
Apache : la réécriture d'URL
Table des matières

1. Avant propos
1.1. Ce qu'est et n'est pas la réécriture
1.2. PHP/SQL pour les besoins d'illustration autour
d'un cas pratique dynamique

2. Bref rappel des bases de la syntaxe des
expressions rationnelles

2.1. L'alternative (|)
2.2. Les ancres (^ et $)
2.3. Les quantificateurs (répétitions et/ou
omission)
2.4. Métacaractères contre caractères
2.5. Les classes de caractères
2.6. Groupement et mémorisation
2.7. Les assertions négatives
2.8. Épilogue

3. Partie théorique : activation et explication des
directives

3.1. Activation
3.1.1. Pour l'administrateur du serveur
3.1.2. En tant qu'utilisateur

3.2. Principe général
3.3. Travailler uniquement sur le chemin HTTP
3.4. Interactions entre les règles
3.5. Les conditions pour travailler sur les autres
parties de l'URL et au-delà
3.6. Les différentes variables de réécriture

4. Quelques exemples d'applications de la réécriture
4.1. Interdire l'accès direct aux images depuis un
site extérieur (direct linking ou hotlinking) ?
4.2. Bloquer un client ou lui servir un contenu
spécifique
4.3. Rediriger un domaine (avec et sans www)
4.4. Forcer le protocole https pour une ressource
4.5. Rediriger des ressources qui ont été déplacées
ou remplacées

4.5.1. Redirections HTTP simples

4.5.2. Racine de site déplacée : renvoyer, de
manière invisible, sur un sous-répertoire

4.6. Rerouter ce qui n'existe pas physiquement
vers un contrôleur frontal ou semblable (MVC)
4.7. Hôtes virtuels de masse simulés
4.8. Effectuer une redirection en fonction d'un
paramètre de query string
4.9. Interdire l'accès au site avant une certaine
date sauf pour une adresse IP
4.10. Renvoyer le visiteur selon les heures de
bureau
4.11. Masquer l'extension de ses scripts PHP

5. Difficultés communes et résolution
5.1. Le "piège" de l'arborescence virtuelle
5.2. Conflit entre la négociation de contenu et la
réécriture
5.3. Interprétation des codes d'erreur HTTP
renvoyés dans le cadre de la réécriture
5.4. En dernier recours : déboguer la réécriture
d'URL

6. Aller plus loin
6.1. Gérer le possible duplicate content inhérent à
la réécriture
6.2. URL et caractères "spéciaux"
6.3. RewriteBase : quand Apache est incapable de
résoudre physiquement les chemins HTTP
6.4. Comprendre réellement le flag L(ast)
6.5. Exemple de résolution d'une boucle infinie de
réécriture
6.6. Les différents niveaux de réécriture

7. Conclusion

Liste des tableaux

1. 1. Une partie des classes nommées et autres
raccourcis PCRE

2. 2.
3. 3.
4. 4. Les différentes options possibles pour RewriteRule
5. 5. Les options de la directive RewriteCond
6. 6. Les différents opérateurs de comparaison

7. 7. Les opérateurs fichiers, qui peuvent également être
niés en les précédant d'un !

8. 8. Les variables reprenant la configuration d'Apache
9. 9. Les variables liées à la communication

client/serveur (TCP/IP, réseau)
0. 10. Les variables propres au protocole HTTP
1. 11. Les variables temps, date/heure du serveur
2. 12. Les variables héritées du module mod_ssl lorsque

le protocole est HTTPS
3. 13. Accès aux variables d'environnement
4. 14. Références arrières

Apache : la réécriture d'URL
julp
Copyright © 2012
Aucune reproduction, même partielle, ne peut être faite
de ce document et de l'ensemble de son contenu :
textes, documents, images, etc sans l'autorisation
expresse de l'auteur. Sinon vous encourez selon la loi
jusqu'à 3 ans de prison et jusqu'à 300 000 € de
dommages et intérêts. Cette page est déposée à la
SACD.
14/12/2012
Résumé
J'ai toujours voulu consacrer un article à la
fonctionnalité incontournable qu'est la réécriture d'URL
pour Apache. Il faut cependant admettre que c'est un
sujet très difficile à aborder tant il est technique et tant
il est complet. Il y a en effet beaucoup de choses à dire
pour couvrir de manière correcte ce vaste sujet.
J'espère remplir cet objectif au travers du présent
document par une description technique abordable,
complétée de différents cas pratiques courants.

1. Avant propos
1.1. Ce qu'est et n'est pas la réécriture
Avant de débuter, il est important d'être clair sur la
définition de "réécriture d'URL", faute de voir trop
souvent une erreur d'interprétation quant à cette
expression : la réécriture d'URL ne modifie pas

les liens de la source HTML que vous générez !
La réécriture d'URL, à la base, est un processus qui
redirige de façon purement interne une URL virtuelle (=
qui n'existe pas) sur une URL réelle. "Interne", au sens
où, la redirection n'est pas une redirection HTTP : le

http://www.sacd.fr/

client ignore tout de ce processus, rien n'apparaît de
son côté ; c'est le serveur HTTP lui-même qui se charge
d'effectuer cette traduction. En conséquence, bien que
la page servie au final soit toute autre, l'adresse vue par
le client, dans sa barre de navigation, reste inchangée à
ce qu'il a saisi ou au lien qu'il a suivi.
Pourquoi utiliser la réécriture d'URL ?

pratiquer l'obscurantisme, c'est-à-dire cacher aux
utilisateurs l'URL réelle donc les éventuels détails
techniques qui se cachent derrière, ceci pour éviter :

qu'ils ne jouent, manuellement, avec les URLs (les
paramètres en query string notamment) ;
qu'ils ne devinent de quelles technologies
dépendent votre site. Avec des extensions de
pages en .php, .asp ou .jsp, ceux-ci peuvent
aisément émettre quelques hypothèses ...

améliorer votre référencement. Un article traitant des
sessions en PHP et ayant pour URL article.php?id=2 se
trouvera surement dans les bas fonds de toute
recherche avec un moteur de recherche quelconque
quand article-2-les-sessions-en-php.html sera
certainement mis un peu plus en avant.

Tout d'abord, d'un point de vue purement théorique, la
réécriture n'entrera en jeu que si vous modifiez vos
liens. Pour reprendre l'exemple de l'article :

Les sessions en PHP

Doit à présent devenir :

Les

sessions en PHP

Suite à cela, quand le client suivra le lien réécrit, article-
2-les-sessions-en-php.html, il ignorera totalement que
c'est le script article.php?id=2 qui est finalement
invoqué, comme à l'origine. La traduction article-2-les-

sessions-en-php.html => article.php?id=2 étant réalisée
de manière interne par le serveur.
Il existe quelques moyens valables pour réellement
modifier vos liens initiaux sans votre intervention, il
faut cependant noter que :

cette tâche peut s'avérer techniquement fastidieuse à
mettre en place et pire à maintenir
le procédé mis en œuvre a un coût qui peut s'avérer
non négligeable

C'est pourquoi, dans la mesure du possible, il est
préférable de prévoir la réécriture dès le départ de
façon à avoir des liens (adresses) qui font directement
intervenir la réécriture, sans besoin d'intervenir
globalement sur le code HTML produit.
Toutefois, à titre purement illustratif, voici un moyen en
PHP couplant bufferisation de sortie et DOM (les
expressions régulières sont à bannir pour une telle
tâche) :

<?php

$bdd = new PDO(/*...*/);

function slugify($string) {

 /* voir implémentation ci-dessous */

}

function implode_url($path, $qs, $anchor) {

 $url = $path;

 if ($qs) {

 $url .= '?' . (is_string($qs) ? $qs :

http_build_query($qs, '', '&'));

 }

 if ($anchor) {

 $url .= '#' . $anchor;

 }

 return $url;

}

/**

 * Notes :

 * - DOM renvoie de l'UTF-8 indépendamment du jeu du

document de départ

 * - Le principe est simplifié : les ports HTTP(S) non

standard ne sont pas gérés entre autres

 **/

function rewrite_links(PDO $bdd, $content) {

 $dom = new DomDocument;

 if (!$dom->loadHTML($content)) {

 return $content;

 }

 $xpath = new DomXPath($dom);

 foreach ($xpath->query('//a') as $link) {

 if (!$link->hasAttribute('href')) { # pas

d'attribut href

 continue;

 }

 $href = $link->getAttribute('href');

 if (FALSE === ($parts = parse_url($href))) { #

parse_url a échoué

 continue;

 } else {

 $args = array();

 $parts = $parts +

array_fill_keys(array('path', 'host', 'scheme', 'query',

'fragment'), FALSE);

 if ($parts['scheme'] &&

!in_array($parts['scheme'], array('http', 'https'))) { #

le protocole n'est ni http ni https

 continue;

 }

 if ($parts['host'] && $parts['host'] !=

$_SERVER['HTTP_HOST']) { # le lien désigne un serveur

extérieur

 continue;

 }

 if ($parts['query']) {

 parse_str($parts['query'], $args);

 }

 }

 # C'est ici qu'il faut traiter/modifier les

liens

 # Exemple: article.php?id=2 => article-2-

<titre>.html

 if ($parts['path'] == 'article.php' && FALSE !==

($id = filter_var($args['id'], FILTER_VALIDATE_INT))) {

 $stmt = $bdd->query('SELECT titre FROM

billets WHERE id = ' . $id));

 if (FALSE !== ($titre = $stmt-

>fetchColumn())) { # On ne réécrit pas l'adresse d'un

article inexistant

 unset($args['id']);

 $link->setAttribute('href',

 implode_url(

 sprintf('article-%d-%s.html',

$id, slugify($titre)),

 $args,

 $parts['fragment']

)

);

 }

 }

 }

 return $dom->saveHTML();

}

ob_start();

?>

<!-- Le contenu normal de la page -->

<?php

$content = ob_get_clean();

echo rewrite_links($bdd, $content);

Par ailleurs, je vous recommande de prendre soin
d'étudier la mise en place d'une réécriture, quitte à
prendre, s'il le faut, un papier et un crayon : non
seulement, il vaut mieux modifier le moins possible des
règles de réécriture qui sont en production mais tout
conflit entre vos différentes règles pourrait avoir des
répercussions néfastes ! Petite anecdote à ce sujet, on
voit souvent des gens, qui se sont lancés dans la mise
en place d'une réécriture sans prendre le temps de
l'étudier : ils ont choisi le tiret (-) en guise de séparateur

g p
des valeurs qui sont concaténées ensemble pour finir
par se rendre compte bien plus tard que ces valeurs
peuvent en fin de compte comporter un tiret ... Dès
lors, il est impossible de retrouver les valeurs attendues
ou bien l'URL conduit à une 404 parce qu'il y en a plus
que prévu.

1.2. PHP/SQL pour les besoins
d'illustration autour d'un cas pratique
dynamique
Pour le cadre de cet article et ses quelques extraits de
code illustratifs, nous définissons les pré-requis
suivants :

disposer d'une base de données MySQL (toute
adaptation ne demande que quelques minutes vu
que le SGBD est exploité via PDO)
posséder une version de PHP >= 5.4.0
extension intl activée et, de fait, nous travaillerons
exclusivement en UTF-8
pour simplifier et rendre les codes moins longs, que
l'ensemble de nos scripts sont directement à la racine
du site

Nous définirons une table minimaliste nommée billets,
décrivant un blog fictif, décrit par la structure suivante :

CREATE TABLE billets(

 id INT UNSIGNED NOT NULL AUTO_INCREMENT,

 titre VARCHAR(255) NOT NULL,

 -- date, auteur, etc non montrés

 PRIMARY KEY(id),

 UNIQUE KEY(titre)

) ENGINE=InnoDB DEFAULT CHARSET=utf8;

Les fonctions PHP, à reproduire, intervenant tout au
long de l'article sont :

<?php

function slugify(/*UTF-8*/ $string) {

 return transliterator_create_from_rules("::Latin;

::Lower; ::Latin-ASCII; ([^a-z0-9])+ > \-")-

>transliterate($string);

}

function http_not_found() {

 header('HTTP/1.1 404 Not Found', 404, TRUE);

 exit;

}

function http_redirect_permanent($to) {

 header('HTTP/1.1 301 Moved Permanently', 301, TRUE);

 header('Location: http://' . $_SERVER['HTTP_HOST'] .

$to);

 exit;

}

2. Bref rappel des bases de la
syntaxe des expressions
rationnelles
Note
PCRE, la bibliothèque greffée à Apache qui se charge
des expressions régulières, est bien plus complète que
ce que je décris là. Beaucoup de ses aspects sont
passés sous silence non pas parce qu'ils ne sont pas
intéressants mais pour la simple et bonne raison qu'ils
ne sont pas applicables dans ce contexte. Citons :

le support (partiel) d'Unicode
certaines classes n'ont pas réellement de sens dans
une URL (espaces verticaux ou caractères non
imprimables devant être urlencodés, voir RFC 3986)

2.1. L'alternative (|)
Pour entrer dans le vif du sujet, commençons par le
plus simple : l'alternative. Comme son nom l'indique,
elle ne désigne rien d'autre que le fait de savoir si une
sous-chaîne A ou une sous-chaîne B (ou une sous-
chaîne C ou une sous-chaîne D ...) est, ou non,
contenue dans une chaîne d'origine. L'alternative est
représentée par la barre verticale, symbole |, pour
avoir sens de "ce qui la précède ou ce qui la suit".
Ainsi déterminer qu'une chaîne contient une voyelle,
revient à chercher le caractère 'a' ou 'e' ou 'i' ou 'o' ou
'u' ou 'y'. Le problème étant clairement exposé, on peut
constater que sa traduction de notre langue naturelle
au motif correspondant, a|e|i|o|u|y, est triviale.

2.2. Les ancres (^ et $)
Les ancres sont, à mon sens, le point clé à la
compréhension des expressions régulières :

http://www.faqs.org/rfcs/rfc3986.html

le symbole ^ caractérise le début de la chaîne : il
contraint la chaîne à débuter par un motif. Exemple :
^article accepte toute chaîne débutant par "article".
On notera que marquant le début de la chaîne, on ne
devrait rien trouver qui ait un sens littéral à sa
gauche.
à l'inverse, le métacaractère $ désigne la fin de la
chaîne : il force la chaîne à se terminer par un motif.
Exemple : php$ est vrai pour toute chaîne finissant par
"php". Étant donné que $ marque la fin de la chaîne,
on ne devrait rien trouver qui ait un sens littéral à sa
droite.

Il est important de comprendre que sans ancre,
l'expression régulière peut trouver une sous-chaîne
n'importe où :

soit l'expression régulière part, ancrée en aucune
façon, elle validera les chaînes suivantes : "particule",
"reparti", "rempart", "part"
à présent, avec ^part, ancrée sur le début, seuls
"particule" et "part" du point précédent satisfont
l'expression
maintenant avec part$, ancrée sur la fin de la chaîne, il
ne nous reste plus que "rempart" et "part"
enfin, avec ^part$, ancrée sur le début et la fin, nous
n'avons plus que "part"

On peut remarquer que dans le dernier cas, avec le
double ancrage, et pour un motif aussi simple, seule la
chaîne littérale elle-même peut être validée. Quand
nous n'avons pas d'autres outils que les expressions
régulières afin de valider une chaîne précise, c'est là la
seule solution.

2.3. Les quantificateurs (répétitions et/ou
omission)

Un quantificateur permet de dénombrer très
précisément le caractère qui le précède par un
minimum et/ou un maximum. D'une part, ils sont bien
plus commodes que les équivalents que vous pourriez
écrire : l'expression de 3 à 5 caractères 'a' resterait
simple à retranscrire en aa(a|aa|aaa) mais l'est
beaucoup moins sur de bien plus larges plages. D'autre
part, comment représenteriez-vous (théoriquement)
l'infini ? Enfin, autre avantage, c'est que ce minimum en
nombre d'occurrences peut être nul, ce qui permet
alors de rendre la présence du caractère facultative.
Suivant les valeurs données à ces deux bornes, il existe
plusieurs quantificateurs, qui se distinguent par leur
syntaxe :

? : un caractère optionnel, il peut apparaître 0 ou 1
fois. Exemple : ab?c accepte les sous-chaînes "abc" ou
"ac", autrement dit le caractère 'b' est facultatif entre
'a' et 'c'.
* : un caractère qui peut être répété un nombre

quelconque de fois, zéro compris. Exemple : ab*c
accepte les sous-chaînes "ac", "abc", "abbc", "abbbc",
etc. Le caractère 'b' peut apparaître 0, 1, 2, 3, 4, …,
100, … fois entre 'a' et 'c'.
+ : un caractère qui doit apparaître au moins une

fois. Exemple : ab+c accepte les sous-chaînes "abc",
"abbc", "abbbc" mais pas "ac". Le caractère 'b' doit
apparaître au moins une fois entre les caractères 'a'
et 'c'.
{X} : le caractère qui précède doit être présent
exactement X fois consécutives.
{X,Y}, avec Y > X : le caractère devant doit être présent
de X, minimum, à Y, maximum, fois.
{X,} : un caractère qui doit être présent au moins X
fois.

Note

En réalité, les minimum et maximum ne seront
réellement honorés que si vous avez une contrainte
supplémentaire avant et après. Par exemple, si je
prends l'expression régulière b{2}, qui consiste à
trouver deux caractères 'b' consécutifs, une chaîne
comme abbba satisfait ce masque sur les deux
premiers caractères 'b' consécutifs trouvés dans la
mesure où l'expression n'impose rien sur le contenu
avant ou après ceux-ci. Ici, ces deux caractères 'b'
peuvent être trouvés n'importe où, la notion de
minimum et maximum ne s'applique pas. On pourrait
indépendamment utiliser b{2,} dans ce cas de figure.
Si maintenant j'ajoute des tirets comme séparateur en
guise de contexte avant et arrière, l'expression devient
-b{2}-, alors seuls exactement deux 'b' consécutifs,
précédés et suivis d'un tiret établissent la
correspondance (exemple : a-b-bbb-bb-a).
On peut établir les équivalences de forme suivantes :

? est synonyme de {0,1} ;
* est théoriquement équivalent à {0,+∞} - l'infini ne
pouvant être représenté, il correspondrait aux limites
de notre machine ;
+ est identique, dans l'idée, à {1,+∞} ;
de même, {X,} a sens de {X,+∞} ;
{1} est toujours superflu, ce quantificateur est
implicitement associé, par défaut, à toute
composante d'un motif.

2.4. Métacaractères contre caractères
Un métacaractère est un caractère qui a une
signification particulière au sein d'une expression
régulière. Nous avons vu pour le moment les
métacaractères :

d'alternative : | ;
d'ancrage : ^ et $;

de quantification : ?, *, +, { et }.

Mais, puisqu'ils ont un sens particulier, comment leur
faire reprendre leur sens de caractère littéral ? Comme
dans beaucoup de langages, il faut, dans ces
circonstances échapper c'est-à-dire faire précéder un
tel caractère d'un antislash (\) pour que ce caractère
perde toute signification spéciale. Par contre, du coup,
l'antislash lui-même devient un métacaractère. Si nous
voulions un antislash dans le motif, il sera nécessaire
de le doubler (\\).
Dans les faits, par rapport au protocole HTTP, la plupart
de ces caractères ne peuvent figurer tel quel dans une
URL et sont alors (url)encodés. Cependant, laissons de
côté le domaine d'application et ses limites, si nous
voulions chercher quelque chose qui s'apparente aux
variables dynamiques de PHP, de la forme ${ ... }, un
motif possible pourrait être le suivant : \$\{[^}]+\}.
Remarquez que le caractère $ a été échappé, sans quoi
il aurait sens de fin de chaîne, dès lors nous
n'obtiendrions jamais de résultat ; de même pour les
accolades, qui rendraient invalides l'expression
puisque, sans, c'est une ou des quantités numériques
qui seraient attendues entre elles, pour contenu.

2.5. Les classes de caractères
Nous avons précédemment vu l'alternative mais que se
passe-t-il si je veux décrire une large plage de
caractères ? Admettons que je veuille représenter une
consonne minuscule ('b' ou 'c' ou 'd' ou 'f' ou ...) : que
devrais-je écrire ? L'expression régulière
correspondante serait :

b|c|d|f|g|h|j|k|l|m|n|p|q|r|s|t|v|w|x|z

Plutôt laborieux n'est-ce pas ? Dans cette situation, une
classe est normalement bien plus adaptée.
Une classe est introduite par des crochets : le crochet
ouvrant ([) marque son début et le crochet fermant (]),
sa fin. Elle a sens de : un caractère parmi ceux qui

forment son contenu, chaque caractère est uni par
un ou logique, comme l'alternative, d'où l'analogie
initiale. Ainsi, le précédent exemple peut
avantageusement être réécrit sous la forme d'une
classe que voici :

[bcdfghjklmnpqrstvwxz]

Toutefois, les classes permettent de représenter les
caractères par un ou plusieurs intervalles en séparant
le caractère de code ASCII le plus faible du plus fort par
un tiret. Au sein d'une classe, a-z, désigne alors
l'intervalle mathématique [a;z], soit du caractère 'a' à
'z', tous deux compris (la représentation d'une lettre
minuscule quelconque en somme). Par conséquent,
notre expression régulière visant à représenter une
consonne minuscule peut évoluer en une forme où les
groupes de consonnes consécutives peuvent être
écourtés sous la forme d'un intervalle :

[b-df-hj-np-tv-xz]

Les classes ne s'arrêtent pas là et possèdent un
avantage que les alternatives n'ont pas : celui de
pouvoir être niées. En ajoutant un chapeau (^) juste
derrière le crochet ouvrant d'une classe, la classe
devient négative. Elle prend alors le sens de : un
caractère qui n'est pas parmi ceux qu'elle contient. Dès
lors, si nous admettions que l'alphabet était limité aux
seules lettres minuscules, une consonne minuscule ne
serait-elle pas, en ces circonstances, un caractère qui
n'est pas une voyelle minuscule ? Ce qui nous aurait
permis de nouveau de simplifier notre motif de départ
par une classe négative :

[^aeiouy]

Attention : il ne faut pas confondre l'usage du
métacaractère ^ qui sert d'ancre de début de chaîne
lorsqu'il est en dehors d'une classe et de négation de

classe quand il suit immédiatement le crochet ouvrant
d'une classe.

Note
Tous les métacaractères deviennent de simples
caractères littéraux au sein d'une classe, donc nul
besoin de les échapper, à l'exception de :

le tiret (-) est promu métacaractère sauf s'il est situé
en première (négation - ^ - exclue) ou dernière
position de la classe. Ainsi, pour qu'un tiret reste
littéral à l'intérieur d'une classe et s'il n'est pas en
première ou dernière position, il devra être échappé ;
l'accent circonflexe seul, en tête de classe, indique
une négation. S'il doit être considéré comme littéral,
et positionné en première position, il est nécessaire
de l'échapper ;
le crochet fermant marque la fin de la classe. Pour
être littéral, il doit également être échappé ;

Pour savoir si une chaîne contient un métacaractère
quelconque, il est possible d'utiliser la classe ci-dessous
:

[-^$|?*+{}[\]]

Si les conditions de position sont respectées pour le
tiret et l'accent circonflexe (^), comme ici, seul le
crochet fermant nécessite un échappement.
Notons que les expressions régulières POSIX,
complétées par PCRE, prévoient un certain nombre de
classes nommées pour les cas usuels :
Tableau 1. Une partie des classes nommées et
autres raccourcis PCRE

Description Notation abrégée Quelques
autres
formes
équivalentes

Description Notation abrégée Quelques
autres
formes
équivalentes

\d Un chiffre décimal [0-9] ou
[[:digit:]]

\D Un caractère qui n'est pas un chiffre décimal [^0-9] ou
[^\d] ou
[^[:digit:]]

[[:xdigit:]] Un chiffre hexadécimal [0-9a-fA-F]

\w Un caractère composant un "mot" [0-9a-zA-Z_]

\W Un caractère ne composant pas un "mot" [^0-9a-zA-
Z_] ou [^\w]

[[:alpha:]] Une lettre [a-zA-Z]

[[:alnum:]] Une lettre ou un chiffre décimal [a-zA-Z0-9]
ou [[:digit:]
[:alpha:]] ou
[\d[:alpha:]]

[[:lower:]] Une lettre minuscule [a-z]

[[:upper:]] Une lettre majuscule [A-Z]

. Tout caractère excepté \n. Noter que, de fait, .
est un métacaractère. Pour faire référence à
un simple caractère point dans un motif, il
vous faudra l'échapper (\.).

[^\n]

Avertissement
Nous aurons l'occasion de détailler la question plus
tard, mais sachez qu'Apache ne gère que les
caractères de l'ASCII non étendu (points de code dont
la valeur se situe dans l'intervalle [0;127]). Par
conséquent, toutes ces classes ne comprennent
notamment pas les caractères accentués.
Une classe, positive comme négative, ne correspond
qu'à un caractère à la fois. Une expression régulière

q p g
telle que [^abc|def] n'interdit pas les sous-chaînes
"abc" ou "def". Cette dernière a sens de : un
caractère qui n'est ni a, ni b, ni c, ni |, ni d, ni e, ni f.
Dans la même idée, on pourrait être tenté d'écrire
[^d][^e][^f] en pensant désigner une sous-chaîne qui
n'est pas "def", ce qui est faux. Ce motif est beaucoup
plus large, il interdit bien la sous-chaîne "def" mais
aussi toutes les variantes contenant au moins un de
ses caractères ("dxy", "xey", "xyf", etc seraient
également rejetées, ce qui est bien différent). La
solution pour interdire une sous-chaîne n'est pas une
classe mais une assertion négative !
Lorsque l'on désigne un intervalle par la forme X-Y au
sein d'une classe de caractères, ceci implique que le
caractère Y possède un code ASCII supérieur à celui
de X. Si cette condition n'est pas respectée, vous
déclencherez une erreur 500.

2.6. Groupement et mémorisation
J'ai volontairement raisonné en terme de caractères
jusqu'ici dans la mesure où les métacaractères, de
quantifications notamment, sont "fainéants". Ils ne
s'appliquent qu'à ce qui les précède directement, donc,
par rapport à mes précédents exemples, à un caractère
('b' pour ab*c). Heureusement, les métacaractères
peuvent avoir un effet bien plus étendu qu'un simple
caractère, ce qui nous amène à la notion de
groupement. Il faut alors entourer de parenthèses,
comme nous le ferions en mathématiques en fait, la
partie du motif concernée. Par exemple : -(\d{3})+-
accepte une sous-chaîne composée d'un multiple de 3
chiffres (et comprenant au moins 3 chiffres) entourée
de part et d'autre par des tirets.
Toutefois, cette notion de groupement va quelque peu
au-delà, puisqu'il existe une nuance selon que l'on
veuille, ou non, conserver en mémoire la partie
correspondant à la sous-expression contenue entre ces
parenthèses :

avec mémorisation, forme (...) : la sous-chaîne qui
satisfait la sous-partie du motif entre de telles
parenthèses est conservée en mémoire. Ceci permet
de s'y référer, à l'intérieur de l'expression régulière en
cours comme en dehors, sous certaines limites, pour
usage ultérieur. Apache en permet jusqu'à 9.
sans mémorisation, syntaxe (?: ...) : bien que la forme
avec mémorisation soit plus largement utilisée sans
distinction, celle-ci possède l'avantage de ne pas
consommer inutilement de mémoire, même si cette
consommation s'avère négligeable mais, d'autre part,
vu que le nombre de captures est très limité, elle peut
s'avérer nécessaire sur un motif très complexe et
long.

Il est parfaitement possible de mélanger ces deux types
de parenthèses dans une même expression, ce serait
même conseillé pour ne capturer que ce qui est ensuite
réellement exploité. Prenons le motif
^(?:topic|sujet|thema)-(\d+)-(?:(\d+)-)?.*\.html$ soit le
mot "sujet" en anglais, français ou allemand (sans le
capturer car cette information est supposée inutilisée),
un tiret, un nombre (l'identifiant du sujet) que l'on
mémorise (capture n°1, première parenthèse
capturante en partant de la gauche), un tiret,
éventuellement un autre nombre (le numéro de la
page) que l'on capture (en 2) plus un tiret, un nombre
quelconque de caractères (le titre du sujet pour le
référencement) et l'extension .html.
Avec la chaîne "sujet-1234-creer-un-espace-membres-
en-php.html", qui ne comporte pas de numéro de page,
les captures suivantes vont être obtenues :
Tableau 2.

Numéro de la capture Texte capturé

0 sujet-1234-creer-un-espace-membres-en-php.html

1 1234

2 ∅ (inutilisé : rien)

Numéro de la capture Texte capturé

3 ∅

4 ∅

5 ∅

6 ∅

7 ∅

8 ∅

9 ∅

Quand, pour "topic-473-4-installer-un-bundle-avec-
composer.html", avec un numéro de page, ces captures
donneront :
Tableau 3.

Numéro de la
capture Texte capturé

0 topic-473-4-installer-un-bundle-avec-
composer.html

1 473

2 4

3 ∅

4 ∅

5 ∅

6 ∅

7 ∅

8 ∅

9 ∅

Aux 9 captures possibles, s'en ajoute automatiquement
toujours une spéciale numérotée 0, dont le but est de
reprendre la sous-chaîne qui satisfait l'intégralité de
l'expression régulière. Nous verrons par la suite
comment exploiter concrètement ces captures.
Avant de poursuivre, évoquons à cette occasion le
piège de l'alternative (|), en rappelant que son sens est
"ce qui précède la barre verticale ou ce qui la suit".
Ainsi, l'expression rationnelle ^abc|def$ ne signifie pas la
chaîne (exacte) "abc" ou "def" mais bien une chaîne qui
commence par "abc" ou qui se termine par "def". En
effet, chacun des ancrages (^ et $) est propre à la sous-
partie de l'alternative où il figure. Elle équivaut à (^abc)|
(def$). Pour écrire, je veux la chaîne (exacte) "abc" ou
"def", il aurait fallu écrire : ^(abc|def)$. Autre exemple
commun : je veux désigner un fichier d'extension .html
ou .php, on écrira \.(html|php)$ et non \.html|\.php$ où
l'ancre $ ne s'applique qu'à la partie \.php.

2.7. Les assertions négatives
Bien que les assertions soient peu souvent utilisées au
sein de la réécriture, je tenais à évoquer le sujet pour
au moins signaler leur existence. Une assertion
négative consiste à spécifier l'absence d'une sous-
chaîne avant ou après la position qu'elle occupe.

(?! ...) : assertion négative avant, possède pour
signification "n'est pas suivi de". Exemple :
^articles/(?!fr/) : un chemin commençant par
"articles/" et qui n'est pas suivi de "fr/".
(?<! ...) : assertion négative arrière, a sens de "n'est
pas précédé de". Exemple : (?
<!^www)\.mondomaine\.fr$: un sous-domaine
quelconque de mondomaine.fr excepté (précisément)
www.mondomaine.fr.

Je dois avouer qu'elles ne sont que très rarement
employées et qu'elles peuvent être remplacées par une
règle de non réécriture préalable. Pour illustrer
admettons une réécriture ayant pour but d'avoir des

URL fictives du type article/<id>/<titre>.html renvoyant
sur article.php?id=<id> mais que pour une raison
quelconque, je veuille exclure l'article d'id 34 de cette
réécriture, il est possible d'écrire au choix :

RewriteRule ^article/(?!34/)(\d+)/.+\.html$ article.php?

id=$1 [L,QSA]

ou

#RewriteRule ^article/(\d+)(?<!/34)/.+\.html$

article.php?id=$1 [L,QSA]

Est équivalent à :

On ne fait rien pour id=34

RewriteRule ^article/34/.+\.html$ - [L]

Pour tous les autres, on procède à la réécriture

RewriteRule ^article/(\d+)/.+\.html$ article.php?id=$1

[L,QSA]

2.8. Épilogue
En combinant ces différents métacaractères, il est
possible de décrire bien des choses évoluées suivant un
format prédéfini. Quelques exemples :

Un nombre entier, positif ou négatif, zéros non
significatifs autorisés :

^[-+]?\d+$

Un nombre quelconque :

^[-+]?\d+(?:\.\d+)?$

Une adresse IPv4 :

^(?:(?:25[0-5]|2[0-4][0-9]|1\d{2}|[1-9]?\d)\.){3}

(?:25[0-5]|2[0-4][0-9]|1\d{2}|[1-9]?\d)$

etc

3. Partie théorique : activation et explication des
directives
3.1. Activation
3.1.1. Pour l'administrateur du serveur

Prétendre à l'usage de la réécriture d'URL implique avant tout d'activer le module,
dédié, correspondant qui se nomme mod_rewrite. Éditez votre fichier de
configuration d'Apache, usuellement appelé httpd.conf, pour vous assurer que ledit
module (dynamique) est chargé par une directive LoadModule (décommentée) :

LoadModule rewrite_module modules/mod_rewrite.so

Note
ceux qui auraient compilé Apache à la main et inclus mod_rewrite en module
statique n'ont bien évidemment pas besoin de cette ligne, ce module sera
(toujours) présent
les utilisateurs de distribution GNU/Linux Debian et ses dérivées (comme *buntu)
sont invités à utiliser la commande a2enmod à la place :

a2enmod rewrite

Maintenez ouvert dans votre éditeur le fichier de configuration d'Apache car l'activer
ne suffit pas si vous voulez faire usage de la réécriture depuis des fichiers .htaccess.
En effet, vous devez vous assurer qu'Apache vous le permet. Ceci requiert en effet
des droits.

D'une manière générale, chaque directive se voit associer une catégorie (à la
compilation du module) parmi cinq (AuthConfig, FileInfo, Indexes, Limit et Options)
suivant la fonction qu'elle remplit. Ceci permet éventuellement à l'administrateur
de restreindre, via la directive AllowOverride, à ses utilisateurs celles qui peuvent
être ou non utilisées dans un fichier .htaccess par la suite. Les directives de
réécriture font toutes partie de la catégorie nommée FileInfo.
Cependant, la réécriture est volontairement bloquée de manière artificielle par un
mécanisme supplémentaire de façon à pouvoir autoriser l'ensemble des directives
de type FileInfo sauf la réécriture pour raison de sécurité. En plus d'autoriser les
directives qualifiées FileInfo, il faut autoriser Apache à suivre les liens
symboliques, par l'option FollowSymLinks ou SymLinksIfOwnerMatch.

La seconde, autoriser Apache à suivre les liens symboliques, vous laisse deux
options :

vous activez globalement, directement depuis le fichier de configuration d'Apache,
à ce que les liens symboliques soient suivis en modifiant la ligne Options du ou
des répertoires concernés pour y ajouter FollowSymLinks ou SymLinksIfOwnerMatch.
Dès lors, l'utilisateur n'a rien à faire de particulier dans son fichier .htaccess.
Pour résumer, cette solution implique deux modifications dans le fichier de
configuration d'Apache : s'assurer que les utilisateurs puissent recourir à la
réécriture (AllowOverride à valeur FileInfo au minimum) et Apache doit pouvoir
suivre les liens (Options +FollowSymLinks ou similaire). En clair :

<Directory C:/AMP/www/>

 # Listing de répertoire en l'absence de fichiers d'index

 # Autorisation de suivre les liens symboliques (requis pour la réécriture

depuis les fichiers .htaccess)

 Options Indexes SymLinksIfOwnerMatch

 # On permet à l'utilisateur de définir toute directive sauf celles de catégorie

Options

 # C'est FileInfo qui permet la réécriture

 AllowOverride AuthConfig FileInfo Indexes Limit

 # Pour permettre l'accès de tous au répertoire (je le mets mais ça n'a rien à

voir avec la réécriture)

 # Apache < 2.4

 <IfModule !mod_authz_core.c>

 Allow from all

 </IfModule>

 # Apache >= 2.4

 <IfModule mod_authz_core.c>

 Require all granted

 </IfModule>

</Directory>

ou, ma préférence, avoir confiance en l'utilisateur en lui laissant la possibilité de
tout utiliser. Ainsi, il activerait lui-même le suivi des liens symboliques, ce qui
demande alors à leur accorder plus de droits : il faut alors leur donner Options en
plus de FileInfo. Autant dire tout au final : votre directive AllowOverride doit alors
passer à valeur All mais vous n'avez pas besoin de modifier la partie Options, ce
sera à eux de l'ajouter dans leur .htaccess. Pour résumer, le fichier de
configuration dans ce cas de figure se présente plutôt ainsi :

<Directory C:/AMP/www/>

 # Listing de répertoire en l'absence de fichiers d'index

 # Il reviendra à l'utilisateur d'activer le suivi des liens symboliques

nécessaire à la réécriture

 Options Indexes

 # On permet à l'utilisateur d'utiliser toute directive possible

 AllowOverride All

 # Pour permettre l'accès de tous au répertoire (je le mets mais ça n'a rien à

voir avec la réécriture)

 # Apache < 2.4

 <IfModule !mod_authz_core.c>

 Allow from all

 </IfModule>

 # Apache >= 2.4

 <IfModule mod_authz_core.c>

 Require all granted

 </IfModule>

</Directory>

Quelle méthode choisir ? Il n'y en a pas une meilleure que l'autre, ce qui compte ce
sont les limites que vous voulez, ou non, imposer et quelle confiance vous accordez
à vos utilisateurs. La première, du moins telle que je la vois, présente surtout
l'inconvénient de bloquer l'usage des directives de type Options à l'usager (si PHP
fonctionne en module, vous bloqueriez notamment les directives php_flag et
php_value). Est-ce vraiment ce que vous voulez ? Quand la seconde place une plus
grande confiance en ceux-ci et leur offre une plus grande liberté.

Avertissement
Si vous ne savez pas ce que vous faites, ne modifiez jamais la partie <Directory />.
Elle correspond à la racine du système de fichiers et doit faire office de politique
restrictive par défaut !
La ou les parties que vous devez modifier sont celles qui sont publiées donc qui
correspondent à votre racine (DocumentRoot) ou plus bas dans l'arborescence (à
l'exception des alias). En général, modifier les balises <Directory> qui reprennent les
valeurs des DocumentRoot suffit.

Note
Sur la plupart des distributions GNU/Linux et pour une installation d'Apache avec les
paquets officiels, la configuration d'Apache est découpée en plusieurs fichiers. Si tel
est le cas, c'est le fichier de configuration qui correspond à votre hôte virtuel qu'il
faut chercher. Quelques exemples :

Debian/*buntu : /etc/apache2/sites-enabled/000-default
Gentoo : /etc/apache2/vhosts.d/default_vhost.include

À moins d'attendre le (re)démarrage de votre machine, il vous est nécessaire de
recharger la configuration d'Apache ou de relancer Apache.

Sous GNU/Linux, la commande ressemble généralement à :

initscripts

/etc/init.d/apache2 reload

systemd

systemctl reload apache2

FreeBSD, pour Apache 2.2 :

service apache22 restart

ou

/usr/local/etc/rc.d/apache22 restart

3.1.2. En tant qu'utilisateur

Il est nécessaire, partout où vous aurez des règles de réécriture, d'activer
explicitement la réécriture par une directive :

RewriteEngine on

En effet, il ne suffit pas de placer des règles dans un fichier .htaccess, ou même
dans le fichier de configuration d'Apache, pour qu'elles soient opérantes. Ceci pour
des raisons de performance tout comme cela peut vous permettre de désactiver
temporairement votre réécriture.
Bien qu'il soit possible d'activer globalement la réécriture par une directive
RewriteEngine On au niveau de chaque hôte (VirtualHost) pour ne pas avoir besoin
de la repréciser partout, je vous le déconseille fortement de façon à ne pas en subir
inutilement le contre-coût. C'est pourquoi, ici, elle sera systématiquement accolée à
nos règles.

3.2. Principe général
Avant de savoir comment déclarer ses règles au niveau d'Apache, il est vital de bien
assimiler ce qu'est une URL et, surtout, de quoi elle se constitue. Une URL est en
effet composée de différentes parties. Pour les détailler, prenons en modèle une
URL particulièrement complète :

https://www.monsite.fr:8443/forum/admin/task.php?page=db&start=30#p71

Elle se décompose comme suit :

1. le nom du protocole qui précède les "://" en tête. En principe, ici, il ne peut qu'être
à valeur “http” ou “https” (la version sécurisée - encapsulée par SSL - du protocole
HTTP comme dans l'exemple). Il définit la manière dont client et serveur
communiquent ;

2. vient ensuite, le nom (ou l'adresse IP directement) (www.monsite.fr dans
l'exemple) du serveur à qui le client s'adresse ;

3. optionnellement, si le serveur écoute sur un port non standard par rapport au
protocole (80 pour http et 443 pour https), le client devra l'indiquer directement
après le nom ou l'adresse du serveur en ajoutant entre les deux un caractère ':'.
C'est le cas de notre exemple, avec pour port TCP : 8443 ;

4. puis on trouve la partie la plus importante : le chemin (/forum/admin/task.php
dans l'exemple). Elle désigne la ressource que le client veut consulter. Pour
schématiser, il faut voir le serveur HTTP comme un disque dur distant où ce
chemin indiquerait le nom complet du fichier que vous désirez lire ;

5. éventuellement, on peut ensuite trouver ce que l'on appelle la query string ou, en
français, la chaîne de requête. Quand elle est présente, elle est séparée du chemin
par un point d'interrogation (?). Elle consiste à fournir des informations sous la
forme de couples nom=valeur facultative où chaque paramètre est séparé par un
caractère &. Dans notre exemple il s'agit de la partie page=db&start=30 qui
correspond à deux paramètres : page de valeur db et start de valeur 30. Si la
ressource invoquée le prévoit, cette page traite ainsi ces données, ce qui peut lui
permettre d'avoir un caractère dynamique. Elle est très couramment employée
par les langages scripts tel PHP, pour, par exemple, avoir un script unique gérant
l'affichage d'une fiche produit plutôt qu'un fichier HTML à maintenir par article :
l'identifiant du produit ciblé est passé en query string pour que ce script génère
dynamiquement sa description à partir des données de la base de données.

6. en fin d'URL, précédée d'un caractère dièse (#), on peut potentiellement trouver ce
que l'on appelle une ancre. Elle désigne, par un nom (p71 ici), une position
verticale au sein d'une ressource vers laquelle vous êtes automatiquement
déplacé. Cela vous évite de chercher et de scroller si le document est long.
De fait, notez que cette dernière partie de l'URL n'a de sens que pour un client : le
serveur n'aurait que faire d'un emplacement dans une page. Le client n'envoie

pas une ancre au serveur (ce morceau est supprimé de l'URL

effectivement transmise au serveur HTTP). En revanche, il peut être tout
à fait pertinent, pour le serveur, d'en fixer une au client.

3.3. Travailler uniquement sur le chemin HTTP
Dans un premier temps nous n'allons considérer et travailler que sur la partie
chemin de l'URL. Nous ignorons tout le reste, les protocole, adresse, port et query
string.
Tout se joue sur la directive RewriteRule dont je vous présente la forme ci-dessous :

RewriteRule <motif> <destination> ([<options>])

1. motif : une expression régulière que la partie chemin doit satisfaire pour voir la
règle appliquée.
Il faut cependant noter une subtilité par rapport aux chemins suivant
l'emplacement de vos directives RewriteRule :

dans le(s) fichier(s) de configuration d'Apache, excepté les parties <Directory>,
le chemin à partir duquel RewriteRule travaille est le chemin complet de la
ressource, qui commence toujours par un slash. Par exemple, pour des
règles directement située dans le fichier de configuration d'Apache et l'URL
http://www.mondomaine.ext/forum/profil-3-toto :

RewriteRule ^forum/profil-(\d+)-.+ viewprofil.php?id=$1

Ne serait jamais appliquée du fait de l'ancrage sur le début de la chaîne et le
manque du slash au début.
à l'inverse, pour des règles situées dans un fichier .htaccess ou des blocs
<Directory>, le chemin sur lequel RewriteRule se base est relatif au répertoire
du fichier .htaccess. C'est-à-dire que toute la partie qui correspond au
répertoire où se trouve le fichier .htaccess est d'abord automatiquement
tronquée par Apache. En conséquence, le chemin ne commence jamais

par un slash.

Prenons l'URL http://www.mondomaine.ext/a/b/c/d avec un fichier .htaccess
dans le sous-répertoire b, je dois alors ignorer la partie /a/b/ (dernier slash
compris) soit employer ^c/d$ comme motif de ma règle :

RewriteRule ^c/d$ c/e [L,R=permanent]

2. destination :
un chemin HTTP absolu (/rss.xml : le fichier rss.xml à la racine du site) ou relatif
(forum/topic.php : bien que pas tout à fait exact, le fichier topic.php du sous-
répertoire forum du répertoire où se situe le fichier .htaccess) : le chemin de la
ressource à atteindre au travers du serveur HTTP.
une URL complète (http://www.google.fr/) : une redirection HTTP (temporaire,
par défaut) aura lieu vers la nouvelle destination. Comme il ne s'agit plus

du même hôte/domaine, c'est bien une redirection HTTP qui est

opérée. Celle-ci est suivie par le client, ce dernier verra son URL

changer.

un chemin vers un fichier (tel C:/tmp/maintenance.html), uniquement possible
depuis les fichiers de configuration d'Apache, sachant que les droits d'accès
sont honorés (par rapport aux directives Allow/Deny, ou Require en versions
2.4, en application).
ne rien faire par la valeur spéciale tiret (-). L'URL reste alors inchangée. Comme
nous pourrons le voir plus bas, cette valeur est liée à l'usage de certaines
options mais permet aussi d'écrire des règles de non-réécriture afin de réaliser
des exceptions.

3. options : une liste facultative d'options, parmi celles détaillées ci-dessous. Ces
options sont encadrées par des crochets et séparées par des virgules. Exemple :
[NC,F] pour les options NC, insensibilité à la casse et F, retour d'un code HTTP
d'erreur 403.

Avertissement
Veillez à ne pas ajouter d'espace après la virgule sans quoi vous obtiendriez une
erreur 500. En effet, un espace marque le passage à un nouvel argument des
directives Apache, ce qui rendrait votre règle invalide.
Tableau 4. Les différentes options possibles pour RewriteRule

Abréviation Nom long Description Note

F forbidden Interdit virtuellement l'accès à
une ressource en renvoyant
un statut HTTP "403
Forbidden"

Il n'y a pas lieu de modifier la
requête, le deuxième paramètre
devrait être à valeur "-"
La lecture du .htaccess est
interrompue (l'option Last est
implicite)
F est synonyme de R=403 à partir
des versions 2.2
Suivant le contexte, une telle
règle peut éventuellement être
remplacée par une directive
Deny from all (ou Require all
denied à partir de la version
2.4.0)

Abréviation Nom long Description Note

G gone Indique virtuellement que
toute ressource correspondant
au motif n'existe plus par un
statut HTTP "410 Gone"

Il n'y a pas lieu de modifier la
requête, le deuxième paramètre
devrait être à valeur "-"
La lecture du .htaccess est
interrompue (l'option Last est
implicite)
G est synonyme de R=410 à
partir des versions 2.2
Une telle règle peut être
remplacée par Redirect ou
RedirectMatch

R(=code) redirect À l'origine, cette option est
prévue pour effectuer une
redirection HTTP temporaire
ou permanente. Depuis les
versions 2.2, il est possible de
renvoyer d'autres codes HTTP
(403, 404, etc).

Valeurs permises pour code :
R=temp ou R=302 : procède à
une redirection temporaire. Il
s'agit là du comportement par
défaut de cette option en
l'absence de toute valeur de code
(voir aussi les directives Redirect)
R=permanent ou R=301 : réalise
une redirection permanente (voir
aussi les directives Redirect)
R=seeother ou R=303 (voir aussi
les directives Redirect) : indique
que la réponse se trouve à une
autre adresse (en méthode GET)
R=un code HTTP numérique
valide : permet de renvoyer le
code d'erreur HTTP indiqué. Par
exemple, avec R=404, nous
pourrions faire passer une partie
de l'arborescence comme
inexistante aux clients

Note
Le drapeau R n'induit pas
implicitement Last dans tous les
cas, c'est pourquoi il est vivement
recommandé de le préciser sous
peine de rencontrer une possible
erreur sur les autres règles.

NC nocase Rend l'ensemble du motif de la
directive RewriteRule courante
insensible à la casse

Rappel : elle ne concerne que les caractères de
l'ASCII non étendu

NE noescape Par défaut, Apache encode
tout caractère pouvant
s'avérer problématique. Si
vous voulez conserver vos
caractères tels que vous les
avez écrit, ajoutez cette
option.

Cette option est notamment requise pour faire
figurer une ancre dans la partie destination
sans quoi le dièse est encodé en %23. Ce qui
conduit à une erreur 404.

QSA qsappend Reproduire la chaîne de
requête (query string)
précédente à la fin du nouveau
chemin à suivre

Abréviation Nom long Description Note

QSD qsdiscard Ne pas recopier la chaîne de
requête (query string) avant la
réécriture courante

Nécessite Apache >= 2.4.0. Il existe cependant
un équivalent portable consistant à ajouter un
point d'interrogation à la fin du chemin de
destination. Il indique à Apache de ne pas
recopier la query string (et ce point
d'interrogation sera supprimé de la requête).

L last Par défaut, Apache continue la
lecture des règles après en
avoir trouvé une première qui
s'applique (c'est alors la
nouvelle URL qui doit matcher
les RewriteRule restantes).
Pour qu'il l'applique
immédiatement, sans
poursuivre sa lecture, ajouter
cette option.

N'espérez pas échapper à une boucle infinie de
réécriture avec cette option. En effet, cette
option ne stoppe que le processus courant or
lors de l'application de toute règle, la nouvelle
URL subit à son tour toute éventuelle règle de
réécriture suivant où elle aboutit. Lorsqu'il y a
une boucle, si vous revenez sur le même
répertoire, donc les mêmes règles, le flag Last
ne vous sauvera pas.

E end Met fin à tout processus de
réécriture.

Requiert Apache >= 2.4.0

Voici quelques premiers exemples simples :

Embellir les URL de mon blog de façon à les produire pour qu'elles aient pour
forme : article-<id>-<titre>.html et qu'en réalité elles aboutissent, comme avant,
sur article.php?id=<id> :

RewriteRule ^article-(\d+)-.+\.html$ article.php?id=$1

Renvoyer tout ce qui n'a pas d'extension et qui n'est pas un répertoire, au sens où
le chemin n'est pas terminé par un slash, en query string, en tant que valeur du
paramètre page, sur le script index.php :

RewriteRule ^[a-z]+$ index.php?page=$0

Faire passer ses scripts PHP pour de bêtes fichiers HTML statiques (ne pas oublier
de changer l'extension des fichiers en .html dans vos différents liens - balises <a>
notamment) :

RewriteRule (.*)\.html$ $1.php

3.4. Interactions entre les règles
Je souhaite, dans cette partie, vous expliquer de manière simplifiée, en mettant
volontairement de côté certains aspects techniques qui seront abordés bien plus
tard, comment Apache lit et applique les règles pour un fichier .htaccess donné.
C'est un point essentiel à la rédaction de vos règles : il est important de comprendre
comment et en quoi les règles interagissent. Interactions qui, concrètement,
peuvent se traduire à voir certaines règles invoquées au détriment d'autres alors
que ce n'est pas ce qui était voulu.
Avant tout, même si cela peut paraître bête : les règles de réécriture sont évaluées
de haut en bas : la première à apparaître dans le fichier puis la deuxième puis la
troisième et ainsi de suite. Par conséquent :

même s'il ne s'agit que d'une question d'expressions régulières et de logique, vous
ne pouvez pas avoir deux motifs strictement identiques ou très proches. J'ai déjà
vu des règles comme celles-ci :

Cet exemple est volontairement erroné pour des fins pédagogiques

RewriteRule ^([0-9]+)-([0-9]+)-(.*)\.html$ index.php?menu=$1&rubrique=$2 [L]

RewriteRule ^([0-9]+)-([0-9]+)-(.*)\.html$ index.php?menu=$1&page=$2 [L]

Comment Apache, ou même quiconque, pourrait-il distinguer les deux cas ? Ce
qu'il va faire, conformément à ce que je viens d'écrire (et si le chemin correspond
bien évidemment), c'est toujours appliquer la première. Du coup, la seconde, ne
sera jamais utilisée.
du fait de ce sens de lecture, les règles doivent être placées par ordre de
spécificité décroissante, celles aux motifs les moins larges en haut de sorte
qu'elles aient priorité. Illustration avec un nouvel exemple à ne pas suivre :

Cet exemple est volontairement erroné pour des fins pédagogiques

RewriteRule ^viewtopic-([0-9]+).* viewtopic.php?id=$1 [L]

RewriteRule ^viewtopic-([0-9]+)-([0-9]+).* viewtopic.php?id=$1&p=$2 [L]

Qu'est-ce qui ne va pas ici ? La seconde règle est plus précise puisqu'elle attend un
chemin composé de "viewtopic-", un nombre, un tiret puis un nombre enfin,
optionnellement, n'importe quoi quand la première est satisfaite par un chemin
constitué de "viewtopic-", un nombre enfin, optionnellement, n'importe quoi. La
sous-partie .* de la première règle est en conflit avec la portion -([0-9]+).* de la
seconde du fait que .* inclut -([0-9]+).*. Conséquence : pour les chemins auxquels
seraient applicables la seconde règle, c'est la première qui se verrait invoquée ; la
seconde ne le serait jamais non plus.
Comment résoudre ce conflit ? J'ai déjà donné la solution en réalité : elles doivent
tout simplement être inversées pour respecter cette notion de priorité par rapport
à la spécificité respective de leur expression régulière.

RewriteRule ^viewtopic-([0-9]+)-([0-9]+).* viewtopic.php?id=$1&p=$2 [L]

RewriteRule ^viewtopic-([0-9]+).* viewtopic.php?id=$1 [L]

Un autre exemple où elles doivent être inversées :

Cet exemple est volontairement erroné pour des fins pédagogiques

RewriteRule ([^/]+)/([^/+]) index.php?param1=$1¶m2=$2 [L,QSA]

RewriteRule ([^/]+)/([^/+])/([^/+]) index.php?param1=$1¶m2=$2¶m3=$3 [L,QSA]

La première étant satisfaite par la présence du moindre slash.
Il arrive parfois que ce soit l'omission d'ancrages (^ et/ou $) qui conduise à un tel
conflit. Dans ce dernier exemple, un ancrage, suivant le but recherché, pourrait
même s'avérer plus approprié.

Autre point à éventuellement prendre en compte, la présence ou l'absence de
drapeaux spécifiques. Pour schématiser, dès la réception d'une requête HTTP,
Apache va initialiser une variable en mémoire que j'appelle "adresse courante" à
partir de l'URL initialement appelée. Elle sert de référence aux comparaisons avec
les règles tout comme elle peut déterminer l'adresse à suivre. La réécriture peut en
modifier la valeur. Ainsi quand une règle est satisfaite, certaines options peuvent
influer de manière totalement différente sur le déroulement de la réécriture :

END ou F(orbidden) : Apache stoppe sa lecture des règles, le résultat de la règle (la
destination, deuxième paramètre de RewriteRule) entre en vigueur
immédiatement sans que la nouvelle adresse obtenue puisse subir par la suite
une quelconque réécriture (fin définitive).
L(ast) : Apache ne poursuit pas la lecture des règles, la règle courante est
appliquée, l'adresse obtenue de cette règle est suivie/invoquée mais cette
dernière est à son tour éligible à toute réécriture. En d'autres termes, pour
Apache, ce résultat de réécriture n'apparaît pas comme tel mais bien comme toute
requête HTTP. Nous reviendrons sur ce drapeau particulier par la suite.
À défaut, sans aucun de ceux-ci : Apache va tout de même continuer à lire les
autres règles, l'adresse courante, servant de base à la réécriture, devient le
résultat de la règle courante. C'est cette nouvelle adresse qui va servir de base à la
comparaison des règles suivantes.
Si jamais la fin des règles est atteinte (la fin du fichier .htaccess par exemple), qu'il
y ait eu ou non une précédente réécriture, l'adresse courante est invoquée.

Ci-dessous une représentation graphique illustrant le traitement des règles :

3.5. Les conditions pour travailler sur les autres parties de
l'URL et au-delà
Nous avons vu plus tôt qu'une directive RewriteRule ne s'applique qu'à la partie
chemin d'une URL. N'est-ce pas contraignant ? Non parce que le module de
réécriture prévoit une directive complémentaire, RewriteCond, pour gérer tout le
reste, autres parties d'une URL (nom de domaine, port, query string, etc) comprises.
RewriteCond a pour rôle de définir une condition (telle une instruction if dans un
langage de programmation quelconque), restreignant ainsi l'effet de la règle,
directive RewriteRule, qui la suit et à laquelle elle est couplée.

RewriteCond <chaîne à tester> <condition> (<options>)

1. chaîne à tester : la valeur à tester consiste en un élément interne à Apache
décrivant notamment la requête HTTP courante comme le nom du serveur que le
client cherche à atteindre, la valeur d'un entête HTTP, la chaîne de requête, etc.
Tous ceux-ci sont représentés par une variable nommée prédéterminée de la

forme %{nom} dont vous pourrez trouver une liste dans la partie suivante avec leur
description respective.

2. condition : la condition que chaîne à tester doit satisfaire pour que la règle soit
appliquée (si Apache évalue la partie RewriteCond d'une règle, le chemin, par
rapport à RewriteRule, correspond déjà). Cette partie se constitue d'un opérateur
et éventuellement d'une valeur accolée à ce dernier (sans espace). Par défaut,
l'opérateur implicite est la satisfaction d'une expression régulière et la partie
valeur est traitée comme une expression régulière.

3. options : dans la même veine que RewriteRule, une liste facultative d'options,
entre crochets et séparées par une virgule (sans espaces), parmi :
Tableau 5. Les options de la directive RewriteCond

Abréviation Nom
long

Description Note

NC nocase Rend l'ensemble du motif de la directive
RewriteCond courante insensible à la casse

Rappel : elle ne concerne que les
caractères de l'ASCII non étendu

OR ornext Unit la condition courante à la suivante par
un OU logique au lieu d'un ET

En d'autres termes, une directive RewriteCond n'a pas de sens seule, elle est
toujours associée à une RewriteRule, celle qui suit. Cela signifie également qu'une
directive RewriteCond n'est valable que pour une seule règle, ne comptez pas les
factoriser, il vous faudra les répéter. Démonstration : si vous voulez forcer l'usage
du protocole HTTPS pour deux scripts, login.php et register.php, vous ne pouvez pas
écrire :

RewriteCond %{HTTPS} !=on [NC]

RewriteRule ^login\.php$ https://%{HTTP_HOST}/$0

RewriteRule ^register\.php$ https://%{HTTP_HOST}/$0

C'est faux, cela produit une boucle de réécriture sur register.php en https, car
RewriteCond vaut bien pour la première RewriteRule mais pas pour la seconde. La
correction est de reproduire la condition pour les deux règles :

RewriteCond %{HTTPS} !=on [NC]

RewriteRule ^login\.php$ https://%{HTTP_HOST}/$0

RewriteCond %{HTTPS} !=on [NC]

RewriteRule ^register\.php$ https://%{HTTP_HOST}/$0

Jusqu'ici j'ai employé le singulier en évoquant le couple condition
(RewriteCond)/règle (RewriteRule) or, pour reprendre ma précédente analogie, tel
un programme informatique, une même instruction peut dépendre de plusieurs
conditions et non d'une seule. Il est parfaitement possible d'assigner plusieurs
conditions, à raison d'une par ligne, par autant de directives RewriteCond, à une
même règle. Pour illustrer, admettons que je veuille interdire mon site à deux
adresses IP, 80.10.250.23 et 81.71.12.78, j'écrirai :

Cet exemple est faux

L'adresse IP courante du client est représentée par la variable %{REMOTE_ADDR} -

ces variables sont détaillées dans la partie suivante

RewriteCond %{REMOTE_ADDR} =80.10.250.23

RewriteCond %{REMOTE_ADDR} =81.71.12.78

RewriteRule .* - [F]

Cependant, il faut noter que, par défaut, l'ensemble des conditions d'une règle
donnée sont liées par un et logique. La règle ci-dessus ne peut jamais être satisfaite
: le client ne peut avoir à la fois l'adresse IP 80.10.250.23 et, en même temps,
81.71.12.78. Nous avons besoin d'un ou logique à la place (le client a l'adresse IP

80.10.250.23 ou 81.71.12.78) soit introduire l'option [OR], vue ci-dessous, à la fin de
la première condition. Notre réécriture, après correction, devient :

RewriteCond %{REMOTE_ADDR} =80.10.250.23 [OR]

RewriteCond %{REMOTE_ADDR} =81.71.12.78

RewriteRule .* - [F]

Une autre façon de l'écrire

Apache < 2.4

<IfModule !mod_authz_core.c>

 Order Deny,Allow

 Deny from 80.10.250.23 81.71.12.78

</IfModule>

Apache >= 2.4

<IfModule mod_authz_core.c>

 <RequireAll>

 <RequireNone>

 Require ip 80.10.250.23 81.71.12.78

 </RequireNone>

 </RequireAll>

</IfModule>

Vous pourrez trouver ci-dessous l'ensemble des opérateurs s'appliquant à
RewriteCond. Ils sont scindés en deux groupes : le premier a pour but de tester le
premier paramètre par rapport à une valeur (chaîne, entier, expression régulière)
attendue juste derrière l'opérateur quand le second n'attend pas de telle valeur car
ils testent la nature d'un fichier dont le nom est fourni en premier paramètre.
Tableau 6. Les différents opérateurs de comparaison

Opérateur Description Note

Aucun
(absence
d'opérateur)

Satisfaction de
l'expression
régulière

! Non satisfaction de
l'expression
régulière

= Égalité (littérale)

!= Inégalité (littérale) :
différent de

< Strictement
inférieur selon
l'ordre
lexicographique

!< Supérieur ou égal
selon l'ordre
lexicographique

Apache 2.4 a introduit la forme équivalente >= plus explicite

> Strictement
supérieur selon
l'ordre
lexicographique

!> Inférieur ou égal
selon l'ordre
lexicographique

Apache 2.4 a introduit la forme équivalente <= plus explicite

Opérateur Description Note

-eq Égalité numérique
Les deux chaînes sont converties en entiers (fonction
C atoi) puis comparés.
Apache >= 2.4.0 mais non fonctionnel pour Apache <
2.4.3 pour cause d'implémentation erronée (pris pour
une expression régulière)

-ne Inégalité numérique Mêmes remarques que pour l'opérateur -eq

-ge Numériquement
supérieur ou égal

Mêmes remarques que pour l'opérateur -eq

-gt Strictement
supérieur
numériquement

Mêmes remarques que pour l'opérateur -eq

-le Numériquement
inférieur ou égal

Mêmes remarques que pour l'opérateur -eq

-lt Strictement
inférieur
numériquement

Mêmes remarques que pour l'opérateur -eq

Avertissement
La notion d'ordre lexicographique est totalement fausse à cause d'une erreur
d'implémentation dans la fonction strcmp qui a été réécrite au sein du module de
réécriture : elle tient avant tout compte de la longueur des deux chaînes. De ce fait,
si deux chaînes n'ont pas la même longueur, c'est la plus longue des deux qui est
considérée comme supérieure sans même considérer leurs contenus. Pour illustrer,
la comparaison de alexendra, brian et zephir donne, pour Apache : alexendra >
zephir > brian (de la plus longue à la plus courte).
Seuls les opérateurs < et > sont impliqués, pas les (in)égalités, et deux chaînes de
même longueur ne posent aucun soucis ce qui confère à ce bug un effet très limité
et lui vaut d'avoir été aussi longtemps "ignoré". Cependant, il ne sera probablement
pas corrigé de si tôt pour des raisons de compatibilité (il est volontairement
conservé en versions 2.2 et 2.4 afin de garder le même comportement). En
revanche, en versions 2.4, la syntaxe alternative à base d'expression (RewriteCond
expr condition) ne le reprend pas, cette forme est bien correcte.
En réalité, elle aurait été correcte pour comparer des nombres entiers positifs sans
zéro non significatif sous forme de chaînes. Mais ne comptez pas représenter, par
exemple, un intervalle d'adresses IP avec ces opérateurs, du moins avec la forme
standard de RewriteCond.
Tableau 7. Les opérateurs fichiers, qui peuvent également être niés en les
précédant d'un !

Opérateur Description

-d Le fichier existe et désigne un répertoire

-f Le fichier existe et correspond à un fichier régulier

-s Le fichier existe, est un fichier régulier et possède une taille non nulle

-l Le fichier existe et est un lien symbolique

-x Le fichier existe et est exécutable

3.6. Les différentes variables de réécriture

Les "variables" prédéfinies par le module de réécriture prennent la forme %
{nom_de_la_variable}. Toute variable inexistante se verra interpolée (=
dynamiquement remplacée) par la chaîne vide sans l'émission d'une quelconque
erreur.

Avertissement
Cette interpolation n'a lieu que pour le premier paramètre de RewriteCond et
deuxième paramètre de RewriteRule. Toute variable figurant ailleurs qu'à ces
emplacements ne seront pas substituées par leur valeur, elles seraient littérales.
Vous trouverez ci-dessous la liste de ces variables prédéfinies, regroupées par
catégorie fonctionnelle :
Tableau 8. Les variables reprenant la configuration d'Apache

Nom Description

%{SERVER_ADMIN} Correspond à la valeur de la directive ServerAdmin attribuée au serveur

%{DOCUMENT_ROOT} La racine du site, telle qu'elle est définie par la directive DocumentRoot

%{SERVER_NAME} Le nom réel du serveur, la valeur de sa directive ServerName

Tableau 9. Les variables liées à la communication client/serveur (TCP/IP,
réseau)

Nom Description

%
{SERVER_ADDR}

L'adresse IP du serveur traitant la demande

%
{SERVER_PORT}

Le port TCP du serveur ayant reçu la requête HTTP (80 : port standard du protocole HTTP et 443
pour HTTPS)

%
{REMOTE_ADDR}

L'adresse IP du client (ce client peut n'être qu'un intermédiaire - proxy)

%
{REMOTE_HOST}

Le nom du client, ceci implique HostnameLookups à valeur On ou Double (attention aux
conséquences) sinon elle n'existe pas

%
{REMOTE_PORT}

Le port TCP du client employé pour l'émission de la requête

Tableau 10. Les variables propres au protocole HTTP
Nom Description Exemple Note

%{HTTP_HOST} Le nom du
serveur tel
que demandé
par le client
par
l'intermédiaire
de l'entête
HTTP Host

www.monsite.fr Identique à %
{HTTP:Host}

%{REQUEST_URI} La ressource
telle que
demandée
dans la
requête HTTP,
vous aurez
son chemin
complet
même dans un
contexte dit
"de répertoire"

/forum/admin/task.php Voir également
la variable %
{THE_REQUEST}

Nom Description Exemple Note

%{THE_REQUEST} La ligne
complète de la
requête HTTP
(sans les
entêtes)

GET /forum/admin/task.php?page=db&start=30 HTTP/1.1

%{HTTP_COOKIE} Une chaîne
regroupant
l'ensemble des
cookies que le
client renvoie

skin=blue; pref_order=asc (deux cookies : skin de valeur
blue et pref_order de valeur asc)

Un raccourci
pour %
{HTTP:Cookie}

%{HTTP_ACCEPT} Les formats
acceptés et
préférences
du client

text/xml,application/xml,application/xhtml+xml,text/html;
q=0.9,text/plain; q=0.8,image/png,*/*; q=0.5

Même chose
que %
{HTTP:Accept}

%{HTTP_REFERER} La provenance
de l'utilisateur

- Strict
équivalent de %
{HTTP:Referer}

%{QUERY_STRING} Les
paramètres
passés dans
l'URL,
regroupés
sous la forme
d'une chaîne.
Elle représente
toute la partie
située après le
point
d'interrogation
(exclus), si tant
est qu'il y en
est une

page=db&start=30

%
{REQUEST_METHOD}

La méthode
HTTP
employée par
la requête
(généralement
GET ou POST)

GET

%
{HTTP_USER_AGENT}

L'identifiant du
client

Mozilla/5.0 (Windows; U; Windows NT 5.1; fr; rv:1.8.1.11)
Gecko/20071127 Firefox/2.0.0.11

Synonyme de %
{HTTP:User-
Agent}

%{SCRIPT_FILENAME}
et %
{REQUEST_FILENAME}

Chemin
complet
(absolu) du
document
appelé

/usr/local/www/apache22/data/forum/admin/task.php

%
{SERVER_PROTOCOL}

La description
du protocole
employé

HTTP/1.1

%{HTTP:nom d'un
entête HTTP}

La valeur de
l'entête HTTP
pour le nom
donné

-

Tableau 11. Les variables temps, date/heure du serveur
Nom Description

Nom Description

%
{TIME_YEAR}

L'année sur 4 chiffres

%
{TIME_MON}

Le mois sur 2 chiffres (de 01 à 12)

%{TIME_DAY} Le jour du moins sur 2 chiffres (avec un zéro initial si besoin)

%
{TIME_WDAY}

Le jour de la semaine au format numérique : 0 pour dimanche, 1 pour lundi, ... à 6 pour samedi

%
{TIME_HOUR}

L'heure, au format 24h, avec les zéros initiaux (de 00 à 23)

%{TIME_MIN} Les minutes sur 2 chiffres (de 00 à 59)

%{TIME_SEC} Les secondes sur 2 chiffres (de 00 à 59)

%{TIME} Équivalent abrégé de %{TIME_YEAR}%{TIME_MON}%{TIME_DAY}%{TIME_HOUR}%{TIME_MIN}%
{TIME_SEC}, la concaténation des année, mois, jour, heures, minutes, secondes des date/heure
courantes du serveur

Tableau 12. Les variables héritées du module mod_ssl lorsque le protocole est
HTTPS

Nom Description

%{HTTPS} Booléen (valeur "on" ou "off") indiquant l'usage ou non du protocole sécurisé (peut être
employée indépendamment de la présence ou non du module ssl)

%{SSL:nom
variable SSL}

La valeur de la variable SSL désignée. Voir la liste dans la documentation d'Apache

Tableau 13. Accès aux variables d'environnement
Nom Description

%{ENV:nom
variable

d'environnement}

La valeur de la variable d'environnement pointée (ou la chaîne vide si inexistante). Attention
: vous ne pourrez pas atteindre les variables d'environnement déclarées par SetEnv car elles
sont créées après. Au besoin, pour lever cette limitation, remplacez vos directives Setenv
par SetEnvIf(NoCase) en la couplant à un motif qui sera toujours satisfait (^ ou .*
notamment)

Tableau 14. Références arrières
Nom Description

$X avec X
tel que
[1;9]

Référence arrière pour la X parenthèse capturante de la directive RewriteRule courante. Toutes
les références arrières ($0 comprise) sont indisponibles pour une règle RewriteRule dont le motif est
nié

$0 Référence arrière spéciale toujours disponible mémorisant la sous-chaîne satisfaisant l'ensemble de
l'expression régulière de la directive RewriteRule courante

%X avec X
tel que
[1;9]

Référence arrière pour la X parenthèse capturante de la dernière directive RewriteCond pour la
règle courante

%0 Référence arrière spéciale toujours disponible mémorisant la sous-chaîne satisfaisant l'ensemble de
l'expression régulière de la dernière directive RewriteCond pour la règle courante

ième

ième

http://httpd.apache.org/docs/2.2/mod/mod_ssl.html#envvars

4. Quelques exemples
d'applications de la réécriture
4.1. Interdire l'accès direct aux images
depuis un site extérieur (direct linking ou
hotlinking) ?
En théorie, quand un client HTTP demande une
ressource, il envoie dans le même temps un entête
HTTP nommé Referer indiquant sa page d'origine. Ainsi,
il serait possible de bloquer voire remplacer le
chargement de toute image que vous hébergez depuis
un autre site.
En pratique, étant donné que c'est le client qui fournit
cette information, il est libre de l'omettre ou de la
falsifier, que ce soit volontaire ou non.
Malgré le peu de crédit qu'il faut accorder à cet entête,
réalisons tout de même cette tâche avec la réécriture
pour un but didactique :

la règle ne doit s'appliquer qu'aux images, noms se
terminant par .gif, .png, .jpeg, etc soit répondant au
motif \.(?:gif|jpe?g|png)$. Il est possible d'ajouter
l'option NC pour que ces extensions soient
insensibles à la casse ;
bien que nous pourrions remplacer les images par
d'autres, nous nous contentons d'interdire leur
consultation en renvoyant une erreur HTTP de code
403. Par conséquent, nous n'avons pas besoin de
modifier l'URL : le deuxième paramètre doit être le
tiret (-) et nous ajoutons l'option F à RewriteRule ;
Viennent les conditions (directives RewriteCond) sur
la valeur de l'entête HTTP Referer représentée par la
variable %{HTTP_REFERER} (ou %{HTTP:Referer}) :

une première pour permettre (donc il faut la nier
puisque la règle interdit) la chaîne vide, qui
correspond théoriquement à un accès direct
(l'utilisateur a tapé l'URL de l'image) ;

(p g)
une seconde pour exclure (à nier également), ce
qui correspond à notre(nos) propre(s) domaine(s).

#Options +FollowSymLinks -MultiViews

RewriteEngine on

Si le référent n'est pas vide (accès direct en

théorie)

RewriteCond %{HTTP_REFERER} !=""

ET

si le référent ne correspond pas à une page de notre

propre site

RewriteCond %{HTTP_REFERER}

!^https?://.*\.nom_de_domaine\.fr/ [NC]

alors en interdire l'accès (403)

RewriteRule \.(?:gif|jpe?g|png)$ - [F,NC]

Ou pour renvoyer une image de remplacement :

#RewriteRule \.(?:gif|jpe?g|png)$

monImageDeRemplacement.png [NC,T=image/png]

Alternative sans réécriture :

SetEnvIfNoCase Referer

"^https?://.*\.nom_de_domaine\.fr/" local_ref=1

SetEnvIf Referer ^$ local_ref=1

<FilesMatch "\.(jpe?g|gif|png)$">

 # Apache < 2.4

 <IfModule !mod_authz_core.c>

 Order allow,deny

 Allow from env=local_ref

 </IfModule>

 # Apache >= 2.4

 <IfModule mod_authz_core.c>

 Require env local_ref

 </IfModule>

</FilesMatch>

4.2. Bloquer un client ou lui servir un
contenu spécifique

De manière théorique, il est possible d'identifier un
client sur plusieurs points :

son adresse IP : du moins, la machine par laquelle il
passe pour accéder à Internet. Outre la possibilité de
délibérément relayer ses requêtes via un proxy,
n'oublions pas que tout le monde ne possède pas une
adresse fixe et peut se connecter de plusieurs lieux
différents ;
à chacune de nos requêtes, nous envoyons un entête
HTTP nommé User-Agent, dont le but est de fournir
quelques informations sur notre environnement. Elles
peuvent permettre de déterminer :

le navigateur ;
le système d'exploitation ;
s'il s'agit d'un robot d'indexation ;
éventuellement, même indirectement, le type
d'appareil (mobile, tablette, etc) ;

Notons que cet entête HTTP, au même titre que tous
les autres, peut être, volontairement ou non, omis ou
faussé.

Ainsi, pour travailler en réécriture sur l'adresse IP, nous
devons écrire une condition (RewriteCond) qui compare
l'adresse courante du client, représentée par la variable
%{REMOTE_ADDR}, à une valeur à considérer en second
argument. Si je désire bloquer l'adresse IP 75.76.77.78,
je devrais écrire :

RewriteCond %{REMOTE_ADDR} =75.76.77.78

RewriteRule .* - [F]

Alternative sans réécriture

Apache < 2.4

<IfModule !mod_authz_core.c>

 Order Deny,Allow

 Deny from 75.76.77.78

</IfModule>

Apache >= 2.4

<IfModule mod_authz_core.c>

 Require expr !-R "75.76.77.78"

 # Ou encore :

 <RequireAll>

 <RequireNone>

 Require ip 75.76.77.78

 </RequireNone>

 </RequireAll>

</IfModule>

À présent, travaillons sur l'entête HTTP User-Agent,
symbolisé par la variable %{HTTP_USER_AGENT} ou %
{HTTP:User-Agent}. Si votre site n'est pas prévu pour des
versions d'Internet Explorer antérieures ou égales à 6,
vous pourriez parfaitement les renvoyer sur une page
les invitant à se mettre à jour ou à changer de
navigateur par cette réécriture :

RewriteCond %{HTTP_USER_AGENT} MSIE\s*[0-6]\.

RewriteRule .* /dropie.html [L]

(on peut facilement trouver des listes de User-Agent
par quelques recherches)

4.3. Rediriger un domaine (avec et sans
www)
En mutualisé, lorsque vous possédez un nom de
domaine, il n'est pas rare que votre prestataire assure
automatiquement la résolution de mondomaine.fr et
www.mondomaine.fr pour qu'ils aboutissent en fin de
compte sur un même répertoire. Dès lors, toutes vos
ressources sont normalement accessibles par
www.mondomaine.fr mais aussi par domaine.fr. Ce cas
de figure peut vous conduire à une situation de
duplicate content : une même page pourra alors être
référencée sous deux URL distinctes. La solution qui
vient immédiatement à l'esprit est alors de rediriger de
manière permanente mondomaine.fr sur
www.mondomaine.fr. Cependant, puisque la
configuration d'Apache (généralement un fichier
.htaccess) est partagée par nos deux protagonistes, une
directive Redirect n'est pas appropriée. En effet, elle

créerait une boucle infinie (que le client devrait
détecter de lui-même), car www.mondaine.fr serait
redirigé sur lui-même. L'unique solution, du moins pour
Apache < 2.4, est de passer par la réécriture.
De quoi avons-nous besoin ?

nous devons procéder à une redirection
(permanente) : on ne manquera pas d'ajouter l'option
R=permanent (ou R=301) à notre directive
RewriteRule ;
nous devons rediriger toute ressource, soit .* pour
motif, sur le sous-domaine en www. La destination
est donc la concaténation de l'URL
http://www.mondomaine.fr/ et de la ressource
demandée, $0 (rappel : $0 désigne l'ensemble de la
sous-chaîne satisfaisant l'ensemble du motif) ;
il nous manque à présent l'essentiel : la condition qui
permet d'exclure www.mondomaine.fr de cette
redirection. La variable qui nous intéresse est %
{HTTP_HOST}, le nom de l'hôte que le client cherche à
contacter, à comparer à www.mondomaine.fr.

#Options +FollowSymLinks -MultiViews

RewriteEngine on

Si le domaine demandé n'est pas "www.mondomaine.fr"

RewriteCond %{HTTP_HOST} !=www.mondomaine.fr

alors rediriger sur la même ressource que demandée

($0) sur le domaine www.mondomaine.fr

RewriteRule .* http://www.mondomaine.fr/$0

[L,R=permanent]]

Syntaxe alternative avec Apache >= 2.4 :

#<If "%{HTTP_HOST} != 'www.mondomaine.fr'">

RedirectPermanent / http://www.mondomaine.fr/

#</If>

4.4. Forcer le protocole https pour une
ressource

Nous voulons forcer les utilisateurs à employer le
protocole "sécurisé", HTTPS, pour certains aspects
sensibles, ici, matérialisés par un script
d'authentification : login.php. Nous admettrons que les
virtualhosts HTTP et HTTPS partagent la même racine
(DocumentRoot), sans quoi cet exercice ne présenterait
aucun intérêt. Ceci nous ramène en gros à la même
situation que précédemment : le .htaccess où nous
écrivons la règle sera lu que l'on utilise le protocole
http standard ou https, ce qui, pour le dernier, serait à
l'origine d'une boucle de redirection. Il est donc
nécessaire de ne rien faire si le protocole https
intervient déjà.
Articulation de la règle dont nous avons besoin :

comme évoqué, la règle ne doit s'appliquer qu'à un
client qui passe par le protocole http standard. Ce qui
implique une condition (directive RewriteCond)
testant que la valeur de la variable %{HTTPS} est
différente (opérateur !=) de on (en tant que chaîne) ;
nous procédons ici à une redirection HTTP
(permanente), de login.php (motif ^login\.php$) à
https://mondomaine.ext/login.php, les options
R=permanent (ou R=301) et L(ast) doivent être
ajoutées à notre directive RewriteRule.

#Options +FollowSymLinks -MultiViews

RewriteEngine on

Si le protocole n'est pas sécurisé (protocole http

normal)

RewriteCond %{HTTPS} !=on

(et que la page est login.php) alors rediriger sur les

mêmes site/page mais en HTTPS

RewriteRule ^login\.php$ https://%{HTTP_HOST}/$0

[L,R=permanent]

Note

J'ai volontairement fait intervenir les variables %
{HTTP_HOST} et $0 (qui vaut login.php) pour le
paramètre destination afin de rendre la règle plus
facile à réutiliser.
Pourquoi ne pas simplement comparer la valeur de la
variable %{SERVER_PORT} à 80 ou 443 suivant le
protocole ciblé ? Parce que cette démarche est
erronée : il est parfaitement possible d'employer un
port quelconque, à savoir mettre en écoute un
serveur http standard sur le port 443 et inversement
(de l'https sur le port 80). Au contraire de %
{SERVER_PORT}, la variable %{HTTPS} est fiable et
pertinente car à la charge du module SSL.

4.5. Rediriger des ressources qui ont été
déplacées ou remplacées
4.5.1. Redirections HTTP simples

J'avais initialement placé mon blog dans un sous-
répertoire, /blog/, de mon sous-domaine
www.mondomaine.fr. Aujourd'hui, je souhaite le rendre
"indépendant", en le déplaçant sous son propre sous-
domaine (hôte virtuel et arborescence à part)
blog.mondomaine.fr. Afin de conserver mon
référencement et ne pas perturber mes lecteurs
réguliers, je prends soin de mettre en place une
redirection HTTP pour qu'ils puissent être informés de
ce changement d'adresse. Ayant physiquement
supprimé le sous-répertoire /blog/ de mon sous-
domaine www, j'effectuerai cette redirection depuis la
racine de son ancien emplacement. Cette redirection ne
doit concerner que ce qui commence par /blog/, en
n'oubliant pas de supprimer le slash en tête puisque
nous passons par un fichier .htaccess, et capturer la
partie du chemin qui suit de façon à renvoyer le visiteur
sur son équivalent à la nouvelle adresse. Le motif de
notre règle est : ^blog/(.*) et sa destination
http://blog.mondomaine.fr/$1, $1 étant dynamiquement
remplacé par ce qui suit blog/ dans le chemin. Enfin, je
ne manque pas d'ajouter l'option R=permanent pour

obtenir la redirection HTTP permanente désirée ainsi
que L qui devrait être systématiquement couplée à R
pour s'assurer qu'Apache ne cherche pas à satisfaire
d'autres règles.

#Options +FollowSymLinks -MultiViews

RewriteEngine on

RewriteRule ^blog/(.*) http://blog.mondomaine.fr/$1

[L,R=permanent]

Que l'ont peut écrire, sans réécriture :

RedirectPermanent /blog/ http://blog.mondomaine.fr/

Comme mentionné en fin de l'exemple, dans des cas
triviaux, les redirections HTTP peuvent être assurées
par les directives Redirect* plutôt que par la réécriture.
Cependant, personnellement, ne serait-ce que par
principe, je ne fais jamais intervenir des directives
Redirect* où la réécriture est utilisée. Je réécris
systématiquement mes directives Redirect* en règles
de réécriture équivalente de façon à éviter et maîtriser
au mieux tout conflit mutuel. Il faut savoir que les
directives Redirect*, quel que soit leur emplacement
par rapport aux règles de réécriture, seront toujours
appliquées avant la réécriture. En ces circonstances,
cet effet pourrait s'avérer difficile à contrôler dans
certaines circonstances.
4.5.2. Racine de site déplacée : renvoyer, de
manière invisible, sur un sous-répertoire

Bien que ce soit fonctionnellement parlant la pire des
solutions, faute d'avoir d'autres choix (surtout en
mutualisé), vous avez déplacé une application, disons
votre site actuellement en production, qui se situait à la
racine vers un sous-répertoire, disons qu'il s'appelle
old, afin de tester sa nouvelle version en condition
réelle qui a pris sa place à la racine.
Tout d'abord, nous avons là un impératif à respecter :
nous ne procéderons pas à une redirection HTTP mais
bien à une simple réécriture (= cette pseudo-redirection
n'apparaît pas côté client) de façon à conserver et

pp p ç
récupérer notre référencement en l'état pour la mise
en production, à venir, de cette nouvelle version et, de
manière plus générale, ne pas gêner inutilement les
clients. Le principe de base consiste à renvoyer toute
ressource vers elle-même mais située dans ce sous-
répertoire old. Seul bémol, une telle règle va
inexorablement conduire à une boucle : si un client
demande /contact.html, il va être renvoyé sur
/old/contact.html puis sur /old/old/contact.html et ainsi
de suite. Il faut donc mettre en place une condition
pour ne pas réécrire les chemins (représentés par la
variable %{REQUEST_URI}) commençant déjà par /old/.

#Options +FollowSymLinks -MultiViews

RewriteEngine on

Si le chemin ne commence pas par /old/

RewriteCond %{REQUEST_URI} !^/old/

alors on renvoie sur le sous-répertoire old/

RewriteRule .* old/$0 [L]

Il existe plusieurs façons différentes pour arriver à cette
fin. Une autre méthode pourrait passer par une règle
de non-réécriture :

#Options +FollowSymLinks -MultiViews

RewriteEngine on

Ne rien faire pour ce qui commence par old/

RewriteRule ^old/ - [L]

Pour tout le reste, renvoyer sur le sous-répertoire

old/

RewriteRule .* old/$0 [L]

Cette règle de non-réécriture, à placer avant l'autre et à
lui adjoindre l'option Last, permet avant tout d'écarter
les chemins qui sont corrects, quand l'autre s'assure
ensuite de ne réécrire que ce qui ne l'est pas.
L'approche employée ne joue pas ici, mais parmi
d'autres règles, l'une pourrait s'avérer plus pratique à
utiliser que l'autre.

4.6. Rerouter ce qui n'existe pas
physiquement vers un contrôleur frontal
ou semblable (MVC)
Avec une application, PHP ou autre, développée autour
du modèle de conception MVC qui possède un système
de routage complet, il devient inutile de gérer des
règles de réécriture. C'est l'application elle-même qui
va se charger de résoudre les adresses virtuelles,
d'autant que c'est totalement différent. Or ceci requiert
avant tout de renvoyer l'adresse de toute requête HTTP
vers le contrôleur frontal. Cependant, parmi ces
requêtes, certaines correspondent à des fichiers
statiques physiquement présents, comme les feuilles
de styles ou autres images et ce serait un gâchis en
termes de ressources de les renvoyer inutilement vers
l'application au lieu de les servir directement. C'est
pourquoi, nous allons nous contenter de rediriger la
requête HTTP vers ce contrôleur frontal uniquement si
elle ne correspond pas à un fichier existant sur le
disque.
Pour ce faire, à la règle qui renverrait tout au script qui
invoque le contrôleur frontal, nous ajoutons deux
conditions pour vérifier que un, le chemin, représenté
par la variable %{REQUEST_FILENAME} ne corresponde pas à
un fichier régulier (opérateur -f) et, deux, ne s'avère pas
non plus être un répertoire (opérateur -d). C'est
potentiellement incomplet suivant le système (liens
symboliques non gérés) mais ça suffit généralement.

#Options +FollowSymLinks -MultiViews

RewriteEngine on

Si la ressource demandée ne correspond pas à un

fichier (régulier)

RewriteCond %{REQUEST_FILENAME} !-f

ET

si la ressource demandée ne correspond pas non plus à

un répertoire

RewriteCond %{REQUEST_FILENAME} !-d

alors renvoyer la requête sur handler.php

RewriteRule .* handler.php [L]

Note
Avec une version >= 2.2.16, vous pouvez
avantageusement remplacer cette réécriture par une
simple directive FallbackResource qui demande
également moins de droits (AllowOverride) que la
réécriture.

Avertissement
Contrairement à certains écrits que l'on peut
malheureusement trouver, n'utilisez jamais
ErrorDocument 404 pour rerouter des pages
inexistantes. Non seulement ErrorDocument est le
dernier maillon de la chaîne (réécriture >
FallbackResource > ErrorDocument) mais mal
employée, vous feriez passer des ressources
inexistantes pour le contraire, chose que vous finiriez
par payer très cher au niveau de votre référencement.

4.7. Hôtes virtuels de masse simulés
Pour une petite structure et une application type CMS
partagée, nous voulons dynamiquement attribuer un
espace physique (un répertoire sur le disque) à chaque
utilisateur et que ce dernier soit accessible par un sous-
domaine reprenant son login (login.mondomaine.fr). La
réécriture va nous permettre d'établir à la volée la
correspondance entre le sous-domaine et le chemin sur
le disque.
D'un côté nous souhaitons conserver à part le site de
base (www.mondomaine.fr sur /var/www/) ; de l'autre ces
sous-répertoires utilisateurs seront regroupés dans
/var/subdomains/.
Comment s'y prendre ?

Au niveau des conditions, nous avons besoin de :

écarter (opérateur d'inégalité : !=) l'hôte,
représenté par la variable %{HTTP_HOST},
www.mondomaine.fr ;
vérifier que ce même domaine, nous retrouvons %
{HTTP_HOST}, se finisse par ".mondomaine.fr" et
mémoriser ce qui se trouve avant. Ce qui donne
pour expression régulière : (.+)\.mondomaine\.fr$;
éventuellement, suivant comment ça doit être
géré, vérifier que la partie mémorisée lors du point
précédent corresponde (variable %1) à un
répertoire existant ("opérateur" -d)

Quant au rôle de la règle, au lieu de servir le fichier
foo/bar.html
(http://sandrine.mondomaine.fr/foo/bar.html), elle
doit renvoyer sur le sous-répertoire sandrine de
/var/subdomains/ (chemin final :
/var/subdomains/sandrine/foo/bar.html). En d'autres
termes, réécrire tout chemin (motif .*) satisfaisant les
précédentes conditions vers /var/subdomains/%1/$0 (%1
désignant toujours le login de l'utilisateur extrait du
nom de domaine et $0 permet de recopier le chemin
complet de la requête).

Apache < 2.4, si nécessaire

#NameVirtualHost *:80

<VirtualHost *:80>

 ServerName www.mondomaine.fr

 ServerAlias *.mondomaine.fr

 DocumentRoot /var/www

 <Directory /var/www>

 # Apache < 2.4

 <IfModule !mod_authz_core.c>

 Allow from all

 </IfModule>

 # Apache >= 2.4

 <IfModule mod_authz_core.c>

 Require all granted

 </IfModule>

 </Directory>

 <DirectoryMatch /var/subdomains/*>

 # Apache < 2.4

 <IfModule !mod_authz_core.c>

 Allow from all

 </IfModule>

 # Apache >= 2.4

 <IfModule mod_authz_core.c>

 Require all granted

 </IfModule>

 </DirectoryMatch>

 RewriteEngine On

 # Si l'hôte demandé n'est pas "www.mondomaine.fr"

 RewriteCond %{HTTP_HOST} !=www.mondomaine.fr

 # ET

 # s'il se termine par ".mondomaine.fr", en

mémorisant ce qu'il y avant pour la suite (en %1)

 RewriteCond %{HTTP_HOST} (.+)\.mondomaine\.fr$

 # ET

 # si ça (/var/subdomains/%1) correspond à un sous-

répertoire existant

 RewriteCond /var/subdomains/%1 -d

 # alors servir le fichier /var/subdomains/%1/$0 (ça

agit comme un DocumentRoot dynamique au final)

 RewriteRule .* /var/subdomains/%1/$0 [L]

</VirtualHost>

Astuce
Aux détails près, cette réécriture est le strict équivalent
d'une ligne VirtualDocumentRoot :

VirtualDocumentRoot /var/subdomains/%-3+

Cette dernière ayant l'avantage, pour Apache >= 2.4, de
dynamiquement corriger le DocumentRoot associé à la
requête de départ.

Avertissement
Contrairement aux autres exemples où j'ai
volontairement privilégié l'approche par fichier
.htaccess car plus courante, cette tâche ne peut être
réalisée que depuis les fichiers de configuration
d'Apache. Je rappelle en effet que rien qu'en ce qui
concerne directement la réécriture, seul ce niveau
permet de renvoyer directement sur le système de
fichiers. Apache vous l'interdit depuis un fichier
.htaccess par une erreur 403 (sans cette restriction un
utilisateur pourrait, volontairement ou non, rendre
public tout ce que les droits système lui
permettraient).
Pour des hôtes virtuels de masse ou assimilé, vous
devez préalablement mettre en place une résolution
adéquate (wildcard DNS par exemple).

4.8. Effectuer une redirection en fonction
d'un paramètre de query string
Voilà, j'ai mis en place une réécriture pour les billets de
mon petit blog personnel afin qu'ils aient de belles URL.
Or, des gens les ont déjà référencés sur leurs propres
sites avec l'ancienne forme hideuse. Tant qu'à faire,
j'aimerais bien que ceux qui les suivent en soient
informés. Comment forcer l'emploi de la nouvelle
forme ?
Pour simplifier et pour l'aspect pédagogique, partons
du principe que je ne suis pas un gros blogueur, j'écris
au plus un billet par semaine ce qui rend acceptable le
fait d'éditer moi-même le .htaccess pour y écrire les
redirections nécessaires au fur et à mesure.
Limitons-nous, pour l'exemple, à une URL : on veut
rediriger article.php?id=2, l'ancienne forme, sur les-
sessions-en-php.html, la nouvelle.
Je rappelle qu'une telle URL doit préalablement être
découpée suivant ses différentes composantes dans
votre esprit avant de commencer à rédiger la règle

correspondante. En effet, vous ne pouvez pas écrire
une règle comme celle-ci :

Ceci est faux

RewriteRule ^article\.php\?id=2$ les-sessions-en-

php.html [L,R=permanent]

Voici comment aborder le problème :

à la directive RewriteRule, Apache ne fournit que le
chemin HTTP (pour partie si la règle se situe dans un
fichier .htaccess). Ce qui correspond au morceau
article.php. Par conséquent, il nous faut ^article\.php$
pour motif et la destination est les-sessions-en-
php.html. Puisque le but est de réaliser une vraie
redirection HTTP, on ne manquera pas d'ajouter, à la
fin, l'option de redirection, R=permanent, et Last pour
appliquer de suite la règle et éviter toute erreur ;
tester toute autre partie, dont la query string (id=2),
se réalise uniquement par une directive RewriteCond
et la variable associée. On sait que la variable
reprenant la chaîne de requête s'appelle %
{QUERY_STRING}. Par contre, cette dernière est peu
commode à gérer car Apache n'en sépare pas les
différentes clés/valeurs, vous êtes obligés de
travailler sur sa forme brute
(clé1=valeur1&clé2=valeur2&clé3=valeur3).

Ce qui nous donnerait :

#Options +FollowSymLinks -MultiViews

RewriteEngine on

Si la chaîne de requête contient un paramètre id de

valeur 2

RewriteCond %{QUERY_STRING} (?:^|&)id=2(?:&|$)

(et si la page est article.php) alors renvoyer sur

les-sessions-en-php.html

RewriteRule ^article\.php$ les-sessions-en-php.html

[L,R=permanent]

Sauf que cette dernière règle est incomplète : Apache,
par défaut, quand la destination ne comporte pas de
chaîne de requête, va recopier l'ancienne à la fin de
l'URL suivie. En clair, ici, nous serions renvoyé sur les-
sessions-en-php.html?id=2 or nous ne voulons pas de
cette chaîne de requête inutile. Comment la supprimer
? La réponse est simple, il suffit de créer une chaîne de
requête vide en ajoutant un point d'interrogation à la
fin du paramètre destination (celui-ci n'apparaîtra pas
côté client car le module de réécriture supprime ces
query string explicitement vides entre temps). Ce qui
nous donne, au final :

#Options +FollowSymLinks -MultiViews

RewriteEngine on

Si la chaîne de requête contient un paramètre id de

valeur 2

RewriteCond %{QUERY_STRING} (?:^|&)id=2(?:&|$)

(et si la page est article.php) alors renvoyer sur

les-sessions-en-php.html en supprimant la query string

originale

RewriteRule ^article\.php$ les-sessions-en-php.html?

[L,R=permanent]

Avec une version 2.4, il est possible d'utiliser le flag
QSD qui remplit la même fonction :

#Options +FollowSymLinks -MultiViews

RewriteEngine on

RewriteCond %{QUERY_STRING} (?:^|&)id=2(?:&|$)

RewriteRule ^article\.php$ les-sessions-en-php.html

[QSD,L,R=permanent]

Je dois cependant avouer que cet exemple est
incomplet car si j'ajoute la règle qui se charge de faire
la résolution inverse (les-sessions-en-php.html vers
article.php?id=2), elles vont mutuellement s'invoquer et
ainsi créer une boucle infinie. Pour éviter cela, la seule
solution est d'ajouter un faux paramètre de query
string pour la réécriture interne (les-sessions-en-
php.html vers article.php?id=2) et de n'effectuer la

p p p p)
redirection article.php?id=2 vers les-sessions-en-
php.html que quand ce faux paramètre est absent, qui
est alors censé être synonyme que le client a utilisé
l'ancienne forme. Les règles finales complètes sont les
suivantes :

#Options +FollowSymLinks -MultiViews

RewriteEngine on

Si la chaîne de requête ne contient pas de paramètre

internal_redirect à valeur true (pour éviter une boucle)

RewriteCond %{QUERY_STRING} !

(?:^|&)internal_redirect=true(?:&|$)

ET

si la chaîne de requête contient un paramètre id de

valeur 2

RewriteCond %{QUERY_STRING} (?:^|&)id=2(?:&|$)

(et si la page est article.php) alors renvoyer sur

les-sessions-en-php.html en supprimant la query string

originale

RewriteRule ^article\.php$ les-sessions-en-php.html?

[L,R=permanent]

les-sessions-en-php.html => article.php?id=2

On ajoute un faux paramètre (internal_redirect=true)

pour indiquer que article.php?id=2 est le résultat d'une

réécriture

RewriteRule ^les-sessions-en-php\.html$ article.php?

id=2&internal_redirect=true [L]

Note
Les directives Redirect* ne sont pas prévues pour gérer
la partie query string d'une URL, à moins d'avoir une
version 2.4 pour l'encapsuler dans une directive <If>.
Seule la réécriture en est capable.

4.9. Interdire l'accès au site avant une
certaine date sauf pour une adresse IP
On souhaite interdire l'accès à un site avant sa date de
lancement fixée au 1 décembre 2012 à minuit,er

excepté pour une adresse IP donnée pour maintenance
et tests.

#Options +FollowSymLinks -MultiViews

RewriteEngine on

Si l'adresse IP est différente de 1.2.3.4

RewriteCond %{REMOTE_ADDR} !=1.2.3.4 [OR]

OU

que nous ne sommes pas après le 1er décembre 2012

minuit

RewriteCond %{TIME} <20121201000000

alors on interdit l'accès

RewriteRule .* - [F]

Avec Apache >= 2.4, directement, sans réécriture :

#Require expr %{TIME} >= 20121201000000 || -R "1.2.3.4"

Commençons par la règle de base :

l'interdiction par rapport au protocole HTTP se traduit
par le retour d'un code HTTP 403. C'est l'option
F(orbidden) au niveau de la directive RewriteRule qui
remplit cette fonction (ou éventuellement R=403
suivant la version d'Apache) ;
le site en question doit être totalement inaccessible,
ce qui signifie que tout est concerné : implique le
motif .* en premier paramètre de RewriteRule ;
Enfin, notre règle n'a pas à modifier l'URL, ce qui se
traduit par un tiret (-) en deuxième paramètre.

Il ne nous reste qu'à ajouter nos deux conditions : une
sur l'adresse IP et l'autre sur la date.

l'adresse IP est représentée par la variable %
{REMOTE_ADDR}. Elle sera le premier paramètre de notre
première RewriteCond. Étant donné que l'on cherche
à interdire toute adresse qui n'est pas 1.2.3.4,
l'opérateur à utiliser sera l'inégalité (différent de) : !=.
La seconde partie de cette même RewriteCond sera
donc !=1.2.3.4 ;

pour la représentation complète de la date (heure
comprise), il me paraît plus facile et général de passer
par la variable %{TIME} dont je rappelle le format :
année (4 chiffres), mois (2 chiffres), jour (2 chiffres),
heures (2 chiffres), minutes (2 chiffres), secondes (2
chiffres), le tout collé ensemble. Le 1 décembre
2012 minuit s'écrit donc 20121201000000. Ce format
permet une comparaison de dates avec un simple
ordre lexicographique, l'opérateur < sera suffisant à
établir le cas où nous sommes antérieurs à cette
date.

Cependant, il ne faut pas oublier que les directives
RewriteCond, quand il y en a plusieurs pour une même
RewriteRule, sont par défaut unies par un et logique. Or
c'est un ou logique qu'il nous faut ici, par conséquent,
on ne manquera pas d'ajouter le drapeau ornext (ou
OR) à la première des deux.

4.10. Renvoyer le visiteur selon les heures
de bureau
Renvoyer l'utilisateur sur une page indiquant que les
bureaux sont fermés :

le samedi après midi
le dimanche, toute la journée
les autres jours de la semaine avant 8H00 et après
17H30

Cet exercice n'est pas aussi complexe qu'il pourrait y
paraître : il repose sur les variables temps (%{TIME_*}),
l'option ornext (ou OR) de la directive RewriteCond et
les opérateurs de comparaison.

#Options +FollowSymLinks -MultiViews

RewriteEngine on

Si nous sommes ...

dimanche (soit 0)

RewriteCond %{TIME_WDAY} =0 [OR]

er

OU

samedi après 12h00 (soit 6, samedi, 1200)

RewriteCond %{TIME_WDAY}%{TIME_HOUR}%{TIME_MIN} >61200

[OR]

OU

avant 8H00

RewriteCond %{TIME_HOUR} <08 [OR]

OU

après 17H30

RewriteCond %{TIME_HOUR}%{TIME_MIN} >1730

alors renvoyer sur bureauxfermes.html

RewriteRule .* bureauxfermes.html [L]

4.11. Masquer l'extension de ses scripts
PHP
Qu'importe les motivations, apportons une solution à
une demande fréquemment rencontrée sur les forums
: masquer l'extension de ses scripts. C'est-à-dire, avoir
pour URL http://domaine.ext/foo en lieu et place de
http://domaine.ext/foo.php.
Comment s'y prendre ?

avant tout, nous devons ignorer tout chemin qui
comporterait déjà une extension de fichiers. Si cette
dernière partie est présente, il est inutile de chercher
à interpréter l'URL différemment. Un motif simple,
possible, pour notre règle (RewriteRule) serait de ne
traiter que tout chemin qui ne comporte aucun point,
soit ^[^.]+$;
le but de notre règle, quand son motif en est satisfait,
est de la suffixer de la chaîne ".php". La destination
n'est autre que $0.php. Rappelons que $0 reprend la
chaîne qui satisfait l'ensemble du motif, soit, ici,
l'intégralité du chemin ;
enfin, ne réécrivons les URL qui ne comportent aucun
point seulement quand il existe un script php du
même nom. Ce qui permet d'éviter certaines 404,
surtout quand la requête HTTP cible un répertoire,
leurs noms comportant rarement un point. Pour nous

en assurer, ajoutons la condition (RewriteCond) : si un
fichier php du même nom (%{REQUEST_FILENAME}.php)
existe (opérateur -f).

Options +FollowSymLinks -MultiViews

RewriteEngine on

Si en ajoutant ".php" au chemin, on aboutit sur un

fichier qui existe physiquement

RewriteCond %{REQUEST_FILENAME}.php -f

ET

si l'adresse initiale qui ne contient aucun point

(soit pas d'extension de fichier)

alors servir le script PHP du même nom

RewriteRule ^[^.]+$ $0.php [L]

NOTE : le motif ^(?:.*/)?[^/.]+$ peut être plus

approprié

En bonus, profitons-en pour forcer, par une redirection
HTTP, nos visiteurs à employer des adresses où
l'extension ".php" ne figure pas. Nous redirigeons
(implique le drapeau R pour la redirection couplé à
L(ast) pour l'application immédiate de la règle) alors les
requêtes directe de tout script php (soit (.+)\.php$) vers
leur équivalent sans extension ($1, notre unique
parenthèse capturante mémorisant la partie qui
précède le suffixe ".php"). Par contre, en l'état, ces deux
règles vont entraîner une boucle sans fin, il est
nécessaire d'ajouter une condition pour garantir que
l'adresse en .php n'est pas déjà le résultat d'une
redirection interne (ce qui est ci-dessous certifié en
testant que la variable d'environnement REDIRECT_STATUS
est [la chaîne] vide). Ce qui nous donne la règle
complémentaire suivante :

Si l'adresse courante n'est pas le résultat d'une

précédente redirection

(condition requise, sans quoi vous créeriez une boucle

infinie entre les 2 règles)

RewriteCond %{ENV:REDIRECT_STATUS} =""

(et si l'adresse se termine par .php) alors effectuer

la redirection HTTP permanente vers la même adresse sans

le ".php"

RewriteRule (.+)\.php$ $1 [L,R=permanent]

Note
Si le but recherché est réellement de faire croire que ce
ne sont pas des scripts PHP, vous pouvez remplacer
R=permanent par R=404.

5. Difficultés communes et
résolution
5.1. Le "piège" de l'arborescence virtuelle
Ceci ne concerne que les gens :

qui ont au moins une ressource virtuelle réécrite
contenant au moins un slash
qui n'ont pas prévu l'effet que ça aurait
qui utilisent des chemins HTTP relatifs pour les
ressources liées (liens, CSS, javascript, images ,etc)

Si vous créez une ressource virtuelle faisant intervenir
au moins un caractère slash, comme celle-ci :

RewriteRule ^article/(\d+)/.+\.html$ article.php?id=$1

[L,QSA]

Le problème qui se pose, avec des liens, sources, etc
relatifs c'est que comme le client ignore tout de la
réécriture, vous allez fausser l'idée qu'il a de
l'arborescence du site. Par exemple, si j'ai une css :

<link href="stylesheet.css" rel="stylesheet"

type="text/css"/>

Si le tout était situé à la racine, que l'URL courante est à
présent http://mondomaine.fr/article/2/les-sessions-en-
php.html le client va chercher cette CSS à l'URL
http://mondomaine.fr/article/2/stylesheet.css au lieu de
http://mondomaine.fr/stylesheet.css. Le chemin qu'il a
calculé à partir de l'URL ne peut être que faux.
Quelles solutions pour ce cas de figure ?

Il serait envisageable de réécrire ou rediriger ces
ressources fausses par l'introduction de nouvelles
règles. Dans notre cas, il serait possible de régler le
problème de la feuille de style par :

RewriteRule article/\d+/stylesheet\.css$

/stylesheet.css [L,R=permanent]

Plus généraliste :

#RewriteRule /stylesheet\.css$ /stylesheet.css

[L,R=permanent]

Toutefois, je déconseille vivement cette voie, cette
multiplication inutile de règles risque d'introduire
plus de conflits qu'elle ne saurait en résoudre, cela
peut vite devenir complexe et ingérable !
Indiquer l'adresse de référence par une balise <base
href="..."> ajoutée dans l'entête du document. Le
client HTTP étant censé se baser sur celle-ci, quand
elle est disponible, plutôt que de se remettre à sa
propre vision des chemins, il devrait de nouveau être
en mesure de résoudre correctement tous ces
chemins relatifs indépendamment de la réécriture.

<html>

 <head>

 <base href="http://mondomaine.fr" />

 <link href="stylesheet.css" rel="stylesheet"

type="text/css"/>

 </head>

La balise <base href="..."> ne concerne que les liens
relatifs, pas les URL (http://...) ni les chemins HTTP
absolus (qui commencent par un slash).
Enfin, une autre solution, pourrait être de tout
simplement modifier les chemins relatifs en absolus.
Notre feuille de style étant à la racine, cela nous
donne :

<link href="/stylesheet.css" rel="stylesheet"

type="text/css"/>

5.2. Conflit entre la négociation de
contenu et la réécriture

La négociation de contenu, qu'est-ce que c'est ? De
manière simplifiée, la négociation de contenu c'est la
capacité du serveur à choisir pour le client, en fonction
des préférences de ce dernier, une ressource quand
son nom est incomplet (au sens, par rapport au
serveur, qu'il manque l'extension réelle). En effet, lors
de toute requête HTTP, en tant que client, vous
émettez, au travers de différents entêtes, vos
préférences par rapport à la langue (entête Accept-
Language), au type du fichier (png > gif > jpeg > texte,
par exemple, via l'entête Accept), d'un encodage
(algorithme comme gzip utilisé pour compresser le
corps de la réponse ; entête Accept-Encoding) et un jeu
de caractères (entête Accept-Charset).
Prenons un exemple trivial. Admettons que j'ai 2
fichiers côté serveur : page.txt, un fichier texte pur et
page.html, le même formaté avec HTML. Que se passe-
t-il, si je demande page (sans extension) lorsque la
négociation de contenu est activée ? Et bien tout va
dépendre de l'entête Accept que vous allez envoyer :

Comme tout navigateur, si je donne priorité au
format html (type mime text/html) en abaissant le
facteur de priorité q associé aux autres tel que :

Accept: text/html; text/*,q=0.9; */*,q=0.1

J'obtiens bien en réalité page.html.
Inversons à présent, en donnant priorité aux fichiers
texte (type mime text/plain) :

Accept: text/plain; text/html,q=0.9; */*,q=0.1

Nous tombons sur page.txt.

Où cela nous mène-t-il ? Quel est le rapport avec la
réécriture ?
Il existe un cas spécifique où la négociation de contenu
peut entrer en conflit avec la réécriture. Pour être
exact, il ne s'agit pas à proprement parler d'un conflit
mais de voir une ou plusieurs règles de réécriture

purement et simplement ignorées. Il faut en effet
réunir deux conditions :

bien que cela puisse paraître évident, il faut que la
négociation soit activée (module mod_negociation
chargé et qu'un Options (+)MultiViews s'applique au
répertoire en question) ;
que vous ayez une ou des règles qui auraient pour
effet d'écourter leur nom et qui auraient la
malchance de correspondre à un fichier physique. On
pense généralement à une règle comme celle-ci, pour
continuer avec mon exemple de "page" :

RewriteRule ^page$ index.php?p=$0

Comme la négociation de contenu intervient avant la
réécriture, en renvoyant page sur page.html, la règle
ci-dessus ne sera jamais exécutée.

Jusque là, on serait tenté de se dire que c'est très limité
comme effet de bord. Or, ce n'est pas fini : ça peut
devenir beaucoup plus vicieux si la négociation de
contenu est combinée à la fonctionnalité PATH_INFO,
consistant à accepter et extraire la partie de chemin
superflu d'une requête.
Je garde mon fichier page.html comme base. En temps
normal, si un client demandait
page.html/partie/excédentaire, le serveur nous
renverrait une erreur 404 car ça ne correspond pas à
un fichier physique (page.html n'étant pas un
répertoire). Avec la fonctionnalité PATH_INFO, Apache
s'arrêterait sur page.html, une ressource qui existe et
avant de l'invoquer, peuplerait la variable PATH_INFO
avec l'excédent (ici /partie/excédentaire).
Si à présent, nous ajoutons la négociation de contenu à
PATH_INFO, cela nous permettrait de rendre l'extension
du fichier optionnelle. Pour le même exemple,
page/partie/excédentaire serait alors équivalente.
Imaginez à présent les effets bien plus vastes au travers
d'une règle comme celle-ci :

RewriteRule ^page/(\d+)/.+\.html$ index.php?p=$1

Elle serait purement et simplement ignorée car
toujours du ressort de la négociation de contenu (mais
avec la complicité de PATH_INFO). L'URL
page/2/nouvelle-version.html n'est pas réécrite mais
est résolue comme page.html avec, pour valeur de
PATH_INFO, /2/nouvelle-version.html.
Conclusion : désactivez la négociation de contenu,
comme je l'ai systématiquement fait dans mes
exemples en ajoutant, au pire, en tête de vos fichiers
.htaccess :

Options -MultiViews

La fonctionnalité PATH_INFO est (dés)activable par la
directive AcceptPathInfo si tant est que vous ayez le
droit de l'utiliser localement. Si vous souhaitez
expérimenter cet effet de bord, forcez la négociation de
contenu et le PATH_INFO par les lignes suivantes :

Options +MultiViews

AcceptPathInfo on

5.3. Interprétation des codes d'erreur
HTTP renvoyés dans le cadre de la
réécriture
Plusieurs types d'erreur liés à la réécriture peuvent se
manifester :

l'erreur 403 Forbidden peut survenir en l'absence
d'une des options permettant de suivre les liens
symboliques (FollowSymLinks) qui est nécessaire au
fonctionnement de la réécriture (restriction à but
sécuritaire).
l'erreur 404 Not Found peut avoir plusieurs causes :

Le module de réécriture est bien chargé mais n'est
pas activé (absence de RewriteEngine On) ;

Le fichier .htaccess est totalement ignoré par le
serveur de par sa configuration lorsque la directive
AllowOverride, pour le répertoire contenant ce
fichier .htaccess (éventuellement par héritage) vaut
None alors qu'au moins FileInfo est nécessaire ;
Les règles sont erronées dans la mesure où il n'y a
pas de correspondance entre la ressource
demandée et vos règles (leurs motifs) ;
Le document vers lequel la redirection est
effectuée est inexistant. Ceci pouvant notamment
s'expliquer par une erreur au niveau du chemin.

L'erreur 500 Internal server error :
Le module mod_rewrite n'est pas actif. De ce fait,
les directives Rewrite* ne sont pas reconnues et
conduisent à ce type d'erreur ;
La configuration du serveur n'autorise pas l'usage
des directives de réécriture (Rewrite*) par
l'absence de la valeur FileInfo au niveau de la
directive AllowOverride par rapport au répertoire
contenant le fichier htaccess ;
Une règle engendre une boucle infinie, Apache met
alors fin au processus de réécriture par une erreur
500.

Dans tous les cas, vous trouverez sans doute une
explication explicite dans les journaux du serveur si
tant est que vous y avez accès.

5.4. En dernier recours : déboguer la
réécriture d'URL
Avant la version 2.4.0, le débogage de la réécriture
consiste en l'écriture d'une trace, en fin d'un fichier
texte désigné, décrivant certaines étapes de chaque
processus de réécriture. Ce débogage ne peut être
activé que si l'on a la main sur le serveur puisqu'il
implique de modifier directement le fichier de
configuration d'Apache où il sera nécessaire d'ajouter
deux directives :

RewriteLog [fichier] : le journal où écrire les
différentes traces qui concernent la réécriture
RewriteLogLevel [nombre de 0 à 9] : le degré de
verbosité. 0, la valeur minimale, désactive toute
journalisation des actions de réécriture. Un niveau
élevé peut aller jusqu'à ralentir le serveur.

Exemple :

RewriteLog logs/rewrite.log

RewriteLogLevel 2

En revanche, le système de journalisation d'Apache a
été complètement revu à la version 2.4.0 : il est
désormais possible d'assigner un niveau de verbosité
propre à chaque module, ce qui rend obsolète les deux
directives ci-dessus (elles n'existent plus, chercher à les
utiliser provoquerait de fait une erreur 500). Seul
bémol, non des moindres, les traces produites par le
module de réécriture seront écrites dans le journal
d'erreur au lieu d'un fichier séparé. Mis à part ce point,
le fonctionnement est équivalent : il y a 8 niveaux de
verbosité nommés pour le mode de débogage, allant de
trace1, le plus faible, à trace8, le plus élevé et il doit être
à présent spécifié sur la ligne de la directive LogLevel.
Exemple pour un débogage relativement moyen (trace3)
:

warn est le niveau par défaut

LogLevel warn mod_rewrite.c:trace3

Attention : le nombre de traces qui vont s'inscrire est
directement proportionnel au niveau de verbosité et au
nombre de règles !

6. Aller plus loin
6.1. Gérer le possible duplicate content
inhérent à la réécriture
Le duplicate content (contenu dupliqué) est le fait
d'avoir un même contenu pour plusieurs URL
différentes. Pourquoi en parler ? En quoi est-ce gênant
? Les moteurs de recherche repèrent très bien la chose
et si j'aborde cette question, c'est que quand cela
arrive, vous pouvez payer très cher une telle erreur en
étant déclassé plus ou moins significativement.
Cette situation est intimement liée à la réécriture pour
plusieurs raisons :

les formes initiales d'URL, type article.php?id=2, faute
d'avoir été redirigées sont toujours valides et
référencées
en général, au niveau de la réécriture, on écrit des
règles comprenant des expressions régulières donc
qui peuvent accepter bien d'autres chaînes que celle
que nous prévoyons : il suffit d'une erreur de la part
de quelqu'un qui recopie l'URL comme vous, qui
modifieriez un titre sans penser aux répercussions.
Concrètement, j'ai fait en sorte d'obtenir le lien
article-2-les-sessions-en-php.html pour article.php?
id=2, mais que se passerait-il si un visiteur faisait un
lien sur son blog avec article-2-sessions-en-php.html ?

Il est vital de prendre en compte cette question, qui n'a
normalement un coût que très faible en temps et lignes
de code. Ceci implique tout d'abord d'avoir le moyen
d'identifier ou retrouver l'URL réécrite officielle faisant
foi :

soit vous stockez cette URL (en base, par exemple,
dans une colonne dédiée parmi les données qu'elles
représentent)
soit, si elle est calculée à partir du reste (comme
article-identifiant-

titre_sous_une_forme_URL_friendly.html), vous recalculez
cette URL réécrite à chaque fois que vous en avez
besoin

La première possède l'avantage d'avoir un coût
moindre en principe, par contre, l'éventuel
inconvénient c'est de bien gérer la mise à jour de cette
donnée si elle représente les autres données quand ces
dernières sont modifiées. Ici, afin que le code soit
moins long et plus explicite, je n'utilise que la seconde.
Ensuite, il y a deux approches :

vous effectuez une redirection HTTP permanente
vous-même, en PHP, les URL qui conduiraient au
duplicate content sur la bonne :

<?php

if (isset($_GET['id']) && (FALSE !== $id =

filter_var($_GET['id'], FILTER_VALIDATE_INT))) {

 $bdd = new PDO(/*...*/);

 $bdd->setAttribute(PDO::ATTR_ERRMODE,

PDO::ERRMODE_EXCEPTION);

 $stmt = $bdd->prepare('SELECT * FROM billets WHERE

id = ?');

 $stmt->bindValue(1, $id, PDO::PARAM_INT);

 $stmt->execute();

 if (FALSE === ($billet = $stmt-

>fetch(PDO::FETCH_ASSOC))) {

 http_not_found();

 }

 $expectedPath = sprintf('/billet-%d-%s.html', $id,

slugify($billet['titre']));

 if ($_SERVER['REQUEST_URI'] != $expectedPath) {

 http_redirect_permanent($expectedPath);

 }

 // affichage normal du billet

} else {

 http_not_found();

}

vous laissez les robots d'indexation se débrouiller
mais il vous faut indiquer, dans votre page, via une
balise <link rel="canonical"/> l'url réelle de la
ressource que vous voulez qu'il référence quoi qu'il
arrive :

<link rel="canonical" href="url complète réelle à

référencer"/>

Exemple :

<?php

if (isset($_GET['id']) && (FALSE !== $id =

filter_var($_GET['id'], FILTER_VALIDATE_INT))) {

 $bdd = new PDO(/*...*/);

 $bdd->setAttribute(PDO::ATTR_ERRMODE,

PDO::ERRMODE_EXCEPTION);

 $stmt = $bdd->prepare('SELECT * FROM billets WHERE

id = ?');

 $stmt->bindValue(1, $id, PDO::PARAM_INT);

 $stmt->execute();

 if (FALSE === ($billet = $stmt-

>fetch(PDO::FETCH_ASSOC))) {

 http_not_found();

 }

 $expectedPath = sprintf('/billet-%d-%s.html', $id,

slugify($billet['titre']));

 // ...

 // dans la partie <head></head>, vous ajoutez :

 echo '<link rel="canonical" href="' .

$_SERVER['HTTP_HOST'] . $expectedPath . '"/>';

 // ...

 // puis affichage normal du billet et de la page

} else {

 http_not_found();

}

6.2. URL et caractères "spéciaux"
Ce point délicat mérite un aparté dédié : il faut bien
prendre conscience qu'Apache ne considère rien

d'autre que l'ASCII non-étendu. De ce fait, il ignore
toute locale et tout jeu (ISO-8859-1 comme UTF-8 ou
autre), donc vous ne pourrez pas gérer les caractères
accentués notamment. Ce qui est totalement justifié
puisque tout bonnement impossible car c'est le jeu de
la requête HTTP, telle qu'elle est envoyée par le client,
qu'Apache doit alors traiter. Or le client est libre
d'envoyer ce qu'il veut ; aucun algorithme n'est capable
de valider et/ou retrouver le jeu de la requête d'origine.
Si vous tenez vraiment à réécrire des URL précises qui
contiennent des caractères "spéciaux", ceci ne vous
laisse pas d'autre choix que d'écrire la représentation
de tels caractères pour un jeu donné telle que la
machine les représente, octet par octet, par la notation
hexadécimale \xAA où AA est la valeur hexadécimale
d'un octet.
Par exemple, pour réécrire noeud comme nœud, de
manière insensible à la casse, en supposant que les
requêtes des clients sont en UTF-8, nous devrions alors
écrire une règle telle que celle ci-dessous :

RewriteRule ^[nN](?:[oO][eE]|\xC5[\x92\x93])[uU][dD]$

noeud.html

Conclusion : il est préférable, sauf cas où cela est
réellement justifié, d'opter pour un motif générique
(type .* combiné à un préfixe ou suffixe) plutôt que de
chercher à inclure tous les caractères, ce qui est difficile
voir impossible puisque notamment dépendant du jeu
de la requête telle que le client l'envoie.

Note
Les systèmes Windows possèdent une API à part
entière qui interface le système de fichiers en
Unicode (UTF-16), Apache suppose, donc attend sur
ceux-ci, des requêtes HTTP en UTF-8 de la part des
clients. Pour être précis, c'est la bibliothèque sous-
jacente APR (Apache Portable Runtime) qui s'en
charge et effectue les conversions UTF-16 (système de
fichiers) <=> UTF-8 (HTTP).

L'option NC (ou nocase), au niveau de RewriteRule
comme RewriteCond, ne considère pas non plus les
caractères hors de la plage ASCII non-étendu.

6.3. RewriteBase : quand Apache est
incapable de résoudre physiquement les
chemins HTTP
En temps normal, RewriteBase est inutile. Vous utilisez
des chemins (HTTP) relatifs pour les ressources réelles
vers lesquelles sont reroutées les requêtes HTTP et
Apache sait les gérer. Toutefois, dans les situations où
une partie, au moins, de l'arborescence HTTP est
virtuelle (physiquement inexistante), Apache sera
incapable de résoudre correctement la requête de
destination. Voici une liste non exhaustive de cas où
RewriteBase devient nécessaire pour indiquer à Apache
le chemin HTTP qu'il doit utiliser :

les répertoires personnels des utilisateurs système
(module mod_userdir, directive UserDir)
les alias (module mod_alias, directives Alias et
AliasMatch)
les hôtes virtuels de masse (module : mod_vhost_alias
; directives VirtualDocumentRoot,
VirtualDocumentRootIP, VirtualScriptAlias et
VirtualScriptAliasIP)

Admettons que je fasse intervenir userdir : je créée
/home/julp/public_html/.htaccess pour renvoyer foo
(http://localhost/~julp/foo) sur bar.php
(http://localhost/~julp/bar.php) :

#Options +FollowSymLinks -MultiViews

RewriteEngine on

RewriteRule ^foo$ bar.php

Apache ne sait pas ici gérer correctement le chemin de
bar.php : il va chercher celui-ci par rapport à la racine

du serveur (DocumentRoot). Avec /var/www en
DocumentRoot, il va le réécrire en
/var/www/home/julp/public_html/bar.php (au lieu de
simplement /home/julp/public_html/bar.php).
Pour que cela fonctionne correctement, on a besoin ici
d'expliciter le chemin HTTP sur lequel il doit se baser,
/~julp/ ici :

#Options +FollowSymLinks -MultiViews

RewriteEngine on

RewriteBase /~julp/

RewriteRule ^foo$ bar.php

Et à présent, tout fonctionne correctement.
À noter que RewriteBase :

ne s'applique qu'aux chemins relatifs des ressources
vers lesquelles vous réécrivez :

une URL complète comme,
http://www.mondoamaine.fr/bar.php n'est bien
évidemment pas concernée
un chemin HTTP absolu, donc qui commence par
un slash, comme /bar.php, sera conservé/repris
intact

concerne/impacte tous les chemins relatifs des
ressources vers lesquelles vous réécrivez

Si je reprends l'exemple précédent, on pourrait se
passer de tout RewriteBase en modifiant le .htaccess, et
plus particulièrement le chemin de la règle, tel que :

#Options +FollowSymLinks -MultiViews

RewriteEngine on

RewriteRule ^foo$ /~julp/bar.php

Toutefois, l'usage de RewriteBase est recommandé
pour la simple et bonne raison que si vous changez de
configuration ou de serveur, vous n'avez qu'une ligne à

modifier alors qu'en réalisant une telle adaptation au
niveau de chaque règle, vous en auriez autant à
maintenir.

6.4. Comprendre réellement le flag L(ast)
Il n'est pas rare de voir le rôle de l'option Last comprise
de travers, confusion que l'on peut certainement
attribuer au nom de ce drapeau. En effet, celui-ci
n'empêche en rien une réécriture de boucler
indéfiniment. Comme je l'ai déjà expliqué dans la partie
Section 3.4, « Interactions entre les règles », il a pour
seul but de mettre fin au processus courant de
réécriture, c'est à dire appliquer immédiatement la
règle au lieu de poursuivre la lecture des règles
suivantes à la recherche d'autres correspondances.
Mais une fois la règle appliquée, flag Last ou non, la
nouvelle adresse subit à son tour toute potentielle
réécriture, c'est un nouveau processus de réécriture
totalement indépendant des précédents qui a lieu. Par
conséquent, dans un contexte de répertoire (bloc
<Directory> ou fichier .htaccess), si on retombe sur ce
même répertoire, on en retrouve à nouveau ses règles,
d'où une boucle.
En réalité, dans ce contexte dit de répertoire, c'est le
module de réécriture, lui-même, qui implémente une
sécurité de telle sorte que si le chemin courant est
strictement égal à celui de destination de la règle (la
valeur du deuxième paramètre de RewriteRule) alors
Apache stoppe la réécriture. Faites l'essai par vous-
mêmes, avec et sans l'option Last, vous ne constaterez
aucune différence :

#Options +FollowSymLinks -MultiViews

RewriteEngine on

en n'oubliant pas de préalablement créer le script

handler.php

RewriteRule .* handler.php

puis retenter avec [L]

Histoire de prouver ce que j'avance et pour les curieux,
voici le code en question (tiré d'une version 2.4 mais
présent depuis toujours) :

/*

 * Fixup hook

 * [RewriteRules in directory context]

 */

static int hook_fixup(request_rec *r)

{

 /* ... */

 /* Check for deadlooping:

 * At this point we KNOW that at least one rewriting

 * rule was applied, but when the resulting URL is

 * the same as the initial URL, we are not allowed

to

 * use the following internal redirection stuff

because

 * this would lead to a deadloop.

 */

 if (ofilename != NULL && strcmp(r->filename,

ofilename) == 0) {

 rewritelog((r, 1, dconf->directory, "initial URL

equal rewritten"

 " URL: %s [IGNORING REWRITE]", r-

>filename));

 return OK;

 }

 /* ... */

Dans la mesure où nous retrouverions
scrupuleusement les mêmes règles, au final, que le
drapeau Last soit ou non présent ne change quasiment
rien. L'unique différence serait liée à l'ordre des règles :
les règles précédant celle appliquée ne pouvant l'être à
leur tour qu'au prochain processus de réécriture. Celles
situées en-dessous pouvant être appliquées de suite,
sans nécessiter un nouveau processus de réécriture.
L'option Last prend essentiellement tout son sens
quand un nouveau répertoire est impliqué. Pour vous

en convaincre, effectuons une petite démonstration.
Reproduisez tout d'abord la hiérarchie suivante :

/

 page.php

 sousrepertoire/

 .htaccess

 c.php

Le contenu de sousrepertoire/.htaccess est le suivant :

Options +FollowSymLinks -MultiViews

RewriteEngine On

RewriteBase /sousrepertoire/

RewriteRule ^a /page.php

RewriteRule p c.php

Faites un premier test avec l'URL
http://localhost/sousrepertoire/abc. Puis ajoutez
l'option Last à la première règle et recommencer.
Pourquoi le résultat est-il différent ? Explications :

Avec Last, http://localhost/sousrepertoire/abc est
réécrit de la sorte :

L'adresse courante, abc est transformée, en
mémoire (ce n'est pas encore effectif), en
/page.php du fait de la correspondance avec ^a ;
Last conduit à l'arrêt immédiat de la lecture des
règles ;
Apache applique le nouveau chemin /page.php ;
http://localhost/page.php est la page finale car on
suppose qu'il n'y a pas d'autres règles applicables
(ni de fichier .htaccess à la racine ni de règles dans
le httpd.conf).

Quand, sans Last, http://localhost/sousrepertoire/abc,
le cheminement est tout autre :

http://localhost/sousrepertoire/abc

abc est transformé dans un premier temps en
/page.php (de par la correspondance de "abc" avec
^a) ;
absence de flag Last, Apache poursuit la lecture
des règles (/page.php n'est pas appliquée mais est
le chemin en cours) ;
/page.php est transformé en c.php
(correspondance de "page.php" avec le motif p) ;
il ne reste plus de règles à lire, Apache applique la
dernière règle, l'url finale devient
http://localhost/sousrepertoire/c.php.

6.5. Exemple de résolution d'une boucle
infinie de réécriture
Je vais prendre l'approche naïve pour une application
développée autour du motif MVC, c'est-à-dire avec un
point d'entrée unique qui serait le script d'index.
Quelqu'un pour qui la réécriture est nouveau sera
probablement tenté de dire de tête : "on redirige tout
sur index.php", soit :

#Options +FollowSymLinks -MultiViews

RewriteEngine on

RewriteRule .* /index.php

La personne va tester et constater que ça boucle
indéfiniment (en réalité, non, Apache met fin à la
requête par une erreur 500 à la dixième redirection
interne). Le fait est que "tout" comprend le script
index.php puisqu'il n'est fait aucune distinction sur ce
qui existe physiquement sur le disque dur ou non.
Comment ne pas avoir cette boucle ? Ici, il existe
plusieurs solutions :

L'exclusion par une règle de non réécriture : il s'agit
d'introduire une nouvelle règle pour intercepter
l'exception (l'index). Elle doit être placée avant les
autres et lui accoler l'option Last. Du fait qu'Apache lit

les règles de haut en bas dans un fichier .htaccess et
qu'il ne poursuit pas la lecture si la règle trouvée est
marquée Last, nous n'avons plus de boucle.

#Options +FollowSymLinks -MultiViews

RewriteEngine on

RewriteRule ^(?:index\.php)?$ - [L]

RewriteRule .* /index.php

L'exclusion par l'ajout d'une condition consiste à
ajouter une condition (directive RewriteCond) à la
règle problématique. Ce qui revient à écrire "tout
réécrire vers l'index sauf l'index lui-même".

#Options +FollowSymLinks -MultiViews

RewriteEngine on

RewriteCond %{REQUEST_URI} ^/(?:index\.php)?$

RewriteRule .* /index.php

Réécrire que ce qui n'existe pas physiquement : en
couplant RewriteCond, les opérateurs -f et -d et la
variable REQUEST_FILENAME, il est possible de réaliser une
telle chose.

#Options +FollowSymLinks -MultiViews

RewriteEngine on

Si la ressource demandée ne correspond pas à un

fichier

RewriteCond %{REQUEST_FILENAME} !-f

Et si la ressource demandée ne correspond pas à un

répertoire

RewriteCond %{REQUEST_FILENAME} !-d

La renvoyer sur index.php

RewriteRule .* /index.php

Pour l'exemple que j'ai choisi, cette dernière approche
est à mon sens la meilleure dans la mesure où les
fichiers statiques (css, js et autres images) ne sont pas
inutilement renvoyés à PHP pour être servis.

y p
6.6. Les différents niveaux de réécriture
En temps normal, Apache ne cherche les règles qu'à
deux emplacements distincts dans l'ordre suivant :

1. du premier fichier .htaccess ou bloc <Directory>
trouvé en partant du répertoire correspondant à la
requête HTTP en remontant jusqu'à la racine du site ;

2. et, ensuite, celles de l'hôte virtuel répondant à la
requête HTTP.

Si vous souhaitez qu'Apache considère également les
règles du répertoire parent (pour un fichier .htaccess
ou un bloc <Directory>) ou, pour un hôte virtuel, que ce
dernier hérite de celles du serveur principal, vous devez
ajouter une directive RewriteOptions ayant pour valeur
Inherit à tous les endroits où vous souhaitez que le
contexte parent soit consulté :

RewriteOptions Inherit

Les règles de niveaux supérieurs étant traitées après
celles de niveaux inférieurs. Concrètement, il est
possible d'aboutir à cette chaîne :

répertoire (.htaccess ou <Directory>) courant >

répertoire(s) parent(s) > hôte virtuel > serveur

principal

Cependant, Apache 2.4 introduit la valeur InheritBefore
pour cette même directive RewriteOptions, inversant
cet ordre : les règles de niveaux supérieurs sont alors
évaluées avant celles de niveaux inférieurs.
Je rappelle que l'option END stoppe sur-le-champ toute
réécriture. Par conséquent, les niveaux supérieurs (ou
inférieurs si RewriteOptions est à InheritBefore) ne
seront pas consultés. Quant au drapeau Last, c'est plus
complexe pour les raisons que j'ai déjà pu évoquer :
dans un contexte de répertoire, une fois la règle
appliquée, nous retrouvons au moins en partie les

mêmes règles, à minima, celles au niveau de l'hôte
virtuel. Le processus de réécriture ne peut
véritablement être arrêté par Last que pour les règles
au niveau de l'hôte virtuel ou du serveur principal.

7. Conclusion
Je suis conscient de ne pas avoir tout traité notamment
certaines options de RewriteRule (S, N, C, CO, E, etc) ou
encore RewriteMap. Le présent document est déjà bien
assez long rien qu'en tentant d'aborder l'usage qu'il est
communément fait de la réécriture avec Apache.
J'espère que mon approche constituera une bonne
base pour les lecteurs qui s'intéressent fraîchement au
sujet ou l'approfondir mais s'avérera aussi un bon
catalogue des différentes problématiques que l'on peut
rencontrer.
Bien que n'ayant pas pu tout détailler, j'espère avoir pu
démontrer que la réécriture est un véritable outil qui
s'apparente à un couteau-suisse tant elle permet
d'accomplir de tâches bien différentes.
Le procédé de réécriture d'URL n'est en rien propre à
Apache, tout serveur HTTP intègre sa propre
implémentation. Outre la question de la syntaxe, dans
le fond, le principe est toujours le même. Par exemple,
quelques parallèles avec Nginx :

les directives RewriteCond s'écrivent sous forme de
bloc if ;
rewrite se comporte comme RewriteRule placée dans
le fichier de configuration d'Apache au niveau d'un
<VirtualHost> puisque c'est l'ensemble du chemin
HTTP qui est testé ;
la query string est toujours recopiée pour Nginx à
moins d'utiliser la même solution qu'Apache : ajouter
un point d'interrogation à la fin de la nouvelle
destination à suivre ;
la gestion des variables représentant la requête HTTP
comme l'état du serveur, est totalement différente et
indépendante du module de réécriture. Un gros
avantage par rapport à Apache est que les valeurs
composées, comme la query string, sont réellement
parsées par Nginx et forment autant de variables, ce
qui est plus commode.

Si vous deviez mémoriser quelques éléments à propos
de la réécriture avec Apache, voici les points les plus
importants :

RewriteRule ne teste que la partie chemin d'une URL,
pour tout le reste il faut s'orienter sur RewriteCond et
la variable de réécriture adéquate ;
par défaut, si la règle suivie ne définit pas de query
string, alors celle d'origine, s'il y en a une, est
recopiée. À l'inverse, si la règle appliquée définit une
chaîne de requête, alors cette dernière remplace celle
initiale ;
les directives RewriteCond sont, par défaut, liées par
un et logique ;
les directives RewriteCond ne s'appliquent qu'à la
règle qui suit. Elles ne se factorisent pas, il faut les
répéter si nécessaire ;
les chemins, au niveau d'une règle RewriteRule située
dans un fichier .htaccess ne commencent jamais par
un slash. C'est l'inverse pour les fichiers de
configuration d'Apache à l'exception des blocs
<Directory> ;
le flag L(ast) n'est pas END : il n'empêche pas une
boucle de réécriture contrairement à ce que
beaucoup croient et colportent à tort ;
il est recommandé de placer ses règles par ordre de
spécificité décroissante, les motifs les moins "larges"
en haut afin de limiter les conflits.

Liens :

la documentation du module de réécriture : version
2.2 et 2.4 ;
la documentation des expressions pour la syntaxe
alternative de RewriteCond en versions 2.4.

http://httpd.apache.org/docs/2.2/mod/mod_rewrite.html
http://httpd.apache.org/docs/2.4/mod/mod_rewrite.html
http://httpd.apache.org/docs/2.4/expr.html

	1. Avant propos
	1.1. Ce qu'est et n'est pas la réécriture
	1.2. PHP/SQL pour les besoins d'illustration autour d'un cas pratique dynamique

	2. Bref rappel des bases de la syntaxe des expressions rationnelles
	2.1. L'alternative (|)
	2.2. Les ancres (^ et $)
	2.3. Les quantificateurs (répétitions et/ou omission)
	2.4. Métacaractères contre caractères
	2.5. Les classes de caractères
	2.6. Groupement et mémorisation
	2.7. Les assertions négatives
	2.8. Épilogue

	3. Partie théorique : activation et explication des directives
	3.1. Activation
	3.1.1. Pour l'administrateur du serveur
	3.1.2. En tant qu'utilisateur

	3.2. Principe général
	3.3. Travailler uniquement sur le chemin HTTP
	3.4. Interactions entre les règles
	3.5. Les conditions pour travailler sur les autres parties de l'URL et au-delà
	3.6. Les différentes variables de réécriture

	4. Quelques exemples d'applications de la réécriture
	4.1. Interdire l'accès direct aux images depuis un site extérieur (direct linking ou hotlinking) ?
	4.2. Bloquer un client ou lui servir un contenu spécifique
	4.3. Rediriger un domaine (avec et sans www)
	4.4. Forcer le protocole https pour une ressource
	4.5. Rediriger des ressources qui ont été déplacées ou remplacées
	4.5.1. Redirections HTTP simples
	4.5.2. Racine de site déplacée : renvoyer, de manière invisible, sur un sous-répertoire

	4.6. Rerouter ce qui n'existe pas physiquement vers un contrôleur frontal ou semblable (MVC)
	4.7. Hôtes virtuels de masse simulés
	4.8. Effectuer une redirection en fonction d'un paramètre de query string
	4.9. Interdire l'accès au site avant une certaine date sauf pour une adresse IP
	4.10. Renvoyer le visiteur selon les heures de bureau
	4.11. Masquer l'extension de ses scripts PHP

	5. Difficultés communes et résolution
	5.1. Le "piège" de l'arborescence virtuelle
	5.2. Conflit entre la négociation de contenu et la réécriture
	5.3. Interprétation des codes d'erreur HTTP renvoyés dans le cadre de la réécriture
	5.4. En dernier recours : déboguer la réécriture d'URL

	6. Aller plus loin
	6.1. Gérer le possible duplicate content inhérent à la réécriture
	6.2. URL et caractères "spéciaux"
	6.3. RewriteBase : quand Apache est incapable de résoudre physiquement les chemins HTTP
	6.4. Comprendre réellement le flag L(ast)
	6.5. Exemple de résolution d'une boucle infinie de réécriture
	6.6. Les différents niveaux de réécriture

	7. Conclusion

