions multiples
données relatives au statut des transactions imbriquées
contient un lien symbolique pour chaque espace de tables
données pour les transactions préparées

journaux binaires (WAL)

(c) 2008, 2009, 2010, Sébastien Nameche (sebastien@nameche fr) - 55

Arborescence des répertoires et des fichiers

Toutes les relations (terme utilisé par PostgreSQL pour désigner un ensemble d'objets tels
que les tables, index, séquences, etc.) appartiennent a une base de données.

Les données associ€es a chaque relation sont stockées dans un fichier dont le nom est
I'OID de la relation dans le répertoire de la base de données :

SPGDATA/base/oid bdd/filenode relation

La base de données postgres fait exception a la regle, ses relations sont enregistrées dans
le répertoire SPGDATA/global.

Ce répertoire contient les fichiers suivants :

SPGDATA/global
pg auth fichier texte, copie des identifiants et mots de passe des roles utilisateurs
pg control positions et données de controle des journaux et transactions
pg database fichier texte, copie des bases de données présentes dans l'instance
pgstat.stat statistiques collectées par PostgreSQL
filenode identifiant de fichier de la relation associée

(c) 2008, 2009, 2010, Sébastien Nameche (sebastien@nameche fr) - 56

Bases de données

La création d'une base de données se fait avec 1l'instruction :
CREATE DATABASE nom

[[WITH] [OWNER [=] utilisateur]
[TEMPLATE [=] modéle]
[ENCODING [=] encodage]
[TABLESPACE [=] espace de tables]

Le propriétaire par défaut est l'utilisateur connecté.
La base de données modele par défaut est templatel .
L'encodage par défaut est celui de l'instance.

D'autres sont UTF8, WIN1252, LATIN1, LATIN9 et SQL_ASCII.
L'espace de tables par défaut est pg_default.

Seul un administrateur ou un utilisateur qui dispose l'attribut createdb peut créer une base
de données (mais elle lui appartiendra obligatoirement).

Par exemple :

postgres=# create database test;

CREATE DATABASE

postgres=# \c test

You are now connected to database "test".

(c) 2008, 2009, 2010, Sébastien Nameche (sebastien@nameche fr) - 57

Bases de données

Pour supprimer une base de données :
DROP DATABASE [IF EXISTS] nom

Une base de données ne peut €tre supprimée tant que des utilisateurs y sont connectés.
Seul I'administrateur ou le propriétaire d'une base de données peut la détruire.

Attention !
Lors de la suppression d'une base de données, tous les objets qu'elle contient
sont détruits sans avertissement et sans possibilité de retour en arriere.

Par exemple :

test=# drop database test;
ERREUR: n'a pas pu supprimer la base de données actuellement ouverte

test=# \c postgres
You are now connected to database "postgres'.

postgres=# drop database test;
DROP DATABASE

(c) 2008, 2009, 2010, Sébastien Nameche (sebastien@nameche .fr) - 58

Schémas

Les schémas sont simplement des espaces de noms. Ainsi, il est possible de créer dans
une méme base de données des objets qui portent le méme nom tant qu'ils le sont dans
des schémas différents.

Les objets d'un schéma sont accessibles en préfixant leur nom par le nom du schéma
suivit d'un point : « schema.objet ».

La variable search_path contient une liste de noms de schéma qui seront considérés pour
trouver des noms d'objet qui ne sont pas qualifiés. Cette variable contient par défaut :

"Suser" ,public

La commande \dn de psgl permet de lister les espaces de noms (dont les schémas)
présents dans la base de données. Pour créer un schéma :

CREATE SCHEMA nom [AUTHORIZATION utilisateur]

Le propriétaire par défaut est l'utilisateur connecté. Seuls les administrateurs et les
utilisateurs qui disposent du privilege create sur la base de données peuvent créer de
nouveaux schémas.

(c) 2008, 2009, 2010, Sébastien Nameche (sebastien@nameche .fr) - 59

Schémas

Pour détruire un schéma :
DROP SCHEMA [IF EXISTS] nom [CASCADE]

Seuls un administrateur et le propriétaire du schéma peuvent le détruire.
L'option CASCADE permet la suppression d'un schéma qui contient des objets.

Par exemple :

test=# create schema compta;
CREATE SCHEMA

test=# create table compta.clients (id int, nom varchar);
CREATE TABLE

test=# drop schema compta;

NOTICE: table compta.bla depends on schema compta

ERROR: cannot drop schema compta because other objects depend on it
HINT: Use DROP ... CASCADE to drop the dependent objects too.

test=# drop schema compta cascade;
NOTICE: drop cascades to table compta.clients
DROP SCHEMA

Note : par défaut tous les droits sont octroy€s a tous les utilisateurs sur le schéma public.

(c) 2008, 2009, 2010, Sébastien Nameche (sebastien@nameche .fr) - 60

Catalogue systeme

Le catalogue pg_catalog contient notamment :
- I'ensemble des fonctions et types implémentées par le moteur de PostgreSQL ;

- un ensemble de tables dont certaines en €criture servent a contrdler certains aspects
du fonctionnement du serveur ;

- un ensemble de vues permettant de comprendre le comportement de 1'instance.

Par exemple :

La table pg_autovacuum permet de controler le nettoyage automatique des tables.
La table pg_database contient la liste des bases de données de I'instance.

La table pg_tablespace contient la liste espaces de table de l'instance.

La table pg_namespace contient la liste des schémas de la base de données.

La vue pg_roles liste les roles présents dans l'instance.

La vue pg_stat_activity liste 'activité (les sessions) sur le serveur.

La vue pg_stat_user_tables donne des statistiques sur les tables de la base de données.
La vue pg_stat_user_index donne des statistiques sur les index de la base de données.

(c) 2008, 2009, 2010, Sébastien Naméeche (sebastien@nameche fr) - 61

Types de données €lémentaires

PostgreSQL supporte les types de données SQL standards :

boolean booléen
smallint entier sur 2 octets
integer entier sur 4 octets
bigint entier sur 8 octets
numeric(p, s) numérique exacte
real virgule flottante sur 4 octets
double precision virgule flottante sur 8 octets
date date
time heure
timestamp [with time zone] date et heure
interval intervalle de temps
char(n) chaine de caracteres de taille fixe
varchar(n) chaine de caracteres de taille variable
bytea chaines d'octets
Ainsi que des types €lémentaires plus €évolués :
box path lseg cidr
circle point bytea inet
line polygon text macaddr

(c) 2008, 2009, 2010, Sébastien Nameche (sebastien@nameche fr) - 62

Relations, tables

Les tables sont créées ainsi :
CREATE [TEMPORARY] TABLE nom_table (

nom colonne nom type [DEFAULT expression] [contrainte colonne] [, ...]
[contrainte table [, ...] 1)
[WITH (parametre stockage [= valeur] [, ...])] [TABLESPACE tablespace]

Les contraintes sur les colonnes et les tables s'expriment ainsi :

[CONSTRAINT nom contr col] { NOT NULL | UNIQUE parametres index
PRIMARY KEY parametres index | CHECK (expression)
REFERENCES autre table [(colonne)]

[ON DELETE action] [ON UPDATE action] }
[CONSTRAINT nom contr tbl] { UNIQUE (colonne [, ...]) parametres index
PRIMARY KEY (colonne [, ...]) parametres index
CHECK (expression)
FOREIGN KEY (colonne [, ...])
REFERENCES autre table [(colonne [, ...])]
[ON DELETE action] [ON UPDATE action] }

Les parametres des index s'expriment ainsi :

[WITH (parametre stockage [= valeur] [, ...]) 1]
[USING INDEX TABLESPACE tablespace]

(c) 2008, 2009, 2010, Sébastien Nameche (sebastien@nameche fr) - 63

Relations, index

Les indexes peuvent €tre ajoutés a une table déja créée :

CREATE [UNIQUE] INDEX [CONCURRENTLY] nom
ON nom table
[USING type]
({ colonne | (expression) } [, ...]1)
[WITH (parametre stockage = valeur [, ...])]
[TABLESPACE tablespace]

Les types d'index supportés sont : btree (défaut), hash (déconseillé¢), gist et gin.

Le seul parametre de stockage supporté a ce jour est :
FILLFACTOR = { 10-100 }

La valeur par défaut est 100 pour une table et 90 pour un index btree.

(c) 2008, 2009, 2010, Sébastien Nameche (sebastien@nameche fr) - 64

Relations, s€équences

Les séquences sont des objets qui fournissent des suites d'entiers garantis uniques et ce a
travers les transactions.

Pour créer une séquence :

CREATE [TEMPORARY] SEQUENCE nom [INCREMENT [BY] increment]
[MINVALUE valeur] [MAXVALUE valeur |
[START [WITH] valeur] [[NO] CYCLE]
[OWNED BY table.colonne }]

Par exemple :

plop=# create sequence journal.seq article_ id;
CREATE SEQUENCE

plop=# insert into journal.articles

plop-# values (nextval('journal.seq article _id'), 'Bla...’');
INSERT 0 1

plop=# select currval('journal.seq article_id');
currval

(c) 2008, 2009, 2010, Sébastien Nameche (sebastien@nameche fr) - 65

Relations, vues

Pour créer une vue, la syntaxe est :

CREATE [OR REPLACE] [TEMPORARY] VIEW nom [(nom colonne [, ...])]
AS requéte

(c) 2008, 2009, 2010, Sébastien Nameche (sebastien@nameche fr) - 66

Langage de manipulation des données

Les verbes insert, select, update et delete du langage de manipulation de données se
comportent conformément a la norme SQL.

(c) 2008, 2009, 2010, Sébastien Nameche (sebastien@nameche .fr) - 67

L'instruction copy

L'instruction copy permet de transférer un nombre important de lignes d'une table vers un
fichier ou inversement.

Pour copier les lignes d'un fichier vers une table :

COPY table [(colonnes)]
FROM { 'nom fichier' | STDIN }
[DELIMITER 'séparateur' |
[NULL 'chaine nulle']
[CSV [HEADER] [QUOTE 'quote'] [ESCAPE 'escape']]

Pour copier les lignes d'une table vers un fichier :

COPY { table [(colonnes)] | (requéte) }
TO { 'nom fichier' | STDOUT }
[DELIMITER 'séparateur' |
[NULL 'chaine nulle']
[CSV [HEADER] [QUOTE 'quote'] [ESCAPE 'escape']]

Seul un utilisateur de la base de données disposant des privileges administrateur peut
utiliser un nom de fichier. De plus, ce fichier doit se trouver sur le serveur et étre
accessible en lecture ou en écriture par le serveur Postgre SQL.

(c) 2008, 2009, 2010, Sébastien Nameche (sebastien@nameche .fr) - 68

Transactions

PostgreSQL implémente les transactions conforment au standard ACID :
Atomicité toutes les instructions de la transaction sont validées ou aucune ne I'est
Cohérence chaque transaction validée garantit un état cohérent de la base de données
Isolation les modifications d'une transaction sont invisibles aux autres transactions
Durabilité si la transaction est validée, les modifications engendrées sont pérennes

Par défaut, chaque instruction est réalis€ée dans le cadre d'une transaction qui est
automatiquement validée.

Pour commencer une nouvelle transaction, il faut utiliser explicitement l'instruction
begin. Les instructions commit et rollback permettent respectivement de valider et
d'annuler la transaction.

La fermeture d'une session provoque un rollback implicite.

Les instructions LDD sont prises en charge par les transactions sous PostgreSQL !

pagila=> begin;
pagila=> drop table film actor;
pagila=> rollback;

(c) 2008, 2009, 2010, Sébastien Nameche (sebastien@nameche .fr) - 69

Isolation

Dirty read

begin transaction

update actor

set first name='Ford'
where actor id=42

rollback

\

/

begin transaction

\

select first name
from actor
where actor id=42

=> Ford

commit

\

il

\

select first name
from actor
where actor id=42

=> TOM

(c) 2008, 2009, 2010, Sébastien Nameche (sebastien@nameche.fr) - 70

Isolation

Nonrepeatable read
begin transaction

begin transaction

\

/

update actor

set first name='Ford'
where actor id=42 select first name

from actor

\ where actor id=42 == Tl
commit
‘\\\\\:EEEi:::§§_"_ select first name
from actor _
where actor id=42 > o

\

\J \J

(c) 2008, 2009, 2010, Sébastien Nameche (sebastien@nameche.fr) - 71

Isolation

Phantom read
begin transaction

begin transaction

\

select *
from actor
where actor id=42

/

=> | ligne

delete from actor
where actor id=42

commit

update actor
set first name='Leo
— where actor id=42

I
\

=> 0 ligne

\

\J \J

(c) 2008, 2009, 2010, Sébastien Nameche (sebastien@nameche.fr) - 72

Niveaux d'isolation

Le standard SQL définit quatre niveaux d'isolation entre les transactions :

dirty read non-repeatable read phantom read
read uncommited possible possible possible
read commited impossible possible possible
repeatable read impossible impossible possible
serializable impossible impossible impossible

PostgreSQL accepte ces quatre niveaux d'isolation mais n'implémente que les niveaux
read commited et serializable. Le niveau read uncommited correspond a read commited et
repeatable read a serializable.

L'instruction est set transaction

SET TRANSACTION ISOLATION LEVEL
{ SERIALIZABLE | REPEATABLE READ | READ COMMITTED | READ UNCOMMITTED }

L'isolation entre les transactions est implémenté par le mécanisme MVCC (Multi- Version
Concurrency Control) qui génere bien moins de soucis qu'une implémentation basée sur
les verrous.

(c) 2008, 2009, 2010, Sébastien Nameche (sebastien@nameche fr) - 73

Verrous

L'usage des verrous est bien moins fréquent grace a MVCC.

Il est néanmoins possible d'utiliser des verrous explicites. De plus, certaines opérations
requierent un acces exclusifs aux objets de la base de données (notamment les
instructions LDD), PostgreSQL est donc amené a poser des verrous automatiquement.

Les verrous peuvent étre posés :
- avec l'instruction lock ;
- en utilisant les clauses for update et for share de l'instruction select.

Il existe pas moins de 8 niveaux de verrous sur les tables (et 2 sur les lignes) :

LOCK table [, ...]
[IN ACCESS SHARE | ROW SHARE | ROW EXCLUSIVE | SHARE UPDATE EXCLUSIVE
| SHARE | SHARE ROW EXCLUSIVE | EXCLUSIVE | ACCESS EXCLUSIVE MODE]
[NOWAIT]

Les verrous ne peuvent étre posés que dans le cadre d'une transaction commencée avec
begin. Ils sont libérés lorsque la transaction est terminée.

La liste des verrous actifs est consultable dans la vue systeme pg_locks.

(c) 2008, 2009, 2010, Sébastien Nameche (sebastien@nameche fr) - 74

Recherche de texte avec tsearch?2

tsearch2 est une contribution qui a €té intégrée a PostreSQL 8.3, elle permet d'effectuer
des recherches intégrales de texte (full text searches). Une recherche avec tsearch2

nécessite deux objets :

- un vecteur tsvector construit a partir du jeux de données a parcourir ;
- une requéte tsquery qui représente les criteres de la recherche.

Les fonctions fo_tsvector et to_tsquery permettent d'obtenir ces objets qu'il

de combiner avec l'opérateur @ @. Par exemple :

bdd=> select to_tsvector('french', 'il était un petit navire qui n''avait jamais

to_tsvector

pet':4 'navir':5 'navigu':10

postgres=> select to_tsquery('french', 'un & petit & naviguer');
to_ tsquery
pet' & 'navigu'
bdd=> select to_tsvector('french', 'il était un petit navire qui
bdd-> @@ to_tsquery('french', 'un & petit & naviguer');
?column?

bdd=> select to_tsvector('french', 'il était un petit navire qui
bdd-> @@ to_tsquery('french', 'un & petit & bateau');
?column?

n' 'avait jamais

n

'avait jamais

suffit ensuite

navigué');

navigué')

navigué')

(c) 2008, 2009, 2010, Sébastien Nameche (sebastien@nameche fr) - 75

Recherche de texte avec tsearch?2

Pour recherche dans une table :

select art id, art titre from articles
where to tsvector('french', art texte)
@@ to tsquery('french', 'premier & homme & lune');

Pour améliorer la vitesse de recherche, il est possible de créer un index GIN :
create index idx art tsearch on articles
using gin (to tsvector('french', art texte));

D'autres fonctions permettent de classer les résultats (zs_rank et ts_rank_cd) ou méme de
mettre en valeur dans le texte les termes recherchés (ts_headline).

(c) 2008, 2009, 2010, Sébastien Nameche (sebastien@nameche fr) - 76

Roles

Pour gérer I'ensemble des droits d'acces, PostgreSQL utilise le concept des roles depuis la
version 8.1.

Un réle peut représenter un utilisateur ou un groupe d'utilisateurs en fonction de la
maniere dont il est configuré.

Un ré6le peut :
- €tre propriétaire d'objets de l'instance (bases de données, tables, etc.) ;
- se voir octroyer des droits d'acces a des objets ou des droits systeme ;
- étre membre d'un autre role ;
- se voir attribuer un mot de passe.

Les roles remplacent donc les notions d'utilisateurs et de groupes qui étaient encore
utilisés par PostgreSQL 8.0.

Les roles ne sont pas li€s aux utilisateurs et groupes du systeme d'exploitation.
Ils sont associés a une instance.

(c) 2008, 2009, 2010, Sébastien Nameche (sebastien@nameche .fr) - 77

Roles

Pour créer un role :

CREATE ROLE nom role [[WITH] [SUPERUSER] [CREATEDB]
[CREATEROLE] [LOGIN]

[ENCRYPTED PASSWORD 'mot de passe']
[IN ROLE nom role [, ...]]

[

ROLE nom role [, i]
Seul 'administrateur ou un utilisateur disposant de l'attribut createrole peut créer un role.

Par exemple, pour créer un r6le modélisant un utilisateur, on utilisera :

postgres=# create role sebastien login encrypted password 'blabla’;
postgres=# \c postgres sebastien

Password for user "sebastien':

You are now connected to database "postgres" as user "sebastien'.
postgres=>

Pour supprimer un réle :
DROP ROLE [IF EXISTS] nom role

(c) 2008, 2009, 2010, Sébastien Nameche (sebastien@nameche .fr) - 78

Roles, groupes

Les roles sont €galement utilis€és pour modéliser la notion de groupes d'utilisateurs. Il
suffit pour cela de créer un role sans mot de passe et ne disposant pas de l'attribut login.

Par exemple, l'instruction suivante crée un role (groupe) compta et lui associe deux autres
roles. Ces derniers hériteront des droits octroy€s au rdle compta :

create role compta role sebastien, dominique;

Cette instruction crée un autre role (utilisateur) et I'ajoute au rdle (groupe) compta :

create role daniel login encrypted password 'abcde' in role compta;

(c) 2008, 2009, 2010, Sébastien Nameche (sebastien@nameche .fr) - 79

Droits

Le systeme des droits de PostgreSQL est basé€ sur les roles et utilise les instructions SQL
GRANT et REVOKE. Ces instructions sont utilisées pour :

- octroyer ou révoquer des droits d'acces sur des objets ;

- ajouter ou retirer des rbles (utilisateurs) a d'autres roles (groupes).

Les roles dispose €galement d'un certains nombres d'attributs :
- LOGIN / NOLOGIN ;
- SUPERUSER / NOSUPERUSER ;
- CREATEDB / NOCREATEDB ;
- CREATEROLE / NOCREATEROLE ;
- PASSWORD.

Ces attributs sont associés aux roles lors de leur création (CREATE ROLE) ou avec
I'instruction ALTER ROLE.

Les roles qui disposent de I'attribut SUPERUSER contournent le systeme des privileges
(c'est-a-dire qu'ils ont tous les privileges).

(c) 2008, 2009, 2010, Sébastien Nameche (sebastien@nameche .fr) - 80

Droits, acces aux objets

Par défaut, seul le propriétaire d'un objet (souvent son créateur) a acces a cet objet.
prop]]

Des privileges supplémentaires peuvent €tre associ€s aux objets avec l'instruction
GRANT comme ceci :

GRANT { privilége [,...] | ALL } ON [type objet] nom objet [, ...]
TO { nom role | PUBLIC } [, ...] [WITH GRANT OPTION]

Les privileges octroyés dépendent du type d'objet :
- tables : SELECT | INSERT | UPDATE | DELETE | REFERENCES | TRIGGER
- séquences : USAGE | SELECT | UPDATE
- base de données : CREATE | CONNECT | TEMPORARY
- fonctions : EXECUTE
- langage : USAGE
- schémas : CREATE | USAGE
- espaces de tables : CREATE

ALL représente tous les privileges et PUBLIC tous les roles.
L'option WITH GRANT OPTION autorise le ou les roles cibles a octroyer ces privileges.

(c) 2008, 2009, 2010, Sébastien Nameche (sebastien@nameche fr) - 81

Droits, acces aux objets

La révocation des droits utilise cette syntaxe :

REVOKE [GRANT OPTION FOR]
{ privilége [,...] | ALL } ON [type objet] nom objet [, ...]
FROM { nom role | PUBLIC } [, ...] [CASCADE | RESTRICT |

Par exemple, pour révoquer tous les droits sur le schéma public :

revoke all on schema public from public;

(c) 2008, 2009, 2010, Sébastien Nameche (sebastien@nameche fr) - 82

Droits, bonnes pratiques

Plusieurs politiques peuvent €tre mises en ceuvre :

1) Une base de données est associ€e a un role utilisateur. En général le nom de la base de
données est identique a celui du propriétaire. Souvent, une base de données est créée pour
une application.

2) Un schéma est associ€é a un utilisateur. Le nom du schéma est identique a celui de
l'utilisateur (cf. variable search_path dont la valeur par défaut est "$user" public).

3) Un schéma est associ€ a un role utilisateur, tous les objets utilisés par une application
sont créés dans ce schéma et appartiennent a cet utilisateur qui est I'administrateur de
'application. Un rdle groupe est cré€, des droits lui sont affectés pour utiliser les objets du
schéma. Les utilisateurs de 1'application sont des rdles utilisateurs et sont membre du role
groupe.

(c) 2008, 2009, 2010, Sébastien Nameche (sebastien@nameche .fr) - 83

Espaces de tables

Un espace de tables (ou tablespace) est un répertoire du systeme de fichiers qui peut étre
utilisé pour stocker les données de relations (tables et indexes).
Ils sont utilisés pour deux raisons :

1) Pour étendre des bases de données contraintes par la taille d'un systeme de fichiers
qui ne peut etre agrandi.

2) Plus fréquemment, pour optimiser la vitesse d'exécution des requétes en stockant,
par exemple, les tables sur un disque et les indexes sur un autre.

Les espaces de tables sont associ€s a l'instance, ils sont dons disponibles pour I'ensemble
des bases de données de l'instance.

(c) 2008, 2009, 2010, Sébastien Nameche (sebastien@nameche fr) - 84

Espaces de tables

Pour créer un espace de tables :
CREATE TABLESPACE nom [OWNER utilisateur] LOCATION 'répertoire'

Seul 'administrateur peut créer un espace de tables.

Le propriétaire par défaut est 1'utilisateur connecté.

Le répertoire doit exister et l'utilisateur systeme qui exécute PostgreSQL doit y avoir
acces en écriture.

Sous psql,\db permet de lister les espaces de tables existants. Ou :

SELECT spcname FROM pg tablespace;

Seul un administrateur ou son propriétaire peut détruire un espace de tables.
Pour supprimer un espace de tables :

DROP TABLESPACE [IF EXISTS] nom

Il ne peut 1'€tre s'il contient des objets.
Mais il est possible de déplacer une table d'un espace de tables a un autre :

ALTER TABLE nom table SET TABLESPACE nom espace

(c) 2008, 2009, 2010, Sébastien Nameche (sebastien@nameche .fr) - 85

Espaces de tables

Par exemple :

mkdir -m 700 /var/pg/u02/inst5432

chown postgres:postgres /var/pg/u02/inst5432

su - postgres -c psql

Bienvenue dans psql 8.3.6, l'interface interactive de PostgreSQL.

postgres=# create tablespace tbl data location '/var/pg/u02/inst5432';
CREATE TABLESPACE

postgres=# \c test

You are now connected to database "test".

test=# \db
List of tablespaces

Name | Owner | Location
____________ e
pg default postgres
Pg global postgres
tbl data postgres /var/pg/u02/inst5432
(3 rows)

test=# create table big data (id int, data text) tablespace tbl_data;
CREATE TABLE
postgres=# \!ls -1 /var/pg/u02/inst5432

total 8
drwx--—---—- 2 postgres postgres 4096 jan 23 11:56 16390
—IW——————— 1 postgres postgres 4 jan 23 11:50 PG _VERSION

(c) 2008, 2009, 2010, Sébastien Nameche (sebastien@nameche fr) - 86

Langages procéduraux

Pour écrire des procédures stockées exécutables sur le serveur de bases de données,
PotgreSQL permet 'utilisation de plusieurs langages, notamment :

- PL/pgSQL, le langage procédural fournit avec PostgreSQL ;
- PL/Perl ;

- PL/Python ;

- PL/Tcl ;

- PL/Java.

Ces langages sont implémentés par des bibliotheques externes et ils doivent étre créés
avant d'etre utilisés. A l'exception, du langage PL/pgSQL, ces bibliotheques sont souvent
disponibles dans des paquets s€parés des distributions Linux.

Pour obtenir la liste des langages créés dans une base de données :

postgres=# select lanname from pg language where lanispl = true;
lanname

(c) 2008, 2009, 2010, Sébastien Nameche (sebastien@nameche .fr) - 87

Langages procéduraux

Pour obtenir la liste des langages disponibles pour une base de données :

postgres=# select tmplname, tmpltrusted from pg pltemplate;
tmplname | tmpltrusted

plpythonu
pltcl
pltclu

(6 rows)

Un langage dit str (trusted) est un langage qui ne permet pas d'outrepasser le syst€me des
privileges de PostgreSQL. Seul les roles disposants de l'attribut administrateur auront
l'autorisation de créer des fonctions écrites avec un langage non sir (untrusted).

Pour créer un langage dont un modele est disponible, par exemple PL/pgSQL :
postgres=# create language plpgsql;
CREATE LANGUAGE

Le privilege USAGE est octroyé a PUBLIC pour un langage sir lors de sa création.

(c) 2008, 2009, 2010, Sébastien Nameche (sebastien@nameche .fr) - 88

PL/pgSQL, fonctions

Par exemple, si le fichier repete.sqgl contient ce code :

create function repete(str varchar, nb int)
returns varchar
language plpgsgl as S$$

declare
res varchar := '';
begin
for i in 1..nb loop
res := res || str;
end loop;
return res;
end;
$$7

Alors, la création et 1'exécution de cette fonction se font ainsi :

plop=# \i repete.sql
CREATE FUNCTION

plop=# select repete('x', 20);
repete

XXXXXXXXXXXXXXXXXXKXX

(1 row)

(c) 2008, 2009, 2010, Sébastien Nameche (sebastien@nameche .fr) - 89

Fonctions SQL

Il est également possible d'écrire des fonctions en SQL non procédural :

pagila=> create function delete actor(int)

pagila-> returns void

pagila-> language sgl as S$$

pagila-> delete from film actor where actor id = $§$1;
pagila-> delete from actor where actor_id = §1;
pagila-> S$S;

CREATE FUNCTION

pagila=> select delete_actor(1l);
delete actor

(c) 2008, 2009, 2010, Sébastien Nameche (sebastien@nameche .fr) - 90

PL/pgSQL, procédures

Les procédures Postgre SQL sont des fonctions qui retournent void. Par exemple :

drop table if exists scores;
create table scores (equipe varchar(20), points int);

create or replace function maj points(i_equipe varchar, i score int)
returns void as $$
begin
update scores set points = points + i score where equipe = i equipe;
if not found then
insert into scores (equipe, points) values (1 _equipe, 1 _score);
end if;
end;
S$
language plpgsql;

Cette procédure stockée est créée et utilis€e ainsi :
postgres=# select maj points('Grand-Champ', 10);
maj points

plop=# select * from scores;

equipe | points
_____________ e
Grand-Champ | 10
(1 row)

(c) 2008, 2009, 2010, Sébastien Nameche (sebastien@nameche fr) - 91

Déclencheurs

Les déclencheurs (ou friggers) sont des fonctions qui sont exécutées automatiquement
lorsqu'une action spécifique (insertion, mise-a-jour, suppression d'enregistrements) a lieu
sur une table.

Les déclencheurs sont créés avec cette instruction SQL :

CREATE TRIGGER nom [BEFORE | AFTER] { événement [OR ...] }
ON table [FOR [EACH] { ROW | STATEMENT }]
EXECUTE PROCEDURE fonction (parametres)

Les évenements autorisés sont INSERT, UPDATE ou DELETE.

Une image de l'enregistrement en cours de traitement est disponible dans les pseudo-
enregistrements NEW (pour les insertions et mises-a-jour) et OLD (mises-a-jour et
suppression).

Un déclencheur appelle une fonction, il est donc nécessaire de commencer par écrire cette
fonction.

(c) 2008, 2009, 2010, Sébastien Nameche (sebastien@nameche fr) - 92

Déclencheurs, premier exemple

Une utilisation des déclencheurs est, parmi d'autres, I'historisation des modifications de
valeurs sur une table.

Par exemple :

drop table if exists histo;
create table histo (equipe varchar(20), jour date, avant int, apres int);

create or replace function trig histo scores()
returns trigger as $$
begin
if OLD.points <> NEW.points then
insert into histo (equipe, jour, avant, apres)
values (NEW.equipe, current date, OLD.points, NEW.points);
end if;
return NEW;
end;
S$
language plpgsql;

drop trigger if exists trig after update scores on scores;
create trigger trig after update scores after update on scores
for each row execute procedure trig histo scores();

(c) 2008, 2009, 2010, Sébastien Nameche (sebastien@nameche fr) - 93

Déclencheurs, premier exemple

Suite de I'exemple :

plop=# \i histo.sql
DROP TABLE

CREATE TABLE
CREATE FUNCTION
DROP TRIGGER
CREATE TRIGGER

postgres=# select maj points('Grand-Champ', 5);

maj points

(1 row)

postgres=# select * from scores;

equipe | points
_____________ e
Grand-Champ | 15
(1 row)

postgres=# select * from histo;

equipe | jour | avant | apres
------------- e
Grand-Champ | 2008-05-09 | 10 | 15
(1 row)

(c) 2008, 2009, 2010, Sébastien Nameche (sebastien@nameche fr) - 94

Déclencheurs, second exemple

Autre exemple :

create or replace function trig update timestamp()
returns trigger as $$
begin
NEW.when modified = current timestamp;
NEW.who modified = current user;
return NEW;
end;
$$ language plpgsql;

create or replace function trig insert timestamp()
returns trigger as $$
begin
NEW.when created = current timestamp;
NEW.who created = current user;
return NEW;
end;
$$ language plpgsql;

drop trigger if exists trig before update testtg on testtg;
create trigger trig before update testtg before insert or update on testtg
for each row execute procedure trig update timestamp();

drop trigger if exists trig before insert testtg on testtg;
create trigger trig before insert testtg before insert or update on testtg
for each row execute procedure trig insert timestamp();

(c) 2008, 2009, 2010, Sébastien Nameche (sebastien@nameche fr) - 95

[es extensions en C

Le serveur PostgreSQL est extensible : il est possible d'écrire de nouvelles fonctions en C
et de les compiler sous forme de bibliotheques dynamiques utilisables ensuite dans les
instructions SQL.

Une fois la bibliotheque compilée et placée au bon endroit, 1l suffit d'utiliser I'instruction
create function ainsi :

CREATE [OR REPLACE] FUNCTION nom ([parametres...])
[RETURNS type]
[IMMUTABLE | STABLE | VOLATILE]
[CALLED ON NULL INPUT | STRICT]
LANGUAGE c
AS 'fichier', 'symbole'

(c) 2008, 2009, 2010, Sébastien Nameche (sebastien@nameche fr) - 96

Les extensions en C — Exemple, code

#include "postgres.h"
#include <string.h>
#include "fmgr.h"

PG_MODULE MAGIC;
PG_FUNCTION INFO V1 (conway);

Datum conway(PG_FUNCTION ARGS) {
text *element = PG_GETARG_TEXT P(0);

int32 taille element = VARSIZE (element)-VARHDRSZ;

char *ptr;

char courant = VARDATA(element)[0];

int compteur = 1;

char *element suivant = palloc(2*taille element + 1);
char *ptr suivant = element suivant;

for(ptr = VARDATA(element); ptr < VARDATA(element)+taille element; ptr++){

if(ptr[l] == courant){ compteur++; continue; }
*ptr suivant++ = compteur+48; *ptr suivant++ = courant;
compteur = 1; courant = ptr[l];

}

*ptr suivant = 0;

text *ret = (text *) palloc(VARHDRSZ + strlen(element suivant));
memcpy(VARDATA(ret), element suivant, strlen(element suivant));
SET VARSIZE(ret, VARHDRSZ + strlen(element suivant));

PG_RETURN TEXT P(ret);

(c) 2008, 2009, 2010, Sébastien Nameche (sebastien@nameche .fr) - 97

Les extensions en C — Exemple, installation

Si le code se trouve dans le fichier suites.c, il doit €tre compil€ et installé ainsi :

$ cc -c -fpic -I pg config --includedir-server -o suites.o suites.c
$ cc -shared -o suites.so suites.o
$ sudo install -m 644 suites.so "pg config --pkglibdir"

Enfin, le code SQL suivant permet de créer la fonction SQL conway :

pagila=# drop function if exists conway(text);
DROP FUNCTION

pagila=# load 'suites';
LOAD

pagila=# create function conway(text) returns text
pagila-# immutable strict language C as 'suites', 'conway';
CREATE FUNCTION

Voici un exemple d'exécution pour trouver le sixieme élément de la suite de Conway a
partir du cinquieme :

postgres=# select '111221' as element, conway('111221') as suivant;
element | suivant

_________ e

111221 | 312211

(1 row)

(c) 2008, 2009, 2010, Sébastien Nameche (sebastien@nameche fr) - 98

Programmation c6té client — PHP

La version 5 de PHP offre un pilote générique pour l'acces aux données, PDO (PHP Data
Objects), compatible avec PostgreSQL.

Par exemple :

<?php
header ("Content-Type: text/plain; charset=IS0-8859-1");

Suser = 'sebastien';

Spass = 'plopplop’;

Sdsn = 'pgsgl:host=localhost;dbname=test’;
try {

Sdbh = new PDO($dsn, Suser, S$Spass);

foreach ($dbh->query('select * from articles') as S$row){
print r(Srow);

}

$Sdbh = null;

}

catch (PDOException S$e) {
print "Erreur ! " Se->getMessage();
die();

}

?2>

(c) 2008, 2009, 2010, Sébastien Nameche (sebastien@nameche .fr) - 99

Programmation cOté client — Java

Un pilote JDBC de type IV est disponible sur le site de PostgreSQL a cette adresse :
http://jdbc postgresqgl.org/

Il est recommandé d'utiliser un gestionnaire de sessions JNDI dans les serveurs
d'applications afin d'optimiser la gestion des connexions.

Par exemple :
import java.sql.*;
Class.forName("org.postgresgl.Driver");

String url
String username
String password

"jdbc:postgresql://localhost/test";
"sebastien’;

n plopplop n ;

Connection db = DriverManager.getConnection(url, username, password);
Statement st = conn.createStatement();
ResultSet rs = st.executeQuery('"select * FROM articles");
while (rs.next()){
System.out.println(rs.getString(l));
}

rs.close();
st.close();

(c) 2008, 2009, 2010, Sébastien Nameche (sebastien@nameche.fr) - 100

ECPG — Exemple, code

#include <stdlib.h>
#include <string.h>

#define BUF SIZE 100
#define LARGEUR PRENOM 45

void gestion err() { printf("ERR: %s\n", sqlca.sqlerrm.sqglerrmc); exit(2); }
int main(int argc, char **argv)({

EXEC SQL WHENEVER SOLWARNING SQOLPRINT;
EXEC SQL WHENEVER SQLERROR CALL gestion err();

EXEC SQOL BEGIN DECLARE SECTION;
char conn[BUF SIZE+1], role[BUF SIZE+1], pass[BUF SIZE+1];
int actor_ id;
char prenom[LARGEUR PRENOM+1];

EXEC SQL END DECLARE SECTION;

if(argc != 6){ printf("ERR: 5 arguments requis. Fin.\n"); exit(l); }
strncpy(conn, argv[l], BUF SIZE); strncpy(role, argv([2], BUF _SIZE);
strncpy(pass, argv[3], BUF SIZE); actor id = atoi(argv[4]);

EXEC SQL CONNECT TO :conn USER :role IDENTIFIED BY :pass;
EXEC SQL SELECT first name INTO :prenom FROM actor WHERE actor id = :actor id;

printf("Ancien prénom: %s\n", prenom);
strncpy(prenom, argv[5], LARGEUR PRENOM);

EXEC SQL UPDATE actor SET first name = :prenom WHERE actor id = :actor id;
EXEC SQL COMMIT;
EXEC SQL DISCONNECT;

return 0;

(c) 2008, 2009, 2010, Sébastien Nameche (sebastien@nameche .fr) - 101

ECPG — Exemple, compilation

Si le code se trouve dans le fichier stars.pgc, il doit €tre compil€ ainsi :

$ ecpg -o stars.c stars.pgc
$ cc -o stars.o -I pg config --includedir -c stars.c
$ cc -o stars -L pg config --libdir~ -lecpg stars.o

Voici un exemple d'exécution :

$./stars pagila@localhost:5432 postgres plop 42 Jill
Ancien prénom: TOM

$./stars pagila@localhost:5432 postgres plop 42 Alcide
Ancien prénom: Jill

Avant l'exécution du programme, il peut &tre nécessaire de configurer le chemin de
recherche des bibliotheques dynamiques. Par exemple :

$ LD _LIBRARY_ PATH="pg config --libdir"
$ export LD _LIBRARY PATH

(c) 2008, 2009, 2010, Sébastien Nameche (sebastien@nameche .fr) - 102

Partie 3

Administration, exploitation

(c) 2008, 2009, 2010, Sébastien Nameche (sebastien@nameche .fr) - 103

Les journaux binaires

Les journaux binaires sont utilis€s pour garantir la durabilité (Ie « D » de ACID) des
transactions validées en évitant de grever significativement les performances.

Plutot que d'écrire directement dans les fichiers de données a chaque fois qu'une
transaction est validée, les données modifi€ées sont écrites dans un journal linéaire. De
nombreux déplacement des tétes de lecture des disques sont ainsi €vités.

Ce journal linéaire est lui-méme enregistrés séquentiellement dans des fichiers du
répertoire $PGBASE/pg_xlog dont le nom est un entier qui est incrémenté. Sous
PostgreSQL, ces journaux sont appelés WAL (Write Ahead Logs). Le processus wal
writer process €crit dans ces journaux.

A intervalles réguliers un mécanisme appelé point de contrble (checkpoint) permet
d'écrire les blocs modifiés en mémoire (et enregistrés dans les journaux binaires) vers les
fichiers de données. Le processus writer process est chargé de cette tache.

Si un arrét intempestif survient, PostgreSQL utilise les journaux binaires pour appliquer
aux fichiers de données les modifications générées par les dernicres transactions validées
avant l'arrét.

(c) 2008, 2009, 2010, Sébastien Nameche (sebastien@nameche .fr) - 104

Les journaux binaires

A chaque point de contrdle un enregistrement spécifique est écrit dans les journaux
binaires. Toutes les données antérieures contenues dans ces journaux deviennent inutiles.
Les fichiers (appelés segments) qui contiennent des journaux binaires dont toutes les
données sont antérieures au dernier point de contrdle sont recyclés.

Les journaux binaires peuvent également €tre archivés. Ils permettent ainsi d'effectuer
une sauvegarde au fil de 1'eau et fournissent un mécanisme de retour en arriere (nommé
PITR, pour Point-In-Time Recovery).

Un point de contrdle est exécuté lorsque 1'une de ces situations survient :
- checkpoint_segments segments sont actifs ;
- checkpoint_timeout secondes ce sont €coulées depuis le dernier point de contrdle ;
- I'instruction checkpoint est exécutée.

La taille des segments est figée (16 Mo par défaut).

Si la base de données subit une forte activité transactionnelle, les performances seront
largement améliorées si les fichiers de données sont stockés sur des disques différents des
journaux binaires.

(c) 2008, 2009, 2010, Sébastien Nameche (sebastien@nameche .fr) - 105

Gestion de 1a mémoire

Pour déterminer les valeurs des parametres de PostgreSQL li€s a 1'utilisation de la
mémoire, 1l est nécessaire de garder a l'esprit que ces zones de mémoires peuvent €tre
partagées en deux grandes catégories :

1) les zones de mémoires locales allouées par processus ;

2) les zones de mémoires partagées entre tous les processus de l'instance.

Ces parametres sont fixés dans le fichier postgresqgl.conf. Elles sont exprimées en Ko,
mais 1l est possible d'utiliser des unités de taille dans le fichier de configuration.

Dans psql, il est possible de voir les valeurs avec l'instruction show et de les modifier
avec l'instruction set pour celles qui peuvent I'étre en fonctionnement.

Par exemple :

postgres=# show work_mem;
work mem

(1 row)
postgres=# set work_mem = 4096;
SET

(c) 2008, 2009, 2010, Sébastien Nameche (sebastien@nameche .fr) - 106

Gestion de 1a mémoire

Il y a essentiellement six parametres importants :

shared_buffers (32 Mo par défaut, mémoire partagée)
Tampons de mémoire partagée entre tous les processus (ne peut dépasser shmmax).
La valeur de ce parametre a un impact important sur les performances.

temp_buffers (8 Mo par défaut, mémoire locale)
Taille maximum des tampons locaux pour l'acces aux tables temporaires.

work_mem (1Mo par défaut, mémoire locale)
Mémoire utilisée pour les opérations de tri et hash en avant utilisation du disque.

maintenance_work_mem (16Mo, mémoire locale)
Mémoire utilisée pour les opérations de maintenance (vacuum, create index, etc.)
Peu d'utilisations simultanées, possibilit€ d'augmenter significativement.

max_stack_depth (2Mo par défaut, mémoire locale)
Taille maximum de la pile d'exécution (utiliser ulimit -s moins 1 ou 2 Mo).
Peut géner I'exécution de requétes ou procédures complexes si trop faible.

wal_buffers (64 Ko par défaut, mémoire partagée)
Doit étre assez grand pour stocker les données d'une transaction type.

(c) 2008, 2009, 2010, Sébastien Nameche (sebastien@nameche .fr) - 107

Le collecteur de statistiques

Le collecteur de statistiques est un processus (stats collector process) qui maintient un
certains nombres de compteurs qui aident l'optimiseur de requétes a fournir des plans
d'exécution optimaux. Ces indicateurs sont également utiles pour 1'administration de la
base de données.

La collecte des statistiques est activée avec le parametre track_counts.

Les statistiques collectées sont accessibles par l'intermédiaire des vues pg_stat * et
pg_statio_* ainsi que des fonctions pg_stat_get * du catalogue pg_catalog.

La fonction pg_stat_reset permet de réinitialiser les statistiques de la base de données
active.

(c) 2008, 2009, 2010, Sébastien Nameche (sebastien@nameche .fr) - 108

Le journal d'activité

Le journal d'activité est l'endroit ou PostgreSQL consigne l'ensemble des messages
générés pendant son exécution, du plus insignifiant a l'erreur fatale selon la configuration
des parametres du fichier postgresql.conf :

log_destination une combinaison de stderr, csvlog, syslog et eventlog (Windows)
logging_collector active I'envoi des messages vers des fichiers

log_directory répertoire dans lequel seront enregistrés ces fichiers
log_statement écrire les requétes exécutées (none, ddl, mod ou all)

Des dizaines d'autres parametres sont disponibles pour sélectionner les informations qui
doivent etre envoyées dans le journal d'activité.

(c) 2008, 2009, 2010, Sébastien Nameche (sebastien@nameche .fr) - 109

Sauvegardes

Trois stratégies de sauvegardes sont possibles :
1) Export a partir d'une base de données active en utilisant le programme pg_dump.
2) Sauvegarde des fichiers de l'instance lorsqu'elle est arrétée.
3) Archivage des journaux des transactions.

L'outil pg_dump est intéressant car :
- 1l permet de transférer rapidement des données entre bases de données ;

- 1l support trois types de format, dont le SQL ;
- 1l est simple d'emploi.

Mais il ne peut sauvegarder des bases de taille importante.

(c) 2008, 2009, 2010, Sébastien Nameche (sebastien@nameche fr) - 110

Sauvegardes, pg_dump

La commande pg_dump exporte une base de données d'une instance. Elle peut étre
exécutée sur le serveur PostgreSQL (connexion par socket Unix) ou a partir d'une
machine du réseau (avec les mémes options -4 et -p que psql).

L'outil pg_dump supporte trois types de format :
1) Format texte (par défaut), les données seront restaurées avec psql.
2) Format tar, les données seront restaurées avec pg_restore.
3) Format spécifique, restauration avec pg_restore.

Par exemple :
$ pg dump -h 192.168.2.42 -p 5433 compta > compta.sql

Quelques options :

-C ajouter les commandes pour créer la base de données dans 1'export
-a n'exporter que les données (LMD)

-§ n'exporter que le schéma (LDD)

-F't utiliser le format tar

-Fc utiliser le format spécifique

(c) 2008, 2009, 2010, Sébastien Nameche (sebastien@nameche fr) - 111

Sauvegardes, pg_restore

Pour restaure un export réalis€ au format texte :

S pg dump -h 192.168.2.42 -p 5433 -U postgres -C compta > compta.sql
$ psql -h 192.168.2.42 -p 5433 -U postgres postgres < compta.sql

Autres exemples :

$ pg_dump -h hostl db | psql -h host2 db

$ pg dump db | gzip > db.sql.gz
$ zcat db.sql.gz | psql db

Pour les formats far et spécifique, la restauration est faite avec pg_restore :

pg_dump -Ft db > db.tar
dropdb db
pg_restore -C -d postgres < db.tar

pg_dump -Fc db > db.dump
dropdb db
pg_restore -C -d postgres < db.dump

pg_dump -Fc db > db.dump
createdb copy
pg_restore -d copy < db.dump

W vy U > v

(c) 2008, 2009, 2010, Sébastien Nameche (sebastien@nameche fr) - 112

Sauvegardes, systeme de fichiers

A T'exception de cas simples, la sauvegarde des fichiers d'une instance doit se faire
lorsque celle-ci est arrétée.

Si la taille des fichiers de l'instance est importante, l'utilisation d'un gestionnaire de
volumes logiques avec possibilité de réaliser des clichés peut aider a réduire les temps
d'interruption.

Le répertoire de l'instance doit €tre sauvegardé ainsi que les répertoires des espaces de
tables supplémentaires.

Le principe est le suivant :

S pg_ctl stop

$ tar czfC /backups/AAAA-MM-JJ.tar.gz / var/pg/*/inst5432
$ pg _ctl start

(c) 2008, 2009, 2010, Sébastien Nameche (sebastien@nameche fr) - 113

Sauvegarde en continu (journaux des transactions)

Les journaux des transactions (WAL) contiennent les données de toutes les transactions
exécutées sur une instance.

L'idée de la sauvegarde en continu consiste a sauvegarder chacun de ces journaux des
qu'il est rempli ou lorsqu'un délai est dépassé€. Ces journaux pourront ensuite étre rejoués
sur une base de données restaurées a partir d'une sauvegarde complete.

Deux €tapes sont nécessaires :
1) Activer l'archivage des journaux des transactions.
2) Exécuter réguliecrement une sauvegarde complete de 1'instance.

L'archivage des journaux est controlé avec ces options de postgresql.conf :

archive mode = on
archive command
archive timeout

"test ! -f /mnt/logarch/%f && cp %p /mnt/logarch/%f’
1h

%f est le nom du fichier qui contient le journal a archiver, %p contient son chemin
complet (relativement a $PGDATA). La commande doit retourner le code sortie O si la
copie a été réalisée correctement.

(c) 2008, 2009, 2010, Sébastien Nameche (sebastien@nameche fr) - 114

Sauvegarde en continu (journaux des transactions)

Les sauvegardes completes de 1'instance doivent €tre réalisées d'une maniere particuliere :
1) Exécution de la function SQL pg_start_backup.
2) Sauvegarde des fichiers de I'instances a l'exception du répertoire pg_xlog.
3) Exécution de la fonction pg_stop_backup.

Par exemple :

$ psql

postgres=# select pg_ start backup(’'Sauvegarde du AAAA-MM-JJ’);
postgres=# \q

$ tar czfC /mnt/logarch/AAAA-MM-JJ.tar.gz / var/pg/*/inst5432
$ psql

postgres=# select pg_ stop backup();

postgres=# \q

L'étiquette est conservée dans le fichier $PGDATA/backup_label.

Un fichier SPGDATA/pg_xlog/0000000100001234000055CD.007C9330.backup est créé
pour indiquer le dernier journal utilis€ avant la sauvegarde.

(c) 2008, 2009, 2010, Sébastien Nameche (sebastien@nameche fr) - 115

Sauvegarde en continu, restauration

Le processus de restauration est assez complexe, il est recommandé de 1'écrire dans une
procédure et de la rejouer régulierement afin de valider que 1'environnement nécessaire a

la restauration n'a pas changé.

Le schéma est le suivant :
1) Installer un nouveau serveur identique au premier.
2) Restaurer la sauvegarde compléte en prenant soin de rétablir les permissions.
3) S'assurer que le répertoire $PGDATA/pg_xlog/archive_status existe.
4) Créer un fichier recovery.conf dans $PGDATA a partir de recovery.conf.sample.
5) Démarrer PostgreSQL en s'assurant que les utilisateurs ne pourront se connecter.

Les deux parametres importants de recovery.conf sont :

restore command = 'cp /mnt/logarch/%f %p'
#recovery target time = '2008-04-23 11:20:55 EST'

(c) 2008, 2009, 2010, Sébastien Nameche (sebastien@nameche fr) - 116

['analyse des requétes avec explain

Pour chaque requéte, l'optimiseur €labore un plan d'exécution. De sa pertinence dépend la
performance du serveur. L'instruction explain permet d'afficher le plan d'exécution prévu
pour une requéte :

EXPLAIN [ANALYZE] requéte

La requéte ne sera pas exécutée a moins que la clause analyze ne soit utilisée. Pour étre
certain de ne modifier aucune donnée, utiliser :
bdd=> begin;

bdd=> explain analyze requéte;
bdd=> rollback;

Chaque ligne correspond a un nceud d'exécution, pour chaque nceud sont affichées les
informations suivantes :

- le type de l'action (parcours séquentiel, parcours d'un index, jointure, etc.) ;

- le colit estimé pour le démarrage du parcours ;

- le colit total estimé ;

- le nombre estimé de lignes renvoyées par le nceud d'exécution ;

- la largeur moyenne estimée des lignes.

(c) 2008, 2009, 2010, Sébastien Nameche (sebastien@nameche fr) - 117

['analyse des requétes avec explain

Avec la clause analyze, les données estimées sont complétées par les donnée réelles.

Par exemple :

pagila=# explain select count(*) from film where language_id=1;
QUERY PLAN
Aggregate (cost=69.00..69.01 rows=1 width=0)
-> Seq Scan on film (cost=0.00..66.50 rows=1000 width=0)
Filter: (language id = 1)
(3 rows)

pagila=# explain analyze select count(*) from film where language_id=1;
QUERY PLAN
Aggregate (cost=69.00..69.01 rows=1 width=0) (actual time=5.086..5.088 rows=1 loops=1)
-> Seq Scan on film (cost=0.00..66.50 rows=1000 width=0) (actual time=0.014..2.558 rows=1000 loops=1)
Filter: (language id = 1)
Total runtime: 5.135 ms
(4 rows)

(c) 2008, 2009, 2010, Sébastien Nameche (sebastien@nameche fr) - 118

['analyse des requétes avec explain

explain nous permet de comparer les plans d'exécution avec ou sans utilisation d'un
index :

pagila=# explain select rental _id from rental where return date is null;
QUERY PLAN
Seq Scan on rental (cost=0.00..294.44 rows=166 width=4)
Filter: (return date IS NULL)
(2 rows)

pagila=# create index idx_rental_ return on rental (return_date);
CREATE INDEX

pagila=# explain select rental _id from rental where return date is null;
QUERY PLAN
Index Scan using idx rental return on rental (cost=0.00..32.97 rows=166 width=4)
Index Cond: (return date IS NULL)
(2 rows)

(c) 2008, 2009, 2010, Sébastien Nameche (sebastien@nameche fr) - 119

[La reconstruction d'index avec reindex

L'instruction reindex permet de reconstruire le contenu d'un index a partir des données de
la table. Cela peut €tre nécessaire :

- s1 I'index est corrompu ;
- s'1l est trop fragmenté ;
- s1 I'un de ses parametres a changé (soit, fillfactor).

Plusieurs syntaxes sont possibles :

REINDEX INDEX nom index
REINDEX TABLE nom table
REINDEX DATABASE nom bdd

(c) 2008, 2009, 2010, Sébastien Nameche (sebastien@nameche .fr) - 120

Echantillonnage avec analyze

L'instruction analyze est utilis€e pour €chantillonner les données contenues dans une
table. Ces informations statistiques sont stockées dans la table pg_statistic du catalogue
pg_catalog.

L'optimiseur de requétes les utilisera afin d'élaborer le meilleur plan d'exécution. Il est
donc important de les mettre a jour régulierement.

Sa syntaxe est :
ANALYZE [VERBOSE] nom table

Par exemple :

pagila=# analyze verbose rental;
INFO: analyzing "public.rental”
INFO: "rental": scanned 134 of 134 pages, containing 16045 live rows
and 7 dead rows; 3000 rows in sample, 16045 estimated total rows
ANALYZE

Les statistiques ainsi échantillonnées ne doivent pas €tre confondues avec celles qui sont
maintenues par le collecteur de statistiques (processus stats collector process).

(c) 2008, 2009, 2010, Sébastien Nameche (sebastien@nameche fr) - 121

Vacuum

Le processus nommé Vacuum (litt€ralement « aspirateur ») doit é€tre exécuté
réguliecrement sur une base de données PostgreSQL. Il permet de :

- récupérer l'espace libéré suite a la mise-a-jour ou la suppression d'enregistrements ;

- mettre a jour les statistiques utilisées par 1'optimiseur de requétes (analyze) ;

- prévenir la perte d'anciennes données par la rotation des identifiants de transaction.

Avant PostgreSQL 8.1, ce processus devait €tre planifi€ a intervalles réguliers. Depuis, un
processus (Autovacuum) prend en charge son exécution.

La procédure peut etre exécutée pendant que la base de données est utilisée. Mais :
- un ralentissement sera perceptible ;
- les instructions qui modifient le schéma (LDD) ne pouront pas €tre utilisées.

Pour réduire le temps nécessaire a l'exécution de Vacuum, certains parametres peuvent
étre ajustés. Par exemple, les tables qui contiennent des enregistrements qui sont peu
modifiés et rarement supprimés n'ont pas besoin d'€tre nettoyées aussi souvent que
d'autres tables plus « volatiles ».

(c) 2008, 2009, 2010, Sébastien Nameche (sebastien@nameche fr) - 122

Autovacuum

Pour exécuter le processus vacuum manuellement, la syntaxe est :
VACUUM [FULL] [ANALYZE] table

L'option full permet de récupérer tout 1'espace libre (défragmentation), mais le processus
peut s'avérer bien plus long et nécessite la pose d'un verrou exclusif sur les tables.

L'option analyze déclenche, en plus, 1'échantillonnage des statistiques.

A partir de la version 8.1 de PostgreSQL, un démon, pg_autovocuum (processus
autovacuum launcher process), est chargé d'exécuter régulierement les processus vacuum
et analyze sur les tables de l'instance.

Pour le configurer, modifier ces parametres de postgresqgl.conf :

autovacuum = on
superuser reserved connections = 4
autovacuum naptime = 5min

Puis redémarrer PostgreSQL.

(c) 2008, 2009, 2010, Sébastien Nameche (sebastien@nameche .fr) - 123

Optimisation

L'optimisation d'une base de données dépend de plusieurs parametres :
- le schéma de la base de données (tables, index, vues, déclencheurs) ;
- sa volumétrie ;
- son usage (OLTP, data warehouse).

Les informations utiles sont obtenues :
- dans le journal d'activité ;
- dans les objets du catalogue pg_catalog ;
- en exécutant l'instruction explain ;
- a partir du résultat de l'instruction vacuum.

Les réglages sur lesquels 1l est possible d'intervenir sont :
- les parametres du fichier postgresql.conf ;
- le schéma de données (index, structure des tables, vues, tables partitionnées, etc.) ;
- le matériel (mémoire, disques durs, processeur) ;
- les parametres du systeme d'exploitation.

(c) 2008, 2009, 2010, Sébastien Nameche (sebastien@nameche .fr) - 124

Annexes

(c) 2008, 2009, 2010, Sébastien Nameche (sebastien@nameche .fr) - 125

Le gestionnaire de connexions PgPool

PgPool est hébergé sur pgFoundry. Il permet de :
- limiter le nombre de connexions au serveur PostgreSQL ;
- réutiliser des sessions dont les propriétés sont identiques ;
- répliquer les instructions SQL vers plusieurs serveurs ;
- distribuer I'exécution des requétes sur plusieurs serveurs ;
- répartir l'exécution d'une requéte sur plusieurs serveurs (parallélisation).

Le site du projet est :
http://pgpool.projects.postgresql.org/

(c) 2008, 2009, 2010, Sébastien Nameche (sebastien@nameche fr) - 126

Le gestionnaire de connexions PgPool

Une interface Web,
pgPoolAdmin, peut étre
utilis€e pour la gestion
de pgPool.

.00

P9pPoolAdmin

pgpoal Administration Tool

» Statut de pgpool

* Statut du noeud

+ Cache des reguétes

» Régle de partitionnement

+ Configuration de pgpool.conf
+ Configuration de pgpoclAdmin
+ Modifier le mot de passe

+ Déconnexion

Statut de pgpool

vvvvv

QA.ce

r Résumé \ (Info. processus \ (Info. sur le noeud \

Résumé

Mode paralléle

Cache des reguétes

Mode réplication

Mode de répartition de charge
Vérification

pgpool-1
Démarré
Arrété
Arrété

Invalidation

[Résumé) (Info. processus) flnfo. sur le noeud \

pgpool

Options de redémarrage de pgpool

Efface le cache des reguétes(-c)

0

Ne pas exécuter en mode démon(-n) [

Mode debug(-d)
Mode stop(-m)

pgpool.conf(-f)
pcp.conf(-F)
{_Exécuter) [Annuler

&)

/usr/local/etc/ pgpool.conf
/usr/local/etc/ pep.conf

(c) 2008, 2009, 2010, Sébastien Nameche (sebastien@nameche.fr) - 127

Notions avancées

PostgreSQL gere les types avancés suivants :
- domaines ;
- tableaux ;
- types composites ;
- types énumérés et types ordonngés ;
- documents XML.

Les relations (tables) peuvent héritées les unes des autres.
Le mécanisme Toast permet de stocker des lignes de taille importante.

Les espaces libres dans les fichiers de donnees sont gerés par lintermédiaire d'un
mécanisme connu sous le nom de FSM (Free Space Map).

Un systeme de regles (rules) permet de détourner 1'exécution des instructions LMD sur
les relations (tables et vues).

(c) 2008, 2009, 2010, Sébastien Nameche (sebastien@nameche .fr) - 128

Références

Livres

« PostgreSQL » 2¢me édition
Sébastien Lardiere — ENI Editions

« PostgreSQL, Entrainez-vous a créer et programmer une base de données relationnelle »
Francois-Marie Colonna — ENI Editions

Sites Web

Site officiel — http://www.postgresql.org/

Site de la communauté francophone — http://www.postgresqlfr.org/
Site du projet pgAdmin — http://www.pgadmin.org/

Wiki de PostgreSQL — http://wiki.postgresql.org/wiki/Main_Page

Presse
Numéros 103 et 106 a 112 du Linux Magazine France

(c) 2008, 2009, 2010, Sébastien Nameche (sebastien@nameche .fr) - 129

Pour en savoir plus...

SEBASTIEN NAMECHE

CONSEIL
ARCHITECTURE DES SYSTEMES ET RESEAUX
SECURITE TRANSVERSE

FORMATION
LOGICIELS LIBRES
SYSTEMES UNIX
RESEAUX ET PROTOCOLES IP
BASE DE DONNEES (ORACLE, POSTGRESQL, MYSQL)
ANNUAIRES
MESSAGERIES
SUPERVISION

MoOB. +33 6 0373 1442
HTTP://SEBASTIEN.NAMECHE.FR
SEBASTIEN@NAMECHE.FR

