[bookmark: SECTION004610000000000000000]BOOT/KERNEL
Boot :
Voir Annexe : « Chapitre 7 Démarrage d’une station UNIX » : Linux/ARS_unix_02
Voir Annexe : « Chapitre 8 Arrêt d’une station UNIX » : Linux/ARS_unix_02

KERNEL (Noyau) :
Voir Annexe : « Chapitre 9 Le noyau UNIX et les périphériques » : Linux/ARS_unix_02

Suite intéressante à lire :
Le noyau linux (kernel)
Composition du noyau.
L'installation d'un noyau consiste à obtenir une image destinée à l'amorçage, les modules, le fichier System.map, les en-têtes (qui ne sont réellement utiles qu'aux développeurs) et divers démons. En général, ceux-ci sont déjà fournis par votre distribution. Cet ensemble constitue ``Linux'', comme on l'appelle communément. Il s'agit d'un code binaire résultant d'environ 50 Mo de code C, soit 1,5 millions de lignes de code.
· L'image du noyau LINUX est un fichier de 400 à 600 Ko qui se trouve dans /boot/. Si vous analysez ce répertoire, vous pourrez y voir plusieurs noyaux. Le choix se fait au moment de l'amorçage à l'aide de lilo ou de grub.
Le noyau dans /boot/ est compressé avec l'utilitaire gzip et il prend deux fois plus de place lorsqu'il est chargé en mémoire que sous sa forme compressée.
· Le noyau présente aussi des parties séparées, appelées modules. Ceux-ci siègent dans /lib/modules/<version>/. Ils sont répartis en sous-répertoires à l'intérieur de ce répertoire. Il peut y avoir jusqu'à ~400 modules, totalisant quelque 9 Mo.
En réalité, les modules sont des fichiers-objets partagés. Il ne s'agit pas des mêmes pilotes de périphériques que ceux de Windows, dans la mesure où il n'est pas possible d'utiliser un module avec un noyau autre que celui pour lequel ce module a été compilé. En conséquence, le terme ``module'' sera utilisé plutôt que le terme ``pilote''. Le but de la séparation entre modules et noyau consiste à économiser de la mémoire RAM. Les modules sont parfois compilés ``en dur'' dans le noyau. Si tel est le cas, les modules seront absents dans /lib/modules/<version>/ et, à strictement parler, ils ne devraient plus être désignés par le terme ``modules''.
· Ensuite, dans /boot/, nous trouvons le fichier System.map. Ce dernier est utilisé (i) par klogd , un démon qui lit les messages émis par le noyau (résolution de symboles), les reformate et les transmet au démon syslogd qui les enregistre dans divers journaux selon la configuration imposée par le fichier syslog.conf, et (ii) par depmod pour traiter les dépendances de modules (``quel module nécessite le chargement de tel ou tel autre module au préalable'').
· Enfin, les en-têtes du noyau /usr/src/linux/include/ sont utilisés quand certains paquets sont construits.
· Les divers démons devraient être en fonctionnement. Depuis la version 2.2, ceux-ci ont été ramenés au seul klogd. Les autres démons du noyau qui semblent être en cours sont en réalité produits par le noyau lui-même.

[bookmark: SECTION004620000000000000000]Numéros de version du noyau.
Comme pour les autres paquets, le noyau se présente sous forme de versions: linux-majeur.mineur.patch. Les noyaux en développement sont caractérisés par des nombres mineurs impairs; les noyaux stables par des numéros mineurs pairs.

GRUB
Introduction
[bookmark: exemple-de-configuration-type]
Le fichier de configuration de GRUB est /boot/grub/grub.conf ou /boot/grub/menu.lst
Exemple de configuration type

En général la structure de /boot/grub/grub.conf ou /boot/grub/menu.lst est la suivante (je ne prends pas en compte les commentaires existantes).
default	N
timeout	sec
color 	couleur1 couleur2

la configuration pour l'OS dont le Grub est installé

title		Le libellé d'OS
root		(hd<disque>,<partition>)
kernel		/boot/vmlinuz-2.x.x.xx root=/dev/hdLN options
initrd		/boot/initrd.img-2.x.x.xx

à partir d'ici à editer pour les autres OS

Pour la grande famille GNU/Linux
pour chaque OS a ajouter dans Grub il faut écrire le bloc suivant

title		Le libellé d'OS supplementaires
root		(hd<disque>,<partition>)
kernel		/boot/vmlinuz-2.x.x.xx root=/dev/hdLN options
initrd		/boot/initrd.img-2.x.x.xx
rootnoverify	(hd<disque>,<partition>)

Pour la famille Windows

title		Le libellé d'OS (à mettre ce que tu veux)
root		(hd<disque>,<partition>)
chainloader	+1
[bookmark: explications]
Explications
[bookmark: parametres-par-defaut]
Paramètres par défaut
[bookmark: 1-adressage-des-disques]
default N - c'est le système qui démarre par défaut bootloader dual boot systeme par defaut
timeout sec - le délai en secondes avant le démarrage automatique
color couleur1 couleur2 - les couleurs d'arrier-plan et 1er plan
1. Adressage des disques
[bookmark: 2-title]
<disque> et <partition> sont numérotés à partir de zéro, donc il n'y pas de hda, hda1, etc..

Exemple :
1ère partition de 1er disque (hd0,0)
2ème partition de 1er disque (hd0,1)
1ère partition de 2nd disque (hd1,0)
2. title
[bookmark: 3-root]
title - c'est un libellé qu'on voit afficher dans GRUB au démarrage
Ex: Debian GNU/Linux, kernel 2.6.17.7
3. root
[bookmark: 4-kernel]
root (hd<disque>,<partition>)

Activation d'une partition en tant que partition de démarrage.
4. kernel

kernel /boot/vmlinuz-2.x.x.xx root=/dev/hdLN options

Chargement de noyau :

- si la partition activée au démarrage contient /boot (donc une partition dediée) il faut utiliser :
kernel /vmlinuz-2.x.x.xx root=/dev/hdLN options
[bookmark: 5-initrd]l'argument root=/dev/hdLN designe la racine de système

L c'est une lettre qui designe le disque (a pour le 1er disque, b pour le 2ème, etc.. et N c'est le numéro de la partition

Options exemples :

ro pour read-only
mem='taille'

Voilà un lien www.tldp.org/HOWTO/BootPrompt-HOWTO.html
5. initrd

initrd /boot/initrd.img-2.x.x.xx

Le noyau monte de façon temporaire un système racine en utilisant une image compressée

- si la partition activée au démarrage contient /boot (donc une partition dediée) il faut utiliser :
initrd /initrd.img-2.x.x.xx
[bookmark: 6-rootnoverify]
6. rootnoverify
[bookmark: 7-chainloader]
rootnoverify (hd<disque>,<partition>)

Activation de la partition de démarrage mais sans la monté.
A l'utiliser pour les OS qu'on ajoute dans le fichier de configuration.
7. chainloader
[bookmark: observations]
chainloader +1

Chargement d'un fichier ou des blocs qui jouent le rôle de chargeur secondaire.
Utilisé pour activer Windows.
OBSERVATIONS

Au moment de partitionnement du disque dur, ça sera bien de noter sur un bout de papier ce qu'on fait. Il pourra servir pour une eventuelle editon de fichier de configuration du Grub par exemple.

Pour le noyau certains systèmes utilisent vmlinuz tout court pour se réferer au noyau. En fait c'est un lien symbolique vers le noyau.
De même initrd sera un lien symbolique vers initrd.img-2.x.x.xx.
Pour savoir avec quel version de noyau fonctionne l'OS
uname -r
Pour voir vers quel noyau pointe vmlinuz
ls -l /boot/vmlinuz
Grub a aussi un petit shell qui peut servir à tester des commandes qu'on veut mettre dans le fichier de configuration.

Pour savoir les commandes de Grub, au démarrage il faut appuyer sur la touche c et dans le mini shell il faut taper help.

Ensuite pour avoir l'aide pour une commande quelconque il faut taper help commande

Pour editer le fichier à utiliser un editeur de texte en mode graphique (gedit, kedit, kwrite, xemacs) ou un editeur en mode console (vi, vim, emacs, mc)

INIT
[bookmark: s2]Le processus init
Toute exécution sous Linux passe par un processus (schématisons, schématisons...), et tout processus est créé par un autre processus : on a donc une « généalogie » de processus et on parle alors de « processus pères » et de « processus fils ».
Le processus init est l'ancêtre de tous les processus, c'est le premier lancé et c'est pour ça qu'il est identifié par le numéro 1. Tout processus est connu du système par son PID (Processus ID), faites « ps aux --sort=pid » pour voir la liste des processus en cours et leurs PID, triés selon ces derniers. Voici ce que donne cette commande sur une Red Hat 5.1. :
$ ps aux --sort=pid
USER PID %CPU %MEM SIZE RSS TTY STAT START TIME COMMAND
root 1 0.0 0.4 780 416 ? S 11:34 0:04 init [3]
root 2 0.0 0.0 0 0 ? SW 11:34 0:00 (kflushd)
root 3 0.0 0.0 0 0 ? SW 11:34 0:00 (kswapd)
root 103 0.0 0.3 752 364 ? S 11:34 0:00 kerneld
root 192 0.0 0.4 812 460 ? S 11:34 0:00 syslogd
root 201 0.0 0.6 1008 640 ? S 11:34 0:00 klogd
daemon 212 0.0 0.4 792 408 ? S 11:34 0:00 /usr/sbin/atd
root 223 0.0 0.4 804 448 ? S 11:34 0:00 crond
root 234 0.0 0.4 788 424 ? S 11:34 0:00 inetd
root 245 0.0 0.4 836 420 ? S 11:34 0:00 lpd
root 261 0.0 0.8 1352 848 ? S 11:34 0:00 sendmail: accepting connections on port 25
root 273 0.0 0.3 760 352 ? S 11:34 0:00 gpm -t ms
news 296 0.0 2.2 2724 2148 ? S 11:34 0:08 /usr/lib/news/bin/actived
news 298 0.0 2.7 3256 2612 ? S 11:34 0:01 /usr/sbin/innd -p4 -i0 -L
jaco 313 0.0 0.9 1460 932 1 S 11:34 0:00 /bin/login -- jaco
root 314 0.0 0.3 744 320 2 S 11:34 0:00 /sbin/mingetty tty2
root 315 0.0 0.3 744 320 3 S 11:34 0:00 /sbin/mingetty tty3
root 316 0.0 0.3 744 320 4 S 11:34 0:00 /sbin/mingetty tty4
root 317 0.0 0.3 744 320 5 S 11:34 0:00 /sbin/mingetty tty5
root 318 0.0 0.3 744 320 6 S 11:34 0:00 /sbin/mingetty tty6
root 320 0.0 0.2 736 244 ? S 11:34 0:00 update (bdflush)
news 321 0.0 0.3 928 288 ? S 11:34 0:00 /usr/lib/news/bin/crosspost -s -
news 322 0.0 0.3 928 312 ? S 11:34 0:00 /usr/lib/news/bin/overchan
jaco 323 0.0 0.8 1168 772 1 S 11:35 0:00 -bash
jaco 334 0.0 0.6 1096 576 1 S 11:35 0:00 sh /usr/X11R6/bin/startx
jaco 335 0.0 0.7 1840 684 1 S 11:35 0:00 xinit /home/jaco/.xinitrc --
root 336 1.1 7.5 10984 7196 ? S 11:35 4:48 /usr/X11R6/bin/Xwrapper :0
jaco 339 0.1 2.4 3264 2308 1 S 11:36 0:40 wmaker
root 344 0.0 1.7 2960 1696 1 S 11:36 0:00 xterm -sb
root 345 0.0 2.2 2960 2156 1 S 11:36 0:02 xterm -sb
root 346 0.0 2.5 3208 2412 1 S 11:36 0:18 xterm -sb
(...)
jaco 2879 0.0 0.5 868 512 p1 R 18:50 0:00 ps aux --sort=pid
Si init, comme on a pu le vérifier par la commande précédente, est le premier processus, qui le lance ? Le noyau, qui, après avoir été chargé en mémoire, commence à s'exécuter et initialise tous les pilotes de périphériques qu'il détecte, puis termine sa phase de démarrage en lançant /sbin/init. Si le noyau ne trouve pas init, il tente de lancer /bin/sh (qui est un lien symbolique vers /bin/bash) et, si cela échoue encore, le démarrage s'interrompt.
Lorsqu'init est lancé, il prend en charge la fin de la procédure de démarrage en réalisant certaines tâches d'administration système : vérification du système de fichiers racine, montage des autres systèmes de fichiers, activation du swap, initialisation des différents services principaux, etc. et, enfin, autorisation des connexions des utilisateurs. À partir de là, le système est soit en « mode mono-utilisateur », soit en « mode multi-utilisateurs » (cas le plus fréquent).
Toutes ces tâches sont configurées et réalisées par des « scripts d'initialisation », qui ne sont que de simples scripts shell (équivalent des .BAT de MS-DOS). Sous Linux, ces scripts sont regroupés sous /etc.
NB : Toutes les distributions Linux (à mon humble connaissance...) utilisent le paquetage sysvinit, basé sur l'init de System V (lire « System 5 », pas « System vé »...), et c'est donc celui-ci que nous étudierons.
La principale caractéristique de l'init de System V est qu'il définit des « niveaux d'exécution » (runlevels).
[bookmark: s3]L'init de la Red Hat (ou CentOS)
[bookmark: ss3.1]Niveaux d'exécution System V
À tout moment, votre système Linux se trouve à un niveau d'exécution donné. La distribution Red Hat en définit 7 :
· 0 : Hors service : l'alimentation peut alors être coupée dans danger
· 1 : Mode mono-utilisateur (pour administration système)
· 2 : Mode multi-utilisateurs : fonctionnement normal sans NFS (identique au niveau 3 mais sans les fonctionnalités réseau).
· 3 : Mode multi-utilisateurs : fonctionnement normal pour systèmes en réseau, partageant leurs ressources avec d'autres systèmes.
· 4 : Inutilisé
· 5 : X11
· 6 : Mise hors service et redémarrage : sert durant le redémarrage du système à partir d'un niveau de fonctionnement (2, 3, 4, 5). Le système passera ensuite au niveau 0.
Comme on peut le voir, un niveau d'exécution est donc un état d'init et du système qui définissent quels sont les services qui s'exécutent.
Lors de la phase de démarrage, init doit savoir à quel niveau placer le système. Pour cela, il recherche dans le fichier /etc/inittab la ligne qui configure ce niveau par défaut :
id:3:initdefault:
signifie que le système démarrera en Mode multi-utilisateurs complet. (ce serait une grosse bêtise de choisir les niveaux 0 ou 6 comme niveaux par défaut !!!).
Vous remarquerez que la sortie de la commande ps ci-dessus indiquait qu'init avait démarré le système en niveau 3. Toutefois, cette fonctionnalité n'est pas disponible par défaut dans toutes les distributions : la même ligne pour une Debian aurait donné :
USER PID %CPU %MEM SIZE RSS TTY STAT START TIME COMMAND
root 1 0.1 0.4 740 384 ? S 17:12 0:04 init
Mis nous verrons ci-dessous qu'il existe une commande permettant de connaître à la fois le niveau d'exécution courant et celui qui l'a précédé.

[bookmark: ss3.5]Les scripts d'initialisation de /etc/rc.d
L'étude de /etc/inittab nous a montré qu'init lançait des programmes se trouvant dans le répertoire /etc/rc.d. Ce sont les fameux scripts d'initialisation dont nous parlions dans l'introduction. Par exemple, la ligne :
l2:2:wait:/etc/rc.d/rc 2
signifie qu'init doit lancer le script /etc/rc.d/rc en lui passant 2 en paramètre à chaque fois qu'on entre dans le niveau 2 et qu'il doit attendre la terminaison de ce script avant de poursuivre.
La ligne :
si::sysinit:/etc/rc.d/rc.sysinit
signifie qu'init doit lancer le script /etc/rc.d/rc.sysinit lors de l'initialisation du système, quel que soit le niveau d'exécution.
Un examen de ce répertoire nous donne quelque chose comme :
ls -l /etc/rc.d
drwxr-xr-x 2 root root 1024 jui 31 19:30 init.d
-rwxr-xr-x 1 root root 1593 jun 2 19:59 rc
-rwxr-xr-x 1 root root 690 jun 2 19:59 rc.local
-rwxrwx--- 1 news news 2083 jun 13 15:28 rc.news
-rwxr-xr-x 1 root root 6697 jun 2 19:59 rc.sysinit
drwxr-xr-x 2 root root 1024 jui 31 19:30 rc0.d
drwxr-xr-x 2 root root 1024 jui 31 19:30 rc1.d
drwxr-xr-x 2 root root 1024 jui 31 19:30 rc2.d
drwxr-xr-x 2 root root 1024 jui 31 19:30 rc3.d
drwxr-xr-x 2 root root 1024 jui 31 19:30 rc4.d
drwxr-xr-x 2 root root 1024 jui 31 19:30 rc5.d
drwxr-xr-x 2 root root 1024 jui 31 19:30 rc6.d
ce qui nous enseigne que ce répertoire ne contient que 4 fichiers exécutables : rc, rc.local, rc.news et rc.sysinit (le rc.news n'existera peut être pas sur votre système si vous ne l'avez pas configuré comme serveur Usenet).
rc.local, comme son nom l'indique est « local » à votre machine : c'est là que vous ajouterez les commandes d'initialisation propres à votre système. rc.local est appelé en dernier, c'est-à dire après tous les autres scripts. Par défaut, sur mon système, il se contente de laisser un message indiquant la version Red Hat et celle du noyau dans le fichier /etc/issue, à partir des informations qu'il tire du système. Ce fichier, s'il existe, est affiché automatiquement avant l'invite de login.
rc.news, s'il existe, lance les démons nécessaires au serveur de news.
rc.sysinit, on l'a vu, est le script qui est lancé lors de l'initialisation du système, il sert à configurer la variable d'environnement PATH au niveau du système, à activer le swap, à configurer le nom de la machine avec la commande hostname, à lancer les commandes de vérification des systèmes de fichiers, à les monter, à activer les modules si ceux-ci sont utilisés, etc. Parcourez-le, cela vous donnera envie de connaître la syntaxe du shell...
rc, on l'a vu aussi, est appelé par init avec un paramètre correspondant au niveau d'exécution dans lequel on entre. Ce paramètre est récupéré par le script rc pour former un nom de répertoire. Par exemple, l'appel /etc/rc.d/rc 2 fera que rc ira examiner le répertoire /etc/rc.d/rc2.d. Un examen du code de rc montre qu'il exécute alors d'abord les scripts de ce répertoire dont le nom commence par K, puis ceux dont le nom commence par S. Le rôle de rc est donc surtout un rôle d'aiguillage et d'exécution d'autres scripts.

[bookmark: ss3.7]Les scripts d'initialisation de /etc/rc.d/init.d (ou /etc/init.d)
Examinons le contenu de ce répertoire :
$ ls -l /etc/rc.d/init.d
total 38
-rwxr-xr-x 1 root root 884 mai 5 18:19 atd
-rwxr-xr-x 1 root root 883 mai 6 01:29 crond
-rwxr-xr-x 1 root root 3375 jun 2 19:59 functions
-rwxr-xr-x 1 root root 1073 mai 8 05:59 gpm
-rwxr-xr-x 1 root root 1351 jun 2 19:59 halt
-rwxr-xr-x 1 root root 1509 mai 6 01:25 inet
-rwxr-x--- 1 root root 1510 jun 10 12:33 innd
-rwxr-xr-x 1 root root 780 mai 2 00:21 kerneld
-rwxr-xr-x 1 root root 903 mai 7 16:39 keytable
-rwxr-xr-x 1 root root 447 jun 2 19:59 killall
-rwxr-xr-x 1 root root 1015 mai 6 01:24 lpd
-rwxr-xr-x 1 root root 4398 jun 2 19:59 network
-rwxr-xr-x 1 root root 1299 jun 2 19:59 nfsfs
-rwxr-xr-x 1 root root 1036 avr 6 00:15 pnserver
-rwxr-xr-x 1 root root 1535 jun 2 19:59 random
-rwxr-xr-x 1 root root 1138 mai 11 01:58 routed
-rwxr-xr-x 1 root root 773 mai 6 05:18 rusersd
-rwxr-xr-x 1 root root 780 mai 6 01:27 rwhod
-rwxr-xr-x 1 root root 921 déc 31 1997 sendmail
-rwxr-xr-x 1 root root 906 jun 2 19:59 single
-rwxr-xr-x 1 root root 1372 mai 6 01:26 sound
-rwxr-xr-x 1 root root 799 avr 30 07:53 syslog
Les voici, nos fameux scripts ! Le contenu de ce répertoire varie en fonction des paquetages installés.
Examinons, par exemple, le script inet :
$ less inet

#! /bin/sh
#
inet Start TCP/IP networking services. This script
sets the hostname, creates the routes and
starts the Internet Network Daemon & RPC portmapper.
Le début de chaque script commence par indiquer les services qu'il assure : ici, celui des services TCP/IP, la configuration du nom de la machine, etc.
See how we were called.
case "$1" in
 start)
 echo -n "Starting INET services: "
 daemon inetd

 echo
 touch /var/lock/subsys/inet
 ;;
 stop)
 # bringing down NFS filesystems isn't inet's problem I don't know
 # why this script used to do that -- ewt

 echo -n "Stopping INET services: "
 killproc inetd
puis, le script regarde avec quel paramètre il a été appelé : start, auquel cas il lance le programme assurant le service pour lequel il a été conçu (ici, avec la commande daemon inetd), ou stop auquel cas, il stoppe ce service (avec la commande killproc inetd).
Certains scripts acceptent d'autres paramètres : restart par exemple, combine un appel avec stop et un appel avec start.
[bookmark: s6]L'init de la Debian
Comme la Red Hat, la Debian utilise une initialisation de type System V et place ses fichiers sous /etc dans une arborescence tout ce qu'il y a de plus classique. En réalité, il y a très peu de différences avec la Red Hat : Debian utilise un script /etc/initscript qui, s'il est présent, est utilisé pour lancer les commandes présentes dans /etc/inittab. Le rôle de cette « enveloppe » est à peu près identique à celui du fichier /etc/rc.config : configurer certaines variables nécessaires à l'exécution des scripts.
On notera aussi la présence du répertoire /etc/rc.boot qui contient les scripts à lancer au démarrage (configuration des ports séries et du clavier par exemple). Le script d'initialisation du système s'appelle /etc/init.d/rc.S au lieu de /etc/rc.d/rc.sysinit dans le cas de la Red Hat.
L'arborescence est légèrement différente de celle de la Red Hat. La Debian n'utilise pas de répertoire /etc/rc.d/ mais démarre son arborescence directement sous /etc. On trouve en effet le répertoire /etc/init.d qui contient les véritables scripts (dont le script « maître » rc) et les répertoires /etc/rcn.d où n va de 0 à 6, ou vaut S. Il s'agit là d'une arborescence System V pure (comme SCO Unix et Irix).
