Apache : la réecriture d'URL

Table des matieres

1. Avant propos o
1.1. Ce qu'est et n'est pas la réécriture
1.2. PHP/SQL pour les besoins d'illustration autour
d'un cas pratique dynamique
2. Bref rappel des bases de la syntaxe des
expressions rationnelles
2.1. L'alternative ()
2.2.Les ancres (het$)
2.3. Les quantificateurs (répétitions et/ou
omission i i
2.4. Metacaracteres contre caracteres
2.5. Les classes de caracteres
2.6. Groupement et memorisation
2.7. L.es assertions négatives
2.8. Epilogue o L
3. Partie théorique : activation et explication des
directives
3.1. Activation o
3.1.1. Pour I'administrateur du serveur
3.1.2. En tant qu'utilisateur
3.2. Principe géneral _
3.3. Travaliller uniguement sur le chemin HTTP
3.4. Interactions entre les regles
3.5. Les conditions pour travailler sur les autres
arties de |'URL et au-dela o
.6. Les différentes variables de réécriture
4, (iuelques exemples d'applications de la réécriture
.1. Interdire l'acces direct aux images depuis un
site extérieur (direct linking ou hotlinking) ?
4.2. Bloquer un client ou lul servir un contenu
spécifique _
4.3. Rediriger un domaine (avec et sans www)
4.4. Forcer |le protocole https pour une ressource
4.5. Rediriger des ressources qui ont ete déplacees
ou remplacées _
4.5.1. Redirections HTTP simples

4.5.2. Racine de site déplacée : renvoyer, de
maniére invisible, sur un sous-répertoire

4.6. Rerouter ce qui n'existe pas physiquement
vers un contréleur frontal ou semblable (MVC)
4.7. Hotes virtuels de masse simules
4.8. Effectuer une redirection en fonction d'un
parameétre de query strln% _
4.9. Interdire I'acces au site avant une certaine
date sauf pour une adresse IP
4.10. Renvoyer le visiteur selon les heures de
bureau . .
4.11. Masquer |'extension de ses scripts PHP

5. Difficultés communes et résolution
5.1. Le "piege" de I'arborescence virtuelle
5.2. Conflit entre la négociation de contenu et la
réécriture
5.3. Interprétation des codes d'erreur HTTP
renvoyes dans le cadre de la reécriture
5.4. En dernier recours : déboguer la réécriture
d'URL

6. Aller plus loin) i
6.1. Gérer le possible duplicate content inhérent a
la réécriture
6.2. URL et caracteres "scloéciaux" _
6.3. RewriteBase : quand Apache est mcaBabIe de
résoudre physiqguement les chemins HTT
6.4. Comprendre réellement le flag L(ast)
6.5. Exemple de résolution d'une boucle infinie de
réécriture . o
6.6. Les différents niveaux de réécriture

7. Conclusion

Liste des tableaux

1. 1. Une partie des classes nommeées et autres
raccourcis PCRE

2. 2.

3. 3.

4. 4. Les différentes options possibles pour RewriteRule
5. 5. Les options de la directive RewriteCond

6. 6. Les différents opérateurs de comparaison

AW NSO 0O N

. 7. Les opérateurs fichiers, qui peuvent également étre
niés en les précédant d'un ! _ _

. 8. Les variables reprenant la configuration d'Apache

. 9. Les variables liées a la communication
client/serveur (TCP/IP, réseau)

10. Les variables propres au protocole HTTP

11. Les variables temps, date/heure du serveur

12. Les variables héritées du module mod_ssl lorsque
le protocole est HTTPS _

13. Acces aux variables d'environnement

14. Références arrieres

Apache : la réecriture d'URL

julp
Copyright © 2012

Aucune reproduction, méme partielle, ne peut étre faite
de ce document et de I'ensemble de son contenu :
textes, documents, images, etc sans l'autorisation
expresse de l'auteur. Sinon vous encourez selon la loi
jusqu'a 3 ans de prison et jusqu'a 300 000 € de
gXEanages et intéréts. Cefte page est déposée a la

14/12/2012

Résumé

J'ai toujours voulu consacrer un articleala
fonctionnalité incontournable qu'est la réécriture d'URL
pour Apache. Il faut cependant admettre que c'est un
sujet tres difficile a aborder tant il est technique et tant
il ést complet. Il y a en effet beaucoup de choses a dire
our couvrir de Maniere correcte ce vaste sujet.
Fespere remplir cet objectif au travers du présent
document par une description technique abordable,
complétée de différents cas pratiques courants.

1. Avant propos

1.1. Ce gu'est et n'est pas la reécriture

Avant de debuter, il estimportant d'étre clair sur la
definition de "réecriture d'URL", faute de voir trop
souvent une erreur d'interprétation quant a cette
expression : la reecriture d'URL ne modifie pas
les liens de la source HTML que vous generez !
La réécriture d'URL, a la base, est un processus qui
redirige de facon purement interne une URL virtuelle (=
qui n'existe pas) sur une URL réelle. "Interne", au sens
ou, la redirection n'est pas une redirection HTTP : le

http://www.sacd.fr/

client ignore tout de ce processus, rien n'apparait de
son cOté ; c'est le serveur HTTP lui-méme qui se charge
d'effectuer cette traduction. En conséquence, bien que
la page servie au final soit toute autre, I'adresse vue par
le client, dans sa barre de navigation, reste inchangee a
ce qu'il a saisi ou au lien qu'il a'suivi.

Pourquoi utiliser la réécriture d'URL ?

e pratiquer lI'obscurantisme, c'est-a-dire cacher aux
utilisateurs I'URL réelle donc les éventuels details
techniques qui se cachent derriere, ceci pour éviter :

o gu'ils ne jouent, manuellement, avec les URLs (les
parameétres en query string notamment) ;

o gg'ils ne devinent de quelles technologies
épendent votre site. Avec des extensions de
pages en .php, .asp ou .jsp, ceux-ci peuvent
aisement emettre quelques hypotheses ...

e améliorer votre réféerencement. Un article traitant des
sessions en PHP et ayant pour URL article.php?id=2 se
trouvera surement dans les bas fonds de toute
recherche avec un moteur de recherche quelconque
quand article-2-les-sessions-en-php.html sera
certainement mis un peu plus en avant.

Tout d'abord, d'un point de vue purement théorique, la
réécriture n'entrera en jeu que si vous modifiez vos
liens. Pour reprendre I'exemple de |'article :

Les sessions en PHP

Doit a présent devenir :

Les
sessions en PHP

Suite a cela, quand le client suivra le lien réécrit, article-
2-les-sessions-en-php.html, il ignorera totalement que
c'est le script article.php?id=2 qui est finalement
invoqué, comme a |'origine. La traduction article-2-les-

sessions-en-php.html => article.php?id=2 étant réalisée
de maniere interne par le serveur.

Il existe quelques moyens valables pour réellement
modifier vos liens initlaux sans votre intervention, il
faut cependant noter que :

e cette tache peut s'avérer techniquement fastidieuse a
mettre en place et pire a maintenir

e |e procédé mis en ceuvre a un colt qui peut s'avérer
non negligeable

C'est pourquoi, dans la mesure du possible, il est

référable de prévoir la réécriture des le départ de
facon a avoir des liens (adresses) qui font directement
intervenir la réécriture, sans besoin d'intervenir
globalement sur le code HTML produit.

Toutefois, a titre purement illustratif, voici un moyen en
PHP couplant bufferisation de sortie et DOM (les
e3<phre)55|ons regulieres sont a bannir pour une telle
tache):

<?php
$bdd = new PDO(/*...*/);

function slugify($string) {
/* voir implémentation ci-dessous */

}
function implode url($path, $qs, $anchor) {
$url = $path;
if ($qs) {
$url .= '?"'" . (is string($gs) ? $qs
http build query($qgs, '', '&'));
}
if ($anchor) {
$url .= '"#' . $anchor;
}
return $url;
}

/**

* Notes
* - DOM renvoie de 1'UTF-8 indépendamment du jeu du
document de départ
* - Le principe est simplifié : les ports HTTP(S) non
standard ne sont pas gérés entre autres
**/
function rewrite links(PDO $bdd, $content) {
$dom = new DomDocument;
if (!'$dom->1loadHTML($content)) {
return $content;
}

$xpath = new DomXPath($dom);
foreach ($xpath->query('//a') as $link) {
if (!'$link->hasAttribute('href')) { # pas
d'attribut href
continue;
}

$href = $link->getAttribute('href');
if (FALSE === ($parts = parse url($href))) { #
parse url a échoué
continue;
} else {
$args = array();
$parts = $parts +
array fill keys(array('path', 'host', ‘scheme', 'query',
‘fragment'), FALSE);
if ($parts['scheme'] &&
'in array($parts['scheme'], array('http', 'https'))) { #
le protocole n'est ni http ni https
continue;
¥

if ($parts['host'] && $parts['host'] !=
$ SERVER['HTTP_HOST']) { # le lien désigne un serveur
extérieur
continue;
}
if ($parts['query']) {
parse str($parts['query'], $args);
}

}

C'est ici qu'il faut traiter/modifier les
liens
Exemple: article.php?id=2 => article-2-

<titre>.html
if ($parts['path'] == 'article.php' && FALSE !==
($id = filter var($args['id'], FILTER VALIDATE INT))) {
$stmt = $bdd->query('SELECT titre FROM
billets WHERE id = ' . $id));
if (FALSE !== ($titre = $stmt-
>fetchColumn())) { # On ne réécrit pas 1l'adresse d'un
article inexistant
unset($args['id']);
$link->setAttribute('href"',
implode url(
sprintf('article-%d-%s.html"',
$id, slugify($titre)),
$args,
$parts['fragment']

}

return $dom->saveHTML () ;

}

ob start();
7>

<!-- Le contenu normal de la page -->

<?php
$content = ob _get clean();
echo rewrite links($bdd, $content);

Par ailleurs, je vous recommande de prendre soin
d'étudier la mise en place d'une réécriture, quitte a
prendre, s'il le faut, un papier et un crayon : non
seulement, il vaut mieux modifier le moins possible des
regles de réécriture qui sont en production mais tout
conflit entre vos différentes regles pourrait avoir des
répercussions néfastes ! Petite anecdote a ce sujet, on
voit souvent des gens, qui se sont lancés dans la mise
en place d'une réecriture sans prendre le temps de
I'étudier : ils ont choisi le tiret (-) en guise de séparateur

des valeurs qui sont concaténées ensemble pour finir
par se rendre compte bien plus tard que ces valeurs
Peuvent en fin de compte comporter un tiret ... Dés

ors, il est impossible de retrouver les valeurs attendues
ou bien I'URL conduit a une 404 parce qu'il y en a plus
que prévu.

1.2. PHP/SQL pour les besoins
d'illustration autour d'un cas pratique
dynamique

Pour le cadre de cet article et ses quelques extraits de
code illustratifs, nous définissons les pré-requis
suivants :

e disposer d'une base de données MySQL (toute
adaptation ne demande que CBJquues minutes vu
que le SGBD est exploite via PDO)

e posséder une version de PHP >=5.4.0

e extension intl activée et, de fait, nous travaillerons
exclusivement en UTF-8

. Pour simplifier et rendre les codes moins longs, que
O'Iens_emb e de nos scripts sont directement a la racine
u site

Nous définirons une table minimaliste nommeée billets,
décrivant un blog fictif, décrit par la structure suivante :

CREATE TABLE billets(
id INT UNSIGNED NOT NULL AUTO INCREMENT,
titre VARCHAR(255) NOT NULL,
- date, auteur, etc non montrés
PRIMARY KEY(id),
UNIQUE KEY(titre)

) ENGINE=InnoDB DEFAULT CHARSET=utf8;

Les fonctions PHP, a reproduire, intervenant tout au
long de l'article sont :

<?php
function slugify(/*UTF-8*/ $string) {

return transliterator create from rules("::Latin;
::Lower; ::Latin-ASCII; (["a-z0-9])+ > \-")-
>transliterate($string);

}

function http not found() {
header('HTTP/1.1 404 Not Found',6 404, TRUE);
exit;

}

function http redirect permanent($to) {
header('HTTP/1.1 301 Moved Permanently', 301, TRUE);
header('Location: http://' . $ SERVER['HTTP HOST']
$to);
exit;
}

2. Bref rappel des bases de la
syntaxe des expressions
rationnelles

Note

PCRE, la bibliotheque greffée a Apache qui se charge
des expressions régulieres, est bien plus complete que
ce que je decris la. Beaucoup de ses aspects sont
passés sous silence non pas parce C%J'HS ne sont pas_
Intéressants mais pour la simple et bonne raison qu'ils
ne sont pas applicables dans ce contexte. Citons :

e |e support (partiel) d'Unicode

e certaines classes n'ont pas réellement de sens dans
une URL (espaces verticaux ou caracteres non
imprimables devant étre urlencodés, voir RFC 3986)

2.1. L'alternative (|)

Pour entrer dans le vif du sujet, commencons par le
plus simple : I'alternative. Comme son nom l'indique,
elle ne désigne rien d'autre que le fait de savoir si une
sous-chaine A ou une sous-chaine B (ou une sous-
chaine C ou une sous-chaine D ...) est, ou non,
contenue dans une chaine d'Qri%ine. L'alternative est
représentée par la barre verticale, symbole |, pour
avoir sens de "ce qui la précéde ou ce qui la suit".

Ainsi déterminer qu'une chaine contient une voyelle,
revient a chercher le caractere 'a' ou 'e' ou 'i' ou'o' ou
'u' ou'y'. Le probleme étant clairement exposé, on peut
constater que sa traduction de notre langue naturelle
au motif correspondant, aje|i|o|u]y, est triviale.

2.2. Les ancres (N et $)

Les ancres sont, a mon sens, le point clé a la
compréhension des expressions régulieres :

http://www.faqs.org/rfcs/rfc3986.html

e |e symbole A caractérise le debut de la chaine : il
contraint la chaine a debuter par un motif. Exemple :
~article accepte toute chaine debutant par "article".
On notera que marquant le début de la chaine, on ne
devrait rien trouver qui ait un sens littéral a sa
gauche.

e al'inverse, le métacaractere $ désigne la fin de la
chaine : il force la chaine a se terminer par un motif,
Exemple : phps est vrai pour toute chaine finissant par
"php". Etant donné que $ marque la fin de la chaine,
8n nte devrait rien trouver qui ait un sens littéral a sa

roite.

Il est important de comprendre que sans ancre, _
I'expression réguliere peut trouver une sous-chaine
n'importe ou:

e soit I'expression réguliere part, ancrée en aucune
fagon, elle validera les chaines suivantes : "particule”,
"reparti”, "'rempart’, "part”

\

e a présent, avec ~part, ancrée sur le début, seuls
"particule" et "part" du point précédent satisfont
I'expression

* maintenant avec part$, ancrée sur la fin de la chaine, il
ne nous reste plus que "rempart" et "part”

e enfin, avec ~part$, ancrée sur le début et la fin, nous
n'avons plus que "part"

On peut remarquer que dans le dernier cas, avec le
double ancrage, et pour un motif aussi simple, seule la
chaine littérale elle-méme peut étre validée. Quand
nous n'avons pas d'autres outils que les expressions
régulieres afin de valider une chaine précise, c'est la la
seule solution.

2.3. Les quantificateurs (répétitions et/ou
omission)

Un quantificateur permet de dénombrer tres
précisément le caractére qui le précede par un _
minimum et/ou un maximum. D'une part, ils sont bien
plus commodes que les équivalents que vous pourriez
écrire : |'expression de 3 a 5 caracteres 'a' resterait
simple a retranscrire en aa(a|aa|aaa) mais l'est
beaucoup moins sur de bien plus Iar%es plages. D'autre
art, comment représenteriez-vous (théoriquement)
'infini ? Enfin, autre avantage, c'est que ce minimum en
nombre d'occurrences peut étre nul, ce qui permet
alors de rendre la présence du caractére facultative.

Suivant les valeurs données a ces deux bornes, il existe
plusieurs quantificateurs, qui se distinguent par leur
syntaxe :

e ?7:.uUn caractere ogtionnel, il peut apparaitre 0 ou 1
fois. Exemple : ab?c accepte |es sous-chaines "abc" ou
"ac", autrement dit le caractere 'b' est facultatif entre
‘a'et'c'.

e *:un caractere qui peut étre repété un nombre
quelconque de fois, zéro compris. Exemple : ab*c
accepte les sous-chaines "ac", "abc", "abbc", "abbbc",
etc. Le caractére 'b' peut apparaitre 0, 1, 2, 3, 4, ...,
100, ... fois entre 'a' et 'c'.

e +:un caractere qui doit apparaitre au moins une
fois. Exemple : ab+c accepte les sous-chaines "abc",
"abbc", "abbbc" mais pas "ac". Le caractere 'b’' doit
afpgraltre au moins une fois entre les caracteres 'a'
et 'c.

e {x}:le caractéere qui précede doit étre présent
exactement x fois consécutives.

e {Xx,Y}, avecy > x: le caractere devant doit étre présent
de X, minimum, a vy, maximum, fois.

e {X,}:un caractere qui doit étre présent au moins x
fois.

Note

En réalité, les minimum et maximum ne seront
réellement honorés que si vous avez une contrainte
supplémentaire avant et apres. Par exemple, si je
prends l'expression réguliere b{2}, qui consiste a
trouver deux caracteres 'b' consécutifs, une chaine
comme abbba satisfait ce masque sur les deux
premiers caracteres 'b' consecutifs trouvés dans la
mesure ou l'expression n'impose rien sur le contenu
avant ou apres ceux-ci. Ici, ces deux caracteres 'b'
peuvent étre trouvés n'importe ou, la notion de _
minimum et maximum ne s'applique pas. On pourrait
indépendamment utiliser b{2,} dans ce cas de figure.

Si maintenant j'ajoute des tirets comme séparateur en
guise de contexte avant et arriere, I'expression devient
“b{2}-, alors seuls exactement deux 'b" consécutifs,
précédes et suivis d'un tiret établissent la
correspondance (exemple : a-b-bbb-bb-a).

On peut établir les équivalences de forme suivantes :

e ? est synonyme de {0,1};

* est théoriquement équivalent a {0,+«} - I'infini ne
pouvant étre représenteé, il correspondrait aux limites
de notre machine ;

+ est identique, dans l'idée, a {1,+} ;

de méme, {x,} a sens de {x,+} ;

{1} est toujours superflu, ce quantificateur est

implicitement assoué,_1par défaut, a toute
composante d'un motif.

2.4. Métacaracteres contre caracteres

Un meétacaractéere est un caractere qui a une
signification particuliere au sein d'une expression
réguliere. Nous avons vu pour le moment les
métacaractéres :

e d'alternative: | ;
e d'ancrage:Net$;

e de quantification:?, *, +, {et}.

Mais, puisqu'ils ont un sens particulier, comment leur
faire reprendre leur sens de caractere littéral ? Comme
dans beaucoup de langages, il faut, dans ces |
circonstances échapper c'est-a-dire faire précéder un
tel caractere d'un antislash (\) pour que ce caractere

erde toute signification speciale. Par contre, du coup,
‘antislash lui-méme devient un métacaractere. Si nous
voulions un antislash dans le motif, il sera nécessaire
de le doubler (\\).

Dans les faits, par rapport au protocole HTTP, la plupart
de ces caracteres ne peuvent figurer tel quel dans une
URL et sont alors (url)encodés. Cependant, laissons de
cOté le domaine d'application et ses limites, si nous
voulions chercher quelgue chose qui s'apparente aux
variables dynamiques de PHP, de la forme ${ ... 3}, un
motif possible pourrait étre le suivant : \$\{[~}1+\}.
Remarquez que le caractére $ a été eéchappé, sans quoi
il aurait sens de fin de chaine, dés lors nous
n'obtiendrions jamais de résultat ; de méme pour les
accolades, qui rendraient invalides |'expression
puisque, sans, c'est une ou des quantités numeriques
qui seraient attendues entre elles, pour contenu.

2.5. Les classes de caracteres

Nous avons precedemment vu l'alternative mais que se
passe-t-il Si_je veux decrire une large plage de
caracteres 7 Admettons que je veuille représenter une
consonne minuscule ('b' ou 'c' ou 'd' ou f' ou ...) : que
devrais-je écrire ? L'expression réguliere
correspondante serait :

blcld[flglh[j[k|lIm|n|p|g|r|s|t]v|w|x]|z

Plutot laborieux n'est-ce pas ? Dans cette situation, une
classe est normalement bien plus adaptée.

Une classe est introduite par des crochets : le crochet
ouvrant ([) marque son debut et le crochet fermant (]), _
sa fin. Elle a sens de : un caractere parmi ceux qui

forment son contenu, chaque caractere est uni par
un ou logique, comme l'alternative, d'ou l'analogie
initiale. Ainsi, le précedent exemple peut
avantageusement étre reecrit sous la forme d'une
classe que voici :

[bcdfghjklmnpgrstvwxz]

Toutefois, les classes permettent de représenter les
caracteres par un ou plusieurs intervalles en separant
le caractere de code ASCII le plus faible du plus fort par
un tiret. Au sein d'une classe, a-z, désigne alors
I'intervalle mathématique [a;z], soit du caractere 'a' a
'z', tous deux compns%la representation d'une lettre
minuscule quelconque en somme). Par conséquent,
notre expression réguliére visant a représenter une
consonne minuscule peut évoluer en une forme ou les
groupes de consonnes consécutives peuvent étre
écourtes sous la forme d'un intervalle :

[b-df-hj-np-tv-xz]

Les classes ne s'arrétent pas la et possedent un
avantage que les alternatives n'ont pas : celui de
pouvoir etre niées. En ajoutant un chapeau () juste
derriere le crochet ouvrant d'une classe, la classe
devient négative. Elle prend alors le sens de : un .
caractere qui n'est pas parmi ceux qu'elle contient. Des
lors, si nous admettions que I'alphabet était limité aux
seules lettres minuscules, une consonne minuscule ne
serait-elle pas, en ces circonstances, un caractere qui
n'est pas une voyelle minuscule ? Ce qui nous aurait
permis de nouveau de simplifier notre motif de départ
par une classe négative :

[~aeiouy]

edu
t de chaine
négation de

Attention : il ne faut pas confondre ['usag
metacaractere A qui sert d'ancre de debu
lorsqu'il est en dehors d'une classe et de

classe quand il suit immédiatement le crochet ouvrant
d'une classe.

Note

Tous les métacaracteres deviennent de simples
caracteres littéraux au sein d'une classe, donc nul
besoin de les échapper, a I'exception de:

e |e tiret (-) est promu métacaractére sauf s'il est situé
en premiére (négation - A - exclue) ou derniere
Posmon de la classe. Ainsi, pour qu'un tiret reste
ittéral a I'intérieur d'une classe et s'il n'est pas en
premiere ou derniere position, il devra étre echappé;

e |'accent circonflexe seul, en téte de classe, indique
une néegation. S'il doit étre considére comme litteral,
et positionné en premiére position, il est nécessaire
de l'échapper;

e |e crochet fermant marque la fin de la classe. Pour
étre littéral, il doit également étre eéchappé;

Pour savoir si une chaine contient un métacaractere
quelconque, il est possible d'utiliser la classe ci-dessous

[-7$]?7*+{}[\]]

Si les conditions de position sont respectées pour le
tiret et I'accent circonflexe (#), comme ici, seul le
crochet fermant nécessite un échappement.

Notons que les expressions réguliéres POSIX,
complétees par PCRE, prévoient un certain nombre de
classes nommeées pour les cas usuels :

Tableau 1. Une partie des classes nommeées et
autres raccourcis PCRE

Description Notation abrégée Quelques
autres
formes
équivalentes

Description

\d

\D

[[:xdigit:]]

\w

\W

[[:alpha:]]

[[:alnum:]]

[[:lower:]]

[[:upper:]]

Notation abrégée

Un chiffre décimal

Un caractere qui n'est pas un chiffre décimal

Un chiffre hexadécimal

Un caractere composant un "mot"

Un caractere ne composant pas un "mot"

Une lettre

Une lettre ou un chiffre décimal

Une lettre minuscule

Une lettre majuscule

Tout caractere excepté \n. Noter que, de fait, .

est un métacaractere. Pour faire référence a
un simple caractéere point dans un motif, il
vous faudra I'échapper (\.).

Avertissement

Quelques
autres
formes
équivalentes

[0-9] ou
[[:digit:]]
[70-9] ou
[A\d] ou
[M:digit:]]
[0-9a-fA-F]
[0-9a-zA-Z_]

[A0-9a-ZA-
Z_]ou [MNw]

[a-ZA-Z]
[a-zA-Z0-9]
ou [[.digit:]
[:alpha:]] ou
[\d[:alpha:]]
[a-Z]

[A-Z]

[M\n]

e Nous aurons l'occasion de détailler la question plus

tard, mais sachez |
caractéres de I'ASCII non étendu (

u'Apache ne gére que les
oints de code dont

la valeur se situe dans l'intervalle [0;127]). Par
conséquent, toutes ces classes ne comprennent

notamment pas les caractéres accentués.

e Une classe, positive comme négative, ne correspond
qu'a un caractere a la fois. Une expression réguliere

telle que [~abc|def] n'interdit pas les sous-chaines

"abc" ou "def". Cette derniere a sens de : un. _
caractere quin'estnia, nib, nic,ni|, nid, nie, nif.
Dans la méme idée, on pourrait étre tente d'écrire
[~d]1[~e][~f] en pensant désigner une sous-chaine qui
n'est pas "def", ce qui est faux. Ce motif est beaucoup
plus large, il interdit bien la sous-chaine "def" mais
aussi toutes les variantes contenant au moins un de
ses caracteres ("dxy", "xey", x;gf etc seraient
également rejetées, ce qui est’bien different). La
solution pour interdire une sous-chaine n'est pas une
classe mais une assertion négative !

e Lorsque I'on désigne un intervalle par la forme X-Y au
sein d'une classe de caracteres, ceci implique que le
caractere Y possede un code ASCIl supérieur a celui
de X. Si cette condition n'est pas respectée, vous
déclencherez une erreur 500.

2.6. Groupement et mémorisation

J'ai volontairement raisonneé en terme de caracteres
Jusqu'ici dans la mesure ou les métacaracteres, de
quantifications notamment, sont "fainéants". lls ne
s'appliquent qu'a ce qui les précede directement, dong,

ar rapport a mes precédents exemples, a un_caractere
'D' pour ab*c). Heureusement, les métacaracteres
peuvent avoir un effet bien plus étendu qu'un simple
caractere, ce qui nous amene a la notion de
groupement. Il faut alors entourer de parentheses
comme nous le ferions en mathématiques en fait, la
partie du motif concernée. Par exemple : - (\d{3})+-
accepte une sous-chaine composée d'un multiple de 3
chiffres (et comprenant au moins 3 chiffres) entourée
de part et d'autre par des tirets.

Toutefois, cette notion de groupement va quelque peu
au-dela, puisqu'il existe une nuance selon que |'on
veuille, ou non, conserver en memoire la partie
correspondant a la sous-expression contenue entre ces
parentheses :

e avec meémorisation, forme (...): la sous-chaine qui
satisfait |a sous-partie du motif entre de telles
parenthéses est conservée en mémoire. Ceci permet
de s'y référer, a l'intérieur de I'expression réguliere en
cours comme en dehors, sous certaines limites, pour
usage ultérieur. Apache en permet jusqu'a 9.

e sans mémorisation, syntaxe 1?: ...) - bien que la forme
avec mémorisation soit plus largement utilisée sans
distinction, celle-ci possede 'avantage de ne pas
consommer inutilement de mémoire, méme si cette
consommation s'avere négligeable mais, d'autre part,
vu que le nombre de captures est tres limité, elle peut
is'averer nécessaire sur un motif tres complexe et
ong.

Il est parfaitement possible de mélanger ces deux types
de parentheses dans une méme expression, ce serait
méme conseillé pour ne capturer que ce qui est ensuite
réellement exploité. Prenons le motif .
~(?:topic|sujet|thema)- (\d+)-(?:(\d+)-)?.*\.html$ SOit le
mot "sujet" en anglais, francais ou allemand (sans le
capturer car cette'information est supposee inutilisée),
un tiret, un nombre (l'identifiant du sujet) que I'on
meémorise (capture n°1, premiere parenthese
capturante en partant de la gauche), un tiret,
éventuellement un autre nombre (le numeéro de la
page) que I'on capture (en 2) plus un tiret, un nombre
quelconque de caracteres (le titre du sujet pour le
référencement) et I'extension .html.

Avec la chaine "sujet-1234-creer-un-espace-membres-
en-php.html", guine comporte pas de numéro de page,
les captures sulvantes vont étre obtenues :

Tableau 2.
Numéro de la capture Texte capturé
0 sujet-1234-creer-un-espace-membres-en-php.html
1 1234

2 @ (inutilisé : rien)

Numéro de la capture Texte capturé

© O N o U A~ W
Q © 8 ¢ © Q Q

Quand, pour "topic-473-4-installer-un-bundle-avec-
composer.html", avec un numéro de page, ces captures
donneront :

Tableau 3.
Numéro de la
capture Texte capturé
0 topic-473-4-installer-un-bundle-avec-
composer.html

1 473

2 4

3 %)

4 %)

5 %)

6 @

7 %)

8 %)

9 @

Aux 9 captures possibles, s'en ajoute automatiquement
toujours une speéciale numérotée 0, dont le but est de
reprendre la sous-chaine qui satisfait I'intégralité de
I'expression réguliere. Nous verrons par la suite
comment exploiter concrétement ces captures.

Avant de poursuivre, évoquons a cette occasion le
piege de 'alternative (]), en rappelant que son sens est
'ce qui précede la barre verticale ou ce qui la suit".
Ainsi, I'expression rationnelle ~abc|def$ ne signifie pas la
chaine (exacte) "abc" ou "def" mais bien une chaine qui
commence par "abc" ou qui se termine par "def". En
effet, chacun des ancrages (" et $) est propre a |la sous-
partie de l'alternative ou il figure. Elle equivaut a (~abc) |
(def$). Pour écrire, je veux la chaine (exacte) "abc" ou
"def", il aurait fallu écrire : ~(abc|def)$. Autre exemple
commun : je veux désigner un fichier d'extension .html
ou .php, on écrira \. (html|php)$ €t NON \.html|\.php$ OU
I'ancre $ ne s'applique qu'a la partie \.php.

2.7. Les assertions négatives

Bien que les assertions soient peu souvent utilisées au
sein de la réécriture, je tenais a évoquer le sujet pour
au moins signaler leur existence. Une assertion
négative consiste a spécifier |'absence d'une sous-
chaine avant ou apres la position qu'elle occupe.

o (! T) : assertion négative avant, possede pour
signification "n'est pas suivi de". Exemple :
Aarticles/(?!fr/) : un chemin commencant par
"articles/" et qui n'est pas suivi de "fr/".

e (?<!...):assertion negative arriere, a sens de "n'est
pas precede de". Exemple : (?
<I"www)\.mondomaine\.fr$: un sous-domaine
quelconque de mondomaine.fr excepté (précisément)
www.mondomaine.fr.

Je dois avouer qu'elles ne sont que tres rarement
emFIo ées et qu'elles peuvent étre remplacées par une
regle de non reecriture préalable. Pour illustrer
admettons une reécriture ayant pour but d'avoir des

URL fictives du type article/<id>/<titre>.html renvoyant
sur article.php?id=<id> mais que pour une raison
quelconque, je veuille exclure |'article d'id 34 de cette
réécriture, il est possible d'écrire au choix :

RewriteRule "article/(?!34/) (\d+)/.+\.html$ article.php?
id=$1 [L,QSA]

ou

#RewriteRule "article/(\d+)(?<!/34)/.+\.html$
article.php?id=$1 [L,QSA]

Est équivalent a :

On ne fait rien pour id=34

RewriteRule "article/34/.+\.html$ - [L]

Pour tous les autres, on procede a la réécriture
RewriteRule "article/(\d+)/.+\.html$ article.php?id=$1
[L,QSA]

2.8. Epilogue

En combinant ces différents metacaracteres, il est
ossible de décrire bien des choses evoluées suivant un
ormat prédéfini. Quelques exemples :

e Un nombre entier, positif ou négatif, zéros non
significatifs autorises :

~-+17\d+$

e Un nombre quelconque :
AL-+172N\d+(7:\\d+) ?$

e Une adresse IPv4 :

~(?:(?:25[0-5112[0-41[0-91]1\d{2}[[1-9]1?\d)\.) {3}
(?:25[0-5]]2[0-4]1[0-9]|1\d{2}|[1-9]17\d)$

e etc

3. Partie théorique : activation et explication des
directives

3.7. Activation

3.1.1. Pour I'administrateur du serveur

Prétendre a l'usage de la réécriture d'URL implique avant tout d'activer le module,
dédié, correspondant qui se nomme mod_rewrite,. Editez votre fichier de _
configuration d'Apache, usuellement appelé httpd.conf, pour vous assurer que ledit
module (dynamique) est chargé par une directive LoadModule (décommentée) :

LoadModule rewrite module modules/mod rewrite.so

Note

* ceux qui auraient compilé Apache a la main et inclus mod_rewrite en module
statique n'ont bien évidemment pas besoin de cette ligne, ce module sera
(toujours) present

* les utilisateurs de distribution GNU/Linux Debian et ses dérivées (comme *buntu)
sont invités a utiliser la commande a2enmod a la place :

a2enmod rewrite

Maintenez ouvert dans votre éditeur le fichier de configuration d'Apache car l'activer

ne suffit pas si vous voulez faire usage de la réécriture depuis des fichiers .htaccess.

Eln egfet, vous devez vous assurer qu'Apache vous le permet. Ceci requiert en effet
es droits.

e D'une maniere générale, chaque directive se voit associer une catégorie (a la
compilation du module) parmi cinq (AuthConfig, FileInfo, Indexes, Limit et Options)
suivant la fonction qu'elle remplit. Ceci permet éventuellement a I'administrateur
de restreindre, via la directive AllowOverride, a ses utilisateurs celles qui peuvent
étre ou non utilisées dans un fichier .htaccess par la suite. Les directives de
réécriture font toutes partie de la catégorie nommée FileInfo.

e Cependant, la réécriture est volontairement bloquée de maniére artificielle par un
meécanisme supplémentaire de facon a pouvoir autoriser I'ensemble des directives
de type FileInfo sauf la réécriture pour raison de sécurité. En plus d'autoriser les
directives qualifiées FileInfo, il faut autoriser Apache a suivre les liens
symboliques, par I'option FollowSymLinks OU SymLinksIfOwnerMatch.

La seconde, autoriser Apache a suivre les liens symboliques, vous laisse deux
options :

e vous activez globalement, directement depuis le fichier de configuration d'Apache,
a ce que les liens symboliques soient suivis en modifiant la ligne Options du ou
des repertoires concernés pour y ajouter FollowSymLinks OU SymLinksIfOwnerMatch.
Dés lors, I'utilisateur n'a rien a faire de particulier dans son fichier .htaccess.

Pour résumer, cette solution implique deux modifications dans le fichier de
configuration d'Apache : s'assurer que les utilisateurs puissent recourirala
réécriture (AllowOverride a valeur FileInfo au minimum) et Apache doit pouvoir
suivre les liens (Options +FollowSymLinks Ou similaire). En clair :

<Directory C:/AMP/www/>

Listing de répertoire en 1'absence de fichiers d'index

Autorisation de suivre les liens symboliques (requis pour la réécriture
depuis les fichiers .htaccess)

Options Indexes SymLinksIfOwnerMatch

N

On permet a l'utilisateur de définir toute directive sauf celles de catégorie
Options

C'est FileInfo qui permet la réécriture

AllowOverride AuthConfig FileInfo Indexes Limit

Pour permettre l'accés de tous au répertoire (je le mets mais ca n'a rien a
voir avec la réécriture)
Apache < 2.4
<IfModule !mod authz core.c>
Allow from all
</IfModule>
Apache >= 2.4
<IfModule mod authz core.c>
Require all granted
</IfModule>
</Directory>

* ou, ma préférence, avoir confiance en I'utilisateur en lui laissant la possibilité de
tout utiliser. Aingi, il activerait lui-méme le suivi des liens symboliques, ce qui
demande alors & leur accorder plus de droits : il faut alors’leur donner options en
plus de FileInfo. Autant dire tout au final : votre directive AllowOverride doit alors
passer a valeur ALl mais vous n'avez pas besoin de modifier la Eartie Options, ce
sera a eux de I'ajouter dans leur .htaccess. Pour résumer, le fichier de
configuration dans ce cas de figure se présente plutdt ainsi :

<Directory C:/AMP/www/>
Listing de répertoire en l'absence de fichiers d'index
Il reviendra a l'utilisateur d'activer le suivi des liens symboliques
nécessaire a la réécriture
Options Indexes
On permet a l'utilisateur d'utiliser toute directive possible
AllowOverride All

Pour permettre l'accés de tous au répertoire (je le mets mais ca n'a rien a
voir avec la réécriture)
Apache < 2.4
<IfModule !mod authz_core.c>
Allow from all
</IfModule>
Apache >= 2.4
<IfModule mod authz core.c>
Require all granted
</IfModule>
</Directory>

Quelle méthode choisir ? Il n'?/ en a pas une meilleure que l'autre, ce qui compte ce
sont les limites que vous voulez, ou non, imposer et quelle confiance vous accordez
a vos utilisateurs. La premiére, du moins telle que je la vois, présente surtout
I'inconvénient de bloquer l'usage des directives de’type options a l'usager (si PHP
fonctionne en module, vous bloqueriez notamment les directives php_flag et
php_value). Est-ce vraiment ce que vous voulez ? Quand la seconde place une plus
grande confiance en ceux-ci et leur offre une plus grande liberté.

Avertissement

Si vous ne savez pas ce que vous faites, ne modifiez jamais la partie <Directory />.
Elle correspond a la racine du systéme de fichiers et’doit faire office de politique
restrictive par défaut !

La ou les parties que vous devez modifier sont celles qui sont publiées donc qui _
correspondent a votre racine (DocumentRoot) ou plus bas dans I'arborescence (a
I'exception des alias). En général, modifier les balises <Directory> qui reprennent les
valeurs des DocumentRoot suffit.

Note

Sur la plupart des distributions GNU/Linux et pour une installation d'Apache avec les
paquets officiels, la configuration d'Apache est découpée en plusieurs fichiers. Si tel
est le cas, c'est le fichier de configuration qui correspond a votre hote virtuel qu'il
faut chercher. Quelques exemples :

e Debian/*buntu : /etc/apache2/sites-enabled/000-default
¢ Gentoo : /etc/apache2/vhosts.d/default vhost.include

A moins d'attendre le (re)démarrage de votre machine, il vous est nécessaire de
recharger la configuration d'Apache ou de relancer Apache.

e Sous GNU/Linux, la commande ressemble généralement a :

initscripts
/etc/init.d/apache2 reload
systemd

systemctl reload apache2

* FreeBSD, pour Apache 2.2:

service apache22 restart
ou
/usr/local/etc/rc.d/apache22 restart

3.1.2. En tant qu'utilisateur

Il est nécessaire, partout ou vous aurez des regles de réécriture, d'activer
explicitement la réécriture par une directive :

RewriteEngine on

En effet, il ne suffit pas de placer des regles dans un fichier .htaccess, ou méme
dans le fichier de configuration d'Apache, pour qu'elles soient opérantes. Ceci pour
des raisons de performance tout comme cela peut vous permettre de désactiver
temporairement votre réécriture.

Bien %u'il soit possible d'activer globalement la réécriture par une directive '
RewriteEngine on au niveau de chaque hote (VirtualHost) pour ne pas avoir besoin

de la repreciser partout, je vous le déconseijlle fortement de facon a ne pas en subir
inutilement le contre-codt. C'est pourquoi, ici, elle sera systématiquement accolée a

nos régles.
3.2. Principe général

Avant de savoir comment déclarer ses régles au niveau d'Apache, il est vital de bien
assimiler ce qu'est une URL et, surtout, de quoi elle se constitue. Une URL est en
effet composée de différentes parties. Pour les détailler, prenons en modéle une
URL particulierement complete :

https://www.monsite.fr:8443/forum/admin/task.php?page=db&start=30#p71

Elle se décompose comme suit :

1. le nom du protocole qui précede les ";//" en téte. En principe, ici, il ne peut qu'étre
a valeur “http” ou “https”(la version sécurisée - encapsulée par SSL - du protocole
HTTP comme dans I'exemple). Il définit la maniére dont client et serveur
communiquent ;

2. vient ensuite, le nom (ou I'adresse IP directement) (www.monsite.fr dans
I'exemple) du serveur a qui le client s'adresse ;

3. optionnellement, si le serveur écoute sur un port non standard par rapport au
protocole (80 pour http et 443 pour https), le client devra I'indiquer directement
aprés le nom ou l'adresse du serveur en ajoutant entre les deux un caractere ':".
C'est le cas de notre exemple, avec pour port TCP : 8443 ;

4. puis on trouve la partie la plus importante : e chemin (/forum/admin/task.php
dans I'exemple). Elle désigne la ressource que le client veut consulter. Pour
schématiser, il faut voir le serveur HTTP. comme un disque dur distant ou ce
chemin indiquerait le nom complet du fichier que vous désirez lire ;

5. éventuellement, on peut ensuite trouver ce que |'on appelle la query string ou, en
francais, la chaine de requéte. Quand elle est présente, elle est séparée du chemin
Par un point d'interrogation (?). Elle consiste a fournir des informations sous la

orme de cou5)les nom=valeur facultative ou chaque paramétre est séparé par un
caractére &. Dans notre exemple il s'agit de la partie page=db&start=30 qui
correspond a deux parametres : page de valeur db et start de valeur 30.Sila
ressource invoquée le prévait, cette page traite ainsi ces données, ce qui peut lui
permettre d'avoir un caractere dynamique. Elle est trés couramment employée
ar les langages scripts tel PHP, pour, par exemple, avoir un script unique gerant
‘affichage d'une fiche produit plutét qu'un fichier HTML a maintenir par article :
I'identifiant du produit ciblé est passé en query string pour que ce script génére
dynamiquement sa description a partir des données de la base de données.

6. en fin d'URL, précédée d'un caractere diése (#), on peut potentiellement trouver ce
que I'on appelle une ancre. Elle désigne, par un nom (p71 ici), une position
verticale au sein d'une ressource vers laquelle vous étes automatiquement
déplacé. Cela vous évite de chercher et de scroller si le document est long.

De fait, notez que cette derniere partie de I'URL n'a de sens que pour un client : le
serveur n'aurait que faire d'un emplacement dans une page. Le client n'envoie
pas une ancre au serveur (ce morceau est supprimé de I'URL
effectivement transmise au serveur HTTP). En revanche, il peut étre tout
a fait pertinent, pour le serveur, d'en fixer une au client.

3.3. Travailler uniguement sur le chemin HTTP

Dans un premier temps nous n'allons considérer et travailler que sur la partie
chemin de I'URL. Nous ignorons tout le reste, les protocole, adresse, port et query
string.

Tout se joue sur la directive RewriteRule dont je vous présente la forme ci-dessous :

RewriteRule <motif> <destination> ([<options>])

1. motif: une expression réguliére que la partie chemin doit satisfaire pour voir la
régle appliquée.
|| faut cependant noter une subtilité par rapport aux chemins suivant
I'emplacement de vos directives RewriteRule :

o dans le(s) fichier(s) de configuration d'Apache, excepté les parties <Directory>,
le chemin a partir duquel RewriteRule travaille est le chemin complet de la
ressource, qui commence toujours par un slash. Par exemple, pour des
regles directement située dans le fichier de configuration d'Apache et I'URL
http://www.mondomaine.ext/forum/profil-3-toto:

RewriteRule ~forum/profil-(\d+)-.+ viewprofil.php?id=$1

Ne seraitd‘amais appliquée du fait de I'ancrage sur le début de la chaine et le
manque du slash au debut.

o al'inverse, pour des régles situées dans un fichier .htaccess ou des blocs
<Directory>, le chemin sur lequel RewriteRule se base est relatif au répertoire
du fichier’.htaccess. C'est-a-dire que toute la partie qui correspond au
répertoire ou se trouve le fichier .htaccess est d'abord automatiquement
tronquée i)ar Apache. En conséquence, le chemin ne commence jamais
par un slash.

Prenons I'URL http://www.mondomaine.ext/a/b/c/d avec un fichier .htaccess
dans le sous-répertoire b,}e dois alors ignorer la partie /a/b/ (dernier slash
compris) soit employer Ac/d$ comme motif de ma régle :

RewriteRule "~c/d$ c/e [L,R=permanent]

2. destination :

o un chemin HTTP absolu (/rss.xml : le fichier rss.xml a la racine du site) ou relatif
(forum/topic.php : bien que pas tout a fait exact, le fichier toplc.th u sous-
répertoire forum du répertoire ou se situe le fichier .htaccess) : [e chemin de la
ressource a atteindre au travers du serveur HTTP.

o une URL complete (http://www.google.fr/) : une redirection HTTP (temporaire,
par défaut) aura lieu vers la nouvelle destination. Comme il ne s'agit plus
du méme hote/domaine, c'est bien une redirection HTTP qui est
Oﬁeree. Celle-ci est suivie par le client, ce dernier verra son URL
changer.

o un chemin vers un fichier (tel C:/tmp/maintenance.html), uniquement possible
depuis les fichiers de configuration d'Apache, sachant que les droits d'acces
sont honorés (Par rapport aux directives Allow/Deny, ou Require en versions
2.4, en application).

o ne rien faire par la valeur spéciale tiret i-). L'URL reste alors inchangée. Comme
nous pourrons le voir plus bas, cette valeur est liée a I'usage de certaines
options mais permet aussi d'écrire des regles de non-réécriture afin de réaliser
des exceptions.

3. options : une liste facultative d'options, parmi celles détaillées ci-dessous. Ces
options sont encadrées par des crochets et separeeseoar des virgules. Exemple :
EjNC,F] po;i"orgles options NC, insensibilité a la casse et F, retour d'un code HTTP

‘erreur .

Avertissement

Veillez a ne Eas ajouter d'espace apreés la virgule sans quoi vous obtiendriez une
erreur 500. En effet, un espace marque le passage a un nouvel argument des
directives Apache, ce qui rendrait votre regle invalide.

Tableau 4. Les différentes options possibles pour RewriteRule

Abréviation Nom long Description Note

F forbidden Interdit virtuellement I'accésa o || n'y a pas lieu de modifier la
UITe MESEEIIngs E) Moy requéte, le deuxiéme paramétre
un Statut FITTP 7403 devrait étre a valeur "-"

o La lecture du .htaccess est
interrompue (l'option Last est
implicite)

o F est synonyme de R=403 a partir
des versions 2.2

o Suivant le contexte, une telle
regle peut éventuellement étre
remplacée par une directive
Deny from all (ou Require all
denied a partir de la version
2.4.0)

Abréviation

G

R(=code)

NC

NE

QSA

Nom long

gone

redirect

nocase

noescape

gsappend

Description

Indique virtuellement que
toute ressource correspondant
au motif n'existe plus par un
statut HTTP "410 Gone"

A l'origine, cette option est
prévue pour effectuer une
redirection HTTP temporaire
ou permanente. Depuis les
versions 2.2, il est possible de
renvoyer d'autres codes HTTP
(403, 404, etc).

Rend I'ensemble du motif de la
directive RewriteRule courante
insensible a la casse

Par défaut, Apache encode
tout caractére pouvant
s'avérer problématique. Si
vous voulez conserver vos
caractéres tels que vous les
avez écrit, ajoutez cette
option.

Reproduire la chaine de
requéte (query string)
précédente a la fin du nouveau
chemin a suivre

Note

o Il n'y a pas lieu de modifier la
requéte, le deuxiéme paramétre
devrait etre a valeur "-"

o Lalecture du .htaccess est
interrompue (l'option Last est
implicite)

o G estsynonyme de R=410 a
partir des versions 2.2

o Une telle regle peut étre
remplacée par Redirect ou
RedirectMatch

Valeurs permises pour code :

o R=temp ou R=302: procede a
une redirection temporaire. Il
s'agit la du comportement par
détaut de cette option en
I'absence de toute valeur de code
(voir aussi les directives Redirect)

o R=permanent ou R=301 : réalise
une redirection permanente (voir
aussi les directives Redirect)

o R=seeother ou R=303 (voir aussi
les directives Redirect) : indique
que la réponse se trouve a une
autre adresse (en méthode GET)

o R=un code HTTP numérique
valide : permet de renvoyer le
code d'erreur HTTP indiqué. Par
exemple, avec R=404, nous)
pourrions faire passer une partie
de I'arborescence comme
inexistante aux clients

Note

Le drapeau R n'induit pas
implicitement Last dans tous les
cas, c'est pourquoi il est vivement
recommandé de le préciser sous
peine de rencontrer une possible
erreur sur les autres regles.

Rappel : elle ne concerne que les caracteres de
I'ASCIl non étendu

Cette option est notamment requise pour faire
figurer une ancre dans la partie destination
sans quoi le diése est encodé en %23. Ce qui
conduit a une erreur 404.

Abréviation Nom long Description Note
QsD gsdiscard Ne pas recopier la chaine de Nécessite Apache >= 2.4.0. Il existe cependant
requéte (query string) avant la un équivalent portable consistant a ajouter un
réécriture courante point d'interrogation a la fin du chemin de
destination. Il indique a Apache de ne pas
recopier la query string (et ce point
d'interrogation sera supprimé de la requéte).
L last Par défaut, Apache continue la N'espérez pas échapper a une boucle infinie de
lecture des régles aprés en réécriture avec cette option. En effet, cette
avoir trouvé une premiére qui option ne stoppe que le processus courant or
s'applique (c'est alors la lors de I'application de toute regle, la nouvelle
nouvelle URL qui doit matcher URL subit a son tour toute éventuelle regle de
les RewriteRule restantes). réécriture suivant ou elle aboutit. Lorsqu'il y a
Pour qu'il I'applique une boucle, si vous revenez sur le méme
immédiatement, sans répertoire, donc les mémes regles, le flag Last
poursuivre sa lecture, ajouter ne vous sauvera pas.
cette option.
E end Met fin a tout processus de Requiert Apache >=2.4.0

réécriture.

Voici quelques premiers exemples simples :

e Embellir les URL de mon blo% de fagon a les Prpduire pour qu'elles aient pour
forme : article-<id>-<titre>.html et qu'en réalité elles aboutissent, comme avant,
sur article.php?id=<id>:

RewriteRule ~article- (\d+)-.+\.html$ article.php?id=$1

e Renvoyer tout ce qui n'a pas d'extension et qui n'est pas un répertoire, au sens ou
le chemin n'est pas terminé J[o_ar un slash, en query string, en tant que valeur du
parametre page, sur le script index.php :

RewriteRule "~[a-z]+$ index.php?page=$0

* Faire passer ses scripts PHP pour de bétes fichiers HTML statiques (ne pas oublier
de changer I'extension des fichiers en .html dans vos différents liens - balises <a>
notamment) :

RewriteRule (.*)\.html$ $1.php

3.4. Interactions entre les regles

Je souhaite, dans cette partie, vous expliquer de maniere simplifiée, en mettant
volontairement de c6té certains aspects techniques qui seront abordés bien plus
tard, comment Apache lit et apOPqu_ue les régles pour un fichier .htaccess donne.
C'est un point essentiel a la rédaction de vos regles : il est important de comprendre
comment et en quoi les regles interagissent. Interactions qui, concretement,
peuvent se traduire a voir Certaines regles invoquées au détriment d'autres alors
que ce n'est pas ce qui était voulu.

Avant tout, méme si cela peut paraitre béte : les regles de réécriture sont évaluées
de haut en bas : la premiere a apparaitre dans le fichier puis la deuxieme puis la
troisieme et ainsi de suite. Par conséquent :

* méme s'il ne s'agit que d'une question d'expressions régulieres et de logique, vous
ne pouvez pas avoir deux motifs strictement identiques ou trés proches. J'ai déja
vu des régles comme celles-ci :

Cet exemple est volontairement erroné pour des fins pédagogiques
RewriteRule *~([0-9]+)-([0-9]+)-(.*)\.html$ index.php?menu=$1&rubrique=$2 [L]
RewriteRule ~([0-9]+)-([0-9]+)-(.*)\.html$ index.php?menu=$1l&page=$2 [L]

Comment Apache, ou méme quiconque, pourrait-il distinguer les deux cas ? Ce
qu'il va faire, conformément a ce que je viens d'écrire (et Si le chemin correspond
bien évidemment), c'est toujours appliquer la premiére. Du coup, la seconde, ne
sera jamais utilisée.

du fait de ce sens de lecture, les régles doivent étre placées par ordre de
spécificité décroissante, celles aux motifs les moins larges en haut de sorte
gu'elles aient priorité. Illustration avec un nouvel exemple a ne pas suivre :

Cet exemple est volontairement erroné pour des fins pédagogiques
RewriteRule “viewtopic-([0-9]+).* viewtopic.php?id=$1 [L]
RewriteRule “viewtopic-([0-9]+)-([0-9]+).* viewtopic.php?id=$1&p=$2 [L]

u'est-ce qui ne va pas ici ? La seconde régle est plus précise puisqu'elle attend un
chemin composé de "viewtopic-", un nombre, un tiret puis un nombre enfin,
optionnellement, n'importe quoi quand la premiére est satisfaite par un chemin
constitué de "viewtopic-", un nombre enfin, optionnellement, n'|m80rte uoi. La
sous-partie .* de la premiére regle est en conflit avec la portion L[-9]+).* de la
seconde du fait que .* inclut -([0-9]+).*. Conséquence : pour les chemins auxquels
seraient applicables la seconde régle, c'est la premiéere qui se verrait invoquée ; la
seconde ne le serait jamais non plus.

Comment résoudre ce conflit 7 J'ai déja donné la solution en réalité : elles doivent
tout simplement étre inversées pour respecter cette notion de priorité par rapport
a la spécificité respective de leur expression réguliere.

RewriteRule “viewtopic-([0-9]+)-([0-9]+).* viewtopic.php?id=$1&p=$2 [L]
RewriteRule “viewtopic-([0-9]+).* viewtopic.php?id=$1 [L]

Un autre exemple ou elles doivent étre inversées :

Cet exemple est volontairement erroné pour des fins pédagogiques
RewriteRule (["~/1+)/(["/+]) index.php?paraml=$1¶m2=$2 [L,QSA]
RewriteRule ([~/1+)/(["/+]1)/([~/+4]) index.php?paraml=$1¶m2=$2¶m3=$3 [L,QSA]

La premiére étant satisfaite par la présence du moindre slash.

Il arrive parfois (cqjue ce soit I'omission d'ancrages (" et/ou $) qui conduise a un tel
conflit. Dans ce dernier exemple, un ancrage, suivant le but recherché, pourrait
méme s'avérer plus approprie.

Autre point a éventuellement prendre en compte, la présence ou |'absence de
drapeaux spécifiques. Pour schématiser, dés la réception d'une requéte HTTP,
Apache va initialiser une variable en mémoire que j'appelle "adresse courante" a

i

artir de I'URL initialement appelée. Elle sert de référence aux comparaisons avec

s regles tout comme elle peut déterminer I'adresse a suivre. La réécriture peut en

modifier la valeur. Ainsi quand une régle est satisfaite, certaines options peuvent
influer de maniére totalement différente sur le déroulement de la réécriture :

END ou F(orbidden) : Apache stoppe sa lecture des regles, le résultat de la regle (la
destination, deuxieme parametre de RewriteRule) entre en vigueur _
immédiatement sans que la nouvelle adresse obtenue puisse subir par la suite
une quelconque réécriture (fin définitive).

L(ast) : Apache ne poursuit pas la lecture des régles, la regle courante est
appliquée, I'adresse obtenue de cette regle est suivie/invoquée mais cette
derniére est a son tour éligible a toute reécriture. En d'autres termes, pour
Apache, ce résultat de réécriture n'apparait pas comme tel mais bien comme toute
requéte HTTP. Nous reviendrons sur ce drapeau particulier par la suite.

A défaut, sans aucun de ceux-ci : Apache va tout de méme continuer a lire les
autres régles, I'adresse courante, servant de base a la réécriture, devient le
résultat de la régle courante. C'est cette nouvelle adresse qui va servir de base a la
comparaison des regles suivantes.

Si jamais la fin des régles est atteinte (la fin du fichier .htaccess par exemple), qu'il
y ait eu ou non une précédente réécriture, I'adresse courante est invoquee.

Ci-dessous une représentation graphique illustrant le traitement des régles :

[Adresse courante |
| = URLinitiale
\‘*-—

) J

Lire la régle suivante

=

7 Nyen T Application de / Fin temporaire
avait-t-il plus e Ooul |'adlr’)é55; COUVaHtF > (cycle courant de
on ? - reécriture)
nen
L'adresse
courante

satisfait-elle le
motif ?

La régle courante " R [/ Fin temporaire
< comporte-t-elle Z—oUli rp’fuplgltrzgo\g S; . > (cycle courant de
le flag Last ? - g réécriture)

" La régle courante Fin définitive
Application du
comporte-t-elle =0l e e e Ll (plus aucune
le flag END ou F ? 9 réécriture)
Adresse courante =
résultat de la régle

3.5. Les conditions pour travailler sur les autres parties de
I'URL et au-dela

Nous avons vu plus tdt qu'une directive RewriteRule ne s'applique qu'a la partie
chemin d'une URL. N'est-ce pas contraignant ? Non parce que le module de
réécriture prévoit une directive complémentaire, RewriteCond, pour gérer tout le
reste, autres parties d'une URL (nom de domaine, port, query string, etg‘) comprises.
RewriteCond a pour role de définir une condition (telle une instruction if dans un
langage de programmation quelconque), restreignant ainsi I'effet de la régle,
directive RewriteRule, qui la suit et a laquelle elle est couplée.

RewriteCond <chaine a tester> <condition> (<options>)

1. chaine a tester: la valeur a tester consiste en un élément interne a Apache
décrivant notamment la requéte HTTP courante comme le nom du serveur que le
client cherche a atteindre, la valeur d'un entéte HTTP, la chaine de requéte, etc.
Tous ceux-ci sont représentés par une variable nommeée prédéterminée de la

forme %{nom} dont vous pourrez trouver une liste dans la partie suivante avec leur
description respective.

2. condition : la condition que chaine a tester doit satisfaire pour que la régle soit
appliquée (si Apache évalue la partie RewriteCond d'une regle, le chemin, par
rapport a RewriteRule, correspond déja), Cette partie se constitue d'un opérateur
et éventuellement d'une valeur accolée a ce dernier (sans espace). Par defaut,
I'opérateur implicite est la satisfaction d'une expression réguliere et la partie
valeur est traitée comme une expression réguliere.

3. options : dans la méme veine que RewriteRule, une liste facultative d'options,
entre crochets et séparées par une virgule (sans espaces), parmi :

Tableau 5. Les options de la directive RewriteCond

Abréviation Nom Description Note
long
NC nocase Rend I'ensemble du motif de la directive Rappel : elle ne concerne que les
RewriteCond courante insensible a la casse caracteres de I'ASCIl non étendu
OR ornext Unit la condition courante a la suivante par

un OU logique au lieu d'un ET

En d'autres termes, une directive RewriteCond n'a pas de sens seule, elle est
toujours associée a une RewriteRule, celle qui suit. Cela signifie également qu'une
diréctive RewriteCond n'est valable que pour une seule regle, ne comptez pas les
factoriser, il vous faudra les répéter. Démonstration : si vous voulez forcer |'usage
du protocole HTTPS pour deux scripts, login.php et register.php, vous ne pouvez pas
écrire :

RewriteCond %{HTTPS} !'=on [NC]
RewriteRule ~login\.php$ https://%{HTTP_HOST}/$0

RewriteRule ~register\.php$ https://%{HTTP_HOST}/$0

C'est faux, cela produit une boucle de réécriture sur register.php en https, car
RewriteCond vaut bien pour la premjére RewriteRule mais pas pour la seconde. La
correction est de reproduire la condition pour les deux regles :

RewriteCond %{HTTPS} !=on [NC]
RewriteRule ~login\.php$ https://%{HTTP_HOST}/$0

RewriteCond %{HTTPS} !=on [NC]
RewriteRule “~register\.php$ https://%{HTTP_HOST}/$0

Jusqu'ici j'ai employé le singulier en évoquant le couple condition .
(Rewrite ond)/r.eée (RewriteRule) or, pour reprendre ma précédente analogie, tel
un programme informatique, une méme instruction peut dépendre de plusieurs
conditions et non d'une seule. Il est parfaitement possible d'assigner plusieurs
conditions, a raison d'une par ligne, par autant de directives RewriteCond, a une
méme régle. Pour illustrer, admettons que je veuille interdire mon site a deux
adresses 1P, 80.10.250.23 et 81.71.12.78, j'écrirai :

Cet exemple est faux

L'adresse IP courante du client est représentée par la variable %{REMOTE_ADDR} -
ces variables sont détaillées dans la partie suivante

RewriteCond %{REMOTE_ADDR} =80.10.250.23

RewriteCond %{REMOTE_ADDR} =81.71.12.78

RewriteRule .* - [F]

Cependant, il faut noter que, par défaut, I'ensemble des conditions d'une régle
donnée sont liées par un et [ogique. La régle ci-dessus ne peut jamais étre satisfaite
: le client ne peut avoir a |a fois I'adresse IP 80.10.250.23 et, en méme temps,
81.71.12.78. Nous avons besoin d'un ou logique a la place (le client a I'adresse IP

80.10.250.23 ou 81.71.12.78) sojt introduire |'option [OR], vue ci-dessous, a la fin de
la premiére condition. Notre réécriture, apres correction, devient :

RewriteCond %{REMOTE_ADDR} =80.10.250.23 [OR]
RewriteCond %{REMOTE ADDR} =81.71.12.78
RewriteRule .* - [F]

Une autre facon de 1'écrire

Apache < 2.4

<IfModule !mod authz core.c>
Order Deny,Allow
Deny from 80.10.250.23 81.71.12.78

</IfModule>

Apache >= 2.4

<IfModule mod authz core.c>

<RequireAll>
<RequireNone>
Require ip 80.10.250.23 81.71.12.78
</RequireNone>
</RequireAll>
</IfModule>

Vous pourrez trouver ci-dessous I'ensemble des opérateurs s'appliquant a
RewriteCond. lls sont scindés en deux groupes : le premier a pour but de tester le

premier parametre par rapp

ort a une valeur (chaine, entier, expression réguliére)

attendue juste derriere I'opérateur quand le second n'attend pas de telle valeur car
ils testent la nature d'un fichier dont le nom est fourni en premier parametre.

Tableau 6. Les différents opérateurs de comparaison

Opérateur

Aucun
(absence
d'opérateur)

Description

Satisfaction de
I'expression
réguliere

Non satisfaction de
I'expression
réguliere

Egalité (littérale)

Inégalité (littérale):
différent de

Strictement
inférieur selon
|'ordre
lexicographique

Supérieur ou égal
selon l'ordre
lexicographique

Strictement
supérieur selon
I'ordre
lexicographique

Inférieur ou égal
selon I'ordre
lexicographique

Note

Apache 2.4 a introduit la forme équivalente >= plus explicite

Apache 2.4 a introduit la forme équivalente <= plus explicite

Opérateur Description Note

-eq Egalité numérique
¢ Les deux chalnes sont converties en entiers (fonction
C atoi) puis comparés.
e Apache >=2.4.0 mais non fonctionnel pour Apache <
2.4.3 pour cause d'implémentation erronée (pris pour
une expression réguliere)
-ne Inégalité numérique Mémes remarques que pour l'opérateur -eq
-ge Numériquement Mémes remarques que pour |'opérateur -eq
supérieur ou égal
-gt Strictement Mémes remarques que pour l'opérateur -eq
supérieur
numériquement
-le Numériquement Mémes remarques que pour |'opérateur -eq
inférieur ou égal
-It Strictement Mémes remarques que pour l'opérateur -eq
inférieur

numériquement

Avertissement

La notion d'ordre lexicographique est totalement fausse a cause d'une erreur
d'implémentation dans la fonction strcmp qui a été réécrite au sein du module de
réécriture : elle tient avant tout compte de la longueur des deux chaines. De ce fait,
si deux chaines n'ont pas la méme longueur, c'est |a plus longue des deux qui est
considérée comme supérieure sans méme considérer leurs contenus. Pour illustrer,
la comparaison de alexendra, brian et zephir donne, pour Apache : alexendra >
zephir > brian (de la plus longue a la plus courte).

Seuls les opérateurs < et > sont impliqués, pas les (in)égalités, et deux chaines de
méme longueur ne posent aucun soucis ce qui confére a ce bug un effet trés limité
et lui vaut d'avoir été aussi longtemps "ignoré". Cependant, il ne sera probablement
pas corrigé de si tot pour des raisons de compatibilité (il est volontairement
conservé en versions 2.2 et 2.4 afin de garder le méme comportement). En
revanche, en versions 2.4, la syntaxe alternative a base d'expression (RewriteCond
expr condition) ne le reprend pas, cette forme est bien correcte.

En réalité, elle aurait été correcte pour comparer des nombres entiers positifs sans
zéro non significatif sous forme de chaines. Mais ne comptez pas représenter, par
exemple, un intervalle d'adresses IP avec ces opérateurs, du moins avec la forme
standard de RewriteCond.

Tableau 7. Les opérateurs fichiers, qui peuvent également étre niés en les
précédant d'un!

Opérateur Description

-d Le fichier existe et désigne un répertoire

-f Le fichier existe et correspond a un fichier régulier

-s Le fichier existe, est un fichier régulier et possede une taille non nulle

-l Le fichier existe et est un lien symbolique

-X Le fichier existe et est exécutable

3.6. Les différentes variables de réécriture

Les "variables" prédéfinies par le module de réécriture prennent la forme %
{nom_de_la_variable}. Toute variable inexistante se verra interpolée (=
dynamiquement remplacée) par la chaine vide sans I'émission d'une quelconque
efreur.

Avertissement

Cette interpolation n'a lieu que pour le premier paramétre de RewriteCond et
deuxiéme parametre de RewriteRule. Toute variable figurant ailleurs qu'a ces
emplacements ne seront pas substituées par leur valeur, elles seraient littérales.

Vous trouverez ci-dessous la liste de ces variables prédéfinies, regroupées par
catégorie fonctionnelle :

Tableau 8. Les variables reprenant la configuration d'Apache
Nom Description

%{SERVER_ADMIN} Correspond a la valeur de la directive ServerAdmin attribuée au serveur
%{DOCUMENT_ROOT} La racine du site, telle qu'elle est définie par la directive DocumentRoot
%{SERVER_NAME} Le nom réel du serveur, la valeur de sa directive ServerName

Tableau 9. Les variables liées a la communication client/serveur (TCP/IP,

réseau)
Nom Description
% L'adresse IP du serveur traitant la demande

{SERVER_ADDR}

% Le port TCP du serveur ayant recu la requéte HTTP (80 : port standard du protocole HTTP et 443

{SERVER_PORT} pour HTTPS)

% L'adresse IP du client (ce client peut n'étre qu'un intermédiaire - proxy)
{REMOTE_ADDR}

% Le nom du client, ceci implique HostnamelLookups a valeur On ou Double (attention aux
{REMOTE_HOST} conséquences) sinon elle n'existe pas

% Le port TCP du client employé pour I'émission de la requéte
{REMOTE_PORT}

Tableau 10. Les variables propres au protocole HTTP

Nom Description Exemple Note

%{HTTP_HOST} Le nom du www.monsite.fr Identique a %
serveur tel {HTTP:Host}

que demandé
par le client
par
I'intermédiaire
de l'entéte
HTTP Host

%{REQUEST_URI} La ressource /forum/admin/task.php Voir également
telle que la variable %
demandée {THE_REQUEST}

dans la
requéte HTTP,
Vous aurez
son chemin
complet
méme dans un
contexte dit
"de répertoire"

Nom

9%{THE_REQUEST}

%{HTTP_COOKIE}

%{HTTP_ACCEPT}

%{HTTP_REFERER}

%{QUERY_STRING}

%
{REQUEST_METHOD}

%
{HTTP_USER_AGENT}

%{SCRIPT_FILENAME}
et %
{REQUEST_FILENAME}

%
{SERVER_PROTOCOL}

%{HTTP:nom d'un
entéte HTTP}

Description

La ligne
complete de la
requéte HTTP
(sans les
entétes)

Une chaine
regroupant
I'ensemble des
cookies que le
client renvoie

Les formats
acceptés et
préferences
du client

La provenance
de l'utilisateur

Les
parametres
passés dans
I'URL,
regroupés
sous la forme
d'une chaine.
Elle représente
toute la partie
située apres le
point
d'interrogation
(exclus), si tant
estqu'ily en
est une

La méthode
HTTP
employée par
la requéte
(généralement
GET ou POST)

L'identifiant du
client

Chemin
complet
(absolu) du
document
appelé

La description
du protocole
employé

La valeur de
I'entéte HTTP
pour le nom
donné

Exemple

GET /forum/admin/task.php?page=db&start=30 HTTP/1.1

skin=blue; pref_order=asc (deux cookies : skin de valeur

blue et pref_order de valeur asc)

text/xml,application/xml,application/xhtml+xml,text/html;
g=0.9,text/plain; q=0.8,image/png,*/*; q=0.5

page=db&start=30

GET

Mozilla/5.0 (Windows; U; Windows NT 5.1; fr; rv:1.8.1.11)
Gecko/20071127 Firefox/2.0.0.11

/usr/local/www/apache22/data/forum/admin/task.php

HTTP/1.1

Tableau 11. Les variables temps, date/heure du serveur

Nom

Description

Note

Un raccourci
pour %
{HTTP:Cookie}

Méme chose
que %
{HTTP:Accept}

Strict
équivalent de %
{HTTP:Referer}

Synonyme de %
{HTTP:User-
Agent}

Nom

%

{TIME_YEAR}

%

Description

L'année sur 4 chiffres

Le mois sur 2 chiffres (de 01 a 12)

{TIME_MON}

%{TIME_DAY} Le jour du moins sur 2 chiffres (avec un zéro initial si besoin)

%

Le jour de la semaine au format numérique : 0 pour dimanche, 1 pour lundi, ... a 6 pour samedi

{TIME_WDAY}

%

L'heure, au format 24h, avec les zéros initiaux (de 00 a 23)

{TIME_HOUR}

%{TIME_MIN} Les minutes sur 2 chiffres (de 00 a 59)

%{TIME_SEC} Les secondes sur 2 chiffres (de 00 a 59)

%{TIME}

Equivalent abrégé de %{TIME_YEAR}%{TIME_MON}%{TIME_DAY}%{TIME_HOUR}%{TIME_MIN}%
{TIME_SEC}, la concaténation des année, mois, jour, heures, minutes, secondes des date/heure
courantes du serveur

Tableau 12. Les variables héritées du module mod_ssl lorsque le protocole est

HTTPS

Nom

%{HTTPS}

%{SSL:nom

Description

Booléen (valeur "on" ou "off") indiquant I'usage ou non du protocole sécurisé (peut étre
employée indépendamment de la présence ou non du module ssl)

La valeur de la variable SSL désignée. Voir la liste dans |la documentation d'Apache

variable SSL}

Tableau 13. Accés aux variables d'environnement

Nom

%{ENV:nom
variable

Description

La valeur de la variable d'environnement pointée (ou la chaine vide si inexistante). Attention
1 VOUS ne pourrez pas atteindre les variables d'environnement déclarées par SetEnv car elles

d'environnement} Sontcréées aprés.Au besoin, pour lever cette limitation, remplacez vos directives Setenv

par SetEnvif(NoCase) en la couplant a un motif qui sera toujours satisfait (* ou .*
notamment)

Tableau 14. Références arriéres

Nom

$X avec X
tel que
[1;9]

$0

%X avec X
tel que
[1;9]

%0

Description

o~ - iem 5 . . .
Référence arriére pour la X eme parenthese capturante de la directive RewriteRule courante. Toutes
les références arriéeres ($0 comprise) sont indisponibles pour une regle RewriteRule dont le motif est
nié

Référence arriére spéciale toujours disponible mémorisant la sous-chaine satisfaisant I'ensemble de
I'expression réguliére de la directive RewriteRule courante

Référence arriere pour la x'€me
régle courante

parenthese capturante de la derniére directive RewriteCond pour la

Référence arriere spéciale toujours disponible mémorisant la sous-chaine satisfaisant I'ensemble de
I'expression réguliére de la derniére directive RewriteCond pour la régle courante

http://httpd.apache.org/docs/2.2/mod/mod_ssl.html#envvars

4. Quelgues exemples
d'applications de la réecriture

4.1. Interdire 'acces direct aux images
depuis un site extéerieur (direct linking ou
hotlinking) ?

En théorie, quand un client HTTP demande une _
ressource, il envoie dans le méme temps un entéte
HTTP nommé Referer indiquant sa page d'origine. Ainsi,
il serait possible de bloquer voire remplacer le .
chargement de toute image que vous hebergez depuis
un autre site.

En pratique, étant donné que c'est le client qui fournit
cette information, il est libre de I'omettre ou de la
falsifier, que ce soit volontaire ou non.

Malgré le peu de crédit qu'il faut accorder a cet entéte,
réalisons tout de méme cette tache avec la réécriture
pour un but didactique :

e |aregle ne doit s'appliquer qu'aux images, noms se
terminant par .gif, .png, .jpeg, etc soit repondant au
motif \.(?7:9if|jpe?g|png)$. Il est possible d'ajouter
I'option NC pour que ces extensions soient
insensibles a la casse ;

e bien que nous pourrions remplacer les images par
d'autres, nous nous contentons d'interdire Teur
consultation en renvoyant une erreur HTTP de code
403. Par conséquent, nous n'avons pas besoin de
modifier I'URL : le deuxieme parametre doit étre le
tiret (-) et nous ajoutons l'option F a RewriteRule ;

e Viennent les conditions (directives RewriteCond) sur
la valeur de I'entéte HTTP Referer représentée par la
variable s{HTTP REFERER} (OU %{HTTP:Referer}) :

o une premiéere pour permettre (donc il faut la nier
puisque la regle interdit) la chaine vide, qui
correspond théoriguement a un acces direct
(I'utilisateur a tapé I'URL de I'image) ;

o une seconde pour exclure (a nier également), ce
qui correspond a notre(nos) propre(s) domaine(s).

#0ptions +FollowSymLinks -MultiViews
RewriteEngine on

Si le référent n'est pas vide (acces direct en
théorie)

RewriteCond %{HTTP_REFERER} !=""

ET

si le référent ne correspond pas a une page de notre
propre site

RewriteCond %{HTTP_ REFERER}
“https?://.*\.nom de domaine\.fr/ [NC]

alors en interdire 1'acces (403)

RewriteRule \.(?:gif|jpe?g|png)$ - [F,NC]

Ou pour renvoyer une image de remplacement
#RewriteRule \.(?:gif|jpe?g|png)$
monImageDeRemplacement.png [NC,T=image/png]

Alternative sans réécriture :

SetEnvIfNoCase Referer
"*https?://.*\.nom _de domaine\.fr/" local ref=1
SetEnvIf Referer ~$ local ref=1

<FilesMatch "\.(jpe?g|gif|png)s$">
Apache < 2.4
<IfModule !mod authz core.c>
Order allow,deny
Allow from env=local ref
</IfModule>
Apache >= 2.4
<IfModule mod authz core.c>
Require env local ref
</IfModule>
</FilesMatch>

4.2. Bloguer un client ou lui servir un
contenu spécifique

De maniere théorique, il est possible d'identifier un
client sur plusieurs points :

e son adresse IP : du moins, la machine par laquelle il
passe pour accéder a Internet. Outre la possibilité de
delibérement relayer ses requétes via un proxy,
n'oublions pas que tout le monde ne possede pas une
adresse fixe et peut se connecter de plusieurs lieux
differents ;

e a chacune de nos requétes, nous envoyons un entéte
HTTP nommeé User-Agent, dont le but est de fournir
quelques informations sur notre environnement. Elles
peuvent permettre de déterminer :

o |e navigateur ;
o |e systeme d'exploitation ;
o s'il s'agit d'un robot d'indexation ;

o éventuellement, méme indirectement, le type
d'appareil (mobile, tablette, etc) ;

Notons que cet entéte HTTP, au méme titre que tous
!ces autres, peut étre, volontairement ou non, omis ou
ausseé.

Ainsi, pour travailler en réecriture sur I'adresse IP, nous
devons écrire une condijtion (RewriteCond) qui compare
I'adresse courante du client, représentée par la variable
%{REMOTE_ADDR}, a une valeur a considérer en second
argument. Si je désire bloquer |'adresse IP 75.76.77.78,
je devrais écrire :

RewriteCond %{REMOTE ADDR} =75.76.77.78
RewriteRule .* - [F]

Alternative sans réécriture
Apache < 2.4
<IfModule !mod authz core.c>
Order Deny,Allow
Deny from 75.76.77.78
</IfModule>
Apache >= 2.4
<IfModule mod authz core.c>

Require expr !-R "75.76.77.78"
Ou encore :
<RequireAll>
<RequireNone>
Require ip 75.76.77.78
</RequireNone>
</RequireAll>
</IfModule>

A présent, travaillons sur I'entéte HTTP User-Agent,
symbolisé par la variable s{HTTP _USER AGENT} OU %
{HTTP:User-Agent}. Si votre site n'est pas prévu pour des
versions d'Internet Explorer antérieures ou égales a 6,
vous pourriez parfaitement les renvoyer sur une page
les invitant a se mettre a jour ou a changer de
navigateur par cette réécriture :

RewriteCond S%{HTTP USER AGENT} MSIE\s*[0-6]\.
RewriteRule .* /dropie.html [L]

(on peut facilement trouver des listes de User-Agent
par quelques recherches)

4.3. Rediriger un domaine (avec et sans
WWW)

En mutualise, lorsque vous possédez un nom de
domaine, il n'est pas rare que votre prestataire assure
automatiquement la résolution de mondomaine.fr et
www.mondomaine.fr pour qu'ils aboutissent en fin de
compte sur un méme répertoire. Des |ors, toutes vos
ressources sont normalement accessibles par
www.mondomaine.fr mais aussi par domaine.fr. Ce cas
de figure peut vous conduijre a une situation de _
duplicate content : une méme page pourra alors étre
référencée sous deux URL distinctes. La solution qui
vient immédiatement a 'esprit est alors de rediriger de
maniére permanente mondomaine.fr sur
www.mondomaine.fr. Cependant, puisque la
configuration d'Apache (généralement un fichier
.htaccess) est partagée par nos deux protagonistes, une
directive Redirect n'est pas appropriée. En effet, elle

créerait une boucle infinie (que le client devrait
detecter de lui-méme), car www.mondaine.fr serait
redirige sur lui-méme. L'unique solution, du moins pour
Apache < 2.4, est de passer par la réécriture.

De quoi avons-nous besoin ?

e nous devons procéder a une redirection _
&)ermanente) : on ne manquera pas d'ajouter |'option
=permanent (ou R=301) a notre directive
RewriteRule ;

e nous devons rediriger toute ressource, soit .* pour
motif, sur le sous-domaine en www. La destination
est donc la concaténation de I'URL
http://www.mondomaine.fr/ et de la ressource
demandée, so (rappel : so0 désigne I'ensemble de la
sous-chaine satisfaisant I'ensemble du motif) ;

e il nous manque a présent |I'essentiel : la condition qui
permet d'exclure www.mondomaine.fr de cette
redirection. La variable qui nous intéresse est %
{HTTP_HOST}, le nom de I'hdte que le client cherche a
contacter, a comparer a www.mondomaine.fr.

#0ptions +FollowSymLinks -MultiViews
RewriteEngine on

Si le domaine demandé n'est pas "www.mondomaine.fr"
RewriteCond S%{HTTP HOST} !=www.mondomaine.fr

alors rediriger sur la méme ressource que demandée
($0) sur le domaine www.mondomaine.fr

RewriteRule .* http://www.mondomaine.fr/$0
[L,R=permanent]]

Syntaxe alternative avec Apache >= 2.4 :

#<If "S{HTTP_HOST} != 'www.mondomaine.fr'">
RedirectPermanent / http://www.mondomaine.fr/
#</1f>

4.4, Forcer le protocole https pour une
ressource

Nous voulons forcer les utilisateurs a employer le
protocole "sécurise", HTTPS, pour certains aspects
sensibles, ici, matérialisés par un script
d'authentification : logi IE p. Nous admettrons que les
virtualhosts HTTP et HTTPS partagent la méme racine
(DocumentRoot), sans quoi cet exercice ne présenterait
aucun intérét. Ceci nous ramene en gros a la méme
situation que precedemment : le .htaccess ou nous
ecrivons la regle sera lu que I'on utilise le protocole
http standard ou https, ce qui, pour le dernier, serait a
I'origine d'une boucle de redirection. Il est donc
nécessaire de ne rien faire si le protocole https
intervient déja.

Articulation de la régle dont nous avons besoin :

e comme évoque, la regle ne doit s'appliquer qu'aun
client qui passe par le protocole http standard. Ce qui
implique une condition (directive RewriteCond)
testant que la valeur de la variable s{HTTPS} est

difféerente (opérateur !=) de on (en tant que chaine) ;

* nous procédons ici a une redirection HTTP .
permanente), de login.php (motif Mogin\.php$) a
ttps://mondomaine.ext/login.php, les options

R=permanent (ou R=301) et L(ast) doivent étre
ajoutées a notre directive RewriteRule.

#0ptions +FollowSymLinks -MultiViews
RewriteEngine on

Si le protocole n'est pas sécurisé (protocole http
normal)

RewriteCond %{HTTPS} !=on

(et que la page est login.php) alors rediriger sur les
mémes site/page mais en HTTPS

RewriteRule ~login\.php$ https://%{HTTP_HOST}/$0
[L,R=permanent]

Note

e J'ai volontairement fait intervenir les variables %
{HTTP_HOST} et $0 (qui vaut login.php) pour le
arametre destination afin de rendre la regle plus
acile a réutiliser.

e Pourquoi ne pas simplement comparer la valeur de la
variable %{SERVER PORT} a 80 ou 443 suivant le
protocole ciblé ? Parce que cette démarche est
erronee : il est parfaitement possible d'employer un
port quelconque, a savoir mettre en écoute un
serveur http standard sur le port 443 et inversement
(de I'https sur le port 80). Au contraire de %

{SERVER PORT}, la variable s{HTTPS} est fiable et
pertinente car a la charge du module SSL.

4.5. Rediriger des ressources qui ont été
deplacées ou remplacees

4.5.1. Redirections HTTP simples

J'avais initialement placé mon blog dans un sous-
répertoire, /blog/, de mon sous-domaine
www.mondomaine.fr. Aujourd'hui, je souhaite |le rendre
"indépendant"”, en le déplacant sous son propre sous-
domaine (hote virtuel et arborescence a part)
blog.mondomaine.fr. Afin de conserver mon
réferencement et ne pas perturber mes lecteurs
réguliers, je prends soin de mettre en place une
redirection HTTP pour qu'ils puissent étre informés de
ce changement d'adresse. Ayant physiquement
supprime le sous-repertoire’/blog/ de mon sous-
domaine www, j'effectuerai cetteredirection depuis la
racine de son ancien emplacement. Cette redirection ne
doit concerner que ce qui commence par /blog/, en
n'oubliant pas de supprimer le slash en téte puisque
nous passons par un fichier .htaccess, et capturer la
partie du chemin qui suit de facon a renvoyer le visiteur
sur son equivalent a la nouvelle adresse. Le motif de
notre regle est: ~blog/(.*) et sa destination
http://blog.mondomaine.fr/$1, $1 étant dynamiquement
remplace par ce gui suit blog/ dans le chemin. Enfin, je
ne manque pas d'ajouter 'option R=permanent pour

obtenir la redirection HTTP permanente désirée ainsi
que L qui devrait étre systématiquement couplée a R
pour s'assurer qu'Apache ne cherche pas a satisfaire
d'autres regles.

#0ptions +FollowSymLinks -MultiViews
RewriteEngine on

RewriteRule ~blog/(.*) http://blog.mondomaine.fr/$1
[L,R=permanent]

Que 1'ont peut écrire, sans réécriture :
RedirectPermanent /blog/ http://blog.mondomaine.fr/

Comme mentionné en fin de I'exemple, dans des cas
triviaux, les redirections HTTP peuvent étre assurees
par les directives Redirect* plutdt que par la réécriture.

Cependant, personnellement, ne serait-ce que par
Brln_ape, je ne fais jamais intervenir des directives

edirect™ ou la réécriture est utilisée. |e réécris
systématiquement mes directives Redirect* en regles

e réécriture équivalente de facon a éviter et maitriser
au mieux tout conflit mutuel. Il faut savoir que les
directives Redirect*, quel que soit leur emplacement
par rapport aux re ies,o,Ie réecriture, seront toujours
apphc%uees avant la réécriture. En ces circonstances,
cet effet pourrait s'avérer difficile a contrdler dans
certaines circonstances.

4.5.2, Racine de site déplacée : renvoyer, de
maniere invisible, sur un sous-repertoire

Bien que ce soit fonctionnellement parlant la pire des
solutions, faute d'avoir d'autres choix (surtout en
mutualise), vous avez déplacé une application, disons
votre site actuellement en production, qui se situait a la
racine vers un sous-répertoire, disons qu'il s'appelle
o/d, afin de tester sa nouvelle version en condition
reelle qui a pris sa place a la racine.

Tout d'abord, nous avons la un impératif a respecter :
nous ne procéderons pas a une redirection HTTP mais
bien a une simple reecriture (= cette pseudo-redirection
n'apparait pas co6té client) de facon a conserver et

récupérer notre référencement en I'état pour la mise
en production, a venir, de cette nouvelle version et, de
maniere plus genérale, ne pas géner inutilement les
clients. Le principe de base consiste & renvoyer toute
ressource vers elle-méme mais située dans Ce sous-
répertoire old. Seul bémol, une telle regleva
inexorablement conduire a une boucle™ si un client
demande /contact.html, il va étre renvoyé sur
/old/contact.html puis sur /old/old/contact.html et ainsi
de suite. |l faut donc mettre en place une condition
pour ne pas reecrire les chemins (représentés par la
variable %{REQUEST URI}) commencant déja par /old/.

#0ptions +FollowSymLinks -MultiViews
RewriteEngine on

Si le chemin ne commence pas par /old/
RewriteCond %{REQUEST URI} !"~/old/

alors on renvoie sur le sous-répertoire old/
RewriteRule .* old/$0 [L]

|| existe plusieurs facons différentes pour arriver a cette
fin. Une autre methode pourrait passer par une regle
de non-réécriture :

#0ptions +FollowSymLinks -MultiViews
RewriteEngine on

Ne rien faire pour ce qui commence par old/
RewriteRule "~old/ - [L]

Pour tout le reste, renvoyer sur le sous-répertoire
old/
RewriteRule .* old/$0 [L]

Cette regle de non-réécriture, a placer avant 'autre et a
lui adjoindre 'option Last, permet avant tout d'ecarter
les chemins qui sont corrects, quand |'autre s'assure
ensuite de ne réécrire que ce qui ne I'est pas.
L'approche employée ne joue pas ici, mais parmi .
d'autres regles, I'une pourrait s'averer plus pratique a
utiliser que l'autre.

4.6. Rerouter ce qui n‘existe pas
physiquement vers un controleur frontal
ou semblable (MVQ)

Avec une application, PHP ou autre, developpeée autour
du modele de conception !\/IVC_quLFossed,e un systeme
de routage complet, il devient inutile de gérer des
regles de réécriture. C'est 'application elle-méme qui
va se charger de résoudre les adresses virtuelles,
d'autant que c'est totalement différent. Or ceci requiert
avant tout de renvoyer |'adresse de toute requéte HTTP
vers le controleur frontal. Cependant, parmi ces
requétes, certaines correspondent a des fichiers
statiques physiquement présents, comme les feuilles
de styles ou autres images et ce serait un gachis en
termes de ressources de les renvoyer inutilement vers
I'application au lieu de les servir directement. C'est
pourquoi, nous allons nous contenter de rediriger la
requéte HTTP vers ce controleur frontal uniquement si
gl_le ne correspond pas a un fichier existant sur le
isque.

Pour ce faire, a la regle qui renverrait tout au script qui
invoque le contréleur frontal, nous ajoutons deux
conditions pour vérifier que un, le chemin, représenté
par la variable %{REQUEST FILENAME} ne corresponde pas a
un fichier régulier (opérateur -f) et, deux, ne s'avere pas
non plus étre un répertoire (opérateur -d). C'est
potentiellement incomplet suivant |e systeme (liens
symboliques non gérés) mais ca suffit généralement.

#0ptions +FollowSymLinks -MultiViews
RewriteEngine on

Si la ressource demandée ne correspond pas a un
fichier (régulier)

RewriteCond %{REQUEST FILENAME} !-f

ET

si la ressource demandée ne correspond pas non plus a
un répertoire

RewriteCond %{REQUEST FILENAME} !-d

alors renvoyer la requéte sur handler.php
RewriteRule .* handler.php [L]

Note

Avec une version >= 2.2.16, vous pouvez
avantageusement remplacer cette réécriture par une
simple directive FallbackResource qui demande
également moins de droits (AllowOverride) que la
reecriture.

Avertissement

Contrairement a certains écrits que I'on peut
malheureusement trouver, n'utilisez jamais
ErrorDocument 404 pour rerouter des pages
inexistantes. Non seulement ErrorDocument est le
dernier maillon de la chaine (réécriture >
FallbackResource > ErrorDocument) mais mal
employée, vous feriez passer des ressources
inexistantes pour le contraire, chose que vous finiriez
par payer trés cher au niveau de votre référencement.

4.7. HOtes virtuels de masse simulés

Pour une petite structure et une application t_%pe CMS
partagée, nous voulons dynamiquement attribuer un
espace physique (un répertoire sur le disque) a chaque
utilisateur'et que ce dernier soit accessible par un sous-
domaine reprenant son login (togin.mondomaine.fr). La
réécriture va nous permettre d'établir a la volée la
correspondance entre le sous-domaine et le chemin sur
le disque.

D'un cOté nous souhaitons conserver a part le site de
base (www.mondomaine.fr sur /var/www/) ; de |'autre ces

sous-réepertoires utilisateurs seront regroupés dans
/var/subdomains/.

Comment s'y prendre ?

e Au niveau des conditions, nous avons besoin de ;

o écarter (opérateur d'inégalité : I=) I'hote,
représenté par la variable s{HTTP_HOST},
www.mondomaine.fr ;

o verifier que ce méme domaine, nous retrouvons %
{HTTP_HOST}, se finisse par ".mondomaine.fr" et

meémoriser ce qui se trouve avant. Ce qui donne
pour expression réguliere : (.+)\.mondomaine\.fr$;

o éventuellement, suivant comment ¢a doit étre
gére, verifier que la partie mémorisee lors du point
précédent corresponde (variable %1) a un
répertoire existant ("opérateur" -d)

e Quant au rble de la regle, au lieu de servir le fichier
foo/bar.html

(http://sandrine.mondomaine.fr/foo/bar.html), elle
doit renvoyer sur le sous-répertoire sandrine de
/var/subdomains/ (Chemin final :
/var/subdomains/sandrine/foo/bar.html). En d'autres
termes, réécrire tout chemin (motif .*) satisfaisant les
précédentes conditions vers /var/subdomains/%1/$0 (%1
désignant toujours le login de ['utilisateur extrait du
nom de domaine et so permet de recopier le chemin
complet de la requéte).

Apache < 2.4, si nécessaire
#NameVirtualHost *:80

<VirtualHost *:80>

ServerName www.mondomaine.fr
ServerAlias *.mondomaine.fr
DocumentRoot /var/www

<Directory /var/www>

Apache < 2.4

<IfModule !mod authz core.c>
Allow from all

</IfModule>

Apache >= 2.4

<IfModule mod authz core.c>
Require all granted

</IfModule>
</Directory>

<DirectoryMatch /var/subdomains/*>
Apache < 2.4
<IfModule !mod authz core.c>
Allow from all
</IfModule>
Apache >= 2.4
<IfModule mod authz core.c>
Require all granted
</IfModule>
</DirectoryMatch>

RewriteEngine On

Si 1'h6te demandé n'est pas "www.mondomaine.fr"

RewriteCond S%{HTTP_HOST} !=www.mondomaine.fr

ET

s'il se termine par ".mondomaine.fr", en
mémorisant ce qu'il y avant pour la suite (en %1)

RewriteCond S%{HTTP HOST} (.+)\.mondomaine\.fr$

ET

si ¢a (/var/subdomains/%l) correspond a un sous-
répertoire existant

RewriteCond /var/subdomains/%1l -d

alors servir le fichier /var/subdomains/%1/$%$0 (ca
agit comme un DocumentRoot dynamique au final)

RewriteRule .* /var/subdomains/%1/$0 [L]

</VirtualHost>

Astuce

Aux détails 6rés, cette réécriture est le strict équivalent
d'une ligne VirtualDocumentRoot :

VirtualDocumentRoot /var/subdomains/%-3+

Cette derniére ayant I'avantage, pour Apache >= 2.4, de
dynamiquement corriger le DocumentRoot associé a la
réquéte de départ.

Avertissement

e Contrairement aux autres exemples ou j'ai
volontairement privilégie I'approche par fichier
.htaccess carCFIus courante, cette tache ne peut étre
réalisée que depuis les fichiers de configuration
d'Apache. Je rappelle en effet que rien qu'en ce qui
concerne directement la reecriture, seul ce niveau
]permet de renvoyer directement sur le systeme de

ichiers. Apache vous l'interdit depuis un fichier
.htaccess par une erreur 403 (sans cette restriction un
utilisateur pourrait, volontairement ou non, rendre
public tout ce que les droits systeme |ui
permettraient).

e Pour des hotes virtuels de masse ou assimilé, vous
devez prealablement mettre en place une résolution
adéquate (wildcard DNS par exemple).

4.8. Effectuer une redirection en fonction
d'un parametre de query string

Voila, j'ai mis en place une réécriture pour les billets de
mon petit blog personnel afin qu'ils alent de belles URL.
Or, des gens les ont déja référencés sur leurs propres
sites avec |'ancienne forme hideuse. Tant qu'a faire,
j'aimerais bien que ceux qui les suivent en soient
Informés. Comment forcer I'emploi de la nouvelle
forme?

Pour simplifier et pour I'aspect pédagogique, partons
du principe que je ne suis pas un gros blogueur, j'écris
au plus un billet’par semaine ce qui rend acceptable le
fait d'éditer moi-méme le .htaccess pour y écrire les
redirections nécessaires au fur et a mesure.

Limitons-nous, pour |'exemple, a une URL : on veut
rediriger article.php?id=2, I'ancienne forme, sur les-
sessions-en-php.html, la nouvelle.

Je rappelle qu'une telle URL doit prealablement étre
découpée suivant ses differentes composantes dans
votre esprit avant de commencer a rédiger la regle

correspondante. En effet, vous ne pouvez pas écrire
une regle comme celle-ci:

Cecli est faux
RewriteRule "article\.php\?7id=2$ les-sessions-en-
php.html [L,R=permanent]

Voici comment aborder le probleme :

e ala directive RewriteRule, Apache ne fournit que le
chemin HTTP (pour partie si la regle se situe dans un
fichier .htaccess). Ce qui correspond au morceau
article.php. Par conséquent, il nous faut ~article\.php$
pour motif et la destination est les-sessions-en-
php.html. Pws_gue le but est de realiser une vraie _
redirection HTTP, on ne manquera pas d'ajouter, a la
fin, ['option de redirection, R=permanent, et Last pour
appliquer de suite la regle et éviter toute erreur ;

e tester toute autre partie, dont la query string (id=2),
se realise uniquement par une directive RewriteCond
et la variable associee. On sait que la variable
reprenant la chaine de requéte s'appelle =
{QUERY_STRING}. Par contre, cette derniére est peu
commode a gérer car Apache n'en séFare pas les
difféerentes clés/valeurs, vous étes obligés de
travailler sur sa forme brute
(clé1=valeur1&clé2=valeur2&clé3=valeur3).

Ce qui nous donnerait :

#0ptions +FollowSymLinks -MultiViews
RewriteEngine on

Si la chaine de requéte contient un parametre id de
valeur 2

RewriteCond %{QUERY STRING} (?:7|&)id=2(7:&|$)

(et si la page est article.php) alors renvoyer sur
les-sessions-en-php.html

RewriteRule "article\.php$ les-sessions-en-php.html
[L,R=permanent]

Sauf que cette derniere régle est incomplete : Apache,
par defaut, quand la destination ne comporte pas de
chaine de requéte, va recopier I'ancienne a la fin de
I'URL suivie. En clair, ici, nous serions renvoyé sur les-
sessions-en-php.htm|?id=2 or nous ne voulons pas de
cette chaine de requéte inutile. Comment la supprimer
? La réponse est simple, il suffit de créer une chaine de
requéte vide en ajoutant un point d'interrogation a la
fin du parametre ‘destination (celui-ci n'apparaitra pas
coté client car le module de reécriture supprime ces
query string explicitement vides entre temps). Ce qui
nous donne, au final :

#0ptions +FollowSymLinks -MultiViews
RewriteEngine on

Si la chaine de requéte contient un parametre id de
valeur 2

RewriteCond %{QUERY STRING} (?:7|&)id=2(7:&|$)

(et si la page est article.php) alors renvoyer sur
les-sessions-en-php.html en supprimant la query string
originale

RewriteRule "article\.php$ les-sessions-en-php.html?
[L,R=permanent]

Avec une version 2.4, il est possible d'utiliser le flag
QSD qui remplit la méme fonction :

#0ptions +FollowSymLinks -MultiViews
RewriteEngine on

RewriteCond %{QUERY STRING} (?:7|&)id=2(7?:&|$)
RewriteRule "~article\.php$ les-sessions-en-php.html
[QSD,L,R=permanent]

Je dois cependant avouer que cet exemple est _
Incomplet car si j'ajoute la regle qui se charge de faire
la résolution inverse (les-sessions-en-php.html vers
article.php?id=2), elles vont mutuellement s'invoquer et
ainsi créer une boucle infinie. Pour éviter cela, la seule
solution est d'ajouter un faux parametre de query

string pour la réécriture interne (les-sessions-en-
php.html vers article.ohp?id=2) et de n'effectuer la

redirection article.php?id=2 vers les-sessions-en- _

hp.html que quand ce faux parametre est absent, qui
est alors censeé étre synonyme que le client a utilisé
I'ancienne forme. Les réglés finales compleéetes sont les
suivantes :

#0ptions +FollowSymLinks -MultiViews
RewriteEngine on

Si la chaine de requéte ne contient pas de parametre
internal redirect a valeur true (pour éviter une boucle)
RewriteCond %{QUERY STRING} !

(?:7|&)internal redirect=true(?:&|$%$)

ET

si la chaine de requéte contient un parametre id de
valeur 2

RewriteCond %{QUERY STRING} (?:7|&)id=2(7:&|$)

(et si la page est article.php) alors renvoyer sur
les-sessions-en-php.html en supprimant la query string
originale

RewriteRule "article\.php$ les-sessions-en-php.html?
[L,R=permanent]

les-sessions-en-php.html => article.php?id=2

On ajoute un faux parametre (internal redirect=true)
pour indiquer que article.php?id=2 est le résultat d'une
réécriture

RewriteRule "les-sessions-en-php\.html$ article.php?
id=2&internal redirect=true [L]

Note

Les directives Redirect* ne sont pas prévues pour gerer
la partie query string d'une URL, a moins d'avoir une
version 2.4 pour |'encapsuler dans une directive <If>.
Seule la réécriture en est capable.

4.9. Interdire 'acces au site avant une
certaine date sauf pour une adresse IP

On souhaite interdire |'accés a un site avant sa date de
lancement fixée au 1°" décembre 2012 a minuit,

excepté pour une adresse IP donnée pour maintenance
et tests.

#0ptions +FollowSymLinks -MultiViews
RewriteEngine on

Si l'adresse IP est différente de 1.2.3.4
RewriteCond %{REMOTE ADDR} !=1.2.3.4 [OR]

0OU

que nous ne sommes pas apres le ler décembre 2012
minuit

RewriteCond %{TIME} <20121201000000

alors on interdit 1'acces

RewriteRule .* - [F]

Avec Apache >= 2.4, directement, sans réécriture :
#Require expr %{TIME} >= 20121201000000 || -R "1.2.3.4"

Commencgons par la regle de base:

e |'interdiction par rapport au protocole HTTP se traduit
Ear le retour d'un code HTTP 403. C'est I'option .
(orbidden) au niveau de la directive RewriteRule qui
remplit cette fonction (ou éventuellement R=403
suivant la version d'Apache) ;

* |e site en question doit étre totalement inaccessible,
ce qui signifie que tout est concerné : implique le
motif .* en premier parametre de RewriteRule ;

e Enfin, notre ré%_le n'a pas a modifier ['URL, ce qui se
traduit par un tiret (-) en deuxiéme parametre.

Il ne nous reste qu'a a%'outer nos deux conditions : une
sur |'adresse IP et |'autre sur la date.

e |'adresse IP est représentée par la variable =
{REMOTE_ADDR}. Elle sera le premier parametre de notre
premiére RewriteCond. Etant donné que |'on cherche
a interdire toute adresse qui n'est pas 1.2.3.4,
I'opérateur a utiliser sera 'inégalite (différent de) : !=.
La seconde partie de cette méme RewriteCond sera
donc !=1.2.3.4;

e pour la représentation complete de la date (heure
comprise), il me parait plus facile et general de passer
par la variable s{TiME} dont lhe rappelle le format :
année (4 chiffres), mois (2 ¢ iffresf) jour (2 chiffres),
heures (2 chiffres), minutes (2 chi fres), secondes (2
chiffres), le tout collé ensemble. Le 1¢" décembre
2012 minuit s'écrit donc 20121201000000. Ce format
permet une comparaison de dates avec un simple _
ordre lexicographique, I'opérateur < sera suffisant a
Statbhr le cas ou nous sommes antérieurs a cette

ate.

Cependant, il ne faut pas oublier que les directives
RewriteCond, quand i c}/,en a plusieurs pour une méme
RewriteRule, sont par défaut unies par un et logique. Or
c'est un ou logique qu'il nous faut ici, par consequent,
on ne manquera pas d'ajouter le drapeau ornext (ou
OR) a la premiere des déeux.

4.10. Renvoyer le visiteur selon les heures
de bureau

Renvoyer ['utilisateur sur une page indiquant que les
bureaux sont fermés:

e |e samedi aprées midi
e |e dimanche, toute la journée

e |es autres jours de la semaine avant 8HOO et apres
17H30

Cet exercice n'est pas aussi complexe qu'il pourrait
Faraltre . il repose sur les variables temps (s{TIME_*}),
'option ornext (ou OR) de la directive RewriteCond et
les opérateurs de comparaison.

#0ptions +FollowSymLinks -MultiViews
RewriteEngine on

Si nous sommes ...
dimanche (soit 0)
RewriteCond %{TIME WDAY} =0 [OR]

0U

samedi apres 12h00 (soit 6, samedi, 1200)
RewriteCond %{TIME WDAY}%{TIME HOUR}%{TIME MIN} >61200
[OR]

0U

avant 8HOO

RewriteCond %{TIME HOUR} <08 [OR]

0OU

apres 17H30

RewriteCond S%{TIME HOUR}%{TIME MIN} >1730
alors renvoyer sur bureauxfermes.html
RewriteRule .* bureauxfermes.html [L]

4.11. Masquer l|'extension de ses scripts
PHP

Qu'importe les motivations, apportons une solution a
une demande fréequemment rencontrée sur les forums
: masquer |'extension de ses scripts. C'est-a-dire, avoir
ﬁour URL http://domaine.ext/foo en lieu et place de
ttp://domaine.ext/foo.php.

Comment s'y prendre ?

e avant tout, nous devons ignorer tout chemin qui
comporterait déja une extension de fichiers. Si cette
derniere partie est présente, il est inutile de chercher
a interpréter ['URL différemment. Un motif simple,

ossible, pour notre regle (RewriteRule) serait de ne
raiter que tout chemin qui ne comporte aucun point,
SOIt ~[~.1+$;

e |e but de notre regle, quand son motif en est satisfait,
est de la suffixer de [a chaine ".php". La destination
n'est autre que $60.php. Rappelons que so reprend la
chaine qui satisfait I'ensemble du motif, solt, ici,
I'intégralité du chemin ;

e enfin, ne réécrivons les URL qui ne comportent aucun
point seulement quand il existe un script php du
méme nom. Ce qui permet d'éviter certaines 404,
surtout quand la requéte HTTP cible un répertoire,
leurs noms comportant rarement un point. Pour nous

en assurer, ajoutons la condition (RewriteCond) : si un
fichier php du méme nom (%{REQUEST FILENAME}.php)
existe (opérateur -f).

Options +FollowSymLinks -MultiViews
RewriteEngine on

Si en ajoutant ".php" au chemin, on aboutit sur un
fichier qui existe physiquement

RewriteCond S%{REQUEST FILENAME}.php -f

ET

si l'adresse initiale qui ne contient aucun point
(soit pas d'extension de fichier)

alors servir le script PHP du méme nom

RewriteRule ~[".]1+$ $0.php [L]

NOTE : 1le motif ~(?:.*/)?["/.]1+$ peut étre plus
approprié

En bonus, profitons-en pour forcer, par une redirection
HTTP, nos visiteurs a employer des adresses ou
I'extension ".php" ne figure pas. Nous redirigeons
(implique le drapeau R pour la redirection couplé a
L(ast) pour 'application immediate de la regle) alors les
requétes directe de tout script php (soit (.+)\.phps$) vers
leur équivalent sans extension (s$1, notre unique
parenthese capturante memorisant la partie qui
précede le suffixe ".php"). Par contre, en |'état, ces deux
regles vont entrainer une boucle sans fin, il est
nécessaire d'ajouter une condition pour garantir que
I'adresse en .php n'est pas déja le resultat d'une
redirection interne (ce qui est ci-dessous certifié en
testant que la variable d'environnement REDIRECT STATUS
est [la chaine] vide). Ce qui nous donne la regle
complémentaire suivante :

Si 1'adresse courante n'est pas le résultat d'une
précédente redirection

(condition requise, sans quoi vous créeriez une boucle
infinie entre les 2 regles)

RewriteCond %{ENV:REDIRECT STATUS} =""

(et si l'adresse se termine par .php) alors effectuer

la redirection HTTP permanente vers la méme adresse sans
'Le ".php"
RewriteRule (.+)\.php$ $1 [L,R=permanent]

Note

Si le but recherché est réellement de faire croire que ce
ne sont pas des scripts PHP, vous pouvez remplacer
R=permanent par R=404.

5, Difficultés communes et
résolution

5.1. Le "piege" de I'arborescence virtuelle
Ceci ne concerne que les gens :

® qui ont au moins une ressource virtuelle réécrite
contenant au moins un slash

e qui n'ont pas prévu l'effet que ca aurait

e qui utilisent des chemins HTTP relatifs pour les
ressources liées (liens, CSS, javascript, images ,etc)

Si vous créez une ressource virtuelle faisant intervenir
au moins un caractere slash, comme celle-ci :

RewriteRule ~article/(\d+)/.+\.html$ article.php?id=%1
[L,QSA]

Le probléme qui se pose, avec des liens, sources, etc
relatifs c'est que comme le client ignore tout de [a
réécriture, vous allez fausser l'idée qu'il a de
I'arborescence du site. Par exemple, si j'ai une css:

<link href="stylesheet.css" rel="stylesheet"
type="text/css"/>

Si le tout était situé a la racine, que I'URL courante est a
présent http://mondomaine.fr/article/2/les-sessions-en-
ﬁhp.html le client va chercher cette CSS a 'URL

ttp://mondomaine.fr/article/2/stylesheet.css au lieu de
http://mondomaine.fr/stylesheet.css. Le chemin qu'il a
calculé a partir de I'URL ne peut étre que faux.

Quelles solutions pour ce cas de figure ?

e || serait envisageable de réécrire ou rediriger ces
ressources fausses par l'introduction de nouvelles
regles. Dans notre cas, il serait possible de régler le
probleme de la feuille de style par :

RewriteRule article/\d+/stylesheet\.css$
/stylesheet.css [L,R=permanent]

Plus généraliste :

#RewriteRule /stylesheet\.css$ /stylesheet.css
[L,R=permanent]

Toutefois, je déconseille vivement cette voie, cette
multiplication inutile de regles risque d'introduire

plus de conflits qu'elle ne saurait en résoudre, cela
peut vite devenir complexe et ingérable !

e Indiquer 'adresse de référence par une balise <base
href="..."> ajoutée dans I'entéte du document. Le
client HTTP étant censé se baser sur celle-ci, quand
elle est disponible, plutét que de se remettre a sa_
propre vision des chemins, il devrait de nouveau étre
en mesure de résoudre correctement tous ces
chemins relatifs indépendamment de la réécriture.

<html>
<head>
<base href="http://mondomaine.fr" />
<link href="stylesheet.css" rel="stylesheet"
type="text/css"/>
</head>

La balise <base href="..."> ne concerne que les liens
relatifs, pas les URL (http://...) ni les chemins HTTP
absolus (qui commencent par un slash).

e Enfin, une autre solution, pourrait étre de tout
simplement modifier les chemins relatifs en absolus.
Notre feuille de style étant a la racine, cela nous
donne:

<link href="/stylesheet.css" rel="stylesheet"
type="text/css"/>

5.2. Conflit entre la négociation de
contenu et la reécriture

La négociation de contenu, qu'est-ce que c'est ? De
maniere simplifiée, la négociation de contenu c'est la
capacité du serveur a choisir pour le client, en fonction
des préférences de ce dernier, une ressource quand
son nom est incomplet (au sens, par rapport au
serveur, qu'il manque 'extension reelle). En effet, lors
de toute requéte HTTP, en tant que client, vous
émettez, au travers de différents entétes, vos
Ereferences par rapport a la langue (entéte Accept-
anguage), au type du fichier (png > gif > jpeg > texte,

ar exemple, via |'entéte Accept), d'un encodage
algorithme comme gzip utilise pour compresser le
corps de la reponse ; entéte Accept-Encoding) et un jeu
de caracteres (entéte Accept-Charset).

Prenons un exemple trivial. Admettons que j'ai 2
fichiers cOté serveur : page.txt, un fichier texte pur et
age.html, le méme formaté avec HTML. Que se Passe—
-il, si je demande page (sans extension) lorsque la
négociation de contenu est activée ? Et bien tout va
dépendre de I'entéte Accept que vous allez envoyer :

e Comme tout navigateur, si je donne priorité au
format html (type mime text/html) en abaissant le
facteur de priorité g associé aux autres tel que :

Accept: text/html; text/*,q=0.9; */*,0=0.1

J'obtiens bien en réalité page.html.
e Inversons a présent, en donnant priorité aux fichiers
texte (type mime text/plain):

Accept: text/plain; text/html,q=0.9; */*,q=0.1
Nous tombons sur page.txt.

Ou cela nous meéne-t-il ? Quel est le rapport avec la
réecriture ?

Il existe un cas spécifique ou la négociation de contenu
peut entrer en conflit avec la réécriture. Pour étre
exact, il ne s'agit pas a proprement parler d'un conflit
mais de voir une ou plusieurs regles de réécriture

purement et simplement ignorées. |l faut en effet
réunir deux conditions :

e bien que cela puisse paraitre évident, il faut que la
négociation soit activée (module mod_negociation
chargé et qu'un Options (+)MultiViews s'applique au
répertoire en question) ;

® que vous ayez une ou des regles qui auraient pour
effet d'écourter leur nom et qui auraient la
malchance de correspondre a un fichier thsique. On
pense genéralement a une regle comme celle-ci, pour
continuer avec mon exemple de "page" :

RewriteRule "page$ index.php?p=%$0

Comme la négociation de contenu intervient avant la
réécriture, en renvoyant page sur page.html, la regle
ci-dessus ne sera jamais executee.

Jusque la, on serait tenté de se dire que c'est tres limité
comme effet de bord. Or, ce n'est pas fini : ¢ca peut
devenir beaucouB_pI,us\vmleux si la négociation de
contenu est combinée a la fonctionnalité PATH_INFO,
consistant a accepter et extraire la partie de chemin
superflu d'une requéte.

Je garde mon fichier page.html comme base. En temps
normal, si un client demandait
page.html/partie/excedentaire, le serveur nous .
renverrait une erreur 404 car %a ne correspond pas a
un fichier ph S|que1gpage;.htm n'etant pas un
répertoire). Avec la fonctionnalité PATH_INFO, Apache
s'arréterait sur page.html, une ressource qui existe et
avant de l'invoquer, peuplerait la variable PATH_INFO
avec |'exceédent (ici /partie/excedentaire).

Si a présent, nous ajoutons la négociation de contenu a
PATH_INFO, cela nous permettrait de rendre I'extension
du fichier optionnelle. Pour le méme exemple,

age/partie/excedentaire serait alors equivalente.
maginez a présent les effets bien plus vastes au travers
d'une regle comme celle-ci :

RewriteRule “page/(\d+)/.+\.html$ index.php?p=$%$1

Elle serait purement et simplement ignorée car _
toujours du ressort de la neﬁ\?uatmn de contenu (mais
avec la complicité de PATH_INFO). L'URL _
page/2/nouvelle-version.html n'est pas réecrite mais
est résolue comme page.html avec, pour valeur de
PATH_INFO, /2/nouvelle-version.html.

Conclusion : désactivez la négociation de contenu,
comme je I'ai systématiquement fait dans mes
exemplés en ajoutant, au pire, en téte de vos fichiers
.htaccess:

Options -MultiViews

La fonctionnalité PATH_INFO est (dés)activable par la
directive AcceptPathinfo si tant est que vous ayez le
droit de ['utiliser localement. Si vous souhajtez
expérimenter cet effet de bord, forcez la négociation de
contenu et le PATH_INFO par les lignes suivantes :

Options +MultiViews
AcceptPathInfo on

5.3. Interpretation des codes d'erreur
HTTP renvoyes dans le cadre de |a
réécriture

Plusieurs types d'erreur liés a la réécriture peuvent se
manifester :

e |'erreur 403 Forbidden peut survenir en |'absence
d'une des options permettant de suivre les liens
symboliques (FollowSymLinks) qui est nécessaire au
fonctionnement de la'réécriture (restriction a but
sécuritaire).

e |'erreur 404 Not Found peut avoir plusieurs causes :

o Le module de réécriture est bien chargé mais n'est
pas active (absence de RewriteEngine On);

o Le fichier .htaccess est totalement ignoré par le
serveur de par sa configuration lorsque la directive
AllowOverride, pour le répertoire contenant ce
fichier .htaccess (éventuellement par héritage) vaut
None alors qu'au moins FilelInfo est nécessaire ;

o Les regles sont erronées dans la mesure ou il n'y a
pas de correspondance entre la ressource
demandée et vos regles (leurs motifs) ;

o Le document vers lequel |la redirection est
effectuée est inexistant. Ceci pouvant notamment
s'expliquer par une erreur au niveau du chemin.

e |'erreur 500 Internal server error:

o Le module mod_rewrite n'est pas actif. De ce fait,
les directives Rewrite* ne sont pas reconnues et
conduisent a ce type d'erreur ;

o La configuration du serveur n'autorise pas l'usage
des directives de réécriture (Rewrite*) par
I'absence de la valeur Filelnfo au niveau de la
directive AllowOverride par rapport au répertoire
contenant le fichier htaccess ;

o Une regle engendre une boucle infinie, Apache met
glood's fin au processus de réécriture par une erreur

Dans tous les cas, vous trouverez sans doute une
explication explicite dans les journaux du serveur si
tant est que vous y avez acces.

5.4. En dernier recours : deboguer Ia

réécriture d'URL

Avant la version 2.4.0, le débogage de la réécriture
consiste en |'écriture d'une trace, en fin d'un fichier
texte designé, décrivant certaines étapes de chaque
processus de reecriture. Ce débogage ne peut étre
activé que sil'on a la main sur le serveur puisqu'il
impliqgue de modifier directement le fichier de
configuration d'Apache ou il sera nécessaire d'ajouter
deux directives :

e RewriteLog [fichier] : le journal ou écrire les
difféerentes traces qui concernent la réécriture

. RewriteLo%LeveI [nombre de 0 a 9] : le degré de
verbosité. O, la valeur minimale, désactive toute
journalisation des actions de réeecriture. Un niveau
élevé peut aller jusqu'a ralentir le serveur.

Exemple :

RewritelLog logs/rewrite. log
RewritelLoglLevel 2

En revanche, le systéeme de journalisation d'Apache a
été completement revu a la'version 2.4.0 :ilest
desormais possible d'assigner un niveau de verbosite
propre a chaque module, ce qui rend obsolete les deux
directives ci-dessus (elles n'existent plus, chercher a les
utiliser provoquerait de fait une erreur 500). Seul
bémol, non des moindres, les traces produites par le
module de réécriture seront écrites dans le journal
d'erreur au lieu d'un fichier séparé. Mis a part ce point,
le fonctionnement est équivalent : il y a 8 niveaux de
verbosite nommes pour le mode de debogage, allant de
tracel, le plus faible, a traces, le plus élevéet’il doit étre

\

a présent spécifié sur la ligne de la directive LogLevel.
Exemple pour un débogage relativement moyen (trace3)

warn est le niveau par défaut
LogLevel warn mod rewrite.c:trace3

Attention : le nombre de traces qui vont s'inscrire est
directement proportionnel au niveau de verbosité et au
nombre de regles !

6. Aller plus loin

6.1. Gérer |le possible duplicate content
inhérent a la reécriture

Le duplicate content (contenu dupligué) est le fait
d'avoir un méme contenu pour plusieurs URL
différentes. Pourquoi en parler ? En quoi est-ce génant
? Les moteurs de recherche reperent tres bien la chose
et si j'aborde cette question, c'est que quand cela
arrive, vous pouvez payer tres cher une telle erreur en
étant déclassé plus ou'moins significativement.

Cette situation est intimement liée a la réécriture pour
plusieurs raisons :

e |es formes initiales d'URL, type article.Php?id=2, faute
d'avoir été redirigées sont toujours valides et
référencees

e en géneéral, au niveau de la réécriture, on écrit des
regles comprenant des expressions regulieres donc
qui peuvent accepter bien d'autres chaines que celle
gue nous préevoyons : il suffit d'une erreur de la part

e guelq_u un qui recopie I'URL comme vous, qui
modifieriez un titre sans penser aux répercussions.
Concretement, j'ai fait en sorte d'obtenir le lien
article-2-les-sessions-en-php.html pour article.php?
id=2, mais que se passerait-il si un visiteur faisait un
lien sur son blog avec article-2-sessions-en-php.html ?

Il est vital de prendre en compte cette question, qui n'a
normalement un coUt que tres faible en temps et lignes
de code. Ceci implique tout d'abord d'avoir le moyen
1(czl'l.dentlfler ou retrouver I'URL réécrite officielle faisant
oi :

* soit vous stockez cette URL (en base, par exemple
dans une colonne dédiée parmi les données qu'elles
représentent)

e soit, si elle est calculée a partir du reste (comme
article-identifiant-

titre sous une forme URL_friendly.htrn|L vous recalculez

I[c)ette__URL_rééErite a chaque fois que vous en avez
esoin

La premiére possede 'avantage d'avoir un colt
moindre en Prlnupe, par contre, I'éventuel

inconveénient c'est de bien gérer la mise a jour de cette
donnée si elle représente les autres données quand ces
dernieres sont modifiées. Ici, afin que le code soit
moins long et plus explicite, je n'utilise que la seconde.

Ensuite, il y a deux approches:

e vous effectuez une redirection HTTP permanente
vous-méme, en PHP, les URL qui conduiraient au
duplicate content sur la bonne :

<?php
if (isset($ GET['id']) && (FALSE !== $id =
filter var($ GET['id'], FILTER VALIDATE INT))) {
$bdd = new PDO(/*...*/);
$bdd->setAttribute(PDO: :ATTR ERRMODE,
PDO: : ERRMODE EXCEPTION) ;
$stmt = $bdd->prepare('SELECT * FROM billets WHERE
id = ?7');
$stmt->bindValue(1l, $id, PDO::PARAM INT);
$stmt->execute();

if (FALSE === ($billet = $stmt-
>fetch(PDO: :FETCH ASS0C))) {
http not found();
}

$expectedPath = sprintf('/billet-%d-%s.html', $id,
slugify($billet['titre']));
if ($ SERVER['REQUEST URI'] != $expectedPath) {
http redirect permanent($expectedPath);
¥

// affichage normal du billet
} else {

http not found();
}

e vous laissez les robots d'indexation se débrouiller
mais il vous faut indiquer, dans votre loa e, via une
balise <link rel="canonical"/> l'url réelle dela
ressource que vous voulez qu'il référence quoi qu'il
arrive :

<link rel="canonical" href="url complete réelle a
référencer"/>

Exemple :

<?php
if (isset($ GET['id']) && (FALSE !== $id =
filter var($ GET['id'], FILTER VALIDATE INT))) {
$bdd = new PDO(/*...*/);
$bdd->setAttribute(PDO::ATTR _ERRMODE,
PDO: : ERRMODE EXCEPTION) ;
$stmt = $bdd->prepare('SELECT * FROM billets WHERE
id =7?');
$stmt->bindValue(1l, $id, PDO::PARAM INT);
$stmt->execute();

if (FALSE === ($billet = $stmt-
>fetch(PDO::FETCH ASS0C))) {
http not found();
}

$expectedPath = sprintf('/billet-%d-%s.html', $id,
slugify($billet['titre']));

/] ...

// dans la partie <head></head>, vous ajoutez :

echo '<link rel="canonical" href=""' .
$ SERVER['HTTP HOST'] . $expectedPath . '"/>';

/] ...

// puis affichage normal du billet et de la page
} else {

http not found();
}

6.2. URL et caracteres "spéciaux"

Ce point délicat mérite un aparte dedié : il faut bien
prendre conscience qu'Apache ne considere rien

d'autre que I'ASCII non-étendu. De ce fait, il ignore
toute locale et tout jeu (1ISO-8859-1 comme UTF-8 ou
autre), donc vous ne pourrez pas gérer les caracteres
accentués notamment. Ce qui est otalement1us_t|ﬂe
Pwsqug tout bonnement impossible car c'estle jeu de
a requéte HTTP, telle qu'elle est envoyée par le client,
u'Apache doit alors traiter. Or le client est libre
'‘envoyer ce qu'il veut ; aucun algorithme n'est capable

de valider et/ou retrouver le jeu de la requéte d'origine.

Sivous tenez vraiment a réécrire des URL précises qui
contiennent des caracteres "spéciaux", ceci ne vous
laisse pas d'autre choix que d'écrire |a représentation
de tels caracteres pour un jeu donne telle que la
machine les représente, octet par octet, par la notation
hexadécimale \XAA ou AA est |a valeur hexadécimale
d'un octet.

Par exemple, pour réécrire noeud comme nceud, de
maniere insensible a la casse, en supposant que les
requétes des clients sont en UTF-8, nous devrions alors
écrire une regle telle que celle ci-dessous :

RewriteRule ~[nN](?:[00][eE]|\xC5[\x92\x93])[uU][dD]$
noeud.html

Conclusion : il est préféerable, sauf cas ou cela est
réellement justifié, d'opter pour un motif générique
(type .* combiné a un préfixe ou suffixe) plutot que de
chercher a inclure tous les caracteres, ce qui est difficile
voir impossible Pwsque notamment dépendant du jeu
de la requéte telle que le client I'envoie.

Note

e Les systemes Windows possedent une API a part
entiere qui interface le systeme de fichiers en
Unicode (UTF-16), Apache suppose, donc attend sur
ceux-ci, des requétes HTTP en UTF-8 de la part des
clients. Pour étre précis, c'est la bibliotheque sous-
jacente APR (Apache Portable Runtime) qui s'en
charge et effectue les conversions UTF-16 (systeme de
fichiers) <=> UTF-8 (HTTP).

e L'option NC (ou nocase), au niveau de RewriteRule
comme RewriteCond, ne considere pas non plus les
caracteres hors de la plage ASCIl non-étendu.

6.3. RewriteBase : quand Apache est
incapable de résoudre physiqguement les
chemins HTTP

En temps normal, RewriteBase est inutile. Vous utilisez
des chemins (HTTP) relatifs pour les ressources reelles
vers lesquelles sont reroutées les requétes HTTP et
Apache sait les gerer. Toutefois, dans les situations ou
une partie, au moins, de l'arborescence HTTP est
virtuelle (physiquement inexistante), Apache sera
incapable dé résoudre correctement la requéte de _
destination. Voici une liste non exhaustive de cas ou
RewriteBase devient nécessaire pour indiquer a Apache
le chemin HTTP qu'il doit utiliser:

e |les répertoires personnels des utilisateurs systeme
(module mod_userdir, directive UserDir)

e |es alias (module mod_alias, directives Alias et
AliasMatch)

e |es hotes virtuels de masse (module : mod_vhost_alias
; directives VirtualDocumentRoot, .
VirtualDocumentRootIP, VirtualScriptAlias et
VirtualScriptAliasIP)

Admettons que "_e fasse intervenir userdir : je créée

/home/ljulp/pub ic_html/.htaccess pour renvoyer foo

(http://localhost/~julp/foo) sur bar.php

(http://localhost/~julp/bar.php) :

#0ptions +FollowSymLinks -MultiViews
RewriteEngine on

RewriteRule "~foo$ bar.php

Apache ne sait ﬁas ici gérer correctement le chemin de
bar.php : il va chercher celui-ci par rapport a la racine

du serveur (DocumentRoot). Avec /var/www en
DocumentRoot, il va le réécrire en _
/yar/www/home/JuI}_J/Publlc html/bar.php (au lieu de
simplement /home/julp/public_html/bar.php).

Pour que cela fonctionne correctement, on a besoin ici
?I'_exlplllc_lt_er le chemin HTTP sur lequel il doit se baser,
~julp/ ici :

#0ptions +FollowSymLinks -MultiViews
RewriteEngine on
RewriteBase /~julp/

RewriteRule ~foo$ bar.php

Et a présent, tout fonctionne correctement.
A noter que RewriteBase :

* ne s'applique qu'aux chemins relatifs des ressources
vers lesquelles vous reecrivez :

o une URL compléete comme, _
http://www.mondoamaine.fr/bar.php n'est bien
évidemment pas concernée

o un chemin HTTP absolu, donc qui commence par
un slash, comme /bar.php, sera conserve/repris
intact

e concerne/impacte tous les chemins relatifs des
ressources vers lesquelles vous réeecrivez

Si je reprends I'exemple précédent, on pourrait se
passer de tout RewriteBase en modifiant |le .htaccess, et
plus particulierement le chemin de la regle, tel que :

#0ptions +FollowSymLinks -MultiViews
RewriteEngine on

RewriteRule ~foo$ /~julp/bar.php
Toutefois, l'usage de RewriteBase est recommandé

pour la simple et bonne raison que si vous changez de
configuration ou de serveur, vous n'avez qu'uneligne a

modifier alors qu'en réalisant une telle adaptation au
niveau de chaque regle, vous en auriez autant a
maintenir.

6.4. Comprendre réellement le flag L(ast)

Il n'est pas rare de voir le rble de I'option Last comprise
de travers, confusion que |'on peut certainement
attribuer au nom de ce drapeau. En effet, celui-ci
n'empéche en rien une réecriture de boucler
indéfiniment. Comme je I'ai déja expliqué dans la partie
Section 3.4, « Interactions entre les regles », il a pour
seul but de mettre fin au processus courant de
réécriture, c'est a dire appliquer immediatement la
regle au lieu de poursuivre la lecture des regles
suivantes a la recherche d'autres correspondances.
Mais une fois la regle appliquée, flag Last ou non, la
nouvelle adresse subit a son tour toute potentielle
réécriture, c'est un nouveau processus de réécriture
totalement indépendant des précédents qui a lieu. Par
conséquent, dans un contexte de répertoire (bloc
<Directory> ou fichier .htaccess), si on retombe sur ce
méme répertoire, on en retrouve a nouveau ses regles,
d'ou une boucle.

En réalité, dans ce contexte dit de répertoire, c'est le
module de réécriture, lui-méme, qui implémente une
sécurité de telle sorte que si le chemin courant est
strictement égal a celui de destination de la réegle (la
valeur du deuxieme parametre de RewriteRule) alors
Apache stoppe la reecriture. Faites |'essai par vous-
mémes, avec et sans l'option Last, vous ne constaterez
aucune différence :

#0ptions +FollowSymLinks -MultiViews
RewriteEngine on

en n'oubliant pas de préalablement créer le script
handler.php

RewriteRule .* handler.php

puis retenter avec [L]

Histoire de prouver ce que j'avance et pour les curieux,
voici le code en question (tiré d'une version 2.4 mais
présent depuis toujours) :

/*
* Fixup hook
* [RewriteRules in directory context]

*/
static int hook fixup(request rec *r)
{
[o ¥/
/* Check for deadlooping:
* At this point we KNOW that at least one rewriting
* rule was applied, but when the resulting URL 1is
* the same as the initial URL, we are not allowed
to

* use the following internal redirection stuff

because
* this would lead to a deadloop.

*/
if (ofilename !'= NULL && strcmp(r->filename,
ofilename) == 0) {

rewritelog((r, 1, dconf->directory, "initial URL
equal rewritten”
" URL: %s [IGNORING REWRITE]", r-
>filename));
return OK;
}

[* o0 ¥/

Dans la mesure ou nous retrouverions
scrupuleusement les mémes regles, au final, que le
drapeau Last soit ou non présent ne change quasiment
rien. L'unique difféerence serait liée a I'ordre des rggles\:
les regles précédant celle appliquée ne pouvant I'étre a
leur tour qu'au prochain processus de reecriture. Celles
situees en-dessous pouvant étre appliquées de suite,
sans necessiter un nouveau processus de réécriture.

L'option Last prend essentiellement tout son sens
quand un nouveau répertoire est impliqué. Pour vous

en convaincre, effectuons une petite démonstration.
Reproduisez tout d'abord la hierarchie suivante :

/
page.php
sousrepertoire/
.htaccess

c.php

Le contenu de sousrepertoire/.htaccess est le suivant :

Options +FollowSymLinks -MultiViews
RewriteEngine On
RewriteBase /sousrepertoire/

RewriteRule "~a /page.php
RewriteRule p c.php

Faites un premier test avec I'URL o
http://localhost/sousrepertoire/abc. Puis ajoutez
I'option Last a la premiere regle et recommencer.

Pourquoi le résultat est-il différent ? Explications :

* Avec Last, http://localhost/sousrepertoire/abc est
réécrit de la sorte :

o L'adresse courante, abc est transformee, en
memoire (ce n'est pas encore effectif), en
/page.php du fait de la correspondance avec "a ;

o Last conduit a I'arrét immédiat de la lecture des
regles ;

o Apache applique le nouveau chemin /page.php;

o http://localhost/page.php est la page finale car on
suppose qu'il n'y a pas d'autres regles applicables

fni de fichier .htaccess a la racine ni de regles dans
e httpd.conf).

e Quand, sans Last, http://localhost/sousrepertoire/abc,
le cheminement est tout autre :

http://localhost/sousrepertoire/abc

o abc est transformé dans un premier temps en
{\page.php (de par la correspondance de "abc" avec
d),

)

o absence de flag Last, Apache poursuit la lecture
des regles (/page.php n'est pas appliquée mais est
le chemin en cours) ;

o /page.php est transformeé en c.php _
(correspondance de "page.php” avec le motif p) ;

o il ne reste plus de réfgles a lire, A?ache applique la
derniere regle, I'url finale devien
http://localhost/sousrepertoire/c.php.

6.5. Exemple de résolution d'une boucle
infinie de reécriture

Je vais prendre |'approche _na'l'veé)our une application
développée autour du motif MVC, c'est-a-dire avec un
oint d'entrée unique qui serait le script d'index.
uelqu'un pour qui la réécriture est nouveau sera
probablement tenté de dire de téte : "on redirige tout
sur index.php", soit :

#0ptions +FollowSymLinks -MultiViews
RewriteEngine on

RewriteRule .* /index.php

La personne va tester et constater que ¢a boucle
indefiniment (en réalite, non, Apache met fin a la
requéte par une erreur 500 a la dixieme redirection
interne). Le fait est que "tout" comprend le script
index.php puisqu'il n'est fait aucune distinction sur ce
qui existe physiquement sur le disque dur ou non.

Comment ne pas avoir cette boucle ? Ici, il existe
plusieurs solutions :

e L'exclusion par une regle de non reeécriture : il s'agit
d'introduire une nouvelle regle pour intercepter
I'exception (l'index). Elle doit étre placée avantles
autres et lui accoler I'option Last. Du fait qu'Apache lit

les regles de haut en bas dans un fichier .htaccess et
qu'il ne poursuit pas la lecture si la regle trouvee est
marquee Last, nous n'avons plus de boucle.

#0ptions +FollowSymLinks -MultiViews
RewriteEngine on

RewriteRule ~(?:index\.php)?$ - [L]
RewriteRule .* /index.php
e |'exclusion par I'a{out d'une condition consiste a
ajouter une condition (directive RewriteCond) a la
regle problématique. Ce qui revient a écrire "tout
réécrire vers l'index sauf l'index lui-méme".

#0ptions +FollowSymLinks -MultiViews
RewriteEngine on

RewriteCond %{REQUEST URI} ~/(?:index\.php)?$
RewriteRule .* /index.php

e Reéécrire que ce qui n'existe pas physiquement : en
couplant RewriteCond, les opérateurs -f et -d et |a
variable REQUEST FILENAME, il est possible de réaliser une

telle chose.

#0ptions +FollowSymLinks -MultiViews
RewriteEngine on

Si la ressource demandée ne correspond pas a un
fichier

RewriteCond %{REQUEST FILENAME} !-f

Et si la ressource demandée ne correspond pas a un
répertoire

RewriteCond %{REQUEST FILENAME} !-d

La renvoyer sur index.php

RewriteRule .* /index.php

Pour I'exemple que j'ai choisi, cette derniere approche
est a mon sens la meilleure dans la mesure ou les
fichiers statiques (css, js et autres images) ne sont pas
inutilement renvoyés a PHP pour étre servis.

6.6. Les différents niveaux de réécriture

En temps normal, Apache ne cherche les regles qu'a
deux emplacements distincts dans l'ordre suivant :

1. du premier fichier .htaccess ou bloc <Directory>
trouvé en {_Jartant du répertoire correspondant a la
requéte HTTP en remontant jusqu'a la racine du site ;

2. et, ensuite, celles de I'hote virtuel répondant a la
requéete HTTP.

Sivous souhaitez qu'Apache considere également les
regles du repertoire parent (pour un fichier .htaccess
ou un bloc <Directory>) ou, pour un héte virtuel, que ce
dernier hérite de celles du serveur principal, vous devez
ajouter une directive RewriteOptions afy'a_nt pour valeur
Inherit a tous les endroits ou vous souhaitez que le
contexte parent soit consulté :

RewriteOptions Inherit

Les regles de niveaux supérieurs étant traitées apres
celles de niveaux inferieurs. Concretement, il est
possible d'aboutir a cette chaine :

répertoire (.htaccess ou <Directory>) courant >
répertoire(s) parent(s) > hote virtuel > serveur
principal

Cependant, Apache 2.4 introduit la valeur InheritBefore
pour cette méme directive RewriteOptions, inversant
cet ordre : les regles de niveaux supérieurs sont alors
évaluées avant celles de niveaux inférieurs.

Je rappelle que |'option END stoppe sur-le-champ toute
réécriture. Par conséquent, les niveaux supérieurs (ou
inférieurs si RewriteOptions est a InheritBefore) Ne
seront pas consultés. Quant au drapeau Last, c'est plus
complexe pour les raisons que j'ai déja pu évoquer :
dans un contexte de répertoire; une fois la regle
appliquée, nous retrouvons au moins en partie les

mémes régles, a minima, celles au niveau de I'h6te
virtuel. Le processus de reéecriture ne peut .
véritablement étre arrété par Last que pour les regles
au niveau de I'héte virtuel ou du serveur principal.

/. Conclusion

Je suis conscient de ne pas avoir tout traité notamment
certaines options de RewriteRule (S, N, C, CO, E, etc) ou
encore RewriteMap. Le présent document est deJa_ ien
assez long rien qu'en tentant d'aborder 'usage qu'il est
communement fait de la réécriture avec Apache.
jt;espere que mon approche constituera une bonne

ase pour les lecteurs qui s'intéressent fraichement au
SUJL_et ou l'approfondir mais s'avérera aussi un bon
catalogue des différentes problématiques que |'on peut

rencontrer.

Bien que n'ayant pas pu tout détailler, j'espére avoir pu
déemontrer que la reecriture est un veritable outil qui
s'‘apparente a un couteau-suisse tant elle permet
d'accomplir de taches bien differentes.

Le procédé de réécriture d'URL n'est en rien propre a
Apache, tout serveur HTTP integre sa propre
implémentation. Outre la question de la syntaxe, dans
le Tond, le principe est toujours le méme. Par exemple,

!

quelques paralleles avec Nginx :

. Ioels di;ectives RewriteCond s'écrivent sous forme de
oc if;

e rewrite se comporte comme RewriteRule placée dans
le fichier de configuration d'Apache au niveau d'un
<VirtualHost> puisque c'est I'ensemble du chemin
HTTP qui est teste;

e |a query string est toujours recopiée pour Nginx a
moins d'utiliser la méme solution qu'Apache: ajouter
un point d'interrogation a la fin de la nouvelle
destination a suivre ;

e |a gestion des variables représentant la requéte HTTP
comme |'état du serveur, est totalement différente et
indéependante du module de réécriture. Un gros
avantage par rapport a Apache est que les valeurs
composées, comme la query string, sont reellement
parsées par Nginx et forment autant de variables, ce
qui est plus commode.

Si vous deviez mémoriser quelques éléments a propos
de la réécriture avec Apache, voici les points les plus
importants :

e RewriteRule ne teste que la partie chemin d'une URL,
our tout le reste il faut s'orienter sur RewriteCond et
a variable de réécriture adéquate ;

e par défaut, sila regle suivie ne définit pas de query
string, alots celle d'origine, s'il y en a une, est
recopiée. A l'inverse, si'la regle appliquée définit une
chaine de requéte, alors cette derniere remplace celle
initiale ;

e |es directives RewriteCond sont, par défaut, liées par
un et logique ;

e |es directives RewriteCond ne s'appliquent qu'a la
regle qui suit. Elles ne se factorisent pas, il faut les
répéter si nécessaire ;

e les chemins, au niveau d'une regle RewriteRule située
dans un fichier .htaccess ne commencent jamais par
un slash. C'est |'inverse pour les fichiers de
configuration d'Apache a I'exception des blocs
<Directory>;

e |e flag L(ast) n'est pas END : il n'empéche pas une
boucle de reecriture contrairement a ce que
beaucoup croient et colportent a tort;

e il est recommandeé de placer ses regles par ordre de
spécificité decroissante, les motifs les moins "larges"
en haut afin de limiter les conflits.

Liens :

e |a documentation du module de réécriture ; version
2.2et2.4:

e |a documentation des expressions pour la syntaxe
alternative de RewriteCond en versions 2.4.

http://httpd.apache.org/docs/2.2/mod/mod_rewrite.html
http://httpd.apache.org/docs/2.4/mod/mod_rewrite.html
http://httpd.apache.org/docs/2.4/expr.html

	1. Avant propos
	1.1. Ce qu'est et n'est pas la réécriture
	1.2. PHP/SQL pour les besoins d'illustration autour d'un cas pratique dynamique

	2. Bref rappel des bases de la syntaxe des expressions rationnelles
	2.1. L'alternative (|)
	2.2. Les ancres (^ et $)
	2.3. Les quantificateurs (répétitions et/ou omission)
	2.4. Métacaractères contre caractères
	2.5. Les classes de caractères
	2.6. Groupement et mémorisation
	2.7. Les assertions négatives
	2.8. Épilogue

	3. Partie théorique : activation et explication des directives
	3.1. Activation
	3.1.1. Pour l'administrateur du serveur
	3.1.2. En tant qu'utilisateur

	3.2. Principe général
	3.3. Travailler uniquement sur le chemin HTTP
	3.4. Interactions entre les règles
	3.5. Les conditions pour travailler sur les autres parties de l'URL et au-delà
	3.6. Les différentes variables de réécriture

	4. Quelques exemples d'applications de la réécriture
	4.1. Interdire l'accès direct aux images depuis un site extérieur (direct linking ou hotlinking) ?
	4.2. Bloquer un client ou lui servir un contenu spécifique
	4.3. Rediriger un domaine (avec et sans www)
	4.4. Forcer le protocole https pour une ressource
	4.5. Rediriger des ressources qui ont été déplacées ou remplacées
	4.5.1. Redirections HTTP simples
	4.5.2. Racine de site déplacée : renvoyer, de manière invisible, sur un sous-répertoire

	4.6. Rerouter ce qui n'existe pas physiquement vers un contrôleur frontal ou semblable (MVC)
	4.7. Hôtes virtuels de masse simulés
	4.8. Effectuer une redirection en fonction d'un paramètre de query string
	4.9. Interdire l'accès au site avant une certaine date sauf pour une adresse IP
	4.10. Renvoyer le visiteur selon les heures de bureau
	4.11. Masquer l'extension de ses scripts PHP

	5. Difficultés communes et résolution
	5.1. Le "piège" de l'arborescence virtuelle
	5.2. Conflit entre la négociation de contenu et la réécriture
	5.3. Interprétation des codes d'erreur HTTP renvoyés dans le cadre de la réécriture
	5.4. En dernier recours : déboguer la réécriture d'URL

	6. Aller plus loin
	6.1. Gérer le possible duplicate content inhérent à la réécriture
	6.2. URL et caractères "spéciaux"
	6.3. RewriteBase : quand Apache est incapable de résoudre physiquement les chemins HTTP
	6.4. Comprendre réellement le flag L(ast)
	6.5. Exemple de résolution d'une boucle infinie de réécriture
	6.6. Les différents niveaux de réécriture

	7. Conclusion

