3.2.0-Web
3.2.4-Tomcat

Apache Tomcat est un conteneur libre de servlets Java 2 Enterprise Edition. Issu du projet Jakarta, Tomcat est un projet principal de la fondation Apache. Tomcat implémente les spécifications des servlets et des JSP du Java Community Process . Il est paramétrable par des fichiers XML et de propriétés, et inclut des outils pour la configuration et la gestion. Il comporte également un serveur HTTP.

Environnement
Tomcat est un serveur Web qui gère les servlets et les JSP. C'est le compilateur Jasper qui compile les pages JSP pour en faire des servlets. Le moteur de servlet Tomcat est souvent employé en combinaison avec un serveur Web Apache ou d'autres serveurs Web.
Tomcat a été écrit en langage Java. Il peut donc s'exécuter via la machine virtuelle Java sur n'importe quel système d'exploitation la supportant.
Jasper
Jasper est le moteur JSP d'Apache Tomcat. Tomcat 5.x utilise Jasper 2, qui est une implémentation de la spécification JavaServer Pages 2.0 de Sun Microsystems. Jasper parse les fichiers JSP afin de les compiler en code Java en tant que servlets (gérés par Catalina). Pendant son exécution, Jasper est capable de détecter et recompiler automatiquement les fichiers JSP modifiés.
Principe de fonctionnement
Tomcat est souvent utilisé en association avec un autre serveur web, en général Apache. Apache s'occupe de toutes les pages web traditionnelles, et Tomcat uniquement des pages d'une application web Java.
On peut utiliser le module mod_jk pour paramétrer la communication entre Apache et Tomcat. Techniquement, Apache communique avec Tomcat sur le port 8009 (via le protocole ajp13), mais Tomcat peut aussi être atteint via son propre port (8080 par défaut).



Arborescence de répertoires
L'installation par défaut de Tomcat comprend les répertoires suivants :
· bin : Scripts et exécutables pour différentes tâches : démarrage (startup), arrêt, etc. ;
· common : Classes communes que Catalina et les applications Web utilisent ;
· conf : Fichiers de configuration au format XML et les DTD que ces fichiers XML utilisent ;
· logs : Journaux des applications Web et de Catalina ;
· server : Classes utilisées seulement par Catalina ;
· shared : Classes partagées par toutes les applications Web ;
· webapps : Répertoire contenant les applications web (et les éventuels .war);
· work : Fichiers et répertoires temporaires (le cache).
Un serveur d'applications 
Tomcat est un serveur d'applications Java. Nous avons déjà présenté ce qu'est une application web. Elle permet de générer une réponse HTML à une requête après avoir effectué un certain nombre d'opérations (connexion à une base de données, à un annuaire LDAP...). Pour le client (un navigateur web en général), il n'y a pas de différence avec une page web statique : il reçoit toujours du HTML, seul langage qu'il comprend. Seule la manière dont la réponse est formée côté serveur change.
Les requêtes, pour le client, ne diffèrent pas non plus. Qu'il souhaite accéder à une ressource statique ou à une application web, il utilise toujours une URL au même format (standard HTTP). C'est donc côté serveur que la distinction doit s'opérer. Le schéma suivant montre le déroulement classique d'une requête vers un serveur d'applications :
	[image: http://www-igm.univ-mlv.fr/%7Edr/XPOSE2003/tomcat/images/serveurappli.jpg]


 
· 1) Le client émet une requête (i.e. appelle une URL) pour demander une ressource au serveur. Exemple : http://leserveur.com/welcome. Il ne sait pas ici si la réponse qui va lui parvenir est statique (page HTML simple) ou dynamique (générée par une application web). Dans notre cas, il s'agit d'une application répondant à l'adresse welcome sur le serveur leserveur.com.
· 2) Côté serveur, c'est le serveur web (exemple : Apache) qui traite les requêtes HTTP entrantes. Il traite donc toutes les requêtes, qu'elles demandent une ressource statique ou dynamique. Seulement, un serveur HTTP ne sait répondre qu'aux requêtes visant des ressources statiques. Il ne peut que renvoyer des pages HTML, des images,... existantes.
· 3) Ainsi, si le serveur HTTP s'aperçoit que la requête reçue est destinée au serveur d'applications, il la lui transmet. Les deux serveurs sont reliés par un canal, nommé connecteur. 
· 4) Le serveur d'applications (exemple : Tomcat !) reçoit la requête à son tour. Il est, lui, en mesure de la traiter. Il exécute donc le morceau d'application (la servlet) auquel est destinée la requête, en fonction de l'URL. Cette opération est effectuée à partir de la configuration du serveur. La servlet est donc invoquée, et le serveur lui fournit notamment deux objets Java (Tomcat est un serveur d'applications Java) exploitables : un représentant la requête, l'autre représentant la réponse. La servlet peut maintenant travailler, et générer la réponse à la demande. Cela peut passer par la consultation de sources de données, comme des bases de données (4'' sur le schéma). Ou bien par l'interrogation d'autres serveurs ou systèmes (4' sur le schéma), l'environnement Java web permettant de se connecter à de nombreux systèmes.
· 5) Une fois sa réponse générée, le serveur d'applications la renvoie, par le connecteur, au serveur web. Celui-ci la récupère comme s'il était lui-même allé chercher une ressource statique. Il a simplement délégué la récupération de la réponse, et celle-ci a été générée, mais ce n'est plus le problème.
· 6) La réponse est dorénavant du simple code HTML, compréhensible par un navigateur. Le serveur HTTP peut donc retourner la réponse au client.
 
Serveur web / serveur d'applications
Dans le schéma en haut de la page, nous avons séparé le serveur web et le serveur d'applications. Ces deux composants sont en effet nécessaires côté serveur, puisqu'ils se complètent : le serveur d'applications ne sait pas traiter une requête HTTP, le serveur web ne sait pas exécuter d'applications !
Si ces deux composantes sont indispensables, elles ne sont pas nécessairement séparées. Tomcat inclut ainsi un serveur web, et est donc capable de fonctionner en autonomie (StandAlone), pour traiter à la fois les requêtes HTTP simples (ressources statiques) et les applications web. Le principe est de changer de connecteur (par rapport à notre schéma en haut de la page), pour en utiliser un comprenant les requêtes HTTP et non plus les requêtes triées venant du serveur web. 
Dans certains cas, cette possibilité est extrêmement intéressante. Elle permet de proposer un serveur web complet en installant le minimum de logiciels. Néanmoins, ce n'est pas une fin en soi. Pour des besoins de production plus importants, il est intéressant de scinder les deux activités, ne serait-ce que pour alléger la tâche de chacun des serveurs. Tomcat peut ainsi se concentrer uniquement sur l'exécution des applications. Cela économise également sa mémoire et augmente ses performances, en lui permettant notamment de créer moins d'objets... En outre, dans certains cas, comme la mise en place d'un serveur sécurisé (SSL), on préférera gérer la sécurisation sur le serveur web, et pas sous Tomcat, même si celui-ci est capable de mettre en place un environnement sécurisé.

Traiter les requêtes : les connecteurs
Comment un serveur d'applications reçoit-il des requêtes, si celles-ci sont de la même forme qu'il s'agisse de pages statiques ou dynamiques ? Un serveur web classique doit faire relais (voir le fonctionnement d'un serveur d'applications). C'est toujours lui qui, en premier lieu, reçoit les requêtes des clients. S'il constate que la requête n'est pas pour lui, il doit alors la transférer à l'exécutant adéquat. Pour qu'un serveur web puisse transmettre les requêtes à Tomcat, il faut un connecteur spécifique, qui effectue la liaison. De tels connecteurs sont fournis avec Tomcat, notamment pour effectuer la liaison avec le serveur HTTP Apache. Notons que, si l'on demande à Tomcat de jouer les deux rôles (serveur web et serveur d'applis), le connecteur à utilisé est alors celui pouvant recevoir les requêtes HTTP sans intermédiaire. 
En résumé
- Un serveur d'applications est un serveur capable d'exécuter des applications web. C'est-à-dire des applications destinées à traiter des requêtes web entrantes, et à générer une réponse adéquate.
- Un serveur d'applications a un rôle distinct de celui d'un serveur web. Ce sont deux composants indispensables. Tomcat sait faire les deux.

Installation sous linux
Sous Linux, l'installation n'est pas très compliquée. Il suffit de décompresser l'archive téléchargée, grâce à la commande tar zxvf jakarta-tomcat-4.1.30.tar.gz --> en remplaçant le nom de l'archive par le bon. N'oubliez pas que la variable d'environnement JAVA_HOME doit pointer vers le répertoire d'installation de Java...
Passons maintenant au test du serveur Nous appelons TOMCAT_HOME le répertoire d'installation de Tomcat. Tout d'abord, il faut démarrer le serveur, grâce au script TOMCAT_HOME/bin/startup.sh. Testons ensuite que Tomcat fonctionne en tapant dans un navigateur l'URL http://localhost:8080/.
Pour arrêter le serveur, on utilise le script TOMCAT_HOME/bin/shutdown.sh.
La plupart du temps un script d’init est mis en place pour faciliter l’administration sur le serveur.



image1.jpeg
Client

(navigateur web)

Internet

Autres systémes/serveurs

SERVEUR

@

[Serveur web

(HTTP)

®

P —

®

@

Serveur

dapplications

N

Sources de données

(E——]
——i

(base de données )




