
Formation OpenStack 

Les bases 



Pro Tip #1 

 

 

 

OpenStack 

2 



OpenStack, c’est quoi ? 

3 

 



OpenStack, c’est quoi ? 

4 



OpenStack, c’est quoi ? 

5 



Définition OpenStack 

• OpenStack est un ensemble de logiciels open 
source permettant de déployer des 
infrastructures de cloud computing 
(Infrastructure as a service) 

• Wikipedia – 28 Novembre 2014 

6 



Rappel Cloud Computing 

7 



Le programme 

• Le projet est porté par la fondation OpenStack 
qui a pour but de promouvoir OpenStack et 
organiser les développements 

– (http://www.openstack.org/foundation/) 

 

• OpenStack est un programme OpenSource sous 
licence Apache 2.0 

 

• OpenStack est entièrement développé en Python 

 

 

 

8 

http://www.openstack.org/foundation/
http://www.openstack.org/foundation/


Quelques chiffres 

• Qelques chiffres :  

– 10 000+ : Nombre de personnes dans la fondation 

– 850+ : Nombre d’entreprises qui supportent la 
fondation 

– 2 738 : Nombre de développeurs ayant participé à la 
dernière version 

– 4 500+ : Nombre de personnes au dernier OpenStack 
Summit 

 

9 



Organisation des développements 

• Une Release tout les 6 mois (3 mois à l’origine) 

• Chaque Release porte un nom de code en lien 
avec le lieu de l’OpenStack Summit de la release 

 

• Organisation d’un cycle de développement : 
– Organisation de l’OpenStack Summit (5 jours) ayant 

pour but de fixer les fonctions à ajouter dans la release 

– Itération #1 et Itération #2 lors du cycle dédiées à 
l’ajout de fonctionnalité 

– Itération #3 dédiée à fixer les bugs 

– En fin de cycle, une ou plusieurs release candidate 
avant la release définitive 

 

10 



Historique des versions 

• A : Austin (10/2010) 
• B : Bextar (02/2011) 
• C : Cactus (04/2011) 
• D : Diablo (09/2011) 
• E : Essex (04/2012) 
• F : Folsom (10/2012) 
• G : Grizzly (04/2013) 
• H : Havanna (10/2013) 
• I : Icehouse (04/2014) 
• J : Juno (10/2014) 
• K : Kilo (04/2015) 
• L : ??? 

11 



Organisation des développements 

• La gestion de projet de chaque projet est assuré 
par un PTL (Project Technical Leader) qui est élu 
par la communauté.  

• Les PTL sont élus pour une release uniquement 

 

• La gestion du programme est assuré par un 
Release Manager  

– C’est le même depuis le début : Thierry Carrez 

 
12 



Les principes d’architecture 

• Chaque projet doit fournir une API complète 

• Chaque projet utilise sa propre base de données 

• Chaque projet à plusieurs composants afin de 
faciliter la scalabilité 

• Chaque composant communique avec les autre 
composants à travers des messages AQMP 

• Afin de pouvoir assurer la haute disponibilité, les 
composants doivent privilégier le mode actif/actif 

 
13 



Les composants OpenStack 

• Le programme OpenStack est composé de 
différents projets assurant une fonction 
particulière 

– Keystone : Gestion d’identité et d’authentification 

– Glance : Gestion des images de VM 

– Nova : Gestion des VM 

– Cinder : Gestion du stockage de type Block 

– Swift : Gestion du stocakge de type Object 

– Neutron : Gestion du réseau 

– Horizon : Interface Web 

– Ceilometer : Gestionnaire de métriques (utilisations) 

 

14 



Les composants OpenStack 

– Heat : Service d’orchestration de VM 

– Trove : Gestion de base de données 

– Sahara : Hadoop As A Service 

 

• Autres projets (incubation) : 

– Ironic : Gestion du Bare Metal 

– Zaqar : Gestion de messages 

– TripeO : Déploiement d’instance OpenStack avec OpenStack 

– Barbican : Stockage de données cryptées 

– Designate : DNS as a Service 

– Manila : Stockage partagé 

– Murano : Gestion d’un catalogue de service 

 

 

15 



Aperçu des différents projets 

16 



Keystone : Gestion d’identité et de droits 

• Keystone va fournir : 

– Gestion des droits pour les tenants (ou projets) 

– Gestion des droits pour les utilisateurs (pour chaque 
tenants) 

– Gestion du catalogue de services (pour chaque 
projets) 

• L’authentification se base sur un token : 

– Un utilisateur va s’authentifier avec un username, un 
password et l’id de son tenant 

– Keystone va renvoyer un token (avec un ttl) 

– L’utilisateur va passer le token aux autres services et le 
service va demander à keystone de valider le token 

17 



Keystone : Gestion d’identité et de droits 

• Keystone va stocker les données soit sur : 

– Une base MySQL 

– Une ou plusieur(s) base LDAP 

 

• Keystone est capable de travailler en actif/actif 

– L’ajout de serveurs keystone suffit pour augmenter la 
capacité de traitement 

 

18 



Glance : Le gestionnaire d’image 

• Glance permet de stocker les images des OS utilisés 
par les VM 

 

• Glance est composé de 2 composants : 
– Glance-api (actif/actif)  

– Glance-registry (actif/actif) 

 

• Glance est capable de stockage les images dans : 
– Directement sur disque 

– Ceph 

– Swift 

– GridFS (mongoDB) 

– HTTP (read-only) 

19 



Glance : Le gestionnaire d’image 

• Glance prend en charge les images de type : 

– ISO  

– QCOW2 (format KVM) 

– AKI/AMI/ARI (format AWS) 

– RAW  

– VDI (format Virtualbox) 

– VHD (format Windows) 

– VMDK (format Vmware) 

20 



Nova : Le gestionnaire de VM 

• Nova permet de gérer les différents hyperviseurs 
d’une instance OpenStack 

 

• Nova est composé de :  

– Nova-api (API) 

– Nova-scheduler 

– Nova-compute 

– Nova-conductor (abstraction layer for DB) 

– Nova-cert (only for EC2 API) 

– Nova-consoleauth (authentication for console) 

– Nova-novncproxy (export console) 

 

21 



Nova : Le gestionnaire de VM 

• Nova est capable de gérer les hyperviseurs : 

– KVM 

– Xen 

– Hyper-V 

– VMWare 

– LXC 

– Docker 

– BareMetal (under development see Ironic project) 

22 



Nova : Le gestionnaire de VM 

• Lors de la création d’une VM, il faut sélectionner 
un gabarit CPU/RAM/Disque (flavor)  

• Le disque va contenir l’OS.  
– Si besoin d’un autre disque, il faut se tourner vers 

cinder (cf après) 

 

• La création d’un VM passe par : 
– Demande via une requête API vers nova-api 

– Message envoyé à un nova-scheduler qui va choisir 
l’HV 

– Le nova-compute de l’hyperviseur va exécuter les 
actions pour créer la VM 

23 



Cinder : Le gestionnaire de stockage Block 

• Cinder va gérer le stockage de type block 

 

• Cinder est composé de : 

– Cinder-api 

– Cinder-scheduler 

– Cinder-volume 

 

• Après la création d’un disque via cinder, il est 
possible d’attacher le disque à une VM 

 

 

24 



Cinder : Le gestionnaire de stockage Block 

• Cinder est capable d’adresser différents matériels de 
stockage  
– Disques via LVM 
– Ceph 
– NFS 
– NetApp 
– EMC 
– HP 3Par 
– … 

 

• Cinder ne fait pas l’intermédiaire pour les IO et la VM va 
discuter directement le système de stockage 
– Via iSCSI pour le stockage LVM 
– Via NFS pour le stockage NFS 
– Via RBD pour le stockage Ceph 
– … 

25 



Swift : Le gestionnaire de stockage Objet 

• Swift est un clone d’Amazon S3 qui permet de 
stocker des fichiers en mode objet 

• Le protocole de transport est HTTP(S) 

 

• Swift est un projet un peu à part dans le domaine 
d’OpenStack et il n’est pas intégré dans le cycle 
de développement  

 

26 



Neutron : Le gestionnaire de réseau 

• Neutron va gérer les aspects réseaux (L2,L3 et NFV) 

 

• Neutron est composé de : 
– Neutron-server (API) 

– Neutron-plugin* (gestion du L2, voir slide suivant) 

– Neutron-l3-agent (gestion du l3) 

– Neutron-metadata-agent 

– Neutron-dhcp-agent 

 

• Neutron va sûrement être coupé en 2 dans les 
prochaines release afin d’avoir : 
– Gestionnaire de la base L2/L3 

– Gestion NFV (Firewall, VPN, LB, etc…) 

 

27 



Neutron : Le gestionnaire de réseau 

• Neutron est capable d’adresser des solutions 
software mais aussi des solutions hardwares 
(type Alcatel Nuage, Cisco Nexus, etc…) 

 

• Au niveau L2, Neutron est capable de gérer des 
réseaux virtualisés ou non : 
– VLAN 

– VXLAN 

– Tunnel GRE 

 

• En mode software, Openvswitch est le plus utilisé 
 

28 



Neutron : Le gestionnaire de réseau 

• Au niveau L3, le neutron-l3-agent va faire aussi 
de gateway pour les réseaux et nécessite la mise 
en place d’un cluster type pacemaker pour faire 
de la haute disponibilité (actif/passif) 

 

• Depuis Juno, le neutron-l3-agent lève cette 
limitation et il est maintenant possible d’avoir une 
configuration HA avec un système DVR 
(Distributed Virutal Router) 

 29 



Neutron : Le gestionnaire de réseau 

• En plus de la gestion du L2/L3, Neutron est 
capable de proposer des services de type NFV 
dont : 

– Firewall as-a-service 

– Load-balancer as-a-service (basé sur Haproxy ou 
solutions hardware type F5) 

– VPN as-a-service 

– … 

 

• L’utilisation de ce type de services n’est pas 
encore compatible avec DVR 

30 



Horizon : Interface Web 

• Horizon est une interface Web permettant de 
piloter une instance OpenStack 

• Horizon est développé avec le framework Python 
Django 

• Nécessite l’utilisation d’un serveur Web type 
Apache/nginx ou autres 

• L’authentification de l’interface s’appuie sur 
Keystone 

• Pour chaque action dans l’interface, Horizon va 
juste générer la requête aux APIs 31 



Ceilometer : le gestionnaire de métrique 

• Ceilometer va gérer les différentes métriques de 
l’instance OpenStack 

 

• Ceilometer est composé de : 
– Ceilometer-api 

– Ceilometer-collector 

– Ceilometer-agent 

– Ceilometer-alarm 

 

• Il y a un très grand nombres de métriques 
disponibles (nombre d’instances lancées, nombre 
de Mbits par tenant, etc…) 

 

32 



Ceilometer : le gestionnaire de métrique 

• 2 mode de fonctionnement :  

– Ceilometer va récupérer à intervalle régulier des infos sur 
les différents composants d’OpenStack 

– Ceilometer va recevoir des composants OpenStack des infos 
(rôle du collector) 

 

• Du fait du grand nombres de métriques, les données 
sont stockées dans une base NoSQL : MongoDB 

 

• L’objectif de Ceilometer est de permettre de faciliter 
le  travailler de monitoring, de capacity planning et 
de billing 

33 



Architecture OpenStack 

• Une architecture typique d’OpenStack est : 

– 1 ou N nœud dit « controler » 

– 1 ou N nœud dit « compute » 

– 1 ou N noeud dit « network » (pre-juno) 

– 1 ou N nœud dit « storage » 

 

34 



Architecture Controller 

• Le rôle des serveurs « controller » est 
principalement de faire tourner les différentes API 
ainsi que les services transverses 

• Pour les petits déploiements, il y a généralement 
2 serveurs « controller » 

• Les services portés sont : 
– Keystone 

– Glance 

– Cinder 

– Nova-api, nova-scheduler 

– Neutron-server 

– Horizon 

 

 

 

35 



Architecture « compute » 

• Le rôle des serveurs « compute » est de faire 
tourner les VM 

• Le nombre de nœuds va dépendre du nombre de 
VM max du Cloud 

• Les services portés sont : 

– Nova-compute, nova-conductor, nova-cert et nova-
novnc 

– Cinder-volume si le stockage est fait directement sur 
les HV 

– Neutron-plugin (L2) et l3 agent (dans le cas du DVR) 
36 



Architecture « network » 

• Le rôle des serveurs « network » est de gérer le 
réseau des VM 

• NB: Avec Juno, possibilité d’enlever ces nœuds et 
utiliser le DVR sauf si utilisation des services NFV 

• Typiquement 2 serveurs en Actif/Passif (il est 
possible de faire tourner ça sur les nœuds 
« controller ») 

 

• Les services portés sont : 
– Neutron-l3-agent 

– Neutron-dhcp-agent 

– Neutron-metadata-agent 

 

37 



Architecture « storage » 

• Le rôle des seveurs « storage » est d’assurer le 
stockage des VM et des volumes 

• De plus en plus d’installations d’OpenStack se 
tournent vers le système Ceph 

 

• Le nombre de serveurs pour un cluster Ceph est 
totalement dépendant de la volumétrie souhaitée 
pour le Cloud mais aussi du nombre d’IO 

 
38 



Ceph 

• Ceph est un système de stockage distribué sans 
SPOF 

 

• L’accès à un cluster Ceph est possible via : 

– RadosGW : Gateway HTTP (identique à S3 ou Swift) 

– RBD : Protocole assez similaire à du iSCSI mais l’accès 
se fait par l’ensemble des nœuds du cluster ceph 

– CephFS : Filesystem posix (PAS POUR LA 
PRODUCTION pour le moment) 

 

• La donnée est répliquée 3 fois  
39 



Ceph 

• Du fait que Ceph gère lui-même la réplication, il 
n’y a pas d’intérêt d’avoir du RAID sur les disques 

 

• Une configuration matérielle typique est : 

– Bi Proc 

– 128 Go de RAM 

– 2 disques systèmes (avec RAID) 

– 2 disques SSD pour l’écriture des journaux Ceph 

– X disques SATA/SAS en JBOD 

40 



Ceph 

• Depuis Icehouse, il est possible d’utiliser RBD 
pour : 

– Stocker les VM (avec nova) permettant de pouvoir faire 
du live migration  

– Stocker les volumes (avec cinder) 

 

• Cela permet de gérer un seul système de 
stockage et une grande facilité d’administration 

 

41 



Gestion de la haute disponibilité OpenStack 

• OpenStack n’intègre pas de mécanisme de 
gestion de la haute disponibilité 

– Nécessite de mettre en place du load-balancing pour 
les services permettant de travailler en actif/actif (ex: 
les apis) 

– Nécessite de mettre en place des systèmes de 
clustering type pacemaker pour les services en 
actif/passif 

– Au niveau des bases MySQL, l’utilisation de Galera 
Cluster est assez habituelle ou via pacemaker+drbd 

– Au niveau RabbitMQ, il intègre du clustering de base 42 



AGARIK,  HEBERGEUR D ’UN MONDE INTELLIGENT  


